
SyncPerf: Categorizing, Detecting, and
Diagnosing Synchronization Performance Bugs

Mohammad Mejbah ul Alam ⇤ Tongping Liu ⇤ Guangming Zeng† Abdullah Muzahid
University of Texas at San Antonio †Lingshan Road

San Antonio, TX 78249 Shanghai, China, 200135
{Mohammad.Alam,Tongping.Liu,Abdullah.Muzahid}@utsa.edu, zenggming@gmail.com

Abstract
Despite the obvious importance, performance issues related
to synchronization primitives are still lacking adequate at-
tention. No literature extensively investigates categories,
root causes, and fixing strategies of such performance is-
sues. Existing work primarily focuses on one type of prob-
lems, while ignoring other important categories. Moreover,
they leave the burden of identifying root causes to program-
mers. This paper first conducts an extensive study of cat-
egories, root causes, and fixing strategies of performance
issues related to explicit synchronization primitives. Based
on this study, we develop two tools to identify root causes of
a range of performance issues. Compare with existing work,
our proposal, SyncPerf, has three unique advantages. First,
SyncPerf’s detection is very lightweight, with 2.3% perfor-
mance overhead on average. Second, SyncPerf integrates
information based on callsites, lock variables, and types of
threads. Such integration helps identify more latent prob-
lems. Last but not least, when multiple root causes generate
the same behavior, SyncPerf provides a second analysis
tool that collects detailed accesses inside critical sections
and helps identify possible root causes. SyncPerf discovers
many unknown but significant synchronization performance
issues. Fixing them provides a performance gain anywhere
from 2.5% to 42%. Low overhead, better coverage, and in-
formative reports make SyncPerf an effective tool to find
synchronization performance bugs in the production envi-
ronment.

⇤ Alam and Liu contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23-26, 2017, Belgrade, Serbia

c� ACM. ISBN 978-1-4503-4938-3/17/04. . . 5.00

DOI: http://dx.doi.org/10.1145/3064176.3064186

1. Introduction
Designing efficient multithreaded programs while maintain-
ing their correctness is not an easy task. Performance is-
sues of multithreaded programs, despite being the primary
cause of more than 22% synchronization fixes of server pro-
grams [23], get less attention than they deserve. There are
many prior works [8, 19, 21, 23, 28, 41, 43] in this domain,
but none of them systematically investigates performance is-
sues related to different types of synchronization primitives.
Most existing works cannot identify root causes, and provide
helpful fixing strategies.

This paper studies various categories, root causes, and
fixing strategies of performance issues related to different
synchronization primitives such as locks, conditional vari-
ables, and barriers. Lock/wait-free techniques and other
mechanisms (such as transactional memory [20]) are not
covered in this paper. The study divides synchronization re-
lated performance issues into five categories: improper prim-
itives, improper granularity, over-synchronization, asym-
metric contention, and load imbalance (shown in Table 1).
The first four categories are related to various locks, whereas
the last one is related to other synchronizations such as con-
ditional variables and barriers. The study shows that the
same symptom can be caused by multiple root causes. For
example, high contention of locks can occur due to too many
data items under the same lock, too-large critical sections,
over-synchronization, or asymmetric lock contention (more
details in Section 2). Without knowing the root cause, it is
difficult for programmers to fix these bugs effectively. The
study also shows that different categories of problems may
have different symptoms and thus, different solutions. Fi-
nally, the study presents some ideas for identifying and fix-
ing these performance issues. The study not only helps users
to identify and fix synchronization performance issues, but
also enables future research in this domain.

Prior work [8, 19, 21, 23, 28, 41, 43] focuses excessively
on locks that are both acquired frequently and highly con-
tended. Our first observation is that performance problems
can also occur with locks that are not excessively acquired

or highly contended. This is shown in Figure 1. Existing
work focuses on quadrant 2 or Q2. Locks of Q2 can def-
initely cause performance issues but they are not the only
culprits. SyncPerf finds potential problems with the other
two quadrants: (i) locks that are not acquired many times
may slow down a program if the critical sections are large
and potentially introduce high contention and/or a long wait-
ing time (Q1); (ii) locks that are acquired excessively may
cause significant performance problems, even if they are
barely contended (Q4). Intuitively, locks of Q3 (lowly con-
tended and not acquired many times) will not cause perfor-
mance problems. Our second observation is that it is not al-
ways sufficient to identify root causes of a problem based on
the behavior of a single synchronization. For example, for
asymmetric contention where different locks are protecting
similar data with different contention rates, we have to an-
alyze the behavior of all those locks that typically have the
same initialization and acquisition sites. By checking all of
those locks together, we can notice that some locks may have
higher contention and acquisition than others.

Frequency of lock acquisitions

C
on

te
nt

io
n

ra
te

1"

4"

2"

3"

Covered by
prior work

Not covered by
prior work

Not covered by
prior work

Figure 1. Existing work mainly focuses on the locks of
quadrant 2 (Q2) while ignoring those in quadrant 1 (Q1) &
4 (Q4). Contention rate = what fraction of times a lock is
found to be unavailable. Frequency of acquisitions = how
many times a lock is acquired per second. Note that we use
contention rate instead of lock waiting time as an axis since
the later one is closely related to the first one.

Driven by these two intuitive but novel observations, we
develop SyncPerf that not only reports the callsites of per-
formance issues, but also helps diagnose root causes and
suggests possible fixes for a range of performance issues re-
lated to synchronization primitives. Most existing works [8,
28, 41] just report the callsites of the performance issues
(mostly high contention locks), while leaving the burden of
analyzing root causes (and finding possible fixes) to pro-
grammers. The only work similar to ours was proposed by
Yu et al. [43]. However, SyncPerf excels it by having a
better detection ability (thanks to the novel observations),
a broader scope, and much lower overhead (Section 6).

SyncPerf starts by monitoring the execution of an ap-
plication and collecting information about explicit synchro-
nization primitives. More specifically, it collects (i) for a
lock, how many times it is acquired, how many times it is

found to be contended, and how long a thread waits for the
lock, (ii) for a try-lock, how many times it is called and how
many times it fails because of contention, and finally (iii)
for load imbalance, how long different threads execute, and
how long they are waiting for synchronizations. SyncPerf
also collects callsites for each synchronization operation and
thread creation function to help pinpoint the actual problems.
After this, SyncPerf integrates and checks the collected in-
formation to identify root causes: (i) it checks behavior of
all locks with the same callsites to identify asymmetric con-
tention issue, (ii) it computes and compares waiting time of
different threads to identify load imbalance issue, and (iii)
it checks individual as well as collective (based on callsites)
information of locks (i.e., the number of acquisitions and
number of times they are contended) to identify other perfor-
mance issues. This integration is very important, and helps
uncover more performance issues. SyncPerf is able to find
more performance issues than any prior work (Table 2). For
some of the problems, such as asymmetric contention, and
load imbalance, SyncPerf’s detection tool automatically re-
ports root causes. It also presents an optimal task assign-
ment to solve load imbalance problems. For other problems,
SyncPerf provides sufficient information as well as an in-
formal guideline to diagnose them manually. SyncPerf also
provides an additional optional tool (that programmers can
use offline) to help the diagnosis process.

Contribution:
Overall, this paper makes the following contributions:

• This paper provides a taxonomy of categories, root
causes, and fixing strategies of performance bugs related
to explicit synchronization primitives. The taxonomy is
useful not only to identify and fix synchronization per-
formance problems but also to enable future research in
this field.

• SyncPerf uses an intuitive observation that performance
problems may occur even when locks are not frequently
acquired or highly contended. There is no existing work
that actually uses this observation. Due to this observa-
tion, SyncPerf finds many previously unknown perfor-
mance issues in widely used applications.

• SyncPerf makes a novel observation that it is hard to
detect problems such as asymmetric contention and load
imbalance by observing the behavior of a single synchro-
nization. To solve this problem, SyncPerf proposes to
integrate information based on callsites of lock acqui-
sitions (and initializations), lock variables, and types of
threads. This integration also contributes to the detection
of some unknown issues.

• Finally, SyncPerf provides two tools that help diagnose
root causes of performance bugs. The first one is a detec-
tion tool that can report susceptible callsites and synchro-
nization variables with potential performance issues, and

identify some root causes such as asymmetric contention
and load imbalance. This tool has extremely low over-
head (only 2.3%, on average). The tool achieves such low
overhead even without using the sampling mechanism.
The low overhead makes the tool a good candidate for
the deployment environment. When multiple root causes
may lead to the same behavior and thus, cannot be di-
agnosed easily, SyncPerf provides a heavyweight diag-
nosis tool that collects detailed accesses inside suscepti-
ble critical sections to ease the diagnosis process. Both of
these tools are software-only tools that do not require any
modification or recompilation of applications, and cus-
tom operating system or hardware support.

Outline:
The remainder of this paper is organized as follows. Sec-
tion 2 presents a categorization of synchronization related
performance bugs, and the workflow of SyncPerf tools;
Section 3 describes the implementation details of SyncPerf;
Section 4 presents the experimental results; Section 5 dis-
cusses some limitations of SyncPerf; Section 6 describes
related work, and finally, Section 7 concludes the work.

2. Overview
In this Section, we first provide a categorization of perfor-
mance issues related to synchronization primitives. We pro-
pose this categorization based on our experience and analy-
sis of the bugs detected during experiments. Therefore, the
categorization may not be exhaustive. However, the catego-
rization serves as the basis for SyncPerf’s observations and
design choices. Lastly, we show a workflow that describes
the identification of root causes based on symptoms.

2.1 Categorization
Synchronization related performance issues can be divided
into five categories (Table 1).

2.1.1 Improper Primitives
Programmers may use a variety of synchronization primi-
tives (e.g., atomic instructions, spin locks, try-locks, read-
/write locks, mutex locks etc.) to protect shared accesses.
These primitives impose different runtime overhead, in-
creasing from atomic instructions to mutex locks. The spin
lock of pthread library, for example, incurs 50% less over-
head than the mutex lock when there is no contention. How-
ever, during high contention, the spin lock may waste CPU
cycles unnecessarily [1, 30].

Different synchronization primitives have different use
cases. Atomic instructions are best suited to perform simple
integer operations (e.g., read-modify-write, addition, sub-
traction, exchange etc.) on shared variables [9, 34]. Spin
locks are effective for small critical sections that have very
few instructions but cannot be finished using a single atomic
instruction [1, 30]. Read/write locks are useful for read-

mostly critical sections [26, 32]. Try-locks allow a pro-
gram to pursue an alternative path when locks are not avail-
able [38]. Finally, mutex locks are used when the critical
sections contain waiting operations (e.g., conditional wait)
and have multiple shared accesses. Any deviation from the
preferred use cases may result in performance issues.

Identification: Improper primitives (usually in Q2 and Q4)
typically cause extensive try-lock failures or extensive lock
acquisitions, but low to moderate contention. Extensive try-
lock failures, where a try-lock fails immediately because the
lock is held by another thread, indicate that we should use
a blocking method that combines conditional variables with
mutexes to avoid continuous trial. Extensive lock acquisi-
tions may incur significant performance degradation even
without high contention. The issue of improper primitives
is ignored by existing work [8, 19, 23, 28, 41]. However, its
importance can be seen from facesim application of PAR-
SEC [3] where changing mutex locks to atomic instructions
boosts performance by up to 30.7% (Table 2).

2.1.2 Improper Granularity
Significant performance degradation may occur when locks
are not used with a proper granularity. There are several
cases listed as follows.

1. If a lock protects too many data items (e.g., an entire
hash table, as in the memcached-II bug of Table 2), the
lock may introduce a lot of contention. Splitting a coarse-
grained lock into multiple fine-grained locks helps improve
performance.

2. If a lock protects a large critical section with many
instructions, it may cause high contention and thus, a sig-
nificant slowdown. canneal of PARSEC, for example, has
a critical section that includes a random number generator.
Only few instructions inside the critical section access the
shared data. Although the number of acquisitions is only 15,
performance is boosted by around 4% when we move the
random generator outside the critical section.

3. If a critical section has very few instructions, then the
overhead of lock acquisitions and releases may exceed the
overhead of actual computations inside. In that case, the
program can suffer from performance degradation [14]. One
possible solution is to merge multiple locks into a single
coarse-grained one.

Identification: Locks in the first two cases may incur sig-
nificant contention. However, without knowing the memory
accesses inside the critical section, it is hard to identify this
type of problems manually. Therefore, SyncPerf provides
an additional diagnosis tool that tracks all memory accesses
protected by a specific lock. Programmers can use the tool
offline after some potential problems have been identified
by the detection tool. With the collected information, we can
easily differentiate between the first two cases as described
in Table 1. It is relatively hard to identify the third case.

Category Symptoms Quadrant Root Cause Solution

Improper Primitives
extensive lock acqs, low contention Q4

small CS with a simple
integer operation atomic instructions

small CS spin locks
extensive lock acqs, moderate contention Q2 & Q4 read/write only CS reader/writer locks

extensive try-lock failures N/A N/A mutex + cond. var.

Improper Granularity moderate to high contention Q1 & Q2

too many data items
under the same lock finer locks

too large CS shrinking CS

extensive lock acqs, low contention Q4 multiple small CS
in the same function coarser locks

Over-Synchronization
extensive lock acqs Q2 & Q4 already mutually exclusive removing unnecessary locks

accessing local data only removing unnecessary locks
extensive lock acqs

high contention Q2 different locks are
serialized by the same lock removing the common lock

Asymmetric Contention high contention locks Q2 asymmetric contention rate distribute contention

Load Imbalance disproportionate thread
computation and waiting time N/A N/A task redistribution

Table 1. Categorization of synchronization performance issues. “CS” is short for “Critical Section” and “acqs” is for
“acquisitions”.

2.1.3 Over-synchronization
Over-synchronization indicates a situation where a synchro-
nization becomes unnecessary because the computations do
not require any protection or they are already protected by
other synchronizations. This term is borrowed from existing
work [23]. There are the following cases.

1. A lock is unnecessary if a critical section only accesses
the local data, but not the shared data.

2. A lock is unnecessary if the protected computations are
already atomic.

3. A lock is unnecessary if another lock already protects
the computations. MySQL-5.1 is known to have such a prob-
lem [7, 23], which utilizes the random() routine to deter-
mine the spin waiting time inside a mutex. Unfortunately,
this routine has an internal lock that unnecessarily serialize
every thread invoking this random() routine. The problem
has been fixed by using a different random number generator
that does not have any internal lock for the fastmutex.

Identification: Over-synchronization problems can cause
a significant slowdown when there are extensive lock acqui-
sitions. This situation is similar to the first two categories
of improper granularity issue. Therefore, our diagnosis tool
(described in Section 3.2) may help analyze this situation.
After a problem is identified, unnecessary locks can be re-
moved to improve performance. However, removing locks
may introduce correctness issue, and has to be done cau-
tiously.

2.1.4 Asymmetric Contention
Asymmetric contention occurs when some locks have signif-
icantly more contention than others that protect similar data.
This category is derived from “asymmetric lock” [10]. For
instance, a hash table implementation may use bucket-wise
locks. If the hash function fails to distribute the accesses uni-
formly, some buckets will be accessed more frequently than

the others. Consequently, locks of those buckets will have
more contention than the others. Coz [10] finds such a prob-
lem in dedup. Changing the hash function improves perfor-
mance by around 12%.

Identification: To identify this type of problems, SyncPerf
collects the number of lock acquisitions, how many times
each lock is found to be unavailable, and their callsites. If
multiple locks are protecting similar data (typically identi-
fied by the same callsites of lock acquisitions and releases),
SyncPerf checks the lock contention rate and the number of
acquisitions of these locks. When an asymmetric contention
rate is found (e.g., when the highest contention rate is 2⇥ or
more than the lowest one), SyncPerf reports an asymmet-
ric contention problem. Asymmetric contention problem is
reported automatically without any manual effort. Program-
mers, then, can fix the problem by evenly distributing the
contention. Unlike SyncPerf, Coz relies on manual inspec-
tion to identify this type of problems.

2.1.5 Load Imbalance
A thread can wait due to synchronizations such as mutex
locks, conditional variables, barriers, semaphores etc. A par-
ent thread can also wait when it tries to join with the chil-
dren threads. If a group of threads (i.e., threads with the
same thread function) is found to have a waiting period much
longer than that of other groups of threads, this may indicate
a performance issue caused by load imbalance [12, 25, 33,
40].

Identification: To identify load imbalance problems, it
collects the execution and waiting time of different threads
by intercepting thread creations and synchronization func-
tions. If the waiting time or computation time of different
threads are substantially different (e.g., outside a certain
range, say 20%), the program can be identified as having
a load imbalance problem.

Finding an optimal task assignment: SyncPerf can sug-
gest an optimal task assignment for load imbalance prob-
lems after the identification. It calculates the computation
time of every thread by subtracting all waiting time (on con-
ditional variables, mutex locks, and barriers) from their exe-
cution time. It then computes the total computation time of
different groups of threads according to their thread func-
tions, where threads executing the same function belong to
the same group. In the end, SyncPerf suggests an optimal
task distribution – each group of threads will be assigned an
optimal number of threads that is proportional to the total
workload of that type. Section 4.4.5 presents some examples
showing how SyncPerf can suggest an optimal configura-
tion for different types of threads to fix the load imbalance
problems.

2.2 Workflow
The high level workflow of SyncPerf is shown as Figure 2.
For mutex locks, SyncPerf reports locks inside 3 quadrants
(Q1, Q2, and Q4 of Figure 1), while skipping Q3 locks that
do not cause performance issues. Additionally, it reports try-
lock failure rates and whether there is a load imbalance prob-
lem among different types of threads. For the load imbal-
ance problem, SyncPerf not only reports the root cause but
also suggests an optimal configuration for different types of
threads. This is done without any manual intervention. Pro-
grammers can use the suggested distribution to fix the load
imbalance problem. If there is an asymmetric contention
problem among similar locks, the tool automatically iden-
tifies the root cause. However, it is up to the programmer to
develop a possible fix.

After getting the behavior of locks in 3 quadrants, if the
reported code segments are simple, programmers can easily
inspect them manually to determine which category a prob-
lem belongs to and take corresponding actions. This can be
as simple as consulting Table 1. For complex situation, our
additional diagnosis tool can collect detailed information for
critical sections that reported by our detection tool, in order
to help programmers determine the particular type of per-
formance issues. Again, Table 1 can be used as an infor-
mal guideline during the categorization process. After de-
termining the type of performance bugs, Table 1 can guide
programmers to develop a fix for the bug. Some of the fix-
ing strategies (e.g., fixing of over-synchronization problem)
might require programmers to carefully consider correctness
issues.

3. Implementation Details
SyncPerf provides two tools to assist programmers in iden-
tifying bugs and fixing them: a detection tool and a diagno-
sis tool. By combining these two tools, SyncPerf not only
answers “what” and “where” questions, but also “why” and
“how to fix” (partially) questions for most synchronization
related performance bugs.

The detection tool uses a lightweight profiling scheme to
detect synchronizations with potential performance issues.
It can also diagnose the root causes for asymmetric con-
tention, extensive try-lock failures, and load imbalance prob-
lems without any manual intervention. The detection tool
achieves a lower performance overhead than existing tools
(even without using the sampling mechanism) [41]. Details
of this tool are presented in Section 3.1.

The diagnosis tool is based on Pin [29], a binary instru-
mentation tool. The diagnosis tool monitors memory ac-
cesses inside specific critical sections to help identify root
causes of problems with the same behavior. This heavy-
weight diagnosis tool is only employed when the detection
tool reports some potential problems that cannot be diag-
nosed easily. It utilizes prior knowledge of the particular
problems that are reported by the detection tool, and thus,
instruments memory accesses inside the relevant critical sec-
tions only. Its overhead is about 6⇥ lower than the existing
work that instruments all memory accesses [43].

3.1 Detection Tool
The challenge of SyncPerf is to collect data efficiently and
analyze them effectively.

3.1.1 Collecting Data Efficiently
To collect the data, SyncPerf intercepts pthread’s dif-
ferent types of explicit synchronization primitives, such as
mutex locks, try-locks, conditional variables, barriers, and
thread creation and exit functions, where the actual imple-
mentation is borrowed from the pthread library. This is
similar to existing work [41]. However, SyncPerf outper-
forms them with a lower overhead and better detection abil-
ity.

SyncPerf intercepts pthread create function calls
and passes a custom function to the actual pthread create

function. This custom function calls the actual start routine

function, and collects timestamps of thread starting and exit-
ing using RDTSC timer [22]. The timestamps are saved into
a thread wrapper as shown in Figure 3(b).
SyncPerf utilizes the following mechanisms to achieve the
extremely low overhead.

Indirection and per-thread data: To collect data for mu-
tex locks, a possible approach (used by existing work [41])
is to store the actual profiling data for each mutex lock in
a global hash table. Upon every mutex invocation, we can
lookup the hash table to find the pointer to the actual data,
and then update it correspondingly. However, this approach
introduces significant overhead due to the hash table lookup
(and possible lock protection) on every synchronization op-
eration, and the possible cache coherence messages to up-
date the shared data (true/false sharing effect) [16, 21]. This
is especially problematic when there is a significant number
of acquisitions.

Program Detection
Tool

Q1 Locks

Q2 Locks

Locks in Q3

Q4 Locks

Extensive
Try-lock failure

Disproportionate
waiting/computation

No problem

Manual inspection
guided by Table 1

Load imbalance

Improper
primitives

Improper
granularity

Over-
synchronization

Asymmetric
contention

Diagnosis
Tool

Manual fix
guided by Table 1

Complex
cases

Simple cases

Guided by
prediction

Figure 2. Workflow of SyncPerf.

mutex_t!

shadow_mutex_t!

index! other!mutex_t!

Thread 1!

Thread 2!

L1! L2! Li !

Mutex Data Table!

Thread t!

start_time!
end_time!

thread_func!
thread_arg!

Thread Wrapper!

(a)!

(b)!

Figure 3. Data structures used by SyncPerf.

Instead, SyncPerf uses a level of indirection to avoid
the lookup overhead, and a per-thread data structure to
avoid the cache coherence traffic. The data structure is
shown in Figure 3(a). For every mutex, SyncPerf allocates
a shadow mutex t object and uses the first word of the orig-
inal mutex t object as a pointer to this shadow object. The
shadow mutex structure contains a real mutex t object, an
index for this mutex object, and some other data. The index
is initialized during the initialization of the mutex, or during
the first lock acquisition if the mutex is not explicitly initial-
ized. This index is used to find an entry in the global Mu-
tex Data Table, where each thread has a thread-wise entry.
When a thread operates on a mutex lock, say Li, SyncPerf
obtains the shadow mutex t object by checking the first
word of the original mutex t object, and then finds its cor-
responding thread-wise entry using the index value. After
that, the lock related data can be stored in its thread-wise
entry, without generating any cache coherence message.
Furthermore, SyncPerf prevents the false sharing effect
by carefully keeping read-mostly data in shadow mutex t

object and padding them properly [4, 27], while the actual
profiling data (that keeps changing) is stored in thread-wise

entries. The thread-wise data is collected and integrated in
the reporting phase (Section 3.1.2).

Fast collection of callsites: SyncPerf collects callsite in-
formation of every synchronization operation to provide ex-
act source code location of performance bugs. It is crucial
to minimize the overhead of collecting callsites, especially
when there is a large number of synchronization operations.
SyncPerf makes three design choices to reduce the over-
head. First, SyncPerf avoids the use of backtrace API of
glibc, which is extremely slow due to its heavyweight in-
struction analysis. Instead of using backtrace, SyncPerf
analyzes frame pointers to obtain call stacks efficiently.
However, this can impose a limitation that SyncPerf can-
not collect callsite information for programs without frame
pointers. Second, SyncPerf collects call stacks up to the
depth of 5. We limit the depth because deeper stacks intro-
duce more overhead without any significant benefit. Third,
SyncPerf avoids collecting already-existing callsites. Ob-
taining the callsite of a synchronization and comparing
it against all existing callsites one by one (to determine
whether this is a new one) may incur substantial overhead.
Alternatively, SyncPerf utilizes the combination of the lock
address and the offset between the stack pointer (rsp regis-
ter) and the top of the current thread’s stack to identify the
call stack. When different threads invoke a synchronization
operation at the same statement, the combination of the lock
address and stack offset are likely to be the same. If a com-
bination is the same as that of one of the existing callsites,
SyncPerf does not collect callsite information. This method
can significantly reduce the overhead of callsite collection
and comparison.

Other mechanisms: To further reduce the runtime over-
head, SyncPerf avoids any overhead due to memory allo-
cation by preallocating the Mutex Data Table and a pool of
shadow mutex objects. This is done during the program ini-
tialization phase. SyncPerf assumes a predefined but ad-
justable maximum number of threads and mutex objects for

this purpose. Also, SyncPerf puts data collection code out-
side a critical section as much as possible to avoid expand-
ing the critical section. This avoids unnecessary serialization
of threads.

Because of these careful design choices, SyncPerf im-
poses very low runtime overhead (2.3%, on average). Even
for an application such as fluidanimate that acquires 40K
locks per millisecond, SyncPerf imposes only 19% runtime
overhead. Due to its low overhead, SyncPerf’s detection
tool can be used in production runs.

3.1.2 Analyzing and Reporting Problems
SyncPerf reports problems when a program is about to exit
or it receives a special signal like SIGUSER2. SyncPerf
performs two steps to generate a report.

First, it combines all thread-wise data of a particular syn-
chronization together to check the number of lock acquisi-
tions, lock contentions, and try-lock failures. It reports po-
tential problems if any synchronization variable shows the
behavior listed in Section 2.

Second, SyncPerf integrates information of different
synchronization variables and threads together in order to
discover more potential problems. (1) The behavior of locks
with the same callsites are compared with each other: if
some locks have significantly more contention than oth-
ers, then there is a problem of asymmetric contention (Sec-
tion 2.1.4). (2) Even if one particular lock is not acquired-
many times, the total number of acquisitions of locks with
the same callsite can be significant and thus, cause a severe
performance issue. (3) SyncPerf integrates information of
different threads together to identify load imbalance prob-
lems. When one type of threads (with the same thread func-
tion) have “disproportionate waiting time”, it is considered
to be a strong indicator for the load imbalance issue (Sec-
tion 2.1.5). The integration of information helps find more
potential problems.

3.2 Diagnosis Tool
The same behavior (e.g., lock contention) may be caused
by different root causes, such as asymmetric contention,
improper granularity, or over-synchronization. Therefore,
SyncPerf provides a heavyweight diagnosis tool to help
identify root causes of such problems. This heavyweight di-
agnosis tool is optional and not meant for production runs.
Only when some potential problems are detected but they
are hard to be diagnosed manually, this diagnosis tool may
provide further information (e.g., memory accesses inside
critical sections) that include: how many instructions are ex-
ecuted on average inside each critical section; how many of
these instructions access shared and non-shared locations;
how many different memory locations are accessed inside a
critical section; and how many instructions are read or write
accesses.

SyncPerf’s diagnosis tool is based on a binary instru-
mentation framework, Pin [29]. It takes a list of problematic

locks (along with their callsites) as the input, which is gen-
erated from the detection tool’s report. When a lock function
is encountered, it checks whether the lock is one of the prob-
lematic ones. If so, it keeps counting the instructions, and
monitoring the memory accesses inside. The tool also main-
tains a hash table to keep track of memory locations inside
critical sections. The hash table helps find out how many data
items have been accessed inside a critical section. This infor-
mation help identify the situation where a lock protects too
many data items, or too many instructions that are accessing
non-shared data inside a critical section. Like the detection
tool, the diagnosis tool maintains thread-wise and lock-wise
counters for each synchronization. It also integrates infor-
mation together in the end.

4. Evaluation
This section will answer the following questions:

• Usage Example: What are the outputs of SyncPerf’s
tools? How we can utilize the report to identify root
causes? (Section 4.2)

• Bug Detection Ability: Can SyncPerf detect real per-
formance bugs related to synchronizations? (Section 4.3
and 4.4)

• Performance Overhead: What is the performance over-
head of SyncPerf’s detection and diagnosis tools? (Sec-
tion 4.5)

• Memory Overhead: What is the memory overhead of
the detection tool? (Section 4.6)

4.1 Experimental Setup
We performed experiments on a 16-core idle machine, with
two-socket Intel(R) Xeon(R) CPU E5-2640 processors and
256GB of memory. It has 256KB L1, 2MB L2, and 20M L3
cache. The experiments were performed on the unchanged
Ubuntu 14.10 operating system. We used GCC-4.9.1 with
-O2, -g and -fno-omit-frame-pointer flags to compile
all applications. SyncPerf utilizes the following parameters
for the detection: contention rate larger than 10% is consid-
ered to be high, and the number of lock acquisition larger
than 1000 per second is considered to be high. These thresh-
olds are empirically determined. The parameters can be eas-
ily adjusted during the compilation of the detection tool.
Section 4.3 evaluates false positives when using these pa-
rameters.

Evaluated Applications: We used a well-tuned benchmark
suite, PARSEC [3], with native inputs. PARSEC applica-
tions have complexity comparable with real applications
(see Table 3). We also evaluated three widely used real
world applications: Apache, MySQL, and Memcached. We
ran Apache-2.4 server program with the ab client that is
distributed with the source code. We tested MySQL-5.6.27

using the sysbench client and the mysql-test. For mem-

Number o f d i s t i n c t l o c k s : 1
��
Locks wi th h igh c o n t e n t i o n , h i gh f r e q u e n c y
��
T o t a l found : 0
���������������������������������������
Locks wi th h igh c o n t e n t i o n , low f r e q u e n c y
���������������������������������������
T o t a l found : 1
T o t a l w a i t i n g t ime (ms) : 490
No . 1 l o c k :

C o n t e n t i o n r a t e : 86.7%
A c q u i s i t i o n f r e q u e n c y : 0 . 3
C a l l s i t e :

. / rng . h : 4 8

���������������������������������������
Locks wi th low c o n t e n t i o n , h i gh f r e q u e n c y
���������������������������������������
T o t a l found : 0
���������������������������������������
Locks wi th asymmet r i c c o n t e n t i o n
���������������������������������������
T o t a l found : 0

Figure 4. Sample report of SyncPerf’s detection tool.

T o t a l i n f o r m a t i o n on 15 CSs of l o c k # 1 :
o f i n s t r u c t i o n s : 47109
of i n s t r u c t i o n s a c c e s s i n g memory : 46979
of i n s t r u c t i o n s a c c e s s i n g s h a r e d memory : 28

Figure 5. Sample report of SyncPerf’s diagnosis tool.

p t h r e a d m u t e x l o c k (& s e e d l o c k) ;
r n g = new MTRand (seed + +) ;

p t h r e a d m u t e x u n l o c k (& s e e d l o c k) ;

Figure 6. Corresponding code for canneal.

cached, we evaluated two different versions – memcached-

-1.4.4, and memcached-2.4.24, which are all exercised
using the memslap benchmark. Data presented in the paper
is for memcached-2.4.24 unless otherwise mentioned.

4.2 Usage Examples
SyncPerf provides two tools that help identify the root
causes of problems. This section shows a usage example for
application canneal of PARSEC.

Figure 4 shows an example report generated by SyncPerf’s
detection tool. For locks, it reports the results of three quad-
rants as shown in Figure 1. For each lock, SyncPerf reports
source code information. For canneal, SyncPerf only re-
ports one lock with high contention rate and low acquisition
frequency in rng.h file. The corresponding code is shown in
Figure 6. It is not very easy to understand this case. There-
fore, we can resort to SyncPerf’s diagnosis tool.

The diagnosis tool takes the reported locks from a spec-
ified file in the same directory, mostly call stacks of corre-

sponding locks, as the input. An example of the report is
shown in Figure 5. For canneal application, SyncPerf’s
diagnosis tool reports that only less than 1% instructions ac-
cess the shared memory. Further consultation of the source
code indicates that seed is the only shared access inside
the critical sections. However, canneal currently puts the
whole random generator inside the critical section, as de-
scribed in Section 4.4.3. Moving the random generator out
of the critical section improves the performance of this ap-
plication by 4%.

4.3 Effectiveness
SyncPerf is effective in detecting synchronization related
performance bugs. The results are shown in Table 2. SyncPerf
detected nine performance bugs in PARSEC and six per-
formance bugs in real world applications. Among the 15
performance bugs, seven were previously undiscovered, in-
cluding three in large real applications such as MySQL and
memcached. We have notified programmers of all of these
new performance bugs. The MySQL-I bug does not exist
any more because the corresponding functions have been re-
moved in a later version (MySQL-5.7). Remaining bugs are
still under review.

False Positives: We evaluated false positives of SyncPerf,
using the threshold for contention rate and acquisition fre-
quency of 10% and 1000 per second respectively. SyncPerf
has no false positives for 12 programs (Table 2) of PAR-
SEC and Memcached application. SyncPerf reports two
potential performance problems in Apache. We have fixed
one of them, with around 8% performance improvement.
SyncPerf reports another one with high acquisition fre-
quency (1252 per second) and low contention rate (4.5%).
This is related to one big mutex of the queue. Fixing this
problem requires significant changes in code. Therefore, we
did not solve this problem. For MySQL, SyncPerf reports
three potential performance bugs. Two of them have been
fixed with performance improvement of 19% and 11% re-
spectively. Another bug is related to keycache

0
scache lock.

This lock has high acquisition frequency (1916 per second)
and low contention rate (0.0%). We tried to use spin lock
as a replacement for the mutex lock, but we did not achieve
any performance improvement. Therefore, this could be a
potential false positive of SyncPerf. Thus, SyncPerf re-
ports only two potential false positives at most.

False Negatives: It is difficult to assess whether SyncPerf
has any false negative or not since there is no oracle that pro-
vides a complete list of all performance bugs in the evaluated
applications. One option would be to experiment with known
performance bugs. Our results indicate that SyncPerf de-
tects all known performance bugs from the evaluated appli-
cations.

Category Bug Id Acq. Frequency Contention Rate Speed Up (%) New Bug

Improper Primitives

facesim 15288 4.6 30.7
fluidnanimate-I 44185K 0 11.9
fluidanimate-II 16204 76.6 2.5
streamcluster 1199 69 3

x264 15857 0 8.5
Apache 49607 0 7.8

memcahced-I 117000 0 3.7

Improper Granularity
canneal 0.3 86.7 4.0

memcached-II 71405 45.8 16.3
MySQL-I 723K 25.5 18.9
MySQL-II 146299 38.5 10.9

Over-Synchronization memcached-III 65445 0 3.0
Asymmetric Contention dedup-I 23531 13.6 12.1

Load Imbalance dedup-II N/A N/A 28
ferret N/A N/A 42

Table 2. Effectiveness Results of SyncPerf’s detection. SyncPerf detects seven unknown bugs (with a mark in last column)
in addition to nine known bugs. For MySQL and Memcached, the throughput is used as the performance metric. If an application
has multiple bugs, we append a number as the bug id. “Acq. Frequency” column shows the number of acquisitions per second.
The performance results are based on the average runtime of 10 executions.

4.4 Case Studies
This section provides more details about the detected perfor-
mance bugs.

4.4.1 Extensive Acquisitions and High Contention
Existing tools [8, 19, 23, 28, 41, 43] mainly focus on perfor-
mance bugs with this external symptom. However, only 4
out of 15 detected bugs have this symptom and they belong
to three different categories as described below.

Asymmetric Contention: dedup is a compression program
with data de-duplication algorithm. It has extensive lock
acquisitions (23531 per second) and a high contention rate
(13.6%) in an array of locks (encoder.c:1051). These
locks protect different buckets of a hash table. SyncPerf
detects these locks with asymmetric contention problems:
these locks (with the same callsite) have different number
of lock acquisitions, ranging from 3 to 8586; the one with
the most acquisitions has a contention rate of 13.6%, while
others have less than 1% contention rate. This bug is detected
by Coz, but that requires expertise to identify the root cause
[10]. Instead, SyncPerf can automatically identify this bug,
without resorting to manual expertise. By changing the hash
function to reduce hash collision using the prosed fix by the
Coz paper, the performance is improved by 12.1%.

Improper Granularity: Memcached-1.4.4 has a known
performance bug caused by improper granularity of locks.
It uses a single cache lock to protect an entire hash ta-
ble [13]. When we used memslap to generate 10000 get

and set requests to exercise Memcached (with 16 threads),
SyncPerf detects 71405 lock acquisitions per second and a
high contention rate (45.8%). The diagnosis tool finds that
a single lock protects over 9 million different shared loca-
tions. Clearly, this lock is too coarse-grained. Changing the
global cache lock to an array of item lock as appeared

in Memcached-2.4.24 improves the throughput by 16.3%.
This bug is shown as memcached-II in Table 2.

MySQL, a popular database server program, has a similar
problem (MySQL-II in Table 2) [2]. When the input table
data is not using the default character set of the server or
latin1, MySQL calls get internal charset() function.
SyncPerf detects extensive lock acquisitions (146299 per
second) and a high contention rate (38.5%). Furthermore,
SyncPerf’s diagnosis tool reports that a single mutex lock
protects 512 different shared variables, with 16384 bytes in
total. By replacing the lock with an array of locks with one
lock per charset [2], the throughput of MySQL is improved
by 10.9%.

SyncPerf reports a new performance bug (MySQL-I) in
end thr alarm function of MySQL. SyncPerf reports ex-
tensive lock acquisitions (723K per second) and a high con-
tention rate (25.5%) for mutex LOCK alarm. The critical
section has unnecessary conditional waits inside, possibly
caused by code evolution. Programmers might have restruc-
tured the code logic, but forgot to remove these unnecessary
waits. Removing the conditional wait improves performance
of MySQL by 18.9%. We have reported this problem to pro-
grammers of MySQL and they replied that the correspond-
ing code has been removed in MySQL-5.7.

4.4.2 Extensive Acquisitions but Low Contention
These locks are in Q4 of Figure 1 and are practically ig-
nored by existing tools. As shown in Table 2, 5 out of 15
performance bugs fall into this category. They are new per-
formance bugs detected by SyncPerf.

Improper Primitives: facesim is a PARSEC application
that simulates the motion of human faces. SyncPerf detects
that one type of locks (ones with the same callsite) has 15288
acquisitions per second but the contention rate is very low

� mutex = new p t h r e a d m u t e x t ⇤ [numCel ls] ;
+ i n t c a c h e i t e m c o u n t = CACHE SIZE

/ s i z e o f (p t h r e a d s p i n l o c k t) ;
+ l o c k s = new p t h r e a d s p i n l o c k t ⇤ [numCel ls] ;

.

.
i f (b o r d e r [i n d e x]){

p t h r e a d m u t e x l o c k (&mutex [i n d e x] [j]) ;
+ p t h r e a d s p i n l o c k (& l o c k s [i n d e x] [j]) ;

c e l l . d e n s i t y [j] += t c ;
� p t h r e a d m u t e x u n l o c k (&mutex [i n d e x] [j]) ;
+ p t h r e a d s p i n u n l o c k (& l o c k s [i n d e x] [j]) ;

Figure 8. Fix for fluidanimate-I.

(4.6%). We replaced mutex locks and conditional variables
with atomic instructions, and that improved the performance
by 31%. A code snippet of fix is shown in Figure 7.

fluidanimate simulates fluid dynamics for the ani-
mation purpose in PARSEC. This application uses a two-
dimensional array of mutex locks to synchronize concur-
rent updates of grid data. There are 92K distinct locks, with
around 40M acquisitions per second. However, contention
rate is almost 0%. In this application, each individual lock
has only few thousand acquisitions, but one callsite has a
combined acquisitions of 400M. SyncPerf detects this bug
(fluidanimate-I in Table 2) by integrating the data from
the same callsites (our second observation). Existing tools
lack this ability and cannot find this problem. Manual in-
spection of the code shows that each critical section has less
than 2 instructions. Therefore, we replaced these locks with
pthread spin lock (Figure 8) and (in some cases) atomic
instructions. The fix improved the performance by 11.9%.

x264 is an application of PARSEC for video encoding.
SyncPerf detects extensive lock acquisitions (15857 times
per second), but with almost 0% contention rate. The diagno-
sis tool further shows that one critical section has less than
3 instructions. By replacing the existing code with atomic
instructions (less than 5 lines of code change), 8.5% perfor-
mance improvement is achieved.

SyncPerf reports a new performance bug in Apache.
It detects that g timer skiplist mtx mutex in event.c-

:1592 has a high acquisition frequency (49607 per sec-
ond) with almost 0% contention rate. Replacing pthread-

mutex lock with pthread spinlock results a 7.8% per-
formance improvement.

The memcached-I bug in Table 2 also has extensive lock
acquisitions but almost no contention. SyncPerf’s diagno-
sis tool identifies that there are only (on average) 2.7 instruc-
tions for every critical section. Thus, it is easy to fix this bug
by replacing pthread mutex lock with pthread spin-

lock. By doing so, the performance is improved by 3.7%.

Over-Synchronization: The memcached-III bug in Ta-
ble 2 has 65445 lock acquisitions per second and contention
rate is almost 0%. This is a known over-synchronization
bug [10]. In this application, item remove function uses

p t h r e a d m u t e x l o c k (& s e e d l o c k) ;
� r n g = new MTRand (seed + +) ;
+ i n t x = seed ++;

p t h r e a d m u t e x u n l o c k (& s e e d l o c k) ;
+ r n g = new MTRand (x) ;

Figure 9. Fix for canneal.

item lock to synchronize the removal operations. How-
ever, removal operations eventually execute an atomic in-
struction to decrement a reference count. By eliminating this
unnecessary lock as suggested by prior work [10], we im-
proved performance of this program by 3.0%.

4.4.3 Few Lock Acquisitions but High Contention
Usually, it is assumed that few lock acquisitions will not
cause any performance problem. But this is not always true
especially when contention causes threads to wait for a long
time.

Improper Granularity: SyncPerf finds such a problem in
canneal, which simulates a cache-aware simulated anneal-
ing algorithm to optimize the routing cost of a chip design.
canneal acquires seed lock only 15 times, one for each
thread, but lock contention rate is 86%. Also, the total wait-
ing time for this lock is around 0.5 seconds. As shown in
Section 4.2, the root cause of this bug is not very obvious.
The diagnosis tool further discovers that there are 46979 in-
structions accessing memory inside the critical sections, but
only 28 instructions access the shared variable. By moving
random number generator out of the critical section, the fix
as shown in Figure 9 reduces the total execution time by
around 2 seconds (from 51 seconds), and improves the per-
formance of canneal around 4%. We are not very clear why
reorganizing a critical section with 0.5 second waiting time
can reduce the total execution time by around 2 seconds.

4.4.4 Extensive Try-lock Failures
As described in Section 2, too many try-lock failures indi-
cate that a synchronization method combining mutex locks
with conditional variables can be useful to improve the per-
formance.

Improper Primitives: Both fluidanimate and stream-

cluster have this type of problems. For fluidanimate-II
bug of Table 2, SyncPerf detects a high try-lock failure
rate (76.6%) and 16204 lock acquisitions per second, locat-
ing at line 153 of pthreads.cpp. PARSEC implements a
custom barrier by doing a busy wait with a try-lock. By re-
placing try-lock based custom barrier implementation with
the pthread’s barrier, the performance of this program im-
proves around 2.5%. streamcluster uses the same custom
barrier as that of fluidanimate. We did not observe any
performance improvement by replacing the custom barrier
with pthread’s barrier. However, by modifying the cus-
tom barrier implementation with atomic instructions, we
improved performance by 3%.

� s t a t i c vo id w a i t F o r T a s k s (vo id) {
+ s t a t i c vo id w a i t F o r T a s k s (u n s i g n e d long seqnum) {

TRACE;
i f d e f ENABLE PTHREADS

� p t h r e a d m u t e x l o c k (&(sync . l o c k)) ; ;
� sync . t h r e a d C o u n t ++;
� i f (sync . t h r e a d C o u n t == numThreads)
� t h r e a d c o n d b r o a d c a s t (& sync . t a sksDone) ; ;
� p t h r e a d c o n d w a i t (& sync . t a s k A v a i l ,& sync . l o c k) ; p t h r e a d m u t e x u n l o c k (& sync . l o c k) ; ;
+ i f (a t o m i c a d d f e t c h (& sync . t h r e a d C o u n t , 1 , ATOMIC RELAXED) == numThreads) {
+ a t o m i c s t o r e n (& sync . areTasksDone , 1 , ATOMIC RELAXED) ;
+ }
+ / / P r o g r e s s on ly when t h e s e q u e n c e number i s s u f f i c i e n t
+ w h i l e (a t o m i c l o a d n (& sync . seqnum , ATOMIC RELAXED) != seqnum) { ; }

Figure 7. Fix for facesim.

4.4.5 Disproportionate Waiting/Computation
SyncPerf detects known load imbalance problems in two
applications of PARSEC – dedup and ferret [10, 33]. For
the load imbalance problems, SyncPerf also suggests an
optimal task assignment to fix the problem, which is not
possible in existing tools.

ferret searches images for similarity. ferret has four
different stages that perform image segmentation, feature
extraction, indexing, and ranking separately. By default,
ferret creates the same number of threads for different
stages. SyncPerf detects that different types of threads
have a completely different waiting time, such as 4754ms,
5666ms, 4831ms, and 34ms respectively. This clearly indi-
cates that some stages may not have enough threads and oth-
ers may have too many threads. SyncPerf predicts the best
assignment to be (1-0.2-2.5-12.2). Thus either (1-1-3-11) or
(1-1-2-12) can be an optimal distribution. We experimented
with all possible assignments and found the best assignment
to be (1-1-3-11). Using the suggested task assignment (1-1-
3-11) improves the performance of ferret by 42%.

dedup creates the same number of threads for fine-
grained fragmentation, hash computation, and compression
stage. SyncPerf detects that the average waiting time of
different groups of threads are 1175ms, 0ms, and 1750ms

respectively (shown as dedup-II in Table 3). The aver-
age execution time of these groups of threads are 3723ms,
1884ms, and 12836ms. Thus, the big difference between
different groups of threads clearly indicates a load imbal-
ance problem. SyncPerf predicts the best assignment to
be (2.4-1.2-8.4). Thus, the assignment (2-1-9) or (3-1-8) or
(2-2-8) could be the best assignment. The actual best as-
signment is (1-1-10), with 28% performance improvement.
SyncPerf predicts the one just close to the best one, with
25% performance improvement.

4.4.6 Scalability of Fixes
Changing mutex locks to atomic sections may compromise
the scalability of applications. To confirm whether the fixes
are scalable or not, we ran our experiments with 16 threads

and 32 threads on the machine with 16 cores. Figure 10
shows results for every bug fix, except two programs with
load imbalance problems. Overall, our fixing strategies boost
the performance for every bug, even with twice as many
threads. However, it is worth noting that these fixes, espe-
cially the one that replaces mutex locks with spin locks, may
experience some scalability problem when the number of
threads are much larger than the number of cores, such as
more than 4 times. This is due to the fact that spinning may
waste CPU cycles unnecessarily.

ca
nn

ea
l

de
du

p
fa

ce
si

m
flu

id
an

im
at

e-
I

flu
id

an
im

at
e-

II
st

re
am

cl
us

te
r

x2
64

ap
ac

he
m

em
ca

ch
ed

-I
m

em
ca

ch
ed

-II
m

em
ca

ch
ed

-II
I

m
ys

ql
-I

m
ys

ql
-II

0

10

20

30

40

50

60

Sp
ee

du
p(

%
)

16 threads
32 threads

Figure 10. Scalability of fixes.

4.5 Performance Overhead
4.5.1 Detection Tool
The performance overhead of SyncPerf’s detection tool is
shown in Figure 11, with 16 threads in total. We ran every
program 10 times and showed the average runtime in this
figure. The execution time of these applications are normal-
ized to that of using the pthread library. Higher bars in-
dicate larger performance overhead. The deviation bars are
not recognizable in the figure since the deviation of results
is less than 0.1%. On average, SyncPerf introduces only
2.3% performance overhead. To the best of our knowledge,
SyncPerf has the lowest overhead among similar tools,
which is even faster than a tool with some sampling mech-
anism [41]. Except for two applications, fluidanimate

and dedup, SyncPerf’s detection tool introduces less than
6% performance overhead. SyncPerf introduces a slightly
higher performance overhead when the number of lock ac-
quisitions per second is large and/or memory consumption
is high. As shown in Table 3, fluidanimate is an extreme
case with 92K distinct locks and more than 1,700M lock ac-
quisitions in 40 seconds. SyncPerf only adds 19% overhead
even for this application. Dedup introduces around 6.7%
overhead because it has 62K lock acquisitions per second.

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

si
m

fe
rre

t

flu
id

an
im

at
e

ra
yt

ra
ce

st
re

am
cl

us
te

r

sw
ap

tio
ns

vi
ps

x2
64

Ap
ac

he

M
em

ca
ch

ed

M
yS

Q
L

AV
ER

AG
E

0.00

0.25

0.50

0.75

1.00

1.25

N
or

am
liz

ed
 R

un
tim

e

Pthread
SyncPerf

Figure 11. The normalized performance of SyncPerf.

4.5.2 Diagnosis Tool
Not all applications require the diagnosis tool. Sometimes
it is fairly easy for programmers to recognize memory ac-
cesses inside critical sections. Programmers may use the di-
agnosis tool to obtain detailed memory accesses inside crit-
ical sections, when the critical sections are hard to be an-
alyzed manually. In our experiments, we ran the diagnosis
tool only for four applications - fluidanimate, canneal,
Memcached, and MySQL. Among them, the highest overhead
is 11.7 ⇥ for fluidanimate. Other applications such as
MySQL, memcached, and canneal introduce 9.9⇥, 8.7⇥ and
3.5⇥ overhead respectively. However, the overhead is signif-
icantly less than the existing work that uses Pin [43] (which
can be up to 100⇥ slower). SyncPerf avoids the exces-
sive performance overhead by only checking accesses of the
specified critical sections.

4.6 Memory Overhead
The physical memory overhead of SyncPerf’s detection
tool is listed in the last column of Table 3. We use the max-
imum physical memory consumption for the comparison,
which is obtained through /proc/self/smaps file. We pe-
riodically collected this file and computed the the sum of
proportional set size (PSS).

Table 3 shows that the memory overhead of SyncPerf
varies from 1% to 215%. SyncPerf imposes some startup
overhead for all applications, thus applications with small
memory footprint tends to have a larger percentage of mem-
ory overhead, such as swaptions. We also notice that an
application with more distinct locks has more memory over-

head. However, SyncPerf only requires 36% more memory
than that of pthread for all applications, which is accept-
able as a tool.

5. Limitations and Future Work
SyncPerf has some limitations:

First, SyncPerf cannot identify performance bugs due to
ad hoc synchronizations [42], atomic instructions or trans-
actional memory [20]. Currently, it only focuses on perfor-
mance problems related to explicit synchronization prim-
itives. More specifically, the current implementation only
supports POSIX APIs related to synchronizations, and is
only verified on the Linux. However, the same idea can be
easily applied to other threading libraries.

Second, SyncPerf cannot check contention of internal
locks inside the glibc library. This can be fixed if the
implementation is embedded inside the glibc library.

Finally, when there is no frame pointer inside a program’s
binary, SyncPerf may need to use backtrace to acquire
callsite information or the program may requires the re-
compilation. The first method may incur more overhead for
its detection tool.

In future, we would like to extend our tools to overcome
some of these limitations. In addition, we would like to in-
clude a graphical interface so that some visual representation
of results can be provided.

6. Related Work
Lock Contention Detectors: Thread Profiler [5] shows
computation time, overhead, and blocking time along the
critical path. Thus, programmers can focus on highly con-
tented locks. IBM lock analyzer [24], HPROF [35], and
JProfiler [17] report the acquisition and contention infor-
mation for monitors/locks, and time spent on distinct locks.
Lockmeter [6] records the overall statistics of each spin lock
in Linux kernel, while ignoring other locks. Solaris perfor-
mance analyzer shows time spent in locks (both asleep and
spinning in user mode) and counts lock acquisitions and dif-
ferent kinds of sleep/wake transitions [36]. Although we can
use such profilers to collect synchronization related infor-
mation, we will not be able to detect all the problems with-
out the insights of this paper. Moreover, SyncPerf detection
tool can detect some of the problems automatically, with-
out requiring manual expertise. Last but not least, SyncPerf
contributes with an additional tool to help diagnose some
specific type of performance issues. Zheng et al. [44] re-
play traces to identify lock contentions and calculate poten-
tial improvement that can be achieved by reducing the con-
tentions. HaLock [21] utilizes a hardware memory tracing
tool to store profiling data, in order to avoid memory inter-
ference with the applications. SyncPerf achieves better per-
formance without any special hardware support, and detects
more problems, not just lock contention. Tallen et al. [41]
attributes lock contention to the holders of locks. However,

Application LOC
(#)

Runtime
(Second)

Distinct Locks
(#)

Total Acqs
(#)

Contentions
(#)

Cond waits
(#)

Original Memory
(MB)

SyncPerf Memory
(MB)

blackscholes 374 43 0 0 0 0 610 619 (1.4%)
bodytrack 7773 26 7 1858971 7435 34236 30 74 (147%)
canneal 2812 51 1 15 12 0 941 981 (4%)
dedup 23565 16 2199 999467 60217 7 1616 1873 (16%)
facesim 34187 68 17 5035705 49604 1070249 326 364 (12%)
ferret 25758 5 5 2594 4 1146 68 111 (63%)
fluidanimate 2800 40 92396 1723580805 255053 35251 408 1064 (161%)
raytrace 13751 107 16 9431 480 3215 1077 1127 (4%)
streamcluster 3239 58 7 8088948 5557955 21251 108 278 (158%)
swaptions 1099 30 0 0 0 0 7 16 (115%)
vips 105260 18 3 2921 483 1 44 45 (2%)
x264 33024 29 35 202776 7 8236 481 1518 (215%)
Apache 253340 6 9707 56274 36 9685 50 71 (42%)
Memcached 10925 8 21 490000 78719 1 67 150 (125%)
MySQL 1606855 5 157 101280 3164 0 961 971 (1%)

Table 3. Characteristics of the evaluated applications.

SyncPerf achieves similar or even lower overhead without
any sampling. Most importantly, unlike SyncPerf, their tool
does not consider Q1 & Q4 locks and load imbalance among
threads. Liu et al. [28] extends the blame shifting tech-
nique to OpenMP programs and reduces its memory over-
head. Lock Visualizer [37] shows all call stacks responsible
for synchronization issue in the current visible time range,
sorted by cumulative time spent inside. This technique pin-
points synchronization with the highest contention. David
et al. [18] defines Critical Section Pressure as the ratio of
lock acquiring time and thread running time and finds per-
formance problems related to locks. SyncProf [43] utilizes
Pin to detect, localize, and optimize the synchronization per-
formance problems. Like other works, it focuses only on
highly contended locks and ignores Q1 & Q4 locks. It uses
a graph representation to determine performance impact of
individual critical sections. It proposes only three possible
fixes whereas as shown in Table 1, SyncPerf proposes a tax-
onomy of a number of fixes. Finally, due to a large runtime
overhead (up to 100⇥), SyncProf cannot be used in produc-
tion environments.

Critical Thread Detectors: Chen et al. [8] quantitatively
evaluates the impact of critical sections on the critical path
of an application. Thus, they are able to identify locks most
likely to have an impact on performance. DuBois et al. [15]
propose to detect critical threads by proposing a new metric.
The metric is calculated using some custom hardware sup-
port. They propose to improve performance of the critical
thread using frequency scaling.

Load Imbalance Detectors: Tallent et al. [40] propose
a postmortem load imbalance analysis technique to inter-
pret call path profiles collected during runtime. The analy-
sis may locate code regions responsible for communication
wait time in SPMD programs. Resch et al. [12] compute a
measure of severity of load imbalance for large-scale paral-
lel applications. DeRose et al. [11] propose relative and ab-
solute imbalance metrics to improve the detection ability of
the previous one. Carnival measures performance for SPMD

messaging programs and infers cause-and-effect for waiting
time [31]. However, these techniques cannot predict the opti-
mal solution as SyncPerf does. Navarro et al. [33] proposes
a queueing theory based analytical model to characterize the
performance of pipeline parallel applications like ferret

and dedup. They propose parallel stage collapsing and dy-
namic workstealing scheduling to solve the load imbalance
problem. Suleman et al. [39] uses hill climbing algorithm to
select core assignment dynamically for pipeline stages in a
pipeline parallel application. SyncPerf has better efficiency
than the last one. Moreover, it is also very accurate in its
prediction.

General Profiling Tools: Sometimes, general profiling
tools can also detect performance problems related to syn-
chronizations. Coz [10], a state-of-the-art profiling tool for
multithreaded programs, may even estimate the performance
impact of a statement or a code region. However, Coz will
miss problems that involve multiple statements, especially
when these statements are scattered over different code re-
gions. SyncPerf, on the other hand, will integrate informa-
tion of a lock with different callsites, or different locks with
the same callsite, to provide better diagnosis of problems.
SyncPerf’s diagnosis tool even provide helpful suggestions
for fixes. Such suggestions are not provided by general pro-
filing tools. Therefore, SyncPerf can complement any gen-
eral profiling tool.

7. Conclusion
This paper presents a taxonomy of categories, root causes,
and fixing strategies of different performance issues related
to synchronization primitives. We make two intuitive but
novel observations and develop two tools (based on the ob-
servations) to uncover issues and root causes of different
types of synchronization performance bugs. The first tool
is an extremely low overhead (2.3%, on average) detection
tool that detects potential performance issues for programs
employing explicit synchronizations. Unlike existing tools,
SyncPerf integrates information based on callsites of locks,

lock variables, and types of threads. Such integration helps
uncover many synchronization performance issues. The sec-
ond tool collects detailed memory accesses inside critical
sections to help programmers determine root causes of com-
plex problems. Overall, SyncPerf finds many previously
unknown but significant synchronization performance bugs
in widely-used applications. Low overhead, better coverage,
and effectiveness make SyncPerf an appealing tool for the
production environment.

Acknowledgements
We would like to thank our shepherd, Tim Harris. We are
also thankful to Shan Lu, Charlie Curtsinger, Guoliang Jin,
Harry Xu, Corey Crosser, Jinpeng Zhou, Hongyu Liu, Sam
Silvestro, and anonymous reviewers for their valuable sug-
gestions and feedbacks that helped improve this paper. The
work is supported by UTSA, Google Faculty Award, and the
National Science Foundation under Grants No. 1566154 and
1319983. The opinions, findings, conclusions or recommen-
dations expressed in this paper are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

References
[1] T. E. Anderson. The performance of spin lock alternatives

for shared-memory multiprocessors. IEEE Trans. Parallel
Distrib. Syst., 1(1):6–16, January 1990.

[2] Alexander Barkov. ”thr lock charset global mutex abused
by innodb”. https://bugs.mysql.com/bug.php?id=

42649, 2009.

[3] Christian Bienia and Kai Li. PARSEC 2.0: A new benchmark
suite for chip-multiprocessors. In Proceedings of the 5th An-
nual Workshop on Modeling, Benchmarking and Simulation,
June 2009.

[4] William J. Bolosky and Michael L. Scott. False sharing and
its effect on shared memory performance. In USENIX Sys-
tems on USENIX Experiences with Distributed and Multipro-
cessor Systems - Volume 4, Sedms’93, pages 3–3, Berkeley,
CA, USA, 1993. USENIX Association.

[5] Clay P. Breshears. Using intel thread profiler for
win32* threads: Philosophy and theory. https:

//software.intel.com/en-us/articles/using-

intel-thread-profiler-for-win32-threads-

philosophy-and-theory, February 2011.

[6] Ray Bryant and John Hawkes. Lockmeter: Highly-
informative instrumentation for spin locks in the
linux R�kernel. In Proceedings of the 4th Annual Linux
Showcase & Conference - Volume 4, ALS’00, pages 17–17,
Berkeley, CA, USA, 2000. USENIX Association.

[7] Mark Callaghan. ”fast mutexes in mysql 5.1 have mutex
contention when calling random()”. https://bugs.mysql.
com/bug.php?id=38941, 2008.

[8] Guancheng Chen and Per Stenstrom. Critical lock analysis:
Diagnosing critical section bottlenecks in multithreaded ap-

plications. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 71:1–71:11, Los Alamitos, CA, USA,
2012. IEEE Computer Society Press.

[9] GCC community. ”built-in functions for memory model
aware atomic operations”. https://gcc.gnu.org/

onlinedocs/gcc/_005f_005fatomic-Builtins.html,
2015.

[10] Charlie Curtsinger and Emery D. Berger. Coz: Finding code
that counts with causal profiling. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15,
pages 184–197, New York, NY, USA, 2015. ACM.

[11] Luiz DeRose, Bill Homer, and Dean Johnson. Detecting
application load imbalance on high end massively parallel
systems. In Anne-Marie Kermarrec, Luc Boug, and Thierry
Priol, editors, Euro-Par 2007 Parallel Processing, volume
4641 of Lecture Notes in Computer Science, pages 150–159.
Springer Berlin Heidelberg, 2007.

[12] Luiz DeRose, Bill Homer, Dean Johnson, Steve Kaufmann,
and Heidi Poxon. Cray performance analysis tools. In
Michael Resch, Rainer Keller, Valentin Himmler, Bettina
Krammer, and Alexander Schulz, editors, Tools for High Per-
formance Computing, pages 191–199. Springer Berlin Hei-
delberg, 2008.

[13] David Dice, Virendra J. Marathe, and Nir Shavit. Lock
cohorting: A general technique for designing numa locks.
In Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’12,
pages 247–256, New York, NY, USA, 2012. ACM.

[14] Pedro C. Diniz and Martin C. Rinard. Lock coarsening: Elim-
inating lock overhead in automatically parallelized object-
based programs. J. Parallel Distrib. Comput., 49(2):218–244,
March 1998.

[15] Kristof Du Bois, Stijn Eyerman, Jennifer B. Sartor, and
Lieven Eeckhout. Criticality stacks: Identifying critical
threads in parallel programs using synchronization behavior.
In Proceedings of the 40th Annual International Symposium
on Computer Architecture, ISCA ’13, pages 511–522, New
York, NY, USA, 2013. ACM.

[16] S.J. Eggers and T.E. Jeremiassen. Eliminating false sharing.
In International Conference on Parallel Processing, volume I,
pages 377–381, August 1991.

[17] ej-technologies GmbH. Jprofiler: The award-winning all-in-
one java profiler. http://www.ej-technologies.com/

products/jprofiler/overview.html.

[18] David Florian. ”continuous and efficient lock pro-
filing for java on multicore architectures”. http:

//www-public.tem-tsp.eu/

~

thomas_g/research/

etudiants/theses/david-phd-thesis.pdf, 2015.

[19] Rui Gu, Guoliang Jin, Linhai Song, Linjie Zhu, and Shan Lu.
What change history tells us about thread synchronization. In
Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pages 426–438,
New York, NY, USA, 2015. ACM.

[20] Maurice Herlihy and J. Eliot B. Moss. Transactional mem-

ory: Architectural support for lock-free data structures. In
Proceedings of the 20th Annual International Symposium
on Computer Architecture, ISCA ’93, pages 289–300, New
York, NY, USA, 1993. ACM.

[21] Yongbing Huang, Zehan Cui, Licheng Chen, Wenli Zhang,
Yungang Bao, and Mingyu Chen. Halock: Hardware-assisted
lock contention detection in multithreaded applications. In
Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, PACT ’12, pages
253–262, New York, NY, USA, 2012. ACM.

[22] Intel. Using the rdtsc instruction for performance mon-
itoring. https://www.ccsl.carleton.ca/

~

jamuir/

rdtscpm1.pdf, 1997.

[23] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz,
and Shan Lu. Understanding and detecting real-world perfor-
mance bugs. In Proceedings of the 33rd ACM SIGPLAN Con-
ference on Programming Language Design and Implemen-
tation, PLDI ’12, pages 77–88, New York, NY, USA, 2012.
ACM.

[24] Piotr Zalewski Jinwoo Hwang. Ibm thread and moni-
tor dump analyze for java. https://www.ibm.com/

developerworks/community/groups/service/html/

communityview?communityUuid=2245aa39-fa5c-

4475-b891-14c205f7333c.

[25] Milind Kulkarni, Patrick Carribault, Keshav Pingali, Ganesh
Ramanarayanan, Bruce Walter, Kavita Bala, and L. Paul
Chew. Scheduling strategies for optimistic parallel execution
of irregular programs. In Proceedings of the Twentieth An-
nual Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’08, pages 217–228, New York, NY, USA, 2008.
ACM.

[26] Ran Liu, Heng Zhang, and Haibo Chen. Scalable read-
mostly synchronization using passive reader-writer locks. In
Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, USENIX ATC’14, pages 219–
230, Berkeley, CA, USA, 2014. USENIX Association.

[27] Tongping Liu and Emery D. Berger. Sheriff: precise detection
and automatic mitigation of false sharing. In Proceedings of
the 2011 ACM international conference on Object oriented
programming systems languages and applications, OOPSLA
’11, pages 3–18, New York, NY, USA, 2011. ACM.

[28] Xu Liu, John Mellor-Crummey, and Michael Fagan. A new
approach for performance analysis of openmp programs. In
Proceedings of the 27th International ACM Conference on
International Conference on Supercomputing, ICS ’13, pages
69–80, New York, NY, USA, 2013. ACM.

[29] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil,
Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In Pro-
ceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’05,
pages 190–200, New York, NY, USA, 2005. ACM.

[30] Mecki. ”when should one use a spinlock instead of mutex?”.
http://stackoverflow.com/questions/5869825/

when-should-one-use-a-spinlock-instead-of-

mutex, 2011.

[31] Wagner Meira, Jr., Thomas J. LeBlanc, and Alexandros Pou-
los. Waiting time analysis and performance visualization in
carnival. In Proceedings of the SIGMETRICS Symposium on
Parallel and Distributed Tools, SPDT ’96, pages 1–10, New
York, NY, USA, 1996. ACM.

[32] John M. Mellor-Crummey and Michael L. Scott. Scalable
reader-writer synchronization for shared-memory multipro-
cessors. In Proceedings of the Third ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming,
PPOPP ’91, pages 106–113, New York, NY, USA, 1991.
ACM.

[33] Angeles Navarro, Rafael Asenjo, Siham Tabik, and Calin
Cascaval. Analytical modeling of pipeline parallelism. In
Proceedings of the 2009 18th International Conference on
Parallel Architectures and Compilation Techniques, PACT
’09, pages 281–290, Washington, DC, USA, 2009. IEEE
Computer Society.

[34] Notlikethat. ”atomic operations on floats”. http:

//stackoverflow.com/questions/20981007/atomic-

operations-on-floats, 2014.

[35] Oracle. Hprof: A heap/cpu profiling tool. http:

//docs.oracle.com/javase/7/docs/technotes/

samples/hprof.html.

[36] Oracle. Solaris Performance Analyzer. http:

//www.oracle.com/technetwork/server-

storage/solarisstudio/documentation/o11-151-

perf-analyzer-brief-1405338.pdf.

[37] James Rapp. ”diagnosing lock contention with the
concurrency visualizer”. http://blogs.msdn.

com/b/visualizeparallel/archive/2010/07/

30/diagnosing-lock-contention-with-the-

concurrency-visualizer.aspx, 2010.

[38] Michael L. Scott. Non-blocking timeout in scalable queue-
based spin locks. In Proceedings of the Twenty-first Annual
Symposium on Principles of Distributed Computing, PODC
’02, pages 31–40, New York, NY, USA, 2002. ACM.

[39] M. Aater Suleman, Moinuddin K. Qureshi, Khubaib, and
Yale N. Patt. Feedback-directed pipeline parallelism. In
Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques, PACT ’10, pages
147–156, New York, NY, USA, 2010. ACM.

[40] Nathan R. Tallent, Laksono Adhianto, and John M. Mellor-
Crummey. Scalable identification of load imbalance in par-
allel executions using call path profiles. In Proceedings of
the 2010 ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC
’10, pages 1–11, Washington, DC, USA, 2010.

[41] Nathan R. Tallent, John M. Mellor-Crummey, and Allan
Porterfield. Analyzing lock contention in multithreaded ap-
plications. In Proceedings of the 15th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming,
PPoPP ’10, pages 269–280, New York, NY, USA, 2010.
ACM.

[42] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou,

and Zhiqiang Ma. Ad hoc synchronization considered harm-
ful. In Proceedings of the 9th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’10, pages
1–8, Berkeley, CA, USA, 2010. USENIX Association.

[43] Tingting Yu and Michael Pradel. Syncprof: Detecting, local-
izing, and optimizing synchronization bottlenecks, 2016.

[44] Long Zheng, Xiaofei Liao, Bingsheng He, Song Wu, and Hai

Jin. On performance debugging of unnecessary lock con-
tentions on multicore processors: A replay-based approach.
In Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’15,
pages 56–67, Washington, DC, USA, 2015. IEEE Computer
Society.

