
Fast and QoS-Aware Heterogeneous Data Center
Scheduling Using Locality Sensitive Hashing

Mohammad Shahedul Islam, Matt Gibson, Abdullah Muzahid
University of Texas at San Antonio

Email: (mohammad.islam, matthew.gibson, abdullah.muzahid)@utsa.edu

Abstract—As cloud becomes a cost effective computing plat-
form, improving its utilization becomes a critical issue. Determin-
ing an incoming application’s sensitivity toward various resources
is one of the major challenges to obtain higher utilization. To
this end, previous research attempts to characterize an incoming
application’s sensitivity toward interference on various resources
(Source of Interference or SoI, for short) of a cloud system. Due to
time constraints, the application’s sensitivity is profiled in detail
for only a small number of SoI, and the sensitivities for the
remaining SoI are approximated by capitalizing on knowledge
about some of the applications (i.e. training set) currently running
in the system. A key drawback of previous approaches is that
they have attempted to minimize the total error of the estimated
sensitivities; however, various SoI do not behave the same as each
other. For example, a 10% error in the estimate of SoI A may
dramatically effect the QoS of an application whereas a 10%
error in the estimate of SoI B may have a marginal effect. In this
paper, we present a new method for workload characterization
and scheduling that considers these important issues. First, we
compute an acceptable error for each SoI based on its effect
on QoS, and our goal is to characterize an application so as to
maximize the number of SoI that satisfy this acceptable error.
Then we present a new technique for workload characterization
and scheduling based on Locality Sensitive Hashing (LSH). Given
a set of n points in a d-dimensional Euclidean space, LSH is a
hashing technique such that points nearby are hashed to the same
“bucket” and points that are far apart are hashed to different
buckets. This data structure allows approximate nearest neighbor
queries to be executed with nearly asymptotically optimal running
time. This allows us to perform workload profiling quickly with
high accuracy and scheduling in heterogeneous data centers with
high quality of service (QoS) and utilization.

I. INTRODUCTION

Cloud has become a popular computing platform to provide
flexible and cost effective services both to end users and data
center operators. Public cloud providers like Amazon EC2,
Microsoft Windows Azure, Google Compute Engine etc. host
tens of thousands of applications each day. Cloud systems
aim at providing scalable computing power at low cost.
Cloud providers improve cost efficiency by using commodity
servers and reducing power and cooling infrastructure cost.
Similarly, they improve compute capabilities by building new
data centers and relying on chip technology. These methods are
approaching their point of diminishing return. Recent studies
have shown that power delivery and cooling costs are less
than 10% of the overhead [8]. At the same time, multicore
scaling is coming to an end. Therefore, to improve cost-
compute efficiency, it has become extremely important to
increase utilization of a data center.

Increasing data center utilization requires scheduling ap-
plications together on the same server. However, applications
can interfere with each other due to various shared resources.

Such interference can lead to performance degradation [21].
The situation gets worsened by continuous load fluctuation,
application diversity, heterogeneity of the servers [19], [8]
etc. Therefore, cloud operators often disallow application co-
location or use an over-provisioning of resources for high-
priority tasks. Due to such scheduling approaches, data center
utilization has been found to be notoriously low [19], [8].
A major step toward better utilization would be a scheduler
that schedules application by considering diversity in both
applications and server configurations.

Most prior techniques [21], [23] rely on a detailed offline
approach or a long term monitoring and modeling approach for
characterizing recurring applications. As a result, they are not
effective for large data centers that receive tens of thousands of
potentially unknown and often non-recurring applications each
day. Recently, there is some work [13], [24], [14] that takes a
two-fold approach. First, it characterizes an application’s be-
havior towards various shared resources (referred to as Sources
of Interference, or SoIs). Then, it schedules the application or
adapts currently running applications accordingly. This is a
promising direction for increasing a data center’s utilization.
Inspired by this line of research, this paper also ventures into
the same overall approach but aims to increase characterization
accuracy and scheduling efficiency. It takes inspiration from an
algorithm in the domain of computational geometry.

When an application arrives, we would like to characterize
the application by measuring its sensitivity toward various
SoIs. Sensitivity of an application toward a particular SoI is
denoted by its Sensitivity Score. It is measured as a fraction of
the total available resource (corresponding to the SoI) which is
required, at least, to maintain 95% of the application’s stand-
alone performance (i.e. QoS) in the best server [13]. Details of
sensitivity score are discussed in Section II. Prior approaches
treat each SoI equally; however, our experiments indicate that
the same amount of error in estimating sensitivity scores for
different SoIs can have significantly different effects on a
scheduler’s ability to pick the right server. Hence, the impact
on QoS of applications can vary too. This is shown in Figure 1.
The graph is obtained by artificially injecting inaccuracy in
different SoI’s sensitivity scores and measuring what fraction
of applications achieve 95% or more QoS at the end. We used
a state-of-the-art scheduler, Paragon [13], for this experiment.
20% error in estimating sensitivity toward Integer Processing
Unit and Memory Capacity causes 9% and 11% fewer applica-
tions to achieve 95% or more QoS. On the contrary, the same
amount of inaccuracy for Storage Capacity causes only 5%
applications to lose the QoS threshold. Thus, the experiment
suggests that we can tolerate different ranges of errors in
estimating sensitivity of different SoIs. To exploit this insight,
we present a novel method for workload characterization that

considers varying error tolerance intervals for different SoIs.
For each sensitivity score, we determine the error interval that
causes a 5% decrease in the number of applications achieving
a QoS of 95% (or more), when compared to the case where the
scheduler has perfect information about the sensitivity scores.
As seen in Figure 1, the memoryCapacity sensitivity score
can be underestimated by 20% but cannot be overestimated
by more than 10%. We would like to obtain a sensitivity score
that is within this error range. We call this range the Desired
Error Interval (DEI). We compute the DEI for each sensitivity
score. We attempt to characterize an incoming workload so that
our predicted sensitivity scores fall within the DEI of as many
sensitivity scores as possible. To this end, we propose a new
online workload characterization technique based on Locality-
Sensitive Hashing (LSH) [5]. Given a set of n points in a
d-dimensional Euclidean space, LSH is a hashing technique
that allows us to find nearest neighbor points for any query
point with nearly asymptotically optimal running time. We
maintain a Training Set of applications for which all sensitivity
scores are known. When a new application arrives, we quickly
profile the new application for a few SoIs (the ones that need
to be more accurate) and calculate sensitivity scores for those
SoIs. We, then, use LSH to find applications in the training
set with similar sensitivity scores so that we can predict the
remaining sensitivity scores. We predict the remaining scores
by taking the median of the similar applications’ corresponding
sensitivity scores. Once the scores are obtained, we again use
LSH to search for a server for the application. We encode the
information regarding the current applications on a particular
server as a point in a high-dimensional Euclidean space, and
LSH quickly returns a point that corresponds to a sever that
is a good fit for the application.

 0

 5

 10

 15

 20

 25

 30

-
1
0
0

-
6
0
-
3
0
-
2
0
-
1
0
0 1

0
2
0

3
0

6
0

1
0
0

%

o
f

a
p
p
s

l
o
s
i
n
g

9
5
%

Q
o
S

c
o
m
p
a
r
e
d

t
o

n
o

e
r
r
o
r

Error (%) in SoI sensitivity score

intProcUnit
memoryCapacity
storageCapacity

Fig. 1: How application QoS is affected due to errors in
different SoIs.

We evaluated our scheme using SPEC, SPLASH2, PAR-
SEC, PUMA Hadoop [3], CloudSuite [16] as well as multipro-
grammed workloads. We experimented with 3 different data
center configurations. Our approach predicts SoIs with high
accuracy and selects servers quickly. Compared to Paragon,
our approach characterizes applications 1.42 times as much
accurately. It achieves an average CPU utilization of 62%
during a high load scenario for our default data center. During
such a load, 60% applications achieve at least 80% QoS.

The paper is organized as follows: Section II provides
background on sources of interference and locality-sensitive
hashing; Section III explains the main idea; Section IV outlines

the implementation issues; Section V provides the experi-
mental results; Section VI discusses related work and finally,
Section VII concludes.

II. BACKGROUND

Sources of Interference. We develop a set of kernels
to characterize an application’s sensitivity toward SoIs. For
each SoI, we calculate two metrics - one to measure how
much resource interference this application can tolerate from
other applications and another to measure how much resource
interference this application causes to other applications. Each
of them are real numbers in [0, 1]. For each SoI, we develop
a kernel whose intensity (i.e. its consumption of the particular
resource expressed as a fraction of the total resource) can be
progressively tuned up. The kernels are similar to iBench [12].
To calculate the Tolerate metric, we run the kernel for the
SoI in parallel with the application and progressively tune up
the intensity of the kernel until the application’s performance
degrades to 95% of its isolated performance in the best server.
An application with a high tolerance toward the SoI will have
a high value for this metric. To determine the Cause metric,
we run the kernel in parallel with the application as before.
This time, we tune up the intensity of the kernel until the
kernel’s performance degrades to 95% of its original isolated
performance in the best server. The metric is then set to the
value of 1− intensity. An application that consumes a lot of
the resource will have a high value for this metric. We use the
term Sensitivity Score to refer to both of these metrics. Since
our kernels and measuring technique of sensitivity scores are
similar to iBench, we are not going to describe the kernels here.
Interested readers can look into that paper for more details. We
consider 10 SoIs. The SoIs are memory capacity and band-
width, storage capacity and bandwidth, network bandwidth,
LLC capacity and bandwidth, TLB capacity, integer processing
unit and floating point processing unit.

Nearest Neighbor Search Our approach for workload
profiling utilizes techniques from computational geometry,
namely nearest neighbor search. In this subsection we give
our motivation for considering these techniques, and we then
provide some background on these techniques.

Motivation. In our profiling scheme, we will maintain a
training set T of n applications for which we will determine all
sensitivity scores in an offline preprocessing step. As described
above, for each SoI we obtain sensitivity scores for two
different metrics which gives us a total of twenty sensitivity
scores. For each application tj ∈ T , we denote its sensitivity
scores s1j , s

2
j , . . . s

20
j where s1j and s2j are the tolerate and cause

sensitivity scores for SoI-1, s3j and s4j are similar scores for
SoI-2, etc. When a new application ai arrives, we choose a
small number of SoI and determine the exact sensitivity scores
for these SoIs and approximate the remaining scores in an
effort to save time. These approximate scores are determined
by identifying the applications in T which are the most similar
to ai with respect to the computed scores.

To illustrate our high level idea, consider the following
example. For simplicity, suppose that there are six total sensi-
tivity scores, and suppose the applications t1, . . . , t5 in Table
I are the applications in T for which we know all six scores.
Suppose for a new application ai we determine s1i = 0.2 and

s2i = 0.3, and we now wish to approximate the remaining
four scores for ai. The applications in T that are the most
similar with respect to s1 and s2 are t1 and t3. We obtain the
approximations for ai as a function of the known scores of t1
and t3.

T s1 s2 s3 s4 s5 s6

t1 0.1 0.3 0.7 0.6 0.1 0.3
t2 0.7 0.6 0.4 0.5 0.9 0.7
t3 0.2 0.4 0.6 0.5 0.3 0.2
t4 0.5 0.2 0.4 0.1 0.8 0.6
t5 0.7 0.6 0.1 0.2 0.5 0.5

TABLE I: Training set example.

In order for this approach to be successful, we need to
maintain a large enough training set T so that all incoming
applications will have a few applications in T that are “similar”
with respect to the sensitivity scores. At the same time, it is
important that we can efficiently search T for the applications
which are the most similar to an incoming application ai.
Thus the challenge is to model the problem in a way that we
can simultaneously maintain a large, representative training set
while being able to perform fast queries. To this end, we model
the problem as a geometric nearest neighbor search problem.
As each application has twenty sensitivity scores, each of
which is a real number, it is natural to view each application as
a point in R20 where the sensitivity scores are the coordinates
of the point. Formally, for each application aj we have a
point pj = (s1j , s

2
j , . . . , s

20
j) (in the example, we have p1 =

(0.1, 0.3, 0.7, 0.6, 0.1, 0.3), p2 = (0.7, 0.6, 0.4, 0.5, 0.9, 0.7),
etc.). Now consider two such points pj and pj′ in R20. If these
points are “close” to one another in the geometric space, then
their sensitivity scores are also “close” to one another, and
therefore the corresponding applications aj and aj′ perform
similarly with respect to the SoI. Likewise, if pj and pj′
are “far apart” from one another then aj and aj′ perform
differently with respect to the SoI. Therefore we can find
applications in T which are similar to ai by performing nearest
neighbor queries on these points.

Locality-Sensitive Hashing. One technique for nearest
neighbor search is Locality-Sensitive Hashing (LSH). The high
level idea behind LSH is to build a hash table on the points
in P such that points that are nearby in P get hashed to the
same “bucket” and points that are far apart in P get hashed
to different buckets. Then nearest neighbor queries can be
performed by determining which bucket the query point q lies
in and then scanning the points of P that were hashed to the
same bucket. LSH was originally introduced in 1999 [17] and
several improvements have since been given [4], [10]. A C++
implementation given by the authors of [4] has been made
available [2], and this is the implementation that we use.

LSH can be used to solve several variants of nearest
neighbor search, and the variant that will be considered in
this paper is randomized R-near neighbor reporting. That is,
given parameters R > 0 and δ ∈ [0, 1), we will use LSH
to report points in P whose distance to a query point q is at
most R, and each such point will be reported with probability
1 − δ. Note that every point in P could be reported if R is
large enough and could return no points if R is small enough;
however, our motivation for considering this variant is that for
an appropriately chosen R, all points whose distance to the
query is at most R will be strong candidates for approximating

sensitivity scores. Additionally we can obtain this set of candi-
dates very quickly as the hashing does not depend on the size
of T , and it scales very nicely for high-dimensional data (e.g.
thousands of dimensions). This is sufficient background on
LSH for understanding our workload profiling and scheduling
techniques (in particular, knowing how it is implemented is
not important for this paper); we refer the interested reader to
see [5] for a nice introduction to LSH.

III. CHARACTERIZING AND SCHEDULING WORKLOADS

In this section, we give the details of our approach to
workload profiling and scheduling using LSH. We compute a
training set T of applications for which we know all sensitivity
scores across all server configurations. When a new application
ai arrives, we use LSH to quickly find applications in T which
will allow us to approximate the sensitivity scores for ai with
low error. Given our approximation of the sensitivity scores,
we use LSH to find a server to schedule ai while maintaining
the QoS for ai as well as any applications currently running
on the server. We first describe how we compute approximate
sensitivity scores, and then we show how we use these scores
to find a good server for ai.

Workload Profiling. We will present two procedures.
The first is an offline procedure which is given a pool of
applications for which we know all of the sensitivity scores,
and it carefully chooses a subset of applications from the pool
to serve as the training set. The procedure then outputs the
associated LSH data structure. The second procedure is an
online procedure which, given a new application, uses the
LSH hash table given by the offline procedure to provide
a fast and accurate approximation of the new application’s
sensitivity scores. We first describe the profiling for a single
server configuration, and later describe how to generalize the
approach for a heterogeneous datacenter.

Offline Procedure. Let A denote a set of applications for
which we know all twenty sensitivity scores. The offline
procedure begins by choosing a training set T ⊆ A of cardi-
nality n for some parameter n. Recall that these applications
naturally map to points in R20. Intuitively, we want the points
associated with the training set applications to be distributed
throughout R20, so that any new application received in the
online procedure will have a few points in the training set
nearby. To achieve this, we use the well-known k-means
clustering algorithm [18] to partition A into k clusters for some
constant k (i.e. k = 10). We interpret the applications assigned
to the same cluster as being of the same “type”, and we choose
our training set to contain several applications from each of
the different “types”. To do this, we randomly choose n/k
applications from each cluster to be in T .

Now that we have chosen our training set T of n appli-
cations, we are ready to build the LSH data structure. In the
online procedure we will receive a new application ai, and we
choose α SoI to compute the associated 2α sensitivity scores
(for some parameter α, e.g., α = 2) and then approximate
the remaining scores. Recall that each sensitivity score has a
DEI, and our goal is to maximize the number of approximate
sensitivity scores which fall within their DEI. The DEI has the
form (−Y,X) which implies that we can underestimate the
score by at most Y% and we can overestimate the score by at

most X%. We define the width of a DEI to be X + Y . Since
each SoI has two sensitivity scores, it also has two associated
DEIs. Let w1 and w2 denote the two corresponding DEI widths
of a SoI. We define the width of an SoI to be the minimum
of w1 and w2. The SoI with the smallest widths have the least
room for error, and accordingly we want to compute exact
scores for the SoI with the smallest widths. To this end, we
use the α SoI with the smallest widths.

Let S denote the set of α SoI with the smallest widths.
When a new application arrives in the online procedure, we
will exactly compute the 2α sensitivity scores associated with
S. From this we obtain a point pi ∈ R2α, and therefore we
want to perform nearest-neighbor queries in a 2α-dimensional
space. For each application in T , we construct a point with 2α
dimensions to be inserted into the LSH table. The coordinates
of this point consists of the 2α sensitivity scores associated
with S. We call this point the projection onto the SoI of S.
Recall that for some parameters R and δ, the LSH table will
return any point within distance R from a query point with
probability 1 − δ. We choose R to be 2α

10 so that training set
points whose distance is at most .1 away from our query point
in each coordinate (on average) are returned. We choose δ to
be 0.05 so that each point within distance R is returned with
probability 0.95.

For example, again consider the training set given in Table
I. Suppose α = 1, and that the first SoI has the smallest
width. Then we will exactly compute the first two sensitivity
scores associated with this SoI in the online procedure, and
therefore we want to build an LSH table based on these scores
in the offline procedure. The projection of application t1 onto
these scores gives us the point (0.1, 0.3), the projection of t2
gives us (0.7, 0.6), and the remaining points are constructed
similarly. See Algorithm 1 for a formal description of our
offline procedure. We remark that when implemented, one
could execute this offline procedure several times per day
(e.g. every hour) to ensure that the training set is a good
representation of the applications that are being received.

Algorithm 1 Offline Procedure
Let A be a set of applications for which all sensitivity scores
are known. Use the k-means algorithm to partition A into
k clusters. Let C denote output clusters.
T ← ∅
for all clusters C ∈ C do

Let C ′ ⊂ C be a randomly-chosen subset of elements in
cluster C such that |C ′| = n/k.
T ← T ∪ C ′

end for
Let S denote the α SoI with the smallest widths, and let
P denote the n points in R2α obtained by projecting the
applications in T onto the SoI in S.
Build and save the LSH hash table P for parameters R = 2α

10
and δ = 0.05.

Online Procedure. Now we assume that we have the
LSH hash table stored in memory, and we are given a new
application ai for which we currently do not know any of its
sensitivity scores. We compute the exact sensitivity scores of ai
for the 2α sensitivity scores associated with S, and this gives

us a point pi ∈ R2α. We use the hash table to obtain a set of
points N ′ in the training set within distance R of query point
pi. We then let N be the subset of N ′ consisting of the at most
c points in N ′ that are closest to pi for some parameter c (e.g.,
c = 5). We take the median of the scores of the applications
in N to determine our estimate of the remaining scores for ai.
See Algorithm 2 for a formal description.

Algorithm 2 Online Procedure
Let ai denote a new application for which we have no prior
no knowledge of its sensitivity scores.
Let S denote the α SoI with the narrowest DEIs, and
generate the 2α associated sensitivity scores for ai. Let pi
denote the associated point in R2α.
Let N ′ be the set of points returned by LSH when using
the query point pi, and let N ⊆ N ′ be the at most c points
from N ′ that are closest to pi, breaking ties arbitrarily. If
N ′ = ∅ then randomly choose scores for ai and exit.
for all choices r such that sri is unknown do

Let Nr denote the set of all scores srj for each pj ∈ N .
Set sri to be the median of Nr.

end for

Extending to Many Server Configurations. In a heteroge-
neous data center, the effect of interference on an application
may be quite different on different server configurations. Ac-
cordingly, the sensitivity scores for an application with respect
to some SoI may be quite different for different configurations.
In a data center with 10 server configurations, an application
will have 200 sensitivity scores (20 scores for each server
configuration). Our approach is similar to our previous one for
a single server configuration. First, we choose the α SoI with
the smallest widths, and then we compute the sensitivity scores
with respect to these SoI for three different server configura-
tions. We choose the configurations so that we are obtaining
the scores for the “best” configuration, “median” configuration,
and “worst” configuration. The scheduler keeps apriori list
of “best”, “median” and “worst” server configuration for a
given SoI. The intuition is sensitivity scores for “good” server
configurations may not be effective for predicting the scores
for “bad” server configurations. For example, two applications
which do not cause much interference on the best configuration
may perform quite differently on the worst server configura-
tion, and therefore we may not be able to accurately predict
the scores for the worst configuration from the score of the
best configuration. Given our choice of α SoI and three server
configurations, we compute the 6α corresponding sensitivity
scores (two scores per SoI per configuration). We then perform
a LSH query to find points in the training set whose scores are
similar to our computed scores, and we take the median of the
scores of these points to approximate the remaining 200− 6α
scores.

Server Selection. Given the approximate sensitivity scores
for a new application ai, we now describe how we select a
server. We want to schedule applications on servers so that
all applications will have a performance at least 95% of their
standalone performance. In order to do this, we will need to
schedule applications in a way so that applications running
simultaneously on the same server are “compatible” with the
other applications running on the server. We first give the

intuition behind our approach, and then describe how we use
LSH to choose a server for ai.

Scheduling Intuition. Recall that for each SoI, we have
two sensitivity scores for a fixed server configuration. Without
loss of generality, consider SoI-1, and consider the sensitivity
scores s1i and s2i of application ai with respect to SoI-1,
both of which are real numbers in [0, 1]. We interpret s1i (i.e.
tolerate) to be a measure of how much the interference of other
applications with respect to SoI-1 will affect the running time
of ai, where intuitively s1i = 0 implies that the running time of
ai is not highly influenced by other applications’ interference
and s1i = 1 implies that the running time of ai is heavily
influenced by other applications’ interference. We interpret s2i
(i.e. cause) to be a measure of how much interference ai will
cause to other applications with respect to SoI-1, where s2i = 0
implies it causes very little interference and s2i = 1 implies it
causes a lot of interference.

Let S denote the set of applications currently running
on a server. We schedule applications to ensure that the
following invariant holds true for each application aj ∈ S:
s1j +

∑
k:ak∈S\{aj}

s2k ≤ 1. Intuitively, this invariant ensures that

the sum of the interference caused by all other applications
does not exceed the tolerance level of aj . Indeed, if a1

j is
close to 0, then we allow it to be scheduled with applications
which cause a large amount interference, while if a1

j is close to
1 then the interference caused by other applications will have
to be significantly lower.

When choosing a server for application ai, there are
two issues to deal with: (1) the interference caused by the
applications running on the server should not exceed the
threshold for ai, and (2) the additional interference caused
by ai should not exceed the threshold for some aj currently
running on the server. Let Scaused =

∑
j:aj∈S

s2j denote the

sum of the interference caused by applications on some server
(not including ai). Suppose we want to check (1) and (2) to
determine if ai can be scheduled with the applications in S
while maintaining the invariant. For (1) to hold, it must be that
s1i + Scaused ≤ 1, or equivalently s1i ≤ 1− Scaused.

Now consider issue (2), and consider any application aj ∈
S. Since the invariant holds true, we have s1j+

∑
k:ak∈S\{aj}

s2k ≤

1, but
∑

k:ak∈S\{aj}

s2k can equivalently be stated as Scaused−s2j .

If ai can be scheduled without exceeding the threshold for
aj , then it must be that s1j + Scaused − s2j + s2i ≤ 1 which
implies that s2i ≤ 1 − Scaused − (s1j − s2j). It follows that if
we can schedule ai with the applications in S, it must be that
s2i ≤ 1 − Scaused − (s1j − s2j) for all aj ∈ S. Consider the
application aj∗ ∈ S such that 1−Scaused− (s1j∗ − s2j∗) is the
minimum such value over all applications in S. Then clearly
ai will satisfy issue (2) for all applications in S if and only if
s2i ≤ 1−Scaused−(s1j∗−s2j∗). Note that aj∗ is the application
in S that maximizes s1j−s2j . This is because 1−Scaused is fixed
for any application in S, and therefore 1−Scaused− (s1j −s2j)
is minimized by maximizing the last term that is subtracted
from 1− Scaused.

So it now follows that we can schedule ai with the
applications in S while maintaining the invariant if and only
if the following two properties hold: (1) s1i ≤ 1−Scaused, and
(2) s2i ≤ 1− Scaused − (s1j∗ − s2j∗). Note that they are stated
with respect to SoI-1, but they must hold for the sensitivity
scores for all SoI.

Using LSH to Choose a Good Server. Before choosing a
server to schedule ai, we first consider which server configura-
tion is the best fit for the application. Let Ck denote the sum
of the sensitivity scores of application ai for the kth server
configuration. Since the two properties both imply that it is
good to have small sensitivity scores, we first rank the server
configurations in non-increasing order according to Ck. We
then look for a server in this order until we find one that
satisfies properties 1 and 2 for all SoI. If no such server exists,
we check the next configuration and repeat.

Without loss of generality, suppose we are searching for
a server of the first server configuration (SC-1). We will now
describe how we use LSH to search for a good server for
application ai. The sensitivity scores for ai associated with
server configuration 1 are s1i , s

2
i , . . . s

20
i , and as before, we

view these scores as the coordinates of a point pi ∈ R20.
For each server Sj of SC-1, we construct a point pj ∈ R20

where the coordinates of these points correspond to the 1 −
Scaused and 1− Scaused − (s1j∗ − s2j∗) values for each of the
ten SoI. We say that a server point pj dominates an application
point pi if each coordinate of pj is greater than or equal to
the corresponding coordinate of pi. It follows that ai can be
scheduled on server Sj if and only if pj dominates pi. To
do this, we build an LSH table on the server points. As the
values of Scaused for a particular server change over time, we
periodically (e.g. every 10 minutes) rebuild these hash tables
with updated server values. We query this hash table to look
for a point that dominates pi. See Algorithm 3 for a formal
description. If Algorithm 3 ends without choosing a server, we
add ai to a queue of applications to be scheduled later.

Algorithm 3 Server Selection
Given a new application ai with its 200 approximate
sensitivity scores, let SC1

i , SC
2
i , . . . , SC

10
i denote server

configurations sorted in nondecreasing order according to
the sum of the scores for that configuration.
for all j = 1 to 10 do

Let pi denote the point in R20 corresponding with the 20
sensitivity scores associated with SCji .
For some parameter ε > 0, let p′i denote the point in R20

obtained by adding ε to each coordinate of pi, rounding
down any coordinate greater than 1.
while some coordinate of p′i is less than 1 do

Perform an LSH search of the server points for SCji
using query point p′i.
If LSH returns a server point that dominates pi, sched-
ule ai for this server, update the coordinates of the
server point, and exit Algorithm 3. Otherwise, add ε
to all coordinates of p′i, rounding down any coordinate
greater than 1.

end while
end for

IV. IMPLEMENTATION

The scheduler is in charge of initial profiling as well as
scheduling when an application arrives. It consists of a Master
and multiple Worker components. The master component runs
on a node dedicated for scheduling. A worker component runs
on each of the compute nodes. When a application arrives, the
master chooses 2 SoIs for profiling. Recall that 2 SoIs with the
narrowest DEI are chosen. DEIs are assumed to capture the
significance of various shared resources in a particular data
center and hence, remain fixed for a given data center. For
each SoI, the master maintains a list of server configurations
from best to worst and finds the best, worst, and (somewhat)
medium configuration. It randomly picks a server for those
configurations. The application is profiled for that particular
SoI in those servers by the worker component. Profiling is
done in parallel (in a minute). Each worker sends the scores
back to the master. The master then uses Algorithm 2 to
predict sensitivity scores for the rest of the SoIs and server
configurations. In a large data center, there can be multiple
masters - each in charge of a portion of the data center.
Sensitivity scores are stored in the local disk of the master.
Periodically (every hour or so), the master applies Algorithm 1
on the locally stored sensitivity scores to build the training set
and LSH data structures. This is done to ensure that the training
set remains a good representation of the applications. Locally
stored sensitivity scores for older applications are removed
in every few hours to keep the storage consumption under
a limit. When sensitivity scores of an incoming application
are calculated, the master uses Algorithm 3 to schedule the
application. The entire scheduler is implemented in Python.

V. EVALUATION

The characterization parameters and server configurations
for our experiments are given in Table II. We experimented
with 3 data centers. Each of them contains 10 different server
configurations and a total of 50 servers. Our high end data
center contains more instances of the Best Server (Table II)
whereas low end one contains more instances of the Worst
Server. Our default data center contains an even mixture of
different server configurations. We use all applications from
SPEC CPU 2000 & 2006, Splash2, Parsec, PUMA Hadoop,
and CloudSuite benchmarks. We also generate 100 multipro-
grammed workloads, each consisting of 4 applications from
SPEC. Thus, in total, we have 198 workloads consisting of
individual applications and multiprogrammed workloads.

Character- Num. cluster, k = 5, 10, 15, 20
ization Num. train. set, n = 50, 100, 150, 200
parameter Num. near. neighbor, c = 5, 6, 7,..., 15

Num. train. SoI, α = 2, 3, 4,..., 10
Def. Server core i5, 2.3GHz, 8 core, 8GB mem., 8MB LLC
Best Server xeon E5, 2GHz, 12 core, 32GB mem., 15MB LLC
Worst Server P4, 2.8GHz, 1 core, 1GB mem., 1MB LLC

TABLE II: Parameters for experiments. Bold values are the
defaults.

DEI Analysis. We experiment with different errors injected
in SoI scores (SS) and measure what fraction of applications
achieve at least 95% QoS. We construct DEI of an SoI as
the error interval outside which 5% or more applications
(compared to the ones obtained by using accurate SS) fail

to reach the QoS threshold. Figure 2(f) shows the DEIs
for different SoIs. memBandwidth and tlbCapacity have the
smallest widths. Hence, we choose them for initial profiling.

Prediction Ability. Figure 2(a) shows the comparison of
LSH based approach against two versions of Paragon. One
version chooses the same initial SoIs as LSH while the
other (Paragon(r)) chooses SoIs randomly. For implementing
Paragon, we used a hand tuned version of matrix factorization
algorithm available from Apache Mahout [1]. For illustration,
the figure shows the case for an ideal predictor. For each
approach, we calculate how many sensitivity scores (SSs) fall
within the corresponding DEIs. LSH based approach consis-
tently performs better or similar to both versions of Paragon.
The first version of Paragon performs better than Paragon(r).
Therefore, from now on, we will only consider the first version.
For the default choice of 2 SoIs, LSH predicted 14 out of 16
SSs correctly. This is 1.42 times more accurate than Paragon.
Figure 2(b) shows correct SSs as we increase the training set
size. As before, we keep other parameters fixed at the default
values. In LSH-based approach, with larger training set, we are
likely to find many workloads that very similar to the incoming
one and hence, the accuracy increases initially. After the size
of 35, the accuracy remains more or less the same. For Paragon
the accuracy increases slightly; however, it always remains
below the one for LSH. Figure 2(c) shows the accuracy as
we increase the number of nearest neighbors in LSH-based
approach. The accuracy increases up to 4 neighbors and then
remains the same. For the default value of 5 neighbors, it
predicts 13.78 SSs per workload.

Figure 2(d) shows the number of correctly predicted SSs
per workload for different server configurations. In each con-
figuration, our approach works better than Paragon. For the
best (i.e. Server 10) and worst (i.e. Server 1) server LSH
predicts 13.7 and 13.98 SSs correctly. Figure 2(e) shows,
for each SS, what fraction of applications has been correctly
predicted with LSH based approach and Paragon. Here, we
are considering the worst server. Out of 16 SSs, LSH based
approach and Paragon predicts 5 scores with similar accuracy.
Among the remaining scores, LSH predicts 10 scores more
accurately whereas Paragon predicts only 1 score more accu-
rately. Other servers provide similar results.

QoS and Utilization. We measure the QoS of different
applications running in the default data center. Figure 3 shows
distribution of QoS using LSH and Paragon scheduler. Each
stack in Figure 3(a) and (d) corresponds to the % of appli-
cations that suffer from a certain level of QoS degradation.
Figure 3(a) is for high load scenario (i.e. one application in
every 0.5 sec) whereas (d) is for low load scenario (i.e. one
application in every sec). During high load, 45% applications
suffer from QoS degradation of at most 5% in LSH based
approach. The number for Paragon is 38%. During low load,
the same number is 61% and 49% for LSH based approach
and Paragon respectively. So, compared to Paragon, LSH based
prediction always allows more applications to achieve QoS of
95% or more.

Figure 3(b) and (c) show data center utilization map in
high load whereas (e) and (f) show the same for low load.
Figure 3(b) and (e) are for LSH based approach whereas (c)
and (f) are for Paragon. Darker area implies higher utilization.
During both high and low load, LSH based approach produces

(a) (b) (c)

 0

 2

 4

 6

 8

 10

 12

 14

 16

2 3 4 5 6 7 8 9 10

#

o
f

c
o
r
r
e
c
t

S
S

p
e
r

w
o
r
k
l
o
a
d

Number of kernel

ideal
lsh

paragon
paragon(R)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

20 30 40 50 60 70 80 90 100
110

120
130

140

#

o
f

c
o
r
r
e
c
t

S
S

p
e
r

w
o
r
k
l
o
a
d

Training set size

 12

 13

 14

 15

 16

 17

 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#

o
f

c
o
r
r
e
c
t

S
S

p
e
r

w
o
r
k
l
o
a
d

Number of neighbour for LSH

 0

 2

 4

 6

 8

 10

 12

 14

 16

Server1

Server2

Server3

Server4

Server5

Server6

Server7

Server8

Server9

Server10

A
v
g

c
o
r
r
e
c
t

S
S

p
e
r

w
o
r
k
l
o
a
d

lsh paragon

 0

 20

 40

 60

 80

 100

fpUnit

intUnit

LLCBW

LLCCap

memCap

netBW

storeBW

storeCap

%

a
p
p

c
o
r
r
e
c
t
l
y

p
r
e
d
i
c
t
e
d lsh paragon SoI Tolerate Cause Width

(%, %) (%, %)

floatProcUnit (-100, 100) (-60, 10) 70
intProcUnit (-100, 100) (-60, 100) 160
llcBandwidth (-20, 0) (-20, 60) 20
llcCapacity (-20, 100) (-20, 10) 30
memBandwidth (-10, 0) (-30, 20) 10
memCapacity (-20, 0) (-100, 100) 20
netBandwidth (0, 20) (-10, 10) 20
storageBandwidth (-60, 30) (-60, 20) 80
storageCapacity (0, 100) (-100, 0) 100
tlbCapacity (0, 10) (-10, 30) 10

1

(e) (f)(d)

Fig. 2: (a)-(e) show prediction error for lsh and Paragon. (f) shows DEIs.

 0

 20

 40

 60

 80

 100

lsh
paragon

Q
o
S

o
f

a
p
p
l
i
c
a
t
i
o
n
s

0-5
6-10

11-15
16-20

>20

 0

 20

 40

 60

 80

 100

lsh
paragon

Q
o
S

o
f

a
p
p
l
i
c
a
t
i
o
n
s

0-5
6-10

11-15
16-20

>20

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

Time (s)

 0

 2

 4

 6

 8

S
e
r
v
e
r
s

 0

 20

 40

 60

 80

 100

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

Time (s)

 0

 2

 4

 6

 8

S
e
r
v
e
r
s

 0

 20

 40

 60

 80

 100

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

Time (s)

 0

 2

 4

 6

 8

S
e
r
v
e
r
s

 0

 20

 40

 60

 80

 100

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

Time (s)

 0

 2

 4

 6

 8

S
e
r
v
e
r
s

 0

 20

 40

 60

 80

 100

(a) (b) (c)

(d) (e) (f)

Fig. 3: QoS and utilization achieved using different approaches.

 0

 20

 40

 60

 80

 100

lsh
paragon

Q
o
S

o
f

a
p
p
l
i
c
a
t
i
o
n
s

0-5
6-10

11-15
16-20

>20

 0

 20

 40

 60

 80

 100

lsh
paragon

Q
o
S

o
f

a
p
p
l
i
c
a
t
i
o
n
s

0-5
6-10

11-15
16-20

>20

(a) (b)

Fig. 4: QoS in (a) higher and (b) lower end data centers.

darker utilization maps, compared to Paragon. On average,
during high load, LSH based approach yields 62% utilization
whereas Paragon yields 57% utilization. During low load, the
number is 59% and 54% for LSH and Paragon respectively.
Figure 4 shows QoS at high load scenario in higher end
(Figure 4(a)) and lower end (Figure 4(b)) data centers. LSH
performs consistently better than Paragon in both cases. In high
end data center, 47% applications achiever a QoS of 95% or
more in LSH based approach. For Paragon, this number is
40%. Similar trend is found for the lower end data center.

Time Analysis. Finally, we measure how the prediction
time per workload changes as we change the size of training

set (Figure 5). Prediction time tends to remain the same for
training set size up to 100. After that, it tends to increase
slightly. For our default training set size of 150, the prediction
time is 0.013 seconds for each workload. This is extremely
fast. Our initial profiling takes (≈)60 seconds.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
1
0
0
1
1
0
1
2
0
1
3
0
1
4
0

R
u
n
n
i
n
g

t
i
m
e

p
e
r

w
o
r
k
l
o
a
d

(
s
)

Training set size

lsh

Fig. 5: Running time analysis.

VI. RELATED WORK

There has been significant work on data center workload
characterization [11], [15], [20], [6], [7]. This line of work
generates workloads with characteristics that closely resemble
those of the original applications. The generated workloads
are then used in system studies. Although this is a viable
approach, the generated workloads sometimes cannot capture
every aspects of the applications. Moreover, they are not suit-
able for unknown applications. Mars et al. [21], [24] designed
two kernels that create tunable contention in memory capacity
and bandwidth to quantify the sensitivity of a workload to
memory interference. The kernels are used during either offline
profiling [21] or online profiling [24]. Tang et al. [22] designed
SmashBench, a benchmark suite for cache and memory con-
tention. Delimitrou et al. [12] proposed iBench, a benchmark
suite to obtain sensitivity curve of a workload for 15 shared
resources. Paragon [13] is the first work to predict a workload’s
sensitivity based on the knowledge about existing applica-
tions. The prediction is done using Netflix [9] algorithm.
Once the sensitivity scores are predicted, Paragon applies a
greedy algorithm for sever selection to maximize utilization
while minimizing interference. The work is later extended in
Quasar [14] where server selection is done based on predicted
sensitivity scores and performance constraints given by a user.

VII. CONCLUSION

We have presented new method of evaluating and schedul-
ing workload in a heterogeneous data center. The technique
that is based on locality-sensitive hashing. Given a new ap-
plication, we are interested in approximating its dependence
on certain resources. Due to time constraints, we can only
spend a small amount of time profiling the application. After
this profiling, we are able to identify similar applications
from a training set extremely quickly using locality-sensitive
hashing. We then use these similar applications to approxi-
mate the remaining information for the new application. We
then use LSH to select appropriate servers to schedule. We
demonstrated the effectiveness of our approach with respect to
our new evaluation metric by comparing our results with that
of Paragon. We demonstrate that our approach predicts more

accurately (by a factor of 1.42) and achieves better QoS than
Paragon.

REFERENCES

[1] “Apache Web Server,” http://www.apache.org/.
[2] “LSH Algorithm and Implementation,” http://http://www.mit.edu/

∼andoni/LSH/.
[3] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar, “Puma: Purdue

mapreduce benchmarks suite,” Technical Report, Purdue ECE Tech
Report TR-ECE-12-11, 2012.

[4] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” in Foundations of Computer
Science, 2006. FOCS ’06. 47th Annual IEEE Symposium on, Oct 2006,
pp. 459–468.

[5] ——, “Near-optimal hashing algorithms for approximate nearest neigh-
bor in high dimensions,” Commun. ACM.

[6] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Work-
load analysis of a large-scale key-value store,” in ACM SIGMETRICS,
June 2012.

[7] P. Barford and M. Crovella, “Generating representative web workloads
for network and server performance evaluation,” in ACM SIGMETRICS,
June 1998.

[8] L. A. Barroso, “Warehouse-scale computing: Entering the teenage
decade,” in ISCA, June 2011.

[9] R. Bell, Y. Koren, and C. Volinsky, “The BellKor 2008 Solution to the
Netflix Prize,” Technical report, vol. AT&T Labs, October 2007.

[10] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in SCG, June
2004.

[11] C. Delimitrou, S. Sankar, A. Kansal, and C. Kozyrakis, “Echo: Recre-
ating network traffic maps for datacenters with tens of thousands of
servers,” in IISWC, Nov 2012.

[12] C. Delimitrou and C. Kozyrakis, “ibench: Quantifying interference for
datacenter applications,” in IISWC, September 2013.

[13] ——, “Paragon: Qos-aware scheduling for heterogeneous datacenters,”
in ASPLOS, March 2013.

[14] ——, “Quasar: Resource-efficient and qos-aware cluster management,”
in ASPLOS, March 2014.

[15] C. Delimitrou, S. Sankar, K. Vaid, and C. Kozyrakis, “Decoupling
datacenter studies from access to large-scale applications: A modeling
approach for storage workloads,” in IISWC, September 2011.

[16] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing
the clouds: a study of emerging scale-out workloads on modern hard-
ware,” in ASPLOS, March 2012.

[17] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in VLDB, September 1999.

[18] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Applied statistics, pp. 100–108, 1979.

[19] U. Hoelzle and L. A. Barroso, The Datacenter As a Computer: An
Introduction to the Design of Warehouse-Scale Machines, 1st ed.
Morgan and Claypool Publishers, 2009.

[20] Y. Joo, V. Ribeiro, A. Feldmann, A. C. Gilbert, and W. Willinger,
“Tcp/ip traffic dynamics and network performance: A lesson in work-
load modeling, flow control, and trace-driven simulations,” SIGCOMM
Comput. Commun. Rev., vol. 31, no. 2, April 2001.

[21] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
increasing utilization in modern warehouse scale computers via sensible
co-locations,” in MICRO, December 2011.

[22] L. Tang, J. Mars, and M. L. Soffa, “Compiling for niceness: Mitigating
contention for qos in warehouse scale computers,” in CGO, March 2012.

[23] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini,
“Dejavu: Accelerating resource allocation in virtualized environments,”
in ASPLOS, March 2012.

[24] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise
online qos management for increased utilization in warehouse scale
computers,” in ISCA, June 2013.

