IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021

WHISTLE: CPU Abstractions for Hardware and
Software Memory Safety Invariants

Sungkeun Kim, Farabi Mahmud, Student Member, IEEE, Jiayi Huang, Member, IEEE,
Pritam Majumder, Student Member, IEEE, Chia-Che Tsai, Abdullah Muzahid, Eun
Jung Kim, Member, IEEE

Abstract—Memory safety invariants extracted from a program can help defend and detect against both software and hardware memory
violations. For instance, by allowing only specific instructions to access certain memory locations, system can detect out-of-bound or
illegal pointer dereferences that lead to correctness and security issues. In this paper, we propose CPU abstractions, called WHISTLE,
to specify and check program invariants to provide defense mechanism against both software and hardware memory violations at
runtime. WHISTLE ensures that the invariants must be satisfied at every memory accesses. We present a fast invariant address
translation and retrieval scheme using a specialized cache. It stores and checks invariants related to global, stack and heap objects. The
invariant checks can be performed synchronously or asynchronously. WHISTLE uses synchronous checking for high security-critical
programs, while others are protected by asynchronous checking. A fast exception is proposed to alert any violations as soon as possible
in order to close the gap for transient attacks. Our evaluation shows that WHISTLE can detect both software and hardware, spatial
and temporal memory violations. WHISTLE incurs 53% overhead when checking synchronously, or 13% overhead when checking

asynchronously.

Index Terms—Hardware Defense, Hardware-Assisted Security, Memory Safety, Program Invariants, Cache Architecture

1 INTRODUCTION

Emory safety violation is considered one of the most
M critical software vulnerabilities leading to both correctness
and security problems. In 2020, Common Weakness Enumeration
(CWE) community listed three types of memory safety violation
among the five most impactful and serious software issues [1].
Memory safety violation can manifest from software or hardware
behavior. For illustration purpose, let us consider the examples
in Figure 1. It shows how a memory safety violation (buffer
overflow) can be the result of a vulnerability in software or
in hardware. A software (or software-induced) memory safety
violation can be prevented by software defenses such as bounds-
checking [2]. However, a hardware (or hardware-induced) mem-
ory safety violation can bypass such defenses in software within
the CPU pipeline as a result of misprediction or out-of-order
optimizations. For example, a Spectre-PHT attack [3] will mistrain
the branch predictors to temporarily bypass the bounds-checking
in software within speculative execution, and then leak the out-of-
bound data through a side channel. Many works either in software
or hardware have addressed memory safety violations. However,
existing works suffer from the following major shortcomings:

« Most existing works have focused on defense against only
software memory safety violations [4], [5], [6], or defense
against only hardware memory safety violations [7], [8],
or defense against software violations with partial defense
against hardware violations [9], [10]. Cryptographic Capa-

o All authors except Jiayi Huang are associated with Department of Com-
puter Science and Engineering, Texas A&M University, Texas, TX-77843.
E-mail: (ksungkeun84, farabi, pritam2309, chiache, Abdullah.Muzahid,
ejkim)@tamu.edu

e Jiayi Huang is associated with Department of Electrical and Computer
Engineering, University of California, Santa Barbara, CA 93106 USA.
E-mail: jyhuang @ucsb.edu

H H Virtual H H
HW Memory Violation wemey SW Memory Violation
offset = &secret - array offset = &secret - array
H .
char read(int offset) { char char read(int offset) {
T T T fant <« 6y T 1 array[0-15]

1if (offset < 16)

1 return arrayl[offset];
return arrayloffset]; : }

} Mispredicted

as “taken”
A
. har secret
Branch Read secret i---------------- Read secret
Predictor (transient execution)

Fig. 1: A comparison of hardware and software memory safety
violations. Due to a branch misprediction or lack of bounds check,
respectively, a malicious input (int offset) can cause memory
safety violations in hardware or in software.

bility Computing (C?) [11] provides uniform defense against
both software and hardware memory safety violations, yet
it requires memory encryption which may not be necessary
in some scenarios. Both No-FAT [12] and HeapCheck [13]
performs bounds checking on both non-speculative and spec-
ulative memory access and raise exceptions on violations. An
uniform, general hardware defense against both software and
hardware violations not only incurs lower access overheads
but also provides economy of mechanisms and wide coverage
of defense.

« Existing works have addressed software memory safety vio-
lations based on either blocking the malicious behaviors (i.e.,
blocklisting) [9], [14] or allowing the benign behaviors (i.e.,
allowlisting) [5], [15]. However, for hardware memory safety
violations, most existing defense works only focus on de-
tecting or preventing specific malicious behaviors [9] or their
consequences [16]. These defenses for hardware violations

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021

are specific to the exploits and can be considered ad-hoc
solutions. If any future exploit exhibits different behaviors,
the attacker can circumvent the defense mechanism.

To address the limitations, we propose WHISTLE, a set of
CPU abstractions for memory safety violation detection inside
the microarchitecture. It is capable of handling both software and
hardware violations and allows program-specific policies to check
synchronously or asynchronously. WHISTLE provides schemes
to detect violations in stacks, heaps, and global objects of a
program, and can prevent spatial attacks as well as temporal
attacks such as Use-After-Free. WHISTLE is based on program-
specific invariants stemming from a common pattern that most of
the memory locations of a program are accessed (transiently or
not) by only a handful of instructions during normal executions.
These “good” instructions can be formulated for the corresponding
memory locations as invariants of the program. By allowing only
memory accesses within the invariants, WHISTLE can defend
against future, unknown software or hardware vulnerabilities as
exploiting these vulnerabilities will trigger the alarms by accessing
disallowed memory locations. We propose a hardware implemen-
tation of WHISTLE, with the following contributions:

o Uniform Defense: We develop an effective defense mecha-
nism against both software and hardware memory violations
using invariants. As a proof-of-concept (PoC), we demon-
strate how to generate invariants using profiling in hardware
and store them in program binaries.

e Invariant Cache with Flexible Checks: We propose a small
dedicated cache, namely Top Invariant (TI) cache, to make
the invariant accesses faster. TI cache works alongside the
L1 cache with the rest of the memory hierarchy. During a
load memory request, WHISTLE checks if it is accessing
a location protected by the invariants. If so, WHISTLE
accesses the TI cache to check whether the invariants are
satisfied. Memory accesses to invariants are distributed along
the memory hierarchy based on the access frequency. Thus,
the most frequently accessed invariants reside in the TI cache,
while others reside in the L2, memory, or disk. TI cache along
with the rest of the memory hierarchy provides the func-
tionality to check if the invariants are satisfied. WHISTLE
provides two modes of invariant checking — synchronous
and asynchronous. WHISTLE uses synchronous checking
for high security-critical programs, while others are protected
by asynchronous checking.

o A Fast Exception: When a memory location is accessed by
any instruction outside the invariants, WHISTLE raises the
security exception immediately (i.e., without waiting for the
offending instruction to reach the head of the reorder buffer)
to prevent Meltdown-type [17] attacks. The OS handles the
exception by immediately terminating the process.

We implement WHISTLE in gemb5 [18] and evaluate it
with SW and HW violations by using four programs of Spectre
variants Spectre (PHT/BTB/RSB/STL) [19], BugBench [20] and
NIST [21]. We also evaluate overheads of WHISTLE using SPEC
CPU2017 [22]. A thorough security and performance analysis
shows that WHISTLE can detect both HW and SW memory
safety violations with 13%-53% performance overhead across a
mix of synchronous and asynchronous checks.

The rest of the paper is organized as follows: §2 provides a
background, §3 describes the threat model; §4 discusses security
analysis; §5 presents the main ideas of WHISTLE; §6 shows the
detailed implementation; §7 and §8 evaluate WHISTLE’s security

2

and overhead; §9 provides some related work, and finally, §10
concludes the work.

2 BACKGROUND & MOTIVATION

In this section, we introduce the basic concept of allowlisting and
blocklisting as the strategy of defense and our approach toward
hardware-based solution.

2.1

All access control mechanisms can be categorized as either al-
lowlisting and blocklisting. Allowlisting defines the policies based
on the “known good” behaviors of the target, and block everything
else by considering them potentially harmful. On the other hand,
blocklisting defines the policies based on the “known bad” behav-
iors of the target and explicitly blocks them in the system. Take
memory safety for an example. An allowlisting approach adds dis-
joint [5], [15], [23], [24] or co-joint metadata [25] to keep track of
the memory locations which can be safely accessed. A blocklisting
approach may trigger alarm from generated token or tripwire [9],
[14], or detect memory content corruption. Both approaches have
pros and cons. Allowlisting systematically defends against a class
of attacks, even if the attack factors are unknown. Blocklisting
blocks a known threat until the threat is removed systematically,
and thus can’t mitigate unknown threats.

Allowlisting or Blocklisting?

2.2 Why Allowlisting in WHISTLE?

A lesson from the recent discoveries of hardware and software
vulnerabilities is that anything that can go wrong will go wrong.
We cannot assume even the hardware to be immune from the
classes of vulnerabilities previously found inside software. In
2018-2019, numerous variants of the Spectre and Meltdown
attacks were discovered. In 2020, CWE reported more than 2000
memory safety violations in various popular software [1]. Despite
individual patches in software or hardware, no systematic solution
has been proposed so far to prevent software and hardware
memory safety violations as a class of vulnerabilities. Therefore,
we choose to adopt allowlisting policy in WHISTLE as a stepping
stone towards mitigating all of these attacks.

2.3

WHISTLE uses invariants to distinguish malicious and benign be-
haviors. Just like all access control mechanisms, the composition
and enforcement of security rules are both sophisticated topics.
Fortunately, WHISTLE’s mechanism for invariant enforcement
is not tied to any method of composition, and thus allows us to
focus on the former and leave the latter for future work.

For now, WHISTLE uses profiling (i.e., dynamic analysis)
for early, unintervened invariant generation, but profiling is not
inherent to our solution. Nevertheless, using profiling can cause
false positives and false negatives. For example, some cases of
misspeculation can be potentially benign, especially for the buffer
overrun that commonly happens after a program loops through the
elements. Using hardware profiling can prevent the false positives
by including these accesses as part of the invariants. The caveats of
doing so is that any protected “secret” cannot be near the bounds
of any buffer. These cases are not violation in regards to any of
the invariants collected, but do pose a risk of being exploited by
the attackers. In all of our program samples, we have not observed
this scenario. We consider this a reasonable caveat, as a compiler

Invariant Generation

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021

can straightforwardly distance buffers from other variables with
padding. Other false positives can occur if profiling is not done
sufficiently (e.g., until convergence). In that case, new accesses
might appear as false violations. A programmer can analyze and
confirm the false violations and subsequently update the invariant
section by releasing some type of invariant patch.

A careful reader might wonder what happens if the profiling
runs are buggy or under attack. In order to prevent buggy/attacked
profiling runs from corrupting the invariants, the standard practice
in debugging community is to use some well-known bug detection
tools with each profiling run to make sure that the execution is bug-
free [26]. On top of that, an isolated machine is used to prevent
any attack during profiling.

Other potential alternative methods to profiling include synthe-
sization (i.e., static analysis) and human composition. Synthesiza-
tion can guarantee invariant coverage. However, it may require
sophisticated algorithm, and is less scalable. Human composi-
tion requires significant efforts and is subject to human error.
In practice, profiling can be useful for the initial collection of
raw policies, which can be further refined with synthesization
or human intervention. In software security, profiling has been
used by other papers [26], [27] especially when the work is
focused on expression and enforcement. There is a long line of
research on improving dynamic analysis, such as symbolic exe-
cution, fuzzing [28], and Al-based collection, which we consider
complementary to our work and out of scope.

3 THREAT MODEL

In-scope Attacks: WHISTLE prevents violations to memory
safety rules defined by the invariants. The violations can be the
results of exploiting either software or hardware vulnerabilities,
including the existing Spectre attacks [3]. Besides the known
attacks, WHISTLE is also designed as a defense for future,
unknown attacks, including future Spectre-type attacks that ex-
ploits speculative optimizations to violate memory safety rules,
as well as future Meltdown-type attacks which violates hardware
protections but can still be temporarily executed in the pipeline.
WHISTLE prevents memory safety violations to variables in
stacks, heaps, and global regions, and prevents spatial as well as
temporal violations such as Use-After-Free.

Trusted Components: WHISTLE assumes that the software is
trustworthy but may contain vulnerabilities to be exploited by the
attackers; both the protected program and the OS will not contain
malicious code that deliberately violates the memory safety rules.
WHISTLE also trusts the integrity of invariants stored in the
program binaries, which can be protected by page tables or other
hardware protections. The OS is also trusted to handle exceptions
raised by the hardware during invariant violations.

Out-of-scope Attacks: WHISTLE only prevents violations for
memory safety rules, and does not protect other data structures
such as registers. WHISTLE does not enforce control flow
integrity but can detect memory safety violations (such as buffer
overflows) that are either prerequisites or outcomes of control flow
violations. WHISTLE also cannot prevent attacks from attacker-
forged code such as Javascript or eBPF gadgets, WHISTLE
does not protect the correctness and integrity of memory contents
and cannot prevent or detect semantics-based attacks that do
not violate memory safety rules. In addition, WHISTLE does
not prevent data leakage through side channels, including side
channels through structures added by WHISTLE (e.g., TI Cache),

Memory Type [Effective Period | Invariants Invrs = {Key — PCs}

(CallContext,Addr—BinaryBase)
Global Load — Unload S {PC\.PCs,-- ,PC,}
(CallContext,Addr—FrameBase)
Stacks Call — Return o {PC{,PCs.--- ,PCy}
K (CallContextpajioc, Addr—Ob jectBase)
Heaps Malloc — Free — {PC|,PC.--- ,PCy}

TABLE 1: The memory types, effective periods, and invariants defi-
nitions in WHISTLE.

but rather prevents illegal access to data before leaking through
side channels. Although WHISTLE may introduce new side
channels through its structures, the side channels do not reveal
more information than what L1 or L2 cache already reveals (i.e.,
which memory blocks are recently accessed).

Synchronous vs. Asynchronous Checking: WHISTLE allows
flexible security policies, for each program to choose between
(1) blocking the memory operations until the check is finished
(synchronous checking); and (2) letting the memory operations
finish but raising an exception immediately after the violation is
detected (asynchronous checking). A similar design choice has
been adopted by REST [14], to delay STORE commits (Debug
mode) until acknowledgement or to proceed and issue impre-
cise exceptions (Secure mode). Synchronous checking provides
stronger security guarantee because there is no transient window
where the CPU pipeline has access to the data and is able to leak
through consequential cache operations. Synchronous checking is
necessary if the attacker can retrieve the secret with one attempt,
such as fetching a single bit from an encryption key. In other
cases where the attacker needs several attempts or iterations,
the program can be prompted by the exception as soon as the
first violation is detected by WHISTLE. One example where
asynchronous checking is appropriate is when the attacker is using
Spectre to dump the kernel memory, which will be stopped by
WHISTLE immediately.

4 DEFINITION AND SECURITY ARGUMENTS

In this section, we describe the invariants used in WHISTLE and
our security arguments.

4.1 Memory Safety Invariants

WHISTLE detects memory safety violations based on program
invariants. We define invariants as Program Counters (PCs) al-
lowed to read or write a memory location in a program, either
as global, stack, or heap objects. Table 1 defines the invariants of
three different memory types as well as their effective periods:

1) A global object resides inside the program’s data segment.
The invariant would include all the PCs that can access the
virtual address of that object, relative to the base of the
binary. Even if the global objects have a static life time,
we define the invariant of the global objects with the calling
context for the finer grained protection.

2) A stack (local) object resides inside the stack of each thread.
The invariant would include all the PCs that can access the
offset of that current stack frame. The offset is distinguished
by the calling context of the current frame; The calling
context changes when entering a function and gets restored
when returning. This is to differentiate the local objects in
two functions that share the same offset.

3) A heap object resides inside the heap and is created by
routines such as malloc. Since the heap can be reused,

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021

(b) Hardware Violation

(a) Software Violation . // Global Data

> char dict[256];

5 char hex[512];

4 [+ other variables =/
5 int secret;

I // Global Data

> char dict[256];

3 /xother variables =/

4 int secret;

5 // Vulnerable Code

6 int input[]=/xfrom user */;

7 for (i=0;input[i];i++)

8 printf("%d\n”, dict[
input[il]);

/! Vulnerable Code

s int x=/+from user */;

9 if (x>=0 && x<256)

10 printf("%c%c\n”, hex[
dict[x]*2], hex[dict[x
1%2+11);

Fig. 2: Examples of memory safety violations.

the invariants of a heap object is related to the timing of
allocation and deallocation. We identify the invariant by
the calling context when malloc is called, and unload the
invariant when the object is freed.

4.2 Security Arguments

Here we describe the security argument for the defense of WHIS-
TLE against software and hardware violations.

Detecting Software Violations: We use buffer overflow as
an example (Figure 2(a)) for software violations. At line 8, the
value of each element in input is not checked to be within the
bounds of dict. A malicious input may contain values that can
load beyond the bounds of dict and read secret. To detect
this attack, WHISTLE must check the invariant that line 8 should
never load data beyond the bounds of dict. When this invariant is
generated, WHISTLE will see that the PC(s) of line 8 only access
memory up to the bound of dict during normal and attack-free
executions. Therefore, the PC(s) of line 8 will only be included in
the invariants for dict and input, and will not be permitted to
read secret.

Detecting Hardware Violations: We use Spectre (Bounds
Check Bypass) as an example for hardware violations as a result
of speculative execution (Figure 2(b)). The attack speculatively
accesses beyond the bound of dict at line 10, even reaching
secret with specific x. Based on the return value of dict [x],
specific elements of hex are loaded and create a side channel
that can leak the secret. To detect this attack, WHISTLE must
check the invariant that line 10 should never speculatively load
secret, even though it might still speculatively load beyond the
bounds of dict.

5 INVARIANT-BASED MONITORING

This section presents the details of different components of
WHISTLE and its end-to-end workflow.

Invariant Generation: As a proof-of-concept system for
invariant-based detection, we choose to use profiling for in-
variant generation. This choice is influenced by numerous prior
works [26], [27] that show that profiling can be an effective tech-
nique to collect various types of invariants. WHISTLE extends
the hardware to support in-microarchitecture event tracing for both
speculative and non-speculative executions. During profiling, the
PCs of all the memory instructions are recorded irrespective of
their execution status (transient or not). These recorded memory
locations and PCs are then processed by a software tool to generate
the invariants. Each invariant is associated with a protected mem-
ory object and contains the PCs of the memory instructions that
access the corresponding the memory object. WHISTLE extends

Executable Exception X

Safe v

_»Loaded check

by OS
| L2 Cache |
| Memory |

Fig. 3: Invariant-based monitoring system workflow.

the program binary with a special invariant section, to store the
invariants for global, heap, and stack objects.

Invariant Cache: We propose a fast address translation mech-
anism to obtain the invariant addresses. Invariant information is
stored in a fully associative shadow cache structure, named Top In-
variant (TI) cache, alongside the L1 data cache. It is introduced to
avoid any interference with the demand data. The TI cache stores
PCs of the most frequent instructions of the invariant sets, while
other less frequent PCs of the invariant sets reside in L2 cache or
memory. Frequency of accesses is collected during profiling. We
provide both synchronous and asynchronous modes for invariant
checking operations. The synchronous operation checks invariants
before the memory content is accessed, thereby providing the
highest security level. Thus, synchronous checking is suitable
for preventing attacks that can cause leakage/damage in a single
attempt. On the other hand, the asynchronous mode can carry
out invariant checking lazily off the critical path without blocking
the load instruction execution. Thus, asynchronous checking is
suitable for applications with less stringent security requirements
(e.g., less sensitive data or cases where multiple attacks are needed
for practical purposes). The detailed implementation of these
designs is presented in §6.

Fast Security Exceptions: To handle security violations ap-
propriately, we introduce a faster exception mechanism. WHIS-
TLE raises this exception when a memory location is accessed by
any instruction outside the invariant set. We argue that having
a specialized and fast exception is crucial for security. This
exception should be raised as soon as possible in the CPU pipeline.
In other words, the pipeline should deliver the exception even
before the offending instruction becomes the head of the reorder
buffer. Thus, the window for launching a meltdown-type attack
will become smaller. Finally, the OS should immediately terminate
the program and report the violating PC and the accessed memory
location (even though the instruction may or may not be squashed
by the CPU). Thanks to the invariant information, programmer can
easily reason about the violation and take appropriate remedy.

End-to-end: Figure 3 shows the end-to-end workflow for
WHISTLE. A program is compiled and executed with trusted
inputs and environments for hardware-based profiling. Once pro-
filing finishes, the collected microarchitecture events are further
processed in software to generate the invariant sets. The pro-
gram binary is augmented with an invariant section that stores
the invariant sets. During subsequent executions, the operating
system loads the binary, reads the binary header, and initializes
global invariant registers with range information. When a memory
location is accessed by a load instruction, WHISTLE compares
the virtual address of the location with the invariant registers to
determine whether an invariant check is needed. If the check is
not needed, the data is accessed as normal. Otherwise, WHISTLE
feeds the memory address to the fast invariant address translator

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021

[Fetch [Decode [Issue/Execution/Write back | Commit |

cew Memory Address Heap base, size
BTB

Callsite

CC Encoder ccip - ccp
(€D += cow) Tracing Unit

RAS i Heap ID Cache
RetAddr
Flush to the Memory ‘
L1D Cache

Fig. 4: Out of order core with additional hardware for profiling,
maintaining calling contexts, and heap information. CCID= Calling
Contex ID and CCW = Calling Context Weight.

D

to generate the invariant pointer address. WHISTLE uses this
pointer address to access the TI cache and check the invariants.
In cases of TI cache misses, the check request is sent to the next
level in the memory hierarchy for further checks. Note that the
invariant check can be either synchronous or asynchronous with
the data access depending on the application security level. In
synchronous check, data is not returned back to core until the
check is completed. When asynchronous check is applied, data
can be returned right away to minimize the performance overhead.
An exception is raised if there is any violation. The exception is
raised right away (without waiting for the instruction to be at the
head of the reorder buffer) and returns the control to the operating
system. The exception handler terminates the process immediately
and reports the instruction and memory address.

6 IMPLEMENTATION
6.1 Overview of the Design

WHISTLE adds extra hardware to enable hardware-based profil-
ing. Figure 4 shows a typical out-of-order core with the extra hard-
ware. §6.2 explains the tracing support for profiling. WHISTLE
profiles three major memory areas used in a program - global,
stack, and heap. Owing to different characteristics of distinct
memory allocations, it is imperative to profile and record them
separately. To profile data objects, we leverage the calling contexts
to differentiate accesses to the same address (§6.3). Unlike stack,
a conventional CPU is not aware of heap object. We extends CPU
and OS to keep track of heap allocations and deallocations (§6.4).
Once profiling is finished, invariants are generated and embedded
into the executable binary offline (§6.6). To implement invariant
checks efficiently, we use a specialized cache like structure,
namely, TT Cache (§6.8).

6.2 Profiling Support

We augment the out-of-order core with a tracing unit (Figure 4).
Special memory regions are allocated in each core to record the
traces. These accesses can bypass the caches and there is no need
to check its coherence and consistency during profiling as each
core has its private profiler. For multithreaded programs, all the
per-core profiles are merged (offline) into one profile. To be more
specific, the timings of allocating and deallocating a heap object
will be recorded to be associated with the accesses to the virtual
address of the object during this period of time.

As explained in §5, WHISTLE uses multiple bug/attack-free
inputs to collect invariants. WHISTLE collects invariants until no
new invariants are found by profiling more. Figure 5 shows the
convergence of invariants over profiling runs. In this figure, we
profile with different inputs given by SPEC CPU2017 [22] and
randomly generated for real applications respectively. As profiling

gzip ==ncompress ==polymorph

—perlbench_s
—gec_s

mef_s
—cactuBSSN_s

Ibm_s

omnetpp_s
—=xalanchmk_s
—=x264_s
—imagick_s
—leela_s
—nab_s
—z_s

o
®

0.8

0.5

o
[

0.3

o
©

Normalized Total Invariants
Normalized Total Invariants

0.0

0 5 10 15 20 25 30 35 40 45 50 55 0 1 2 3 4 5 6 7 8 9
Profile Run Numbers Profile Run Numbers

0.0

Fig. 5: Convergence of invariants. Invariants are saturated as more
profiles are collected.

more, increment of total invariants are saturated. This clearly
demonstrates the convergence of invariants. Of course, there is still
no guarantee that all possible invariants are captured. Therefore, as
suggested in prior works [26], coverage enhancing techniques [28]
need to be applied during profiling runs.

6.3 Calling Context Encoding

Memory addresses in stack/heap are reused by many objects as
program runs. To differentiate these objects, we use a calling
context that is a sequence of call sites. Previous works [29] use
xor-folding of the last few call-sites, but PCCE [30] proposed to
efficiently encode/decode precise calling context. PCCE calculates
weights (CCW) of edges on a call-graph. Then, ”CCID += CCW”
and "CCID -= CCW” instructions where CCID is a calling
context ID initialized with zero are inserted before/after every
call instruction. WHISTLE adopts this idea to maintain CCID at
runtime. Instead of inserting two extra instructions, we extend
call/return instructions of Intel x86 ISA to deliver CCW to the
processor and extend the processor to update CCID with very
simple logic (add/subtract). Updating CCID is not dependent on
existing design in the processor pipeline stages. Branch Target
Buffer (BTB) and Return Address Stack (RAS) are extended to
store CCW or CCID (64 bits each) associated with a predicted
call (Figure 4).

6.4 Hardware Support for Heap Objects

We extend the compiler, instruction set architecture, and the
processor to trace heap object’s creation and deletion. Compiler
inserts the extended instruction to malloc and free function so that
the processor updates the Heap ID cache as shown in Figure 4.
Heap ID cache is Content Addressable Memory (CAM) and uses
two tags—begin and end address of heap objects. The data portion
of the cache stores the allocation CCID of heap objects. During an
access to a heap object, tag matching is done by checking if the
heap address lies in between the two tags. If so, the CCID of the
matched line is returned as data. In case the cache does not have
available space, requests are issued to extended memory controller
that manages designated memory to keep information of additional
heap objects '. Energy and space overheads are evaluated in § 8.

The current Heap ID cache is shared among all the cores
to ensure coherence. This is crucial since temporal memory
violations can occur across multiple cores. For example, core 1 can
deallocate an object while core 2 continues to access the object.
Therefore, as soon as a heap ID is unloaded in the Heap ID cache,
the object is considered invalidated by all the cores.

1. In the evaluation, we limit the area of heap profile to store every heap
information in Heap ID cache.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021

6.5 Binary Compatibility
The extension of WHISTLE for the compiler, the ISA, and the
processor does not break existing applications that do not provide
their program invariants. For programs that are augmented for
memory safety violation detection, no other instruction needs
to be modified besides only two special instructions added—
call_cc/ret_cc for delivering weights for updating the CCID, and
add_heapobj/remove_heapobj for updating the heap ID for track-
ing heap objects at malloc and free. The extension to malloc and
free should only impact the system library that implements these
functions (e.g., libc), unless the application binary is statically
linked against the library. Although WHISTLE does require
recompilation of the program binary, the recompilation is mostly
only for the purpose of embedding the weights for CCIDs. The
program sections for storing the invariant sets are injected directly
into the program binary without the need of recompilation and can
even be populated into a separated binary if necessary.
Portability to Other Platforms: Our extension for the com-
piler and the ISA is general enough to be ported to other CPU and
microarchitecture with minor adjustments. For an ISA with fixed-
length instructions (such as ARM), we can add a new instruc-
tion for embedding the weights for CCIDs instead of extending
call/return. The extension is also neutral to microarchitectural
design since it only requires CPU changes. For other compilation
frameworks, such as a runtime for an interpreted language or a
runtime with just-in-time compilation, invariant collection with
profiling may not be possible, so we will have to rely on static
analysis or programming APIs.

6.6 Invariant Section and Memory Hierarchy

WHISTLE extends the binary with a new section for invari-
ants (.invr) as shown in Figure 6. Invariant section has two
subsections—one for invariant blocks (GInvrBlks, SInvrBlks,
HInvrBlks) and one for invariant pointers (GInvrPtrs,
SInvrPtrs, HInvrPtrs).

Invariant Blocks store sets of PCs that access to the same
memory address in the same context. These PCs will be used to
check if a requested memory access by a PC is legitimate. First two
8 bytes in an invariant block are reserved to store access frequency
of the memory address and the number of cache blocks to store the
entire invariant block. Access frequency is used for replacement
policy of TI cache and the number of cache blocks are used to
multicast requests from TI cache. PCs in each invariant block are
ordered by access frequency of each PC so that the most frequently
used PCs are installed in TI cache. TI cache is a shadow cache
structure used to reduce performance impact of invariant checks.
It stores the most frequently used PCs in an invariant block as a
Top Invariant Block as described in §6.8.

Invariant Pointers store addresses of the corresponding in-
variant blocks. WHISTLE uses indirect addressing to reduce
fragmentation of invariant section. Note that size of an invariant
block is not fixed and dependent on the number of PCs that access
to the same memory address. To access an invariant block directly,
the size of the invariant blocks should be uniform resulting in an
internal fragmentation.

6.7

We store invariant blocks in the separated section of the binary.
One of the challenges of invariant memory management is to
determine the address of an invariant block for a particular

Invariant Access

6
| iant Point Invariant
nvarian inter:

arlant Fointers Blocks
Heap
Heap Invariant Pointers Invariant
Heap Ptr Base Blocks
+CCID
[#ce Joser-o[seae [. Joser-mm[sea-om| [F [#ca [ec |
1 .) I . 1
1 : [0 1
#cB | 0SET-0 | sBA-@ | . . . |OSET-n1| SBA-n1 L
P| #cB | osET-0 | sBA-e . 0SET-n@| SBA-n@ f==p{ F I#CBI PC

I Offset Block Address]
1 . 3
. 1
1 .
Offset Block Address

Offset Block Address

Stack Ptr Base

+ CCID
Global
Global Invariant Pointers Invariant
Global Ptr Base Blocks

+CCID

Fig. 6: Memory layout of invariant section (.invr) in executable. F=the
access frequency of invariant block, #CB=the number of cache blocks,
OSET=offset of stack or heap object, SBA=Stack Invariant Address,
HBA=Heap Invariant Address.

600.perlbench_s i
602.gcc_s
605.mcf_s

—

—

1 607.cactuBSSN_s
[619.lbm_s

1 620.omnetpp_s

623.xalancbmk_s

|

o
©
o

Frequency
o
[oe]
w

] 625.x264_s
0.80 638.imagick_s
641.leela_s
0.75 [644.nab_s
657.xz_s
070 20 40 60 80 100 120 140

The number of PCs in Invrset
Fig. 7: Cumulative distribution of Invariant set size.

memory location. We propose efficient indirect invariant access
mechanism for global, heap, and stack objects.

We describe the indirect invariant access mechanism with
stack invariants for example. Stack invariants are grouped accord-
ing to CCIDs. During the access of a stack object, WHISTLE
uses CCID of the corresponding function as an offset from Stack
Ptr Base to find Offset Block Address as shown in Figure 6.
Offset Block Address points to a region that contains SInvrBlk
Addrs for all offsets associated with the particular CCID. WHIS-
TLE reads the first block of this region to determine the number
of cache blocks. TI cache issues read request to all of those blocks.
Each cache block contains a number of < of fset,SBA >. As each
cache blocks arrives to the TI cache, it finds the block with an
offset that matches the offset of the stack object. The SInvrBlk
Addr associated with this offset is used to find the invariant block
of the stack object. Invariants of global and heap objects are
identified in a similar fashion except that the CCIDs used for heap
objects will be the allocation CCIDs. Note that only for Heap
objects, the Heap ID cache is used to find the allocation CCIDs,
whose hardware design presented in §6.4.

6.8 Top Invariant Cache

The major challenge of invariant based approach is the volume of
the profiled invariants. It not only causes huge storage overhead,

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021

L1D Cache

___________ . Y D
,?]
‘ TIB ‘: T CHKENVR || TvRacK
i
L ! 'e 'e

1
l

Shared !
Cache !

I Memory Controller I

Fig. 8: Message flow of Invariant check across the memory hierarchy.
GIBA/IBA, GTIB/TIB/TIB/IB, and CHKINVR/INVR(N)ACK are
request/response messages for invariant block address, top invariant
blocks, remaining invariant blocks, and invariant checks, respectively.

Top Invariant Block (TIB) ———
Frequencyl #CB PC-0 | | PC-29 |

I ¥
) L
—_/

Invariant
Ptr Addr

Invariant
Block Addr

[v

Offset

Data Tag

PC

Offset

PC Found

Invariant
Ptr Addr

()
o/

CHKINVR Message From L1

Data Tag

Invariant Violation

Fig. 9: Tag matching mechanism between invariant pointers and
offsets, and invariant checking mechanism inside TI cache. #CB: the
number of conventional cache blocks for the entire invariant sets.
In this work, TI cache installs 256 bytes of them (four 64 bytes
conventional cache blocks).

but also incurs performance overhead. Since caching invariants in
the conventional data cache may pollute by evicting actual demand
data, we introduce a special cache with a separate cache controller,
Top Invariant (TI) Cache, for caching and checking the invariants.

6.8.1 Top Invariant Block and Least Frequently Accessed
Replacement Policy

The numbers of PCs in each invariant sets are different and the
sets have different access frequency. We first survey the range of
invariant set sizes and decide size of TI cache block. Figure 7
shows cumulative distribution of invariant set size. We observe
that 90% of invariant sets have less than 32 PCs which can be
stored in four conventional cache block size (64 bytes). Therefore,
we configure TI block size as 256 bytes. To read all 256 bytes
effectively, the invariant section is generated with invariant blocks
that are at least 256 byte long and aligned to conventional cache
block size. Upon an invariant check, TI cache loads the first four
conventional cache blocks in the invariant block. Then, it merges
and installs them in one TI cache block. Remaining part of the
invariant block will be installed in a shared cache and checked
by CHKINVR and GIB messages described in the following Section.
Second, we leverage the knowledge during profile for the efficient
placement of PCs in the invariant block and TI cache replacement
policy. By placing the most frequently accessed PCs first in
the invariant block, the hit rate of TI cache block increases. In
addition, TI cache selects a victim block that is the least frequently
accessed among cache blocks for replacement.

6.8.2 Indirect Tag for Tl Cache Access

Conventionally, a cache tag is part of the address for the cache line.
Global, stack, and heap objects are associated with their unique
invariant pointer addresses. Instead of using the conventional tag,
TI cache uses the invariant pointer address as the tag as shown
in Figure 9. Note that since stack and heap objects are associated
with CCID and offset (see Figure 6), both Base + CCID and Offset
are used for tagging. Also, TI cache adds one extra metadata to
store address of invariant block (InvrBlkAddr).

6.8.3 Message Flows of Invariant Check

Figure 8 demonstrates the interaction in the memory hierarchy
involved in invariant checks. Several messages are introduced to
handle invariant check. Upon a memory access to a protected data
in L1 cache, a CHKINVR message carrying the instruction PC and
the invariant pointer address is sent to TI cache. The invariant
pointer address is calculated with CCIDs. If it is a miss, TI cache
initiates a sequence of steps to load top invariant block as follows:
@ A GIBA request with the invariant pointer address is issued to
get the actual address of the invariant block. The address of global
invariant block is retrieved with one request but the addresses
of stack and heap invariant blocks are be retrieved with at least
two requests. @ Then the returned invariant block address is
encapsulated in the GTIB messages to fetch the Top Invariant Block
(TIB) from the shared cache. Note that size of TIB could be bigger
than conventional cache line size (i.e., 64 bytes) depending on the
configuration. In that case, TI cache loads multiple cache lines
to install the entire TIB. If it hits in the shared cache, the TIB is
returned and installed in the TI cache. In case of a miss, the request
is forwarded to the memory controller to load it from memory.
After TIB is installed in TI cache, a check is done to inspect if
the accessed PC is in the block. If it is in the block, a INVRACK is
sent back to L1 cache to acknowledge the safety of the access. If
it is not in the block, further inspection is initiated. € When the
PC is not in TIB, a CHKINVR request is forwarded to the shared
cache to scrutinize the remaining invariant blocks. If they miss in
the shared cache, a GIB request is generated to load them to the
shared cache to finish the check. After inspection, an INVRACK or
INVRNACK is replied to the TI cache depending on the success of
the check. If a violation happens, the INVRNACK triggers a security
exception. If the type of CHKINVR is synchronous, the data supply
to CPU from L1 is delayed until INVRACK. Otherwise, the data is
supplied to CPU immediately and CHKINVR inspects in parallel.

7 SECURITY EVALUATION

We implement the hardware supported invariant profile and check
using the gem5 simulator [18]. Table 2 summarizes the base-
line configuration and additional structure in microarchitecture.
WHISTLE uses TI and Heap ID cache structure to hold the
invariants and CCID of heap creation on the core side. Also,
WHISTLE extends branch target buffer (BTB) and return stack
buffer (RSB) to store CCW and CCID. All the invariants are
profiled based on cache line granularity. To profile invariants of
each benchmark until no more invariants are found, we use all
the inputs given by SPEC2017 [22], downloaded extra input data
from online source [31], and changed the input parameters until
no more invariants are found.

To emulate invariant embedding, we modify the source code
of target benchmarks to allocate additional global memory to hold
the invariant section. We extract information from the binaries

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021

[Parameter [Value |
Core 2.0 GHz, Out-of-Order, no SMT, 32 Load Queue, 32
Store Queue entries, 192 ROB entries, Tournament branch
predictor, 4096 BTB entries, 16 RSB entries.
LI-I$ Private, 64B line, 4-way, 32KB, 1 cycle access lat.
LI-D$ Private, 64B line, 8-way, 64KB for Baseline, 32KB for
WHISTLE 1 cycle access lat.
HeapID $ 8 B line, 1024 entries, 1 cycle access lat. Fully associative.
TL$ 256B line, 256 blocks, 32KB or 64KB, 1 cycle access
lat. Least Frequently Used (LFU) replacement policy, fully
associative.
L2$ Shared, inclusive, 64B line, 2 cycles access lat. 2MB, 16-
way.
DRAM Built-in memory model in gems5.

TABLE 2: Parameters of the simulated architecture. HeapID Cache
and TI Cache are not included in baseline system. 64KB size of TI
cache used for the fully synchronous check and 32KB size of that
used for the fully asynchronous check.

[| Source [Application [BOGO [IS | WHISTLH
_ 2zipl 24 7 X 7
= ncompress v X v
2| BugBench 20— antsht 7 X 7

polymorph-0.4.0 v X v
= ID 102226 v X v
Q 1D 102247 v X 4
=
g| NISTI21] 1D 102618 7 X %
= ID 2151 v X 4
g Spectre-PHT X v v
‘7 Spectre-BTB X v ©
g| Spectre[19] Spectre RSB X 7 7
= Spectre-STL X v v

TABLE 3: Evaluation results with spatial, temporal, and transient
memory violations in BOGO [5], InvisiSpec(IS) [16], and WHISTLE
validation. v means that the violation is detected. X means that the
violation is not detected. © means that the violation is circumstantially
detected, since WHISTLE only detects Spectre-BTB when there is a
preceding memory corruption to mistrain the BTB.

(ELF format) such as regions of data segments (.data, .rodata,
and .bss section) and code segment (.text) as well as addresses of
malloc and free functions. Then, these binary layout information
is referred by gem5 during simulation. This enables us to simply
reflect extensions to compiler and operating systems.

We evaluate WHISTLE for both HW and SW viola-
tions. We write four programs of Spectre variants (Spectre-
PHT/BTB/RSB/STL) [19] with eviction based cache side-channel
to evaluate HW violations and use BugBench [20] and test cases
from NIST [21] for SW violations. After profiling with bug-free
inputs, the test programs are executed again with bug-triggering
inputs. We also run SPEC CPU2017 [22] for both security and
overhead evaluation. We use the reference input size and simulate
for 1 billion instructions after warming up microarchitecture states
with 1 billion instructions in system-call emulation mode?.

7.1 SW and HW Violations

Table 3 lists the applications and validation results. BugBench
provides simplified real-world applications (gzip, man, ncompress,

2. System call emulation has one-to-one page mapping and requires no TLB
translation. Also, invariants are stored continuously in virtual and physical
spaces, and invariant address are directly translated using offsets and CCIDs.
We envision that both the program data and invariant addresses should be
translated with page tables managed by OS, and CPU will perform TLB
lookup for both. The existing TLB and Page Miss Handler can be reused for
invariant addresses, with potentially larger buffer to reduce the overhead. Due
to simulation limitations and significant workload for implementing OS-level
handler, we leave this experiment for future work.

8

and polymorph) with buffer overflow bugs in the stack and global
objects, and NIST provides test cases to evaluate the Use-After-
Free bugs in heap objects. Buffer overflow bugs are detected by
WHISTLE and it also detects the Use-After-Free bugs because
WHISTLE keeps track of allocation/deallocation of heap objects
using Heap ID cache. We do not observe false positives.

WHISTLE can fully detect three out of four Spectre variants.
First, in Spectre-PHT [3], transient instructions are exploited to
access a secret using an array out-of-bound access. Since this
access was not observed during profiling, WHISTLE raises an
exception and the program stopped. Second, Spectre-RSB exploits
Return Stack Buffer to hijack return flow. PoC program mimics the
attacker’s behavior using a gadget function and malicious code
resides after the gadget function call. Gadget function is invoked
only during the attack and WHISTLE detects the violation
from the malicious code. Three, Spectre-STL exploits memory
disambiguator. PoC program inserts malicious load instruction
after naive store instruction clearing secret data so that the load
instruction reads the secret before clearing it. Again, this malicious
load did not appear in the profile and WHISTLE detects this
variant as well.

The only exception is Spectre-BTB, which WHISTLE can
only detect under specific circumstances. Spectre-BTB, unlike
other Spectre variants, exploits control flow violations instead of
data access violations. Since WHISTLE does not check instruc-
tion fetching, it cannot detect control flow violations. However,
to cause Spectre-BTB, the attacker needs to mistrain the BTB in
order to change the control flow. The attacker may use a buffer
overflow to corrupt a code pointer or return address, which can be
detected by WHISTLE. WHISTLE cannot detect Spectre-BTB
if the attacker uses other mistraining methods, such as mistrain-
ing from another thread. Potentially, WHISTLE can extend the
invariant profiling and checking to instruction cache. That way,
WHISTLE will be able to detect control flow violations that
cause invariant violations in the instruction cache. We leave this
extension for future work.

7.2 Comparison against with BOGO and InvisiSpec

We run PoC programs for both BOGO [5] and InvisiSpec [16]
that are SW and HW memory violation detection techniques
respectively. As shown in Table 3, neither BOGO nor InvisiSpec
detect all the violations. BOGO provides full memory safety on
top of MPX-enabled [15] processors, but it is limited to committed
load or store instructions resulting in failure to detect the transient
attacks. InvisiSpec defends against the transient attacks by block-
ing cache side channels. However, InvisiSpec is not designed to
defend SW violations. We discuss more related works in §9.

7.3 Coverage of HW vs. SW Profiler

We implement both HW and SW profilers, and evaluate the
coverage of using gem5 simulator with out-of-order core. HW
profiler records every memory access, either transient or non-
transient. We profile the first billion instructions for collecting the
calling contexts, and the second billion instructions for collecting
both the calling contexts and the invariants. On the other hand,
SW profiler records only committed memory accesses, which can
miss hardware vulnerabilities that rely on transient executions,
such as recent speculation-based attacks, Spectre and Meltdown.
Figure 10 shows the coverage of HW profiler in terms of number
of invariant sets compared to SW profiler. HW profiler covers 60%

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021

OSW Invrsets B HW Invrsets

w
=}

N
e}

g
o

g
o

o
[0}

HW Coverage / SW Coverage
=
wn

S S S S S S S S S S S S N
N C o N D Q. 2
&7 7 (BT O (R g (3 007 (T
& %c,\\’ S N B > © &
Q ¥ K

Fig. 10: Coverage Comparison in terms of the total number of
invariant sets between SW and HW Profilers.

more invariant sets. perlbench_s and mcf_s have higher coverage
than other benchmarks. The number of squashed memory instruc-
tion is dependent on program characteristics, such as number of
branches, indirect jumps, and/or HW components associated with
speculative execution, such as branch predictor.

7.4 Attack Surface Reduction

We also measure the reduction of attack surface in terms of
software and hardware memory safety violation, based on how
many rogue memory accesses in a program will be accepted by
the system. Here, we define the memory-specific attack surface as
the number of PCs allowed to access a specific memory location
under a specific calling context. In TABLE 4, we show that for
each invariant set, there are 2.60-20.01 PCs in average allowed
to access the memory. However, without WHISTLE, a Spectre-
BTB attack can change the control flow speculatively to allow
any memory accessing PC to read/write any memory location.
Considering that for each program in CPU2017, there are at least
1,220-25,405 unique PCs during the profile that access memory,
the attack surface reduction by WHISTLE is 99.80-99.99%.

Unique | # Invariant | Avg. # PCs | Attack Surface
Benchmarks PCs Sets / Inv. Set Reduction
perlbench_s 18,482 6,685 14.83 99.98%
gcc_s 16,975 2,671 20.01 99.96%
mcf_s 1,258 1,234 5.27 99.91%
cactuBSSN_s 25,405 298,649 6.54 99.99%
Ibm_s 1220 517 4.76 99.80%
omnetpp_s 7,934 21,605 5.00 99.99%
xalancbmk_s 4,326 16,139 4.23 99.99%
x264_s 3,827 4,200 3.32 99.97%
imagick_s 2,865 7,819 2.60 99.98%
leela_s 2,678 5,755 2.79 99.98%
nab_s 2,515 5,118 4.93 99.98%
XZ_8 1,305 897 3.81 99.88%

TABLE 4: Assessment of attack surface reduction in SPEC CPU2017
using WHISTLE, based on the number of PCs allowed to access each
memory location.

7.5 Exception Latency Reduction

We measure how fast security exception is raised before instruc-
tions are committed. We collect the number of cycles elapsed
between memory request, invariant check and instruction retire-
ment, and calculate how much earlier the proposed exception
is raised, compared to the number of cycles elapsed between
memory request and instruction retirement with the assumption
that the exceptions in the baseline without any mitigation for
memory safety violations occur at retirement of the corresponding
instruction. In Figure 11, a light red bar represents the cycle

OLD Issue - INVRACK B INVRACK - RERIEMENT

N O
o o

0
o

Average Latency (Cycles)

]

o

w o

. & o
™ D
A |:I
g
e
™ D
{s

elall=n

7o
5 ° OIIN < &

N
(e}
& & S

DAY BN
& s

Fig. 11: Reduction of security exception latency in asynchronous
check.

OBaseline @ Synchronous Check (64KB TI$) @ Asynchronous Check (32KB TI$)

»N
»

g
o

o

Normalized Execution Time
[

0.5
S S S S 3 S S S S S S Y
xS &7 &7 S & ; N D N - N Y4 % e
V:’e‘\c IS « %55 W (\e\qﬂ’ & ,.’lb %7 \f & + 5
N & & A RN
Q & +o

Fig. 12: Execution time for CPU2017. Invariants are profiled as cache
line granularity.

difference between memory request and invariant check, which
is the exception latency with asynchronous check. The entire bar
with light and dark red bar represents the cycle difference between
memory request and the retirement, which is the exception latency
with baseline. On an average, the security exception requires 15%
less time than that of the baseline system. Since, in asynchronous
check, data could be supplied to the core before invariant check is
finished, there may exist a small window of exploitation. Note that
for applications with strong security requirement, we can enable
synchronous checking.

8 OVERHEAD EVALUATION

We first show the performance overhead of the proposed mi-
croarchitecture with invariant check over the baseline, analyze the
source of the overhead, and discuss how to overcome. Then, we
describe the trade-off between different invariant check policies.
Last, we evaluate overhead of area and energy. We observe that
cactuBSSN_s and Ibm_s allocate the large number of heap objects
and few heap objects with large size respectively. We limit the
number of heap objects and the maximum heap size to 500 objects
and 100MB respectively. The reason is that the heap size can be up
to gigabytes and causes the invariant size to explode. We believe
that it can be improved by applying compression or deduplication
techniques. We leave this work for future work. After adjustment,
benchmarks generate invariant set with maximum size 251MB and
27MB on an average.

8.1 Performance Overhead

Figure 12 shows the normalized execution time of CPU2017 over
baseline. For each program, we check the invariants based on
cache line granularity and simulated for 1 billion instructions after
warming up microarchitecture states with 1 billion instructions in
system-call emulation mode. Average performance overheads of

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021

WAverage Round Trip Latency =% Invariant Check

o
o

100%

— «

< §

o

>~ 50 <

o 75% 3

g 40 <]

< =

2 <]

5 30 50% 2

o -

= o

= 20 0
o

g 25% k]

8 10 §

° &

o - 0% &

g 7wl &N o oF N b o ol Al

z o ‘2 9 & N O (XN} A

< & & & FS ,z‘,\QQ 396\ ®° OQ\(’ \ee\ & *

N O & N R
& & FENN §
Q & +0

Fig. 13: Average Roundtrip Latency (Left Y Axis) and Total Number
of Invariant Check (Right Y Axis).

OL1D Cache (Base)
@ L2 Cache (Syncl0-Async0)

B L1D Cache (Syncl0-AsyncO)
O Tl Cache (Sync10-AsyncO)

012 Cache (Base)

50%

25%

0% H ml HI
s 5

Cache Miss Rates

S
L

wa! H

&

S
N
\e? o

Fig. 14: Miss rates of L1D, L2, and TI Cache.

synchronous and asynchronous invariant check are 53% and 15%
respectively. We use 64KB size of the TI cache for synchronous
checking and 32KB of that for asynchronous checking to effi-
ciently use the cache capacity. The main sources of performance
degradation are round-trip latency and the number of invariant
checks out of total L1D cache accesses, which are shown in
Figure 13°. Benchmarks with greater latency and more number
of invariant check have higher performance overhead compared
to other benchmarks. For instance, we observe the overhead of
cactuBSSN_s as an outlier, which can be attributed to extremely
large number of invariant sets (298,649) resulting in high average
round trip latency shown in Figure 13. Note that the number of Top
Invariant Cache Blocks (TIB) are 128 that is not sufficient size for
cactuBSSN_s. On the other hand, x264_s and xz_s have negligible
overheads (3%) due to small number of invariant sets and good
locality making small TI cache miss rate as shown in Table 4 and
Figure 14 respectively. Because the number of invariant checks
are the property of benchmarks, we cannot reduce them. Instead,
we focus on latency of invariant check which depends on the
performance of TI cache. As shown in Figure 14, benchmarks
with high overhead have high miss rate in TI cache. We consider a
hit in TT cache if PC is found in the TI cache block. In other words,
even if the TI cache block is installed, if the PC is not found, it is
miss because TI cache should forward CHKINVR message to lower
level cache. For example, cactuBSSN_s and imagick_s suffer from
in low performance because of the high miss rate in TI cache with
38% and 27% respectively.

8.2 Sensitivity of Tl Cache

We study the sensitivity of TI cache size to understand the
performance impact with different size of TI cache and its config-
uration. Figure 15 shows the miss rate of TI cache with different

3. We observe that there are many memory accesses to sections of ELF
binary during libc library functions calls. That is the reason why the number
of checks are not mostly full even if WHISTLE checks all the memory access
to global, stack, and heap objects.

10

B Tl Cache (32 KB, 128 blocks)

°

°
7

B Tl Cache (64 KB, 256 blocks)

60%

40%

20% I I
)) E)

N o/ &7 /
& & & %5‘9%
g &

N
Q & 4

° ° °
7 7

2
°
&

N o

Fig. 15: Sensitivity of TI cache block numbers and size. TI Cache are
configures with 256B block size. perlbench_s is configured differently
with 512 block size and 128 cache blocks for 64KB size TI cache.

m Global Invariant ® Stack Invariant

100%

Heap Invariant

m Original Binary

75%

50%

Portion of Invariant

25%

0%

Fig. 16: Increment of binary size after embedding the invariants.

number of blocks (128 and 256 blocks for every benchmark
except perlbench_s) and wider blocks (512 byte that can store
64 most frequently used PCs for perlbench_s). We observe that
miss rates are reduced with more number of TI cache blocks
but not perlbench_s. This is because perlbench_s has 10% of
invariant sets with more than 32 PCs as shown in Figure 7 and
we observe that accesses from 10% is still significant. Therefore,
we doubled the block size for perlbench_s instead increasing the
number of blocks and the miss rate decreased. Doubling the cache
size does not incur area overhead as discussed in §8.5 so we
can improve the performance with even larger than 64KB TI
cache. On the other hand, asynchronous is not much sensitive
than synchronous check as shown in Figure 12. This shows the
high performance performance overhead with 32KB TI cache
but not huge reduction of the performance with asynchronous
check. Another optimization can further improve the round trip
latency for invariant check. For example, becuase WHISTLE uses
indirect Tag for TI cache block access (§6.8.2), it requires extra
memory access that increases the miss penalty. We could use hash
function with tags (invariant pointer address and offset) for getting
addresses of invariant blocks. We leave this work for future work.

8.3 Performance Impact of Invariant section

We evaluate size of invariant section and its impact on perfor-
mance. Figure 16 shows the increment of binary sizes of each
benchmark after the invariants are embedded. Size of invariant
section is mainly determined by the number of CCID and the
number of invariant blocks for global, stack, and heap as described
in Figure 6. For example, cactuBSSN_s is profiled with 251MB
size of invariant section due to greater number of invariant blocks
compared to other benchmarks. We observed 27MB size of invari-
ant section on an average.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021

11

OBase MSync ESync7-Asyn3 @ Sync5-Asyn5 B Sync3-Asyn7 B Asyn Title SP TP TR SH FS AB

8 _ DataSafe [33] v v X X v O

e E [DIFT34] V| /7| X | X | X] O

- o g Rakhsa [35] v 4 X 4 FE O

H . \ [LIFT [36] S| /T X[x| xTo

2, \ HardBound [23] VI XX /7] X0

3, \ [Intel MPXTI3] S| V| X [/7| X0

£ \ 3 | BOGO 3] |/ X v/ X O

£2 ‘ § [CHERIvoke [24] V7| X |7 [X]|oO

z 1 ‘ B REST [14] v v X v X %)

g Caliform [9] v 4 Ve 4 X @)

g & | CHEx86[10] S I V77 X[X O

° AOS [4] S| 7V X [/7| x| O

HeapCheck [13] v 4 4 4 X O

Fig. 17: Performance changes across different ratios of synchronous No-FAT [12] S/l /1 X110

and asynchronous. TI Cache with 32KB size used. There are spectrum Adjustable Monitoring [37] | / v X X v %)

of synchronous-asynchronous checks - 100%-0% (Sync), 70%-30% FADE [38] SIS XX /] o

(Syn7-Async3), 50%-50% (SynS-Asyncs), 30%-70% (Syn3-Async7), FlexCore [39] A A I S A

and 0%-100% (Async). g | Harmont [10) CA A S8 A v e

Yy £ [HDFI[41] 7 | X[7| X]| O

5 £ [MemTracker [42] S| X /X O

[[Area (mm~) [Energy/Access (nJ)] 5 NILE [43] V4 V4 X X X [@)

TI Cache (32KB/64KB) | 3.19561/3.36907 | 1.077067/1.090471 = PHMon [44] v v X v X ®}

HeapID Cache 0.323398 0.0991182 Watchdog [6] IV XX X[O
BTB & RAS 0.1977129 0.0517251 [CFI | SpecCHI [7] [V [X7 [/ X] O]
TABLE 5: Area and energy overhead of each component added by | [¢ 1] [VIV][/ v xTo]
WHISTLE. [[WHISTLE [V [/17717]0O]

8.4 Comparison of Invariant Check Policies

We conduct an experiment to evaluate the performance overhead
of WHISTLE with mixture of synchronous and asynchronous
invariant checks. In order to see the performance trade-off between
them, all the targeted memory accesses are randomly marked
whether it is either synchronously or asynchronously checked
based on a given ratio. We configure the ratios as 70%-30%,
50%-50%, and 30%-70% for synchronous-asynchronous checks,
respectively, and have one run for each configuration. Figure 17
shows the performance overhead decreases as the portion of
asynchronous check increases. Depending on the security level,
WHISTLE can adjust the ratio of synchronous-asynchronous
check for better performance.

8.5 Area and Energy Overhead

We estimate hardware budget using CACTI-7 [32] at 22nm.
WHISTLE uses TI Cache to hold invariant and it has two tags—
data and invariant pointer and extra 8 bytes metadata to store
address of invariant block and its block size is 256 bytes. Heap
ID cache uses both start and end address of corresponding heap
object for tag matching to find CID of heap creation on the core
side. Also, WHISTLE extends branch target buffer (BTB) and
return stack buffer (RSB) to store 8 byte CCW and CCID. TI
cache with 32KB size takes 3.19561 mm? of area and 1.077067
nJ of energy and 64KB size of TI cache incurs 5% more area
and 1% more energy. Heap ID cache takes 0.323398 mm? of area
and 0.0991182 nJ of energy. Extended BTB increase 0.197777129
mm? of area and 0.517251 nJ of energy. We consider that parallel
tag matching logic in TI cache is being implemented using Content
Addressable Memory (CAM), which has very low area, energy,
latency implication.

9 RELATED WORK

In this section, we discuss hardware defenses for memory safety.
We summarize the prior works in Table 6.

Dynamic Information Flow Tracking (DIFT): One of the
challenges of DIFT is the runtime overhead. To reduce this over-
head, LIFT [36] eliminates unnecessary checks by dynamic binary

TABLE 6: Summary of Prior Works. SP: Spatial memory safety, TP:
Temporal memory safety, TR: Transient memory safety, SE: Security
exception, FS: Flexible Security, AB: Allowlisting or Blocklisting
approach (v: Fully Supported, X: Not Supported, v/ *: Partially Sup-
ported, O: Allowlisting, @: Blocklisting.).

inspection. Later, FPGAs are used for low overhead information
tracking. Compared to DIFT, WHISTLE focuses on detecting the
very instruction which accesses the sensitive variables, rather than
tracking the information flow beforehand or afterwards.

Bounds Checking: Bounds checking [2] detects memory
access that exceeds the expected lower or upper bound. Ar-
chitectural stupports are proposed for bound checking in recent
works [5], [15], [23], [24]. Several other works apply coloring to
implement allowlisting policies [25], which fail to support intra-
object memory protection. Recently, REST [14] and Caliform [9]
employ blocklisting policies to detect memory safety violation.
CHEXx86 proposes a speculative pointer tracking mechanism to
track pointers and support bounds checking by intercepting malloc
function [10] while AOS instruments malloc function to propagate
pointer information to hardware for heap object bounds check-
ing [4]. HeapCheck [13] enforces bounds checking on memory
requests from the CPUs, based on object bounds provided from
hooked allocation and deallocation routines. No-FAT [12] uses
statically transformed instructions to enforce bounds checking
on heap objects, with object bounds determined from memory
locations. Compared to bounds checking, WHISTLE provides a
more general approach to check memory safety rules, including
rules that are within objects.

Monitoring Based Solutions: Other works focus on moni-
toring memory violations at runtime based on given policy [6].
Nile [43] and PHMon [44] are recent works which provide hard-
ware assisted frameworks for general monitoring. Flexible support
for different security levels can be realized through different poli-
cies and extensions, or allocating various security budgets [37],
[38]. However, none of aforementioned works considers transient
execution memory safety threats as hardware vulnerabilities ex-
ploited by Spectre and Meltdown (except CHEx86, which defends
against Spectre-v1). Recently, hardware defenses are proposed to
isolate the impact of speculative execution before the changes

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021

become permanent in cache hierarchy [8], [16]. The design of
WHISTLE is meant to detect the violating instruction, instead
of mitigating the consequence (e.g., side channel) of violation in
cache, TLB, or other components.

Similar to this work, SpecCFI [7] takes allowlisting approach
and uses in-architecture checks for jump, call and return targets
within transient execution, to prevent Speculative control-flow
attacks [3]. SpecCFI generates the CFI rules using the existing
compiler support. WHISTLE focuses on data access but can be
extended for CFL

Cryptographic Capability Computing (C*) [11] encrypts both
the values and the corresponding pointers using encryption keys
generated from the sizes, the size-aligned base addresses, and
versions of the pointers. C3 can prevent both spatial and temporal
memory safety violations, since any of these violations will lead to
wrong encryption keys and garbled plaintexts. WHISTLE also of-
fers uniform protection against spatial, temporal, and speculative
memory violations, but does not require memory encryption.

10 CONCLUSIONS

We proposed WHISTLE, a program invariant-based technique to
detect HW and SW memory violations. Our proposed hardware
profiler can construct memory invariants from both transient and
non-transient instructions. The proposed TI cache enables fast
checking of invariants when loading data. TI cache works with
the memory hierarchy to store invariants at different levels based
on access frequency. WHISTLE provides both synchronous and
asynchronous checking of invariants; the latter includes a fast
security exception to alert the OS about an attempted access that
violates the invariants. We believe WHISTLE to be a stepping
stone towards a systematic solution to prevent both HW and SW
memory safety violations.

ACKNOWLEDGMENTS

This work was supported by the startup package provided by Texas
A&M University and NSF under Grant No. 1652655 and CCF-
2135995.

REFERENCES

[1] C. W. Enumeration, “2020 cwe top 25 most dangerous software weak-
nesses.” https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html.

[2] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial memory safety for ¢,” SIGPLAN
Not., vol. 44, p. 245-258, June 2009.

[3] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv preprint arXiv:1801.01203,
2018.

[4] Y. Kim, J. Lee, and H. Kim, “Hardware-based always-on heap memory
safety,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 1153-1166, IEEE, 2020.

[5] T. Zhang, D. Lee, and C. Jung, “BOGO: buy spatial memory safety, get
temporal memory safety (almost) free,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 631-644, 2019.

[6] S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Watchdog: Hardware
for safe and secure manual memory management and full memory
safety,” in 2012 39th Annual International Symposium on Computer
Architecture (ISCA), pp. 189-200, IEEE, 2012.

[71 E.M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song, and N. Abu-
Ghazaleh, “SpecCFI: Mitigating spectre attacks using cfi informed spec-
ulation,” in 2020 IEEE Symposium on Security and Privacy (SP), pp. 39—
53, IEEE, 2020.

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

(21]
[22]

[23]

[24]

[25]

[26]

(271

(28]

12

S. Kim, FE. Mahmud, J. Huang, P. Majumder, N. Christou, A. Muza-
hid, C.-C. Tsai, and E. J. Kim, “ReViCe: Reusing Victim Cache to
PreventSpeculative Cache Leakage,” in 2020 IEEE Secure Development
Conference (SecDev), September 2020.

H. Sasaki, M. A. Arroyo, M. T. 1. Ziad, K. Bhat, K. Sinha, and
S. Sethumadhavan, “Practical byte-granular memory blacklisting using
califorms,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 558-571, 2019.

R. Sharifi and A. Venkat, “CHEx86: Context-sensitive enforcement of
memory safety via microcode-enabled capabilities,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
pp. 762775, 1IEEE, 2020.

M. LeMay, J. Rakshit, S. Deutsch, D. M. Durham, S. Ghosh, A. Nori,
J. Gaur, A. Weiler, S. Sultana, K. Grewal, and S. Subramoney, “Crypto-
graphic capability computing,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 21, (New York,
NY, USA), p. 253-267, Association for Computing Machinery, 2021.
M. T. 1. Ziad, M. A. Arroyo, E. Manzhosov, R. Piersma, and S. Sethumad-
havan, “No-fat: Architectural support for low overhead memory safety
checks,” in Proceedings of the 48th Annual International Symposium on
Computer Architecture, ISCA °21, p. 916-929, IEEE Press, 2021.

G. Saileshwar, R. Boivie, T. Chen, B. Segal, and A. Buyuktosunoglu,
“Heapcheck: Low-cost hardware support for memory safety,” ACM
Trans. Archit. Code Optim., vol. 19, jan 2022.

K. Sinha and S. Sethumadhavan, “Practical memory safety with REST,”
in Proceedings of the 45th Annual International Symposium on Computer
Architecture, ISCA 18, (Piscataway, NJ, USA), pp. 600-611, IEEE
Press, 2018.

O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel
MPX explained: A cross-layer analysis of the intel mpx system stack,”
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, vol. 2, no. 2, pp. 1-30, 2018.

M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 428-441, IEEE, 2018.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, et al., “Meltdown: Reading kernel
memory from user space,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), pp. 973-990, 2018.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5 Simulator,”
SIGARCH Comput. Archit. News, vol. 39, pp. 1-7, 2011.

C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation
of transient execution attacks and defenses,” in 28th USENIX Security
Symposium (USENIX Security 19), (Santa Clara, CA), pp. 249-266,
USENIX Association, Aug. 2019.

S. Lu, Z. Li, E Qin, L. Tan, P. Zhou, and Y. Zhou, “Bugbench:
Benchmarks for evaluating bug detection tools,” in Workshop on the
evaluation of software defect detection tools, vol. 5, 2005.

NIST, “Software Assurance Reference Dataset (SARD) project.” https:
//samate.nist.gov/SARD, 2017. Last accessed 10 Mar 2022.

“SPEC releases major new CPU benchmark suite.” https://www.spec.org/
cpu2017/press/release.html.

J. Devietti, C. Blundell, M. M. Martin, and S. Zdancewic, “Hardbound:
architectural support for spatial safety of the ¢ programming language,”
ACM SIGOPS Operating Systems Review, vol. 42, no. 2, pp. 103-114,
2008.

H. Xia, J. Woodruff, S. Ainsworth, N. W. Filardo, M. Roe, A. Richardson,
P. Rugg, P. G. Neumann, S. W. Moore, R. N. Watson, et al., “CHERIvoke:
Characterising pointer revocation using cheri capabilities for temporal
memory safety,” in Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pp. 545-557, 2019.
“Hardware-assisted checking using silicon secured memory (ssm).” https:
//docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html.

A. Muzahid, N. Otsuki, and J. Torrellas, “Atomtracker: A comprehensive
approach to atomic region inference and violation detection,” in Pro-
ceedings of the 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, December 2010.

M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, “Securecore: A
multicore-based intrusion detection architecture for real-time embedded
systems,” in 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 21-32, IEEE, 2013.

R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. L. Traon, “Validity
fuzzing and parametric generators for effective random testing,” in Pro-

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://samate.nist.gov/SARD
https://samate.nist.gov/SARD
https://www.spec.org/cpu2017/press/release.html
https://www.spec.org/cpu2017/press/release.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

ceedings of the 41st International Conference on Software Engineering:
Companion Proceedings, ICSE 2019, Montreal, QC, Canada, May 25-
31, 2019 (J. M. Atlee, T. Bultan, and J. Whittle, eds.), pp. 266-267,
2019.

P. Zhou, W. Liu, L. Fei, S. Lu, FE. Qin, Y. Zhou, S. Midkiff, and
J. Torrellas, “Accmon: Automatically detecting memory-related bugs via
program counter-based invariants,” in 37th International Symposium on
Microarchitecture (MICRO-37°04), pp. 269-280, IEEE, 2004.

W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang, “Precise calling
context encoding,” IEEE Transactions on Software Engineering, vol. 38,
no. 5, pp. 1160-1177, 2011.

“Sensei’s libray.” https://senseis.xmp.net/?GoDatabases.

R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “Cacti 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 14, no. 2, pp. 1-25, 2017.

Y.-Y. Chen, P. A. Jamkhedkar, and R. B. Lee, “A software-hardware
architecture for self-protecting data,” in Proceedings of the 2012 ACM
conference on Computer and communications security, pp. 14-27, 2012.
G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” ACM Sigplan Notices,
vol. 39, no. 11, pp. 85-96, 2004.

M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible informa-
tion flow architecture for software security,” ACM SIGARCH Computer
Architecture News, vol. 35, no. 2, pp. 482-493, 2007.

F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu, “Lift: A low-
overhead practical information flow tracking system for detecting secu-
rity attacks,” in 2006 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’06), pp. 135-148, IEEE, 2006.

D. Lo, T. Chen, M. Ismail, and G. E. Suh, “Run-time monitoring with
adjustable overhead using dataflow-guided filtering,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), pp. 662-674, IEEE, 2015.

S. Fytraki, E. Vlachos, O. Kocberber, B. Falsafi, and B. Grot, “Fade:
A programmable filtering accelerator for instruction-grain monitoring,”
in 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), pp. 108-119, IEEE, 2014.

D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh, “Flexible and
efficient instruction-grained run-time monitoring using on-chip reconfig-
urable fabric,” in 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 137-148, IEEE, 2010.

D. Y. Deng and G. E. Suh, “High-performance parallel accelerator for
flexible and efficient run-time monitoring,” in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012), pp. 1-
12, IEEE, 2012.

C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and
Y. Paek, “HDFI: Hardware-assisted data-flow isolation,” in 2016 IEEE
Symposium on Security and Privacy (SP), pp. 1-17, IEEE, 2016.

G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic, “Mem-
tracker: Efficient and programmable support for memory access moni-
toring and debugging,” in 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, pp. 273-284, IEEE, 2007.

L. Delshadtehrani, S. Eldridge, S. Canakci, M. Egele, and A. Joshi, “Nile:
a programmable monitoring coprocessor,” IEEE Computer Architecture
Letters, vol. 17, no. 1, pp. 92-95, 2017.

L. Delshadtehrani, S. Canakci, B. Zhou, S. Eldridge, A. Joshi, and
M. Egele, “PHMon: A programmable hardware monitor and its security
use cases,” in 29th USENIX Security Symposium (USENIX Security 20),
pp. 807-824, USENIX Association, Aug. 2020.

Sungkeun Kim received the B.Eng degree in
Computer Science and Engineering from Kyung-
pook National University, Republic of Korea, in
2011. He is a Ph.D. student in the Department
of Computer Science and Engineering, Texas
A&M University. His research interests are the
fields of computer architecture and systems, es-
pecially on networks-on-chip, memory systems

-

-—
])
?M l ({ and near-data processing, and hardware secu-

rity. Before starting a Ph.D., he worked as a soft-
ware engineer at Samsung Electronics, Suwon,

Republic of Korea.

13

Farabi Mahmud received the BSc degree
in Computer Science and Engineering from
Bangladesh University of Engineering & Tech-
nology in 2017. He is a PhD student in the De-
partment of Computer Science and Engineering,
Texas A&M University. His research interests
are the fields of computer architecture and sys-
tems, especially on networks-on-chip and hard-
ware security. Before starting a PhD, he worked
as a lecturer at United International University,
Dhaka.

Jiayi Huang (Member, IEEE) received the BEng
degree in information and communication engi-
neering from Zhejiang University, China, in 2014,
and the PhD degree in computer engineering
from Texas A&M University, in 2020. He is cur-
rently a postdoctoral researcher with the Depart-
ment of Electrical and Computer Engineering,
UC Santa Barbara. His research interests in-
clude computer architecture, computer systems,
and security. He is a member of the ACM and
the IEEE Computer Society.

Pritam Majumder received the B.Tech degree in
Computer Science and Engineering from WBUT,
India, in 2011. He received his MS degree in
Computer Science and Engineering from Indian
Institute of Technology, Madras, in 2015. He is
a Ph.D. student in the Department of Computer
Science and Engineering, Texas A&M University.
His research interests lie in the fields of com-
puter architecture and systems, and machine
learning. He is a student member of the ACM.

Chia-Che Tsai received the BS degree in com-
puter science and information engineering from
National Taiwan University, Taiwan, the MS de-
gree in computer science from Columbia Univer-
sity, and the PhD degree in computer science
from Stony Brook University. He is an assis-
tant professor in the Department of Computer
Science and Engineering at Texas A&M Uni-
versity. His research interests include operating
systems, software and hardware security, and
cloud computing.

Abdullah Muzahid received his BS in Computer
Science from Bangladesh University of Engi-
neering and Technology. He received his MS
and PhD in Computer Sceince from University
of lllinois at Urbana-Champaign. He is an assis-
tant professor at the Department of Computer
Science and Engineering of Texas A&M Univer-
sity. His research broadly focuses on various
aspects of computer architecture and systems.
More specifically, he is interested in multiproces-
sor architecture, parallel programming, program-
ming models, debugging, program analysis and synthesis. Recently,
he is interested in applying machine learning to solve various system-
related issues.

Eun Jung Kim received the BS degree in Com-
puter Science and Engineering from KAIST, Ko-
rea, the MS degree in computer science from
Pohang University of Science and Technology,
Korea, and the PhD degree from the Department
of Computer Science and Engineering, Pennsyl-
vania State University. She is an associate pro-
\ fessor in the Department of Computer Science

and Engineering, Texas A&M University. Her re-

search interests include computer architecture,
power efficient systems, parallel/distributed sys-

|
by
tems, cluster computing, and hardware security. She is a member of

the IEEE Computer Society. More information about her research is
available at http:/faculty.cse.tamu.edu/ejkim.

https://senseis.xmp.net/?GoDatabases

	Introduction
	Background & Motivation
	Allowlisting or Blocklisting?
	Why Allowlisting in WHISTLE?
	Invariant Generation

	Threat Model
	Definition and Security Arguments
	Memory Safety Invariants
	Security Arguments

	Invariant-Based Monitoring
	Implementation
	Overview of the Design
	Profiling Support
	Calling Context Encoding
	Hardware Support for Heap Objects
	Binary Compatibility
	Invariant Section and Memory Hierarchy
	Invariant Access
	Top Invariant Cache
	Top Invariant Block and Least Frequently Accessed Replacement Policy
	Indirect Tag for TI Cache Access
	Message Flows of Invariant Check

	Security Evaluation
	SW and HW Violations
	Comparison against with BOGO and InvisiSpec
	Coverage of HW vs. SW Profiler
	Attack Surface Reduction
	Exception Latency Reduction

	Overhead Evaluation
	Performance Overhead
	Sensitivity of TI Cache
	Performance Impact of Invariant section
	Comparison of Invariant Check Policies
	Area and Energy Overhead

	Related Work
	Conclusions
	References
	Biographies
	Sungkeun Kim
	Farabi Mahmud
	Jiayi Huang
	Pritam Majumder
	Chia-Che Tsai
	Abdullah Muzahid
	Eun Jung Kim

