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ABSTRACT
Neural network training is inherently sequential where the layers
finish the forward propagation in succession, followed by the calcu-
lation and back-propagation of gradients (based on a loss function)
starting from the last layer. The sequential computations signifi-
cantly slow down neural network training, especially the deeper
ones. Prediction has been successfully used in many areas of com-
puter architecture to speed up sequential processing. Therefore,
we propose ADA-GP, which uses gradient prediction adaptively to
speed up deep neural network (DNN) training while maintaining
accuracy. ADA-GP works by incorporating a small neural network
to predict gradients for different layers of a DNN model. ADA-GP
uses a novel tensor reorganization method to make it feasible to
predict a large number of gradients. ADA-GP alternates between
DNN training using backpropagated gradients and DNN training
using predicted gradients. ADA-GP adaptively adjusts when and
for how long gradient prediction is used to strike a balance between
accuracy and performance. Last but not least, we provide a detailed
hardware extension in a typical DNN accelerator to realize the
speed up potential from gradient prediction. Our extensive experi-
ments with fifteen DNN models show that ADA-GP can achieve
an average speed up of 1.47× with similar or even higher accuracy
than the baseline models. Moreover, it consumes, on average, 34%
less energy due to reduced off-chip memory accesses compared to
the baseline accelerator.
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1 INTRODUCTION
Deep neural networks (DNNs) have shown remarkable success in
recent years. They can solve various complex tasks such as recog-
nizing images [29], translating languages [3, 51], driving cars au-
tonomously [16], generating images/texts [41], playing games [45],
etc. DNNs achieve their incredible problem solving ability by train-
ing on a vast amount of input data. The de facto standard for DNN
training is the backpropagation algorithm [31]. This algorithm
works by processing input data using the forward pass through the
DNN model starting from the first layer to the last. The last layer
computes a pre-defined loss function. Then, gradients are calculated
based on the loss function and propagated back from the last layer
to the first, updating each layer’s weights. Thus, the backpropaga-
tion algorithm is inherently sequential: a layer’s weights cannot be
updated until all the layers finish the forward pass and gradients
are propagated back to that layer. This is shown in Figure 1a for
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Figure 1: How gradient prediction speeds up DNN training.

an example 4-layer model where the gradients 𝛿1, ...𝛿4 are used to
update the weights.

The sequential nature of the backpropagation algorithm makes
DNN training a time consuming task. For decades, computer ar-
chitects have been using prediction to speed up various processing
tasks, including sequential ones. For example, predicting branches,
memory dependencies, memory access patterns, synchronizations,
etc. have been used in various processor architectures to improve
performance. Inspired by this line of research, we set out to inves-
tigate whether it is possible to use gradient prediction to relax the
sequential constraints of DNN training.
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There are two major challenges towards gradient prediction.

(1) The Curse of Scale: Scalability of gradient prediction arises
from two aspects of a DNNmodel. First, the number of layers
of any recent DNN model can be in the range of hundreds;
therefore, having one predictor for each layer is not feasible.
Second, for many layers, the number of gradients (which
should be equal to the number of weights in a given layer) is
quite large. In some cases, this number can exceed the num-
ber of output activations of a layer. Consequently, predicting
a large number of gradients for a layer can be challenging.

(2) Accuracy vs. Performance: Always using gradient prediction
will speed up DNN training significantly (almost 3𝑥 speed
up by completely eliminating the backpropagation step) but
can severely degrade the prediction accuracy. However, if a
scheme focuses on predicting high quality gradients and uses
them infrequently, it will not affect the prediction accuracy
of the DNN model, but reduce the speed up. Therefore, the
scheme needs to decide adaptively when and how long to
use gradient prediction during DNN training.

To address these challenges, we propose ADA-GP, the first
scheme to use gradient prediction for speeding up DNN training
while maintaining accuracy. ADA-GP works by incorporating a
small neural network model, called a Predictor Model, to predict
gradients of various layers of a DNN model. ADA-GP uses a single
predictor model for all layers. The model takes the output activa-
tions of a layer as inputs and predicts the gradients for that layer
(as shown in Figure 1b). To predict a large number of gradients,
ADA-GP uses tensor reorganization (details in Section 3.6) within
a batch of input data. When training starts for a DNN model, the
weights of the DNN model are initialized randomly. Therefore, the
gradients for the first few training epochs (an epoch is defined as
one iteration of DNN training using the entire dataset) are more
or less random. Because of this, ADA-GP uses the standard back-
propagation algorithm to train the DNN model for a few (e.g., 10)
initial epochs. During these epochs, ADA-GP trains the predictor
model with the true gradients produced by the backpropagation
algorithm. ADA-GP trains the predictor model with each layer’s gra-
dients. After the initial epochs, ADA-GP alternates between DNN
training using backpropagated gradients and DNN training using
gradients predicted by the predictor model. In other words, for a
number of batches (say,𝑚), ADA-GP trains the DNN model using
the backpropagation algorithm as it is while training the predictor
model with true gradients: we call this Phase BP. Then, for the next
few batches (say, 𝑘), ADA-GP switches to DNN training using the
predictor model generated gradients: we call this Phase GP. During
Phase GP, the backpropagation algorithm is completely skipped,
leading to accelerated training of the DNN model. Thus, ADA-GP
alternates between Phase BP and Phase GP gradually adjusting the
value of𝑚 and 𝑘 to balance accuracy and performance. Finally, we
propose some hardware extension in a typical DNN accelerator to
implement ADA-GP and realize its full potential.

It should be noted that predicting gradients artificially (as op-
posed to using backpropagation algorithm) is not new. Several
prior works investigate the possibility of utilizing synthetic gradi-
ents [1, 7, 8, 23, 34, 35, 37, 56]. This line of work is inspired by the
biological learning process and produces synthetic gradients using

some form of either controlled randomization or per-layer predic-
tors. However, all of the techniques aim at producing better quality
gradients for achieving prediction accuracy and convergence rate
at least similar to that of the backpropagation algorithm. None
of the existing techniques investigate synthetic gradients from the
performance improvement point of view. Some techniques [34, 37]
require forward propagation of all layers to finish before synthetic
gradients can be produced. The majority of the techniques keep
the backpropagation computation as it is and require similar or
more training time compared to the backpropagation algorithm
alone [7, 23, 35]. Some of the techniques introduce more trainable
parameters into the model, leading to an increased training time [2].
Last but not least, all of the existing techniques suffer from lower
scalability, training stability, and accuracy for deeper models.

1.1 Contributions
We make the following major contributions:

(1) ADA-GP is the first work that explores the idea of gradient
prediction for improving DNN training time. It does so while
maintaining the model’s accuracy.

(2) ADA-GP uses a single predictor model to predict gradients
for all layers of a DNN model. This reduces the storage and
hardware overhead for gradient prediction. Furthermore,
ADA-GP uses a novel tensor reorganization technique among
a batch of inputs to predict a large number of gradients.

(3) ADA-GP uses backpropagated and predicted gradients al-
ternatively to balance performance and accuracy. Moreover,
ADA-GP adaptively adjusts when and for how long gradi-
ent prediction should be used. Thanks to this novel adaptive
algorithm, ADA-GP is able to achieve both high accuracy
and performance even for larger DNN models with more
sizeable datasets, such as ImageNet.

(4) We propose three possible extensions in a typical DNN ac-
celerator with varying degrees of resource requirements to
realize the full potential of ADA-GP. Additionally, we show
how ADA-GP can be utilized in a multi-chip environment
with different parallelization techniques to further improve
the performance gain.

(5) We implemented ADA-GP in both FPGA and ASIC-style ac-
celerators and experimented with fifteen DNN models using
three different datasets - CIFAR10, CIFAR100, and ImageNet.
Our results indicate that ADA-GP can achieve an average
speed up of 1.47× with similar or even higher accuracy than
the baseline models. Also, due to the reduced off-chip mem-
ory accesses during the weight updates using predicted gra-
dients, ADA-GP consumes 34% less energy compared to the
baseline accelerator.

2 RELATEDWORK
Training of a neural network is done using many input-label pairs
such as (𝑥,𝑦) with 𝑥 and 𝑦 being the input and the corresponding
desired label. In the forward pass, the prediction 𝑦 is calculated,
whereas the backward pass calculates the prediction error (i.e.,
loss) at the output layer and propagates it back through the earlier
layers to calculate the weight gradients relative to the loss. The
weight gradients are used to update the weights of the network.
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Figure 3: Comparison of the learning process and weight updates in (a) Gradient Descent (GD), (b) Stochastic GD (SGD), (c)
Mini-batch GD (MBGD), and (d) ADA-GP. An arrow represent the direction of computations through different layers of the
network. Here, the network has four layers including three hidden layers; 𝑁 is the size of input dataset and 𝑏 is the batch size.
Loss calculation is shown as proportional to the computation amount.

In case of the Gradient Descent (GD) algorithm, all inputs of the
training dataset are used to calculate a single loss and perform a
single iteration of weight update. Therefore, for larger datasets, GD
becomes painstakingly slow. An alternative is Stochastic GD (SGD)
where a single input is randomly chosen from the entire dataset to
calculate the loss and perform a single iteration of weight update.
For larger datasets, SGD is faster but suffers from lower prediction
accuracy. A commonly used middle ground is called Mini-batch
GD (MBGD) where a batch of random inputs from the dataset is
used to calculate the loss and perform a single iteration of weight
update. Whether it is GD, SGD, or MBGD, weight update is always
dependent on loss calculation which is dependent on processing the
input through the forward pass. The only difference among these
approaches is the number of inputs that need to be processed. ADA-
GP is fundamentally different from these approaches because (in
Phase GP) it allows weight updates to be done in parallel with the
froward pass without requiring any loss. This is shown in Figure 3.

Jaderberg et al. [23] proposed Decoupled Neural Interface (DNI)
where a layer receives synthetic gradients from an auxiliary model
after output activations of the layer are calculated. The predicted
gradients can be used to update the weights of the layer. The auxil-
iary model is trained based on the backpropagated gradients and
the predicted gradients. In other words, DNI requires the back-
propagation algorithm to proceed as usual. When a layer has the
backpropagated gradients available, these gradients are compared
against the predicted gradients, and the auxiliary model is updated.
Thus, DNI does not eliminate the backpropagation step at all. In-
stead, it increases computations of the backpropagation step by
including the auxiliary model update as part of the backpropagation
step. That is why, DNI does not improve training time. In fact, it
slows down the training time. This is different from ADA-GP, where
the backpropagation step is adaptively skipped as the DNN training
proceeds. Speed up of ADA-GP comes from skipping the backprop-
agation step altogether. Moreover, the DNI approach was shown to
work only for small networks (up to 6 layers) and small datasets
such as MNIST. Czarnecki et al. [7] explored the benefits of includ-
ing derivatives in the learning process of the auxiliary model. The

proposed method, called Sobolev Training (ST), considers both the
second-order derivatives as well as the backpropagated gradients
to train the auxiliary model. The intuition is that by including the
derivatives, the auxiliary model will produce higher-quality gradi-
ents compared to the DNI approach. However, similar to DNI, it
does not eliminate the backpropagation step. Rather, ST increases
the backpropagation computations even more by including the
computations of the second-order derivatives. Therefore, ST slows
down DNN training even further. Miyato et al. [35] proposed a
virtual forward-backward network (VFBN) to simulate the actual
sub-network above a DNN layer to generate gradients with respect
to the weights of that layer. Thus, VFBN does not eliminate back-
propagation at all. Instead, it introduces the backpropagation of
a different network, namely VFBN. Using this approach, the au-
thors showed comparative accuracy similar to the baseline model
with backpropagation-based learning. However, similar to prior
approaches, VFBN does not reduce DNN training time.

There is a number of work that uses some form of random or
direct gradients from the last layer. Achieving biological plausibil-
ity serves as a key motivation for these techniques [1, 34, 37, 56],
which target the removal of weight symmetry and potential gradi-
ent propagation in the backward pass. By substituting symmetrical
weights with random ones, Feedback Alignment (FA) [34] achieves
weight symmetry elimination. Direct FA [37] replaces the back-
propagation algorithm with random projection, possibly enabling
concurrent updates of all layers. The study by Balduzzi et al. [1]
disrupts local dependencies across consecutive layers, allowing
direct error information reception by all hidden layers from the
output layer. All of these approaches end up using poor-quality
gradients. Consequently, they degrade the prediction accuracy of
the DNN model significantly (especially for deeper models) and
eventually, end up taking more time to reach the target accuracy.
Decoupled Greedy Learning [2], Decoupled Parallel Backpropaga-
tion (DDG) [22], and Fully Decoupled Training scheme (FDG) [58]
are other strategies that aim to address sequential dependencies of
DNN training. While DDG and FDG have been shown to reduce
total computation time, they incur large memory overhead due to
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the storage of a large number of intermediate results. Moreover,
they also suffer from weight staleness. Feature Replay (FR) [21]
similarly breaks backward dependency by recomputation. Its per-
formance has been shown to surpass that of backpropagation in
various deep architectures. However, FR has a greater computa-
tion demand, leading to a slower training time compared to DDG.
Finally, these works require all layers to finish the forward prop-
agation first before the weights can be updated. This is different
from ADA-GP where weights of a layer can be updated as soon
as the output activations are calculated. ADA-GP does not need to
wait for the forward propagation of all layers to finish.

There are a number of parallelization strategies for DNN train-
ing. Data Parallelism [15, 32, 44, 57] is a widespread method for
scaling up the training processes on parallel machines. However,
this method encounters efficiency challenges due to gradient syn-
chronization and model size. Operator Parallelism offers a solution
for training larger models by dividing layer operators among multi-
ple workers but faces higher communication requirements. Hybrid
techniques [26, 27] combining operator and data parallelism also
encounter similar issues. Pipeline Parallelism [13, 20, 24, 33] has
been extensively explored to reduce communication volume by
partitioning the model in layers, assigning workers to pipeline
the layers, and processing micro-batches sequentially. However,
ADA-GP is orthogonal to this line of work and can be applied in
conjunction with any of these approaches.

3 ADAPTIVE GRADIENT PREDICTION
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Figure 4: Overview of how ADA-GP uses gradient prediction
for DNN training.

3.1 Overview
ADA-GP works in three phases. When DNN training starts, the
DNN model is initialized and trained using the standard backprop-
agation algorithm. During the first few epochs (e.g., 𝐿 epochs), the
predictor model is trained with the true (backpropagated) gradients
without using any of the predicted gradients in model training. This
is theWarm Up phase (this is reminiscent of the warm up step used
in the micro-architectural simulation). Keep in mind that an epoch
is one iteration of DNN training with the entire input dataset. Af-
terward, ADA-GP alternates between the backpropagation (Phase
BP) and gradient prediction (Phase GP) phases within an epoch. In
Phase BP, the DNNmodel as well as the predictor model are trained
with the backpropagated gradients. This is similar to the Warm Up

phase except it lasts for a few (say,𝑚) batches of input data during
an epoch. Then, ADA-GP starts using the predicted gradients from
the predictor model while skipping the backpropagation step al-
together. The skipping of backpropagation leads to an accelerated
training in Phase GP. Phase GP lasts for a few (say, 𝑘) batches of
input data. After that, ADA-GP operates in Phase BP followed by
Phase GP mode. This continues with the value of𝑚 and 𝑘 adapting
over time as the DNN training progresses. Thus, ADA-GP alternates
between learning the actual gradients (from backpropagation) and
applying the predicted gradients (after learning).

3.2 Warm Up of ADA-GP
The intuition behind theWarmUp phase is to initialize the predictor
model and ramp up its gradient prediction ability. Since the DNN
model is initialized randomly, the backpropagated gradients are
more or less random for the initial few epochs. The predictor model
learns from the backpropagated gradients of each layer. As a result,
the predicted gradients are even worse in quality during these
epochs. Because of this, ADA-GP does not apply the predicted
gradients to update the DNN model. Instead, the backpropagated
gradients are used for that purpose. Presumably, after few epochs,
say 𝐿, the predictor starts to produce gradients that are close to the
actual backpropagated gradients, at which point ADA-GP enters
into Phase BP and GP.

3.3 Phase BP of ADA-GP
In Phase BP, both the original and predictor models are trained
based on the true gradients. Contrary to the DNI [23]method, which
utilizes synthetic gradients for training the original model and true
gradients for training the predictor model, Phase BP of ADA-GP
calculates the predicted gradients but does not apply them to the
original model’s training. Instead, the true gradients are employed
for training both the original and predictor models. This technique
maintains a high accuracy for both models while retaining the
performance of the DNI approach [23]. Figure 5a & 5b depict the
training approach of Phase BP for a model with 4-layers.

As illustrated in Figure 5a, unlike the DNI approach, the weights
of the layers are not updated during the forward propagation (steps
0○, 1○, 2○, 3○, and 4○) using predicted gradients. Nevertheless, the
predicted gradients 𝛿 ′1, 𝛿

′
2, 𝛿

′
3, and 𝛿 ′4 are still calculated with the

predictor model based on the output activations in each layer. These
predicted gradients are compared against the true gradients (i.e.,
𝛿1, 𝛿2, 𝛿3, and 𝛿4) and the predictor model is trained during the
backward propagation. Figure 5b shows the backpropagation in
Phase BP. As shown in Figure 5b, two operations are performed
when calculating the true gradients of each layer (steps 5○, 6○, 7○,
and 8○): 1) the layer weights are updated, and 2) the predictor model
is trained. As shown in these figures, in Phase BP, the original model
undergoes the standard backpropagation step, while the predictor
model is trained concurrently.

3.4 Phase GP of ADA-GP
In Phase GP, the standard backpropagation process is skipped,
and the original model is trained based on the predicted gradients.
Furthermore, the predictor model’s training is skipped in this phase.
Figure 5c presents the ADA-GP process in Phase GP. It is important
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(c) Overall training of ADA-GP in Phase GP.

Figure 5: The structure of ADA-GP in a) forward propagation of Phase BP, b) backward propagation of Phase BP, and c)
comprehensive processes within Phase GP that train the initial model using the predicted gradients by predictor model.

to note that Phase GP is applied on a new batch of inputs, following
the completion of Phase BP with the previous batch. As shown in
Figure 5c, Phase GP does not have the true gradient calculations,
and it uses the predicted gradients to update the original model’s
weights. Also, in this phase, ADA-GP does not train the predictor
model.

3.5 Adaptivity in ADA-GP
Following the Warm Up phase, ADA-GP transitions to its stan-
dard operation and adaptively alternates between the two primary
phases - Phase BP and GP. Initially, it proceeds with Phase GP, uti-
lizing the predicted gradients to train the original model. This phase
persists for 𝑘 batches before switching to Phase BP for𝑚 batches.
At the outset,𝑚 < 𝑘 . This means that, at the beginning, ADA-GP
uses predicted gradients more than the true gradients. ADA-GP
gradually increases the value of𝑚 throughout the training process.
As training gets closer to the end, the value of𝑚 becomes equal to
𝑘 . From this point onward, the number of training batches in Phase
BP is equal to that in Phase GP until the end of the training, and
ADA-GP no longer modifies𝑚. The reasoning behind this approach
is that the model is mostly random at the beginning and has a
certain threshold regarding gradient accuracy. However, during the
later epochs, the gradients’ changes need to be increasingly precise,
necessitating higher quality gradients.

For simplicity in our implementation, we performed some exper-
iments to fix the values of𝑚 and 𝑘 and came up with a simple and
efficient heuristic. After the Warm Up phase, we set the 𝑘 :𝑚 ratio
to 4 : 1 (four batches in phase GP and one batch in phase BP) for
the next 4 epochs. Later, we changed the ratio to 3 : 1 for another 4
epochs. Following this pattern, the ratio was then changed to 2 : 1,
and ultimately settled at 1 : 1 for the remainder of the training.

3.6 Tensor Reorganization
Often the predictor may need to predict a large number of gradients.
For that purpose, ADA-GP rearranges the output activations of a
DNN layer prior to forwarding them to the predictor model. This
is done to 1) maintain the predictor model’s compact size, and 2)
ensure higher quality for the predicted gradients.

The primary challenge in predicting the gradients of weights
for each layer lies in the fact that the number of weights in some

layers is significantly large. When a small predictor tries to predict
a large number of gradients, it not only produces poor-quality
gradients but also increases the training time of the predictor itself.
For example, consider the fourth layer of the VGG13 model [46]
- Conv2d(in_channels=128, out_channels=256, kernel_size=(3,3),
stride=1, padding=1). In this layer, the output activation size is
(batch_size, 256, 28, 28). Consequently, the number of trainable
weight-related parameters that the predictor model should predict
is 128 × 256 × 3 × 3. A simple predictor model with a single fully
connected layer would require an input size of 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 256 ×
28×28 and an output size of 128×256×3×3, necessitating substantial
memory storage and computational overhead.

To address this issue, we introduce a novel tensor reorganization
technique. It is based on the observation that every input sample
within a batch contributes to the weight update. Thus, by taking the
average of output activations across the batch, we account for the
combined effect of all samples. Furthermore, each individual output
channel can be thought of as a distinct training sample (within a
batch) with respect to the predictor.

Figure 6 shows how tensor reorganization works for a convo-
lution layer Conv2d(in_ch, out_ch, kernel_size=(k,k)). In this fig-
ure, the output activation size is (batch_size, out_ch, W, H), where
W and H indicate width and height. This is also the input size
to the predictor model. First, we calculate the average across the
batch to account for the effects of all samples in a batch, result-
ing in a tensor with size=(out_ch, W, H). Considering that each
layer’s filters have unique impacts on the output gradients, we can
treat out_ch as the batch size for the predictor model’s input. In
our example, we have out_ch filters with a size of 𝑖𝑛_𝑐ℎ × 𝑘 × 𝑘 ,
generating an output with a channel size of out_ch, where each
filter is individually convoluted with inputs to create a single out-
put. The reshaped tensor (input) for predictor model becomes
(new_batch_size=out_ch, 1, W, H), and the predictor output size
becomes (new_batch_size=out_ch,𝑖𝑛_𝑐ℎ × 𝑘 × 𝑘). To generalize the
predictor model for all layers in a large DNN model, we utilize
several pooling layers and a small Conv2d layer based on the input
size, followed by a single fully connected layer responsible for pre-
dicting gradients. Note that the fully connected layer size depends
on the largest layer of the DNNmodel. Therefore, for smaller layers,
we simply mask and skip output operations based on the required
size.



MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Janfaza et al.

Input to 
Predictor Model

Input to 
Predictor Model

Out_ch

Batch Size

…

…

W
H

W
H

In_ch

Average 
dim=0

W
H

kk kk

channel 
size as 

batch size

Input to Predictor Model

Gradient of Weights

B_Size=Out_ch

…
W

H
W

H

Pool Pool

Conv2dFC

Predictor Model

…

Output of Predictor Model

In_ch*k*k

1 2
3

45
B_Size=Out_chB_Size= Out_ch

Out_ch

Figure 6: An overview of tensor reorganization for generating
gradients of a convolution layer, Conv2d(in_channels=in_ch,
out_channels=out_ch, kernel_size=(k,k)). The predicted gra-
dient dimensions should match the weight dimensions
(in_ch, out_ch, k, k). predictor model input has the shape
of (batch_size, out_ch, W, H).

3.7 Timeline of ADA-GP
Figure 7 illustrates the timeline of the baseline system for a 4-layer
neural networkmodel.We assume that the duration of the backward
(BW) pass is twice as long as the forward (FW) pass. To simplify the
explanation, we focus on the timeline for a single-chip system. We
will explore further details about multi-chip pipelining techniques
in Section 3.8. As depicted in Figure 7, it is evident that the baseline
system requires 12 time steps to complete the operation of a 4-layer
model for a single batch. In this figure, the duration of each time
step is equivalent to the FW pass time for one layer. Throughout
the remainder of this section, we will employ this definition of a
𝑠𝑡𝑒𝑝 in our explanation.

Time: t1
Layer 1

Layer 3

Layer 2

Layer 4 BW4

BW3

BW2

BW1

t2 t3 t4 t5+t6 t7+t8 t9+t10 t11+t12

FW1

FW2

FW3

FW4

Figure 7: Baseline system timeline for a 4-layer neural net-
work model.

Figure 8 shows the timeline of ADA-GP in Phase BP. As men-
tioned in Section 3.3, during this phase, ADA-GP trains both the
original and predictor models using the true gradients in the BW
pass. As illustrated in Figure 8, there is some latency for the FW
pass of the predictor model. This is represented by 𝛼 . This latency is
smaller than the FW pass latency of each layer of the original model.
Consequently, the latency of the BW pass of the predictor model
is set to 2𝛼 . As demonstrated in this figure, ADA-GP increases the
model’s training time by 12𝛼 . This value is directly linked to the
predictor model’s size and the number of operations in its FW and
BW pass.

Figure 9 presents the timeline of ADA-GP in Phase GP. As men-
tioned in Section 3.4, the BW process is skipped in this phase, and

Time: t1+𝛼
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Layer 4 BW4

BW3

BW2

BW1

t2+𝛼 t3+𝛼 t4+𝛼 t5+t6+2*𝛼 t7+t8+2*𝛼 t9+t10+2*𝛼 t11+t12+2*𝛼

Predictor model 
FW Latency = 𝛼

Predictor model 
BW Latency = 2*𝛼

FW1

FW2

FW3

FW4

Figure 8: ADA-GP timeline in Phase BP.
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…

Predictor Model
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Batch 2

FW1
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FW3

FW4

FW1

FW2

FW3

FW4

Figure 9: ADA-GP timeline in Phase GP.

the predictor model is not trained. However, the original DNN
model is trained using the predicted gradients generated by the pre-
dictor model. In Figure 9, it is evident that the BW pass is entirely
eliminated, leaving only the FW pass of the original model and a
minor delay for the FW pass of the predictor model. Consequently,
ADA-GP can minimize the processing time to merely 4+4𝛼 steps. As
illustrated in Figures 5a, 5b, and 5c, ADA-GP is capable of decreas-
ing the processing time for two epochs from 24 steps in the baseline
system to 16+16𝛼 . As an added benefit of skipping the BW pass
in Phase GP, ADA-GP reduces off-chip traffic. Since the weights
are updated as the FW pass proceeds, ADA-GP does not need to
load the weights and activations from some off-chip memory as is
traditionally done in the case of BW pass. This significantly reduces
energy consumption. More details are presented in Section 6.6.2.

3.8 ADA-GP in Multi-Device Hardware
A commonly used approach for accelerating DNN training in multi-
ple devices involve pipelining techniques to execute several layers
concurrently. ADA-GP is orthogonal to this approach and can be
integrated with it. To this end, we examine three prominent pipelin-
ing strategies - GPipe[20], DAPPLE[13], Chimera[33] and explain
how ADA-GP can be incorporated with them to further speed up
the training process. For the ease of explanation, we assume in this
section that there are four devices working concurrently, and the
batch is divided into four segments, with each device processing
one segment at a time.

Figure 10 shows how various ADA-GP phases work when imple-
mented on top of the GPipe approach [20]. As depicted in Figure 10a,
the ADA-GP operation in Phase BP is similar to the original GPipe
method. Note that the duration of each step in ADA-GP differs
from that in the original GPipe method. The step size of ADA-GP
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Figure 10: Structure of ADA-GP over GPipe [20] during a) Phase BP, b) Phase GP, c) transition from Phase BP to Phase GP.
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Figure 11: Structure of ADA-GP over DAPPLE [13] during a) Phase BP, b) Phase GP, c) transition from Phase BP to Phase GP.
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Figure 12: Structure of ADA-GP over Chimera [33] during a) Phase BP, b) Phase GP, c) transition from Phase BP to Phase GP.

depends on its implementation as outlined in Section 4.2. Figure 10b
shows the ADA-GP in Phase GP. In this figure, since ADA-GP elim-
inates the initial backpropagation process and employs predicted
gradients for weight updates, it can initiate the subsequent batch’s
process immediately after completing the current batch’s forward
propagation. In doing so, ADA-GP can fill all gaps present in the
original GPipe method. Lastly, Figure 10c illustrates how ADA-
GP transitions from Phase BP to Phase GP without causing any
additional delay. Another important point that should be taken
into consideration is that ADA-GP reduces the number of synchro-
nization steps to half and can save time and energy due to this
reduction.

Figure 11 illustrates how various stages of ADA-GP can be in-
tegrated with the DAPPLE method [13]. Like the GPipe strategy,
the configuration of ADA-GP in Phase BP closely resembles the
original DAPPLE design. The depiction of ADA-GP during Phase
GP can be observed in Figure 11b. As demonstrated in this figure,
ADA-GP effectively eliminates the reliance between forward and
backward propagation, filling all gaps in the training procedure.
Additionally, Figure 11c portrays the shift from Phase BP to Phase
GP.

The complete structure of the various stages of ADA-GP when
implemented alongside the Chimera method [33] is depicted in
Figure 12. Aswith earlier strategies, the structure of ADA-GP during
Phase BP closely mirrors the initial Chimera design. In Phase GP,
it is capable of operating all layers concurrently, eliminating any
gaps. Furthermore, a transition between phases incurs no additional
delays.

4 IMPLEMENTATION DETAILS
4.1 Baseline DNN Accelerator
Figure 13 illustrates a standard DNN accelerator design, featuring
multiple hardware processing elements (PEs). These PEs are in-
terconnected vertically and horizontally via on-chip networks. A
global buffer stores input data, weights, and intermediate results.
The accelerator is connected to external memory for inputs and out-
puts. Each PE is equipped with registers for holding inputs, weights,
and partial sums, as well as multiplier and adder units. Inputs and
weights are distributed across the PEs, which then generate partial
sums following a specific dataflow [25].

…
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… … ……

PE PE PE

PE PE PE

PE PE PE
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Figure 13: Baseline hardware accelerator.

Various dataflows have been suggested in the literature [5, 6, 25,
30] to enhance different aspects of DNN operations, such as Weight-
Stationary (WS) [4, 14, 43], Output-Stationary (OS) [10], Input-
Stationary (IS) [48], and Row-Stationary (RS) [5]. The dataflow’s
designation often indicates which data remains constant in the PE
during computation. In the Weight-Stationary (WS) approach, each
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PE retains a weight in its register, with operations utilizing the same
weight assigned to the same PE unit [6]. Inputs are broadcasted to
all PEs over time, and partial results are spatially reduced across
the PE array after each time step. This method minimizes energy
consumption by reusing filter weights and reducing weight reads
from DRAM. Output-Stationary (OS) [40] focuses on accumulating
partial results within each PE unit. At every time step, both input
and filter weight are broadcasted across the PE array, with partial
results calculated and stored locally in each PE’s registers. This
method minimizes data movement costs by reusing partial results.
Input-Stationary (IS) involves loading input data once and keep-
ing it in the registers throughout the computation. Filter weights
are unicasted at each time step, while partial results are spatially
reduced across the PE array. This strategy reduces the cost of se-
quentially reading input data fromDRAM. Row-Stationary dataflow
assigns each PE one row of input data to process. Filter weights
stream horizontally, inputs stream diagonally, and partial sums
are accumulated vertically. Row-Stationary has been proposed in
Eyeriss [5] and is considered one of the most efficient dataflows to
maximize data reuse.

4.2 ADA-GP Hardware Implementation
The general architecture of the ADA-GP is similar to the baseline
accelerator shown in Figure 13. To implement ADA-GP, we propose
three designs, striking a balance between hardware resource con-
straints and the degree of acceleration. Figure 14 shows the three
distinct designs we proposed for ADA-GP.

Figure 14a displays the architecture of ADA-GP-MAX. This con-
figuration incorporates an additional PE Array and memory for
predictor model computations and weights storage, respectively.
Consequently, ADA-GP can initiate the predictor model’s gradient
prediction operations concurrently with the original model’s com-
putations, overlapping the processes and accelerating training. This
design offers the most acceleration but also has more hardware
overhead in comparison with other designs.

To offset the hardware overhead of ADA-GP-MAX, Figure 14b
presents the ADA-GP-Efficient architecture. Instead of an extra
PE array for the predictor model’s calculations, this design fea-
tures a separate memory to store predictor model’s weights and
commence its operations immediately after completing the original
layer computations. While this configuration saves time and energy
consumption related to reading and storing predictor’s weights,
it must wait for the original model’s operation to finish before
starting the predictor model computations.

Aiming to further reduce the hardware overhead of the ADA-GP
design, Figure 14c depicts the ADA-GP-LOW structure. This lay-
out eliminates all additional hardware overhead from the original
design and reuses existing resources for predictor model computa-
tions. First, it completes the original model’s operations, then, after
saving all necessary changes, loads the predictor’s weights and
employs the original PE Array for predictor model computations
and updates.

5 EXPERIMENTAL SETUP
5.1 ADA-GP Hardware Setup
We implemented ADA-GP hardware in both FPGA and ASIC plat-
forms. For FPGA implementation, we employed the Virtex 7 FPGA
board [55], configured through the Xilinx Vivado [54] software.
For ASIC implementation, the Synopsys Design Compiler [47] was
used, and the design was developed using the Verilog language.
Our implementation utilized a weight stationary accelerator with
180 PEs as the baseline. In the FPGA design, the model’s inputs and
weights are stored in an external SSD connected to the FPGA. Block
memories are employed to load one layer’s weights and inputs
while storing the corresponding outputs. Performance, power con-
sumption, hardware utilization, and other hardware-related metrics
are gathered from the synthesized and placed and routed FPGA
design using Vivado and the synthesized ASIC design using the
Design Compiler.

5.2 ADA-GP Software Setup
We gathered various model accuracy results from the PyTorch [39]
implementation of ADA-GP. Fifteen networks are considered, in-
cluding Inception-V4 [49], Inception-V3 [50], Densenet201 [19],
Densenet169 [19], Densenet161 [19], Densenet121 [19], ResNet152
[17], ResNet101 [17], ResNet50 [17], VGG19 [46], VGG16 [46], VGG13
[46], MobileNet-V2 [18], Transformer [52], and YOLO-v3 [42]. Our
method is applied to three different datasets: ImageNet [9], Cifar100
[28], and Cifar10 [28]. For the transformer, we used the Multi30k
[11] dataset and reported accuracy and BLEU scores [38] separately
in Section 6.4. Also, for the YOLO-v3 [42] object detection model,
we utilized the Pascalvoc [12] Visual Object Classes dataset.

During the training of ADA-GP and the baseline, the initial
learning rate was set to 0.001 for the original models and 0.0001
for the predictor model. We employed SGD with Momentum and
Adam optimizers for the original and predictor models, respectively.
Additionally, we utilized the PyTorch ReduceLROnPlateau sched-
uler with default parameters for adaptive learning rate updates,
while a MultiStepLR scheduler was applied for the predictor model
scheduler. Top 1 accuracy was reported for the various models. To
evaluate training costs, end-to-end training costs were calculated.

6 EVALUATION
Numerous previous studies have explored the potential of employ-
ing synthetic gradients in their research [1, 7, 8, 23, 34, 35, 37, 56].
These approaches generate synthetic gradients through controlled
randomization or per-layer predictors. However, none of these
methods focus on performance enhancement or skipping the back-
propagation step. Moreover, their accuracy is less than or equal to
that of backpropagation-based training. Therefore, at best, those
approaches will have accuracy and performance similar to the
backpropagation-based training. This is why we use the backpropa-
gation technique as our baseline to compare both the accuracy and
performance of ADA-GP.

6.1 Accuracy Analysis
6.1.1 Model Accuracy. We evaluate the accuracy of the proposed
method across thirteen different deep-learning models using three
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Figure 14: Three distinct ADA-GP approaches, balancing the trade-off between hardware overhead and the degree of acceleration.

distinct datasets: ImageNet, Cifar100, and Cifar10, and compare it
with the baseline Backpropagation (BP) approach.

Table 1: Accuracy comparison between ADA-GP and Baseline
(BP) for CIFAR10, CIFAR100 & ImageNet dataset.

CIFAR10 CIFAR100 ImageNet
BP ADA-

GP
BP ADA-

GP
BP ADA-

GP

ResNet50 92.97 93.76 75.44 75.73 74.73 73.97
ResNet101 92.78 93.62 73.23 75.38 76.26 75.71
ResNet152 92.8 93.12 72.01 73.7 76.68 76.23
Inception-V4 91.22 91.35 70.52 72.42 76.23 75.9
Inception-V3 93.04 93.88 76.41 77.68 74.44 73.87
VGG13 91.52 92.55 70.48 70.41 70.68 70.68
VGG16 91.32 92.34 70.36 70.47 72.07 71.98
VGG19 91.18 92.51 69.69 69.85 72.94 72.83
DenseNet121 93.2 93.63 76.25 76.12 75.25 74.51
DenseNet161 93.48 94.19 76.87 77.38 76.43 76.71
DenseNet169 93.24 94.15 75.57 76.4 75.36 75.3
DenseNet201 93.26 94.13 76.37 76.96 75.52 75.56
MobileNet 90.08 91.34 68.11 68.47 69.88 69.23

Table 1 presents the accuracy comparison between the proposed
ADA-GP and the baseline BP for the Cifar10, Cifar100, and Im-
ageNet datasets. As shown in this table, in the Cifar10 dataset,
ADA-GP effectively boosted the accuracy of all models by as much
as 1.45% and an average of 0.75%. When applied to the Cifar100
dataset, ADA-GP similarly yielded improvements, with accuracy
enhancements of up to 2.15% and an average gain of 0.88%. To
further verify the efficacy of our approach, we applied ADA-GP on
the ImageNet dataset. The final two columns of Table 1 reveal that
ADA-GP preserved the accuracy of all models at levels nearly equiv-
alent to the baseline (BP), with a negligible average reduction of
0.3%. In certain cases, such as with DenseNet161 and DenseNet201

our proposed method even increased accuracy by 0.28% and 0.04%
respectively, and in VGG13, the accuracy remained unchanged.
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Figure 15: MAPE and MSE of the predictor model in different
layers of VGG13 during the training.

6.1.2 Predictor Accuracy. We use the Mean Absolute Percentage
Error (MAPE) to show the accuracy and performance of the predic-
tor model [53]. The accuracy is generally calculated as a ratio, as
outlined by the following equation [53]:

𝑀𝐴𝑃𝐸 =
1
𝑛
Σ𝑛𝑡=1 |

𝐴𝑡 − 𝑃𝑡

𝐴𝑡
| (1)

Here, 𝐴𝑡 is the actual value, 𝑃𝑡 is the predicted value, and 𝑛 is the
total number of predicted values. Figure 15a shows the MAPE for
different layers of the VGG13. The figure illustrates that the MAPE
value is below 0.16% for layers 2-10. It also shows a consistent
improvement during the training epochs. For layer 1, the MAPE
starts at 0.56% in the first epoch and decreases to 0.31% after 90
epochs. Figure 15b shows the Mean Squared Error (MSE) of the
predictor model during training. MSE show similar trends as MAPE.

6.2 Case Study: VGG13
We perform an in-depth analysis of VGG13, decomposing the train-
ing costs across various layers by employing the ADA-GP-Efficient
approach as well as the conventional BP technique. The outcomes
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can be seen in Figure 16. In the ADA-GP-Efficient, we divide the
costs into three parts, each corresponding to distinct stages of the
training process such as Warm-up (step 1 + step 2), Phase BP, and
Phase GP.
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Figure 16: Characterization of ADA-GP in VGG13.

6.3 Performance Analysis
In the ADA-GP-MAX approach, during Phase BP, the forward pass
(FW) of the predictor model can be computed simultaneously with
the FW of the subsequent layer, as well as the backward pass (BW)
of the predictor model alongside the BW of that layer. This method
allows us to nearly eliminate the predictor model’s operation in
Phase GP, but we must still determine the maximum between the
original and predictor models. It is essential to wait for the current
layer to complete its operation before proceeding to the next layer
to avoid conflicts between the operations of different layers.

In the ADA-GP-Efficient method, the predictor’s weights are
constantly stored in designated memory; however, there is no ad-
ditional processing element (PE) to perform the predictor model’s
operations in parallel with the original model’s operations. Con-
sequently, the cost of each layer equals the sum of the original
model and predictor model costs in distinct phases. Similar to the
ADA-GP-MAX approach, the operations between layers are syn-
chronized, initiating the subsequent layer’s operation only after
the current layer’s operation is completed.

In the ADA-GP-LOW approach, there is no additional memory
allocated for the predictor model weights, requiring us to load them
after each original layer operation. Consequently, the expense asso-
ciated with each layer should encompass the loading of predictor
model weights and the storage of computed results. Nonetheless,
following the loading process, the number of operations would be
akin to the ADA-GP-Efficient approach.

Figures 17a, 17b, and 17c display the overall acceleration of ADA-
GP-LOW, ADA-GP-Efficient and ADA-GP-MAX in comparison to
the baseline system. In these figures, the baseline system represents
a standard BP process utilizing theWeight-Stationary (WS) dataflow.
The performance metrics are reported in relation to the dataset,
as the model’s structure exhibits slight changes depending on the
input size in different datasets. As demonstrated in these figures,
ADA-GP-MAX can enhance the training by up to 1.51×, 1.51×, and
1.58× for the Cifar10, Cifar100, and ImageNet datasets, respectively.
Furthermore, it expedites the process by an average of 1.46×, 1.46×,

and 1.48× across all models for the Cifar10, Cifar100, and ImageNet
datasets, respectively.

We also perform analogous experiments for the Row Stationary
(RS) dataflow. Figure 18 illustrates the overall acceleration of ADA-
GP-LOW, ADA-GP-Efficient, and ADA-GP-MAX compared to the
RS baseline. Figures 18a, 18b, and 18c indicate that ADA-GP-MAX
can boost the training process by up to 1.48× for each of the Ci-
far10, Cifar100, and ImageNet datasets. Additionally, it increases
the training speed on average by 1.46× across Cifar10 and Cifar100
datasets respectively, and 1.47× in the ImageNet dataset.

In a similar vein, we carried out additional experiments to demon-
strate the acceleration of ADA-GP-LOW, ADA-GP-Efficient, and
ADA-GP-MAX over the Input-Stationary (IS) dataflow baseline.
Figure 19 presents a summary of these experimental results. Fig-
ures 19a, 19b, and 19c reveal that ADA-GP-MAX can enhance the
training process by an average of 1.46×, 1.46×, and 1.48× for the
Cifar10, Cifar100, and ImageNet datasets, respectively.

6.4 Evaluation with Transformer and Object
Detection Models

In this section, we employed theADA-GP technique on Transformer,
consisting of three encoding and decoding layers, as well as YOLO-
v3 [42] object detection models. We distinguish these models from
other deep learning models due to the different employed datasets.

To assess our approach, for the Transformer model, we uti-
lized the Multi30k [11] English-German translation dataset. Ta-
ble 2 shows the overall accuracy and performance comparison of
ADA-GP with the baseline (BP) design. As demonstrated in Table 2,

Table 2: Accuracy and performance comparison between
ADA-GP and the Baseline (BP) for Multi30k dataset.

Val Acc. loss BLEU Score #Cycles(×109)

Baseline(BP) 52.42 1.61 33.52 1245.87
ADA-GP 52.14 1.65 33.4 1104.31

ADA-GP accelerates the training process of the Transformer by a
factor of 1.13×. Furthermore, ADA-GP does not adversely impact
the model’s performance and maintains the high accuracy of the
Transformer model, achieving nearly identical BLEU Score [38]
results.

Furthermore, we employed the ADA-GP technique on the YOLO-
v3 [42] object detection model. Here, we utilized the Pascalvoc [12]
Visual Object Classes dataset. We set the initial learning rate to
3e-5, weight decay to 1e-4, and IOU threshold to 0.5. Table 3 shows
the overall performance comparison of ADA-GP with the baseline
(BP) design. As demonstrated in Table 2, ADA-GP accelerates the
training process of the YOLO-v3 by a factor of 1.17× and 1.26× in
ADA-GP-Efficient and ADA-GP-MAX, respectively. Furthermore,
ADA-GP keeps the class accuracy high and achieves nearly identical
Test MAP results.

6.5 Multi-Device Comparative Analysis
In this section, we evaluate the performance of the proposed ADA-
GP relative to different baseline pipelining techniques using the
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(a) Cifar10 dataset
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(b) Cifar100 dataset
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(c) ImageNet dataset

Figure 17: Speed up of ADA-GP over the baseline (BP) in Weight-Stationary (WS) dataflow.
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(a) Cifar10 dataset
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(b) Cifar100 dataset
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(c) ImageNet dataset

Figure 18: Speed up of ADA-GP over the baseline (BP) in Row-Stationary (RS) dataflow.
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(a) Cifar10 dataset
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(b) Cifar100 dataset
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(c) ImageNet dataset

Figure 19: Speed up of ADA-GP over the baseline (BP) in Input-Stationary (IS) dataflow.

Table 3: Accuracy and performance comparison between
ADA-GP and the Baseline (BP) for Pascalvoc dataset.

Class Acc Test MAP #Cycles(×109)

Baseline(BP) 83.03 0.4685 11490248
ADA-GP-Efficient 82.51 0.4674 9846579
ADA-GP-MAX 82.51 0.4674 9134071

ImageNet dataset in the context of multi-device hardware systems
including GPipe [20], DAPPLE [13], and Chimera [33]. We employ

the scenario outlined in section 3.8 to compute the training acceler-
ation. We consider a setup with four devices operating concurrently,
where each mini-batch is split into four portions (macro-batch), and
each device processes one macro-batch at a time. Similarly, we can
implement ADA-GP across diverse multi-device hardware systems
with varying numbers of devices, offering additional savings on
top of their existing configurations. In this section, the duration of
each time step is equivalent to the delay of the FW process in a sin-
gle device for one macro-batch. Throughout the remainder of this
section, we will employ this definition of a 𝑠𝑡𝑒𝑝 in our explanations.
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6.5.1 Comparison with GPipe . As depicted in Figure 10, the stan-
dard GPipe method takes 21 steps to complete the training of 𝑜𝑛𝑒
batch. ADA-GP can significantly reduce computations in Phase GP
by eliminating the conventional backpropagation process. Also,
when transitioning from Phase GP to Phase BP, ADA-GP only re-
quires 25 steps to finish the training of 𝑡𝑤𝑜 batches. Figure 20a
depicts the overall acceleration of ADA-GP in comparison to the
baseline GPipe method. As seen in Figure 20a, ADA-GP accelerates
the training process for all deep learning models, achieving up to
1.68× speedup and an average of 1.654× improvement.

6.5.2 Comparison with DAPPLE . As illustrated in Figure 11, the
DAPPLE method [13], similar to GPipe technique, requires 21 steps
to complete the training of one batch. The timing of the ADA-GP
when applied to DAPPLE also resembles that of the GPipe technique,
taking into account the fact that the delay is associated with the
DAPPLE design. Figure 20b demonstrates the extent of ADA-GP
acceleration for various deep learning models compared to the
baseline DAPPLE design, achieving a maximum speedup of 1.68×
and an average improvement of 1.654×.

6.5.3 Comparison with Chimera . The cutting-edge Chimera [33]
technique surpasses all prior methods, potentially addressing nu-
merous gaps in deep learning model training. The Chimera ap-
proach manages to complete 𝑜𝑛𝑒 batch’s training in just 16 steps.
By incorporating the ADA-GP into the Chimera method, not only
do we retain all previous savings during Phase GP, but also when
transitioning from Phase GP to Phase BP, the scheme necessitates
merely 20 steps to finish training 𝑡𝑤𝑜 batches. Figure 20c provides
the ADA-GP training acceleration for a range of deep learning
models. As a result, the scheme effectively speeds up the Chimera
training process for these models by up to 1.6× and, on average,
1.575×.

6.6 Hardware Analysis
In this section, we discuss the resource usage and power consump-
tion of ADA-GP for both ASIC and FPGA implementations. Ad-
ditionally, we provide a detailed comparison of the energy con-
sumption between ADA-GP and the baseline design. We employed
CACTI [36] to incorporate cache and memory access time, cycle
time, area, leakage, and dynamic power model to calculate the
design’s energy consumption.

6.6.1 ADA-GP Hardware Implementation Analysis. As mentioned
in section 4.2, we proposed three unique designs: ADA-GP-LOW,
ADA-GP-Effective, and ADA-GP-MAX, with the goal of balancing
acceleration levels and hardware resources. In Table 4, we compare
the resource usage and on-chip power consumption between ADA-
GP designs and the baseline for the FPGA implementation.

As illustrated in Table 4, the ADA-GP-LOW, ADA-GP-Effective,
and ADA-GP-MAX designs result in a power increase of only 0.8%,
3.5%, and 3.8%, respectively. This rise in power consumption is
due to the additional hardware incorporated in the various designs.
We conducted another experiment with the baseline and ADA-GP-
MAX having the same power. This makes a 10% increase in the
number of PEs in the baseline and an average speedup of 4.31%,
4.3%, and 4.47% for Cifar10, Cifar100, and ImageNet datasets.

Table 4: a) Resource usage and b) On-chip power consump-
tion (watt) of ADA-GP designs vs baseline design in FPGA
implementation.

(a) Resource Utilization
#CLB #CLB #Block #Block
LUTs Registers RAMB36 RAMB18 #DSP48E1s

Baseline 472004 31402 1327 514 166
ADA-GP-LOW 489286 31856 1327 514 166
ADA-GP-Effic. 493171 31916 2407 514 166
ADA-GP-MAX 494080 37452 2407 514 246

(b) On-chip Power Consumption (watt)
CLB Block

Clocks Logic Signals RAM DSPs Static Total
Baseline 0.046 0.42 0.842 0.244 0.009 2.032 3.712
ADA-GP-LOW 0.047 0.446 0.857 0.243 0.001 2.032 3.745
ADA-GP-Effic. 0.052 0.421 0.852 0.339 0.001 2.06 3.844
ADA-GP-MAX 0.055 0.426 0.857 0.339 0.001 2.059 3.856

Table 5 contrasts the area and power consumption of the different
ADA-GP designs with the baseline in the ASIC implementation.

Table 5: a) Area and b) power consumption (watt) of ADA-GP
designs vs baseline design in ASIC implementation.

(a) Area
Net Total Total

Combinational Buf/Inv Intercon. Cell Area
Baseline 2331250 272483 436615 2546076 2982691
ADA-GP-LOW 2375188 277261 445371 2590583 3035954
ADA-GP-Effic. 2405881 275783 440031 2622858 3062890
ADA-GP-MAX 2512057 287076 460157 2770979 3231136

(b) Power (` watt)
Internal Switching Leakage Total

Baseline 2.26E+04 1.72E+03 1.99E+05 2.24E+05
ADA-GP-LOW 2.25E+04 1.67E+03 2.02E+05 2.26E+05
ADA-GP-Effic. 2.27E+04 1.80E+03 2.00E+05 2.25E+05
ADA-GP-MAX 2.80E+04 2.42E+03 2.23E+05 2.54E+05

As depicted in Table 5, the ADA-GP-LOW, ADA-GP-Efficient,
and ADA-GP-MAX designs lead to an increase in the final design
area by 1.7%, 2.6%, and 8.3%, respectively. This also results in a
rise in the design power. Similar to FPGA implementation we ex-
perimented with the baseline and ADA-GP-MAX having the same
area. This results in 11% additional PE in the baseline and an aver-
age speedup of 4.63%, 4.61%, and 5.53% for Cifar10, Cifar100, and
ImageNet datasets.

6.6.2 Energy Consumption Analysis. In Figure 21, the energy con-
sumption associated with memory access during the training pro-
cess for both the baseline and ADA-GP methods is compared. As a
result, ADA-GP enhances energy efficiency for all models, resulting
in an average reduction of energy consumption by 34%.

It is worth mentioning that the presented results do not take
into account the savings achieved by reducing the number of syn-
chronization steps, but only reflect the savings from reducing the
number of memory read/write operations.

7 CONCLUSIONS
In this paper, we proposed ADA-GP, the first approach to use gradi-
ent prediction to improve the performance of DNN training while
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(a) Speed up over GPipe [20].
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(b) Speed up over DAPPLE [13].
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(c) Speed up over Chimera [33].

Figure 20: Speed up of ADA-GP over the baseline pipelining techniques a) GPipe [20], b) DAPPLE [13], and c) Chimera [33].
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Figure 21: The energy consumption comparison between
baseline back propagation and ADA-GP designs.

maintaining accuracy. ADA-GP warms up the predictor model dur-
ing the initial few epochs. After that ADA-GP alternates between
using backpropagated gradients and predicted gradients for updat-
ing weights. As the training proceeds, ADA-GP adaptively decides
when and for how long gradient prediction should be used. ADA-
GP uses a single predictor model for all layers and uses a novel
tensor reorganization to predict a large number of gradients. We ex-
perimented with fifteen DNN models using three different datasets
- Cifar10, Cifar100, and ImageNet. Our results indicate that ADA-
GP can achieve an average speed up of 1.47× with similar or even
higher accuracy than the baseline models. Moreover, due to the
reduced off-chip memory accesses during the weight updates, ADA-
GP consumes 34% less energy compared to the baseline accelerator.
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