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Abstract. Sequential Consistency (SC) is the most intuitive memory model for
parallel programs. However, modern architectures aggressively reorder and over-
lap memory accesses, causing SC violations (SCVs). An SCV is practically al-
ways a bug. This paper proposes Dissector, a hardware software combined ap-
proach to detect SCVs in a conventional TSO machine. Dissector hardware works
by piggybacking information about pending stores with cache coherence mes-
sages. Later, it detects if any of those pending stores can cause an SCV cycle.
Dissector keeps hardware modifications minimal and simpler by sacrificing some
degree of detection accuracy. Dissector recovers the loss in detection accuracy
by using a postprocessing software which filters out false positives and extracts
detail debugging information. Dissector hardware is lightweight, keeps the cache
coherence protocol clean, does not generate any extra messages, and is unaffected
by branch mispredictions. Moreover, due to the postprocessing phase, Dissector
does not suffer from false positives. This paper presents a detailed design and
implementation of Dissector in a conventional TSO machine. Our experiments
with different concurrent algorithms, bug kernels, Splash2 and Parsec applica-
tions show that Dissector has a better SCV detection ability than a state-of-the-art
hardware based approach with much less hardware. Dissector hardware induces
a negligible execution overhead of 0.02%. Moreover, with more processors, the
overhead remains virtually the same.

1 Introduction

Among various memory models, Sequential Consistency (SC) [15] is the most intu-
itive one. It guarantees a total global order among the memory operations where each
thread maintains its program order. However, most commercial architectures sacrifice
SC to improve performance. For example, x86 implements a memory model similar to
TSO [30] which allows a later load operation to bypass an earlier store operation from
the same processor. The overlapping and reordering of memory accesses can lead non
SC behavior of a program, referred to as an SC Violation (SCV). Consider Dekker’s al-
gorithm in Fig. 1(a). Processor P0 first writes flag1 (I1) and then reads flag2 (I2) but P1
first writes flag2 (J1) and then reads flag1 (J2). Both flags are initially 0. In SC, either
I2 or J2 will be the last one to complete. Therefore, either P0 finds flag2 to be 1 or P1
finds flag1 to be 1. It is even possible to have both flags to be 1 (e.g., if the completion
order is I1, J1, I2, and J2). In any case, we can never have both flags to be 0. However,
if the underlying memory model is TSO, it is possible for the load in J2 to bypass the
store in J1 (Fig. 1(b)). As a result, the completion order becomes J2, I1, I2, J1 and both
processors find the flags to be 0. The same problem can occur if I1 and I2 get reordered.
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Fig. 1: (a) shows Dekker’s algorithm and (b) shows how an SCV can occur there. (c)
Steps in detecting an SCV.

Detecting SCVs is crucial for the simplification of parallel programs. Maintaining
SC is considered to be one of the major correctness criteria for parallel programs. Pro-
grammers can ensure SC semantics in any architecture by writing the programs in a
data race free manner [2, 19]. However, the programs can have occasional data races
(intentional or unintentional) and hence, SCVs (Section 2.2 discusses how data races
and SCVs are related). The situation gets complicated when the memory model speci-
fications of commercial processors from Intel and AMD do not even match the actual
behavior of the machines [27]. Therefore, programmers may not be able to reason about
SC behavior with those specifications. To make things worse, many work on seman-
tics and software checking [26] that can potentially make parallel programming easier,
would not be useful in the presence of SCVs. Thus, it is necessary to have a technique
that can detect SCVs.

Significant research has been done to detect SC violations. One line of work [5, 32,
12] encode the program and memory model constraints as axioms and use a constraint
solver to find violations of SC. There are some approaches [8, 7] that detect data races
and find SCV cycles among them. Software based approaches described so far cannot
be used during production runs. A recent study [14] has shown that many real world
applications like Apache, MySQL, Mozilla, Gcc, Java, Cilk [1], Splash2 etc. have SCV
bugs. Only 20% of the bugs are detected by software testing tools. The rest are discov-
ered by programmers during their analysis of source code. As a result, a lot of SCV
bugs remain hidden for a long time. Such findings warrant always-on hardware based
solutions that can detect these bugs as soon as they occur.

Most of the hardware based approaches [3, 11, 31, 9, 19, 17] detect data races as
proxies for SCVs. However, the number of data races can be two orders of magnitude
higher than the number of SCVs [24]. Recent proposals like Volition [24], Vulcan [22],
and Conflict Ordering (CO) [16] focus on detecting actual SCVs. They work by pig-
gybacking memory reordering information with cache coherence protocol messages.
They suffer from several limitations. First, they complicate coherence protocols signifi-
cantly (e.g., Volition introduces five different network messages). Second, many of those
proposals cannot work properly in the presence of branch mispredictions. Third, they
require many hardware structures to be proportional to the number of processors and



thus, are not suitable for higher processor count. Finally, existing hardware approaches
provide very little debugging information. At most, they provide information about the
last pair of memory accesses involved in an SCV. An SCV requires at least 4 memory
accesses. Thus, the provided information is inadequate for a programmer.

This project aims to strike a balance between simplicity and effectiveness. We would
like to propose a technique that can be used during production run without suffering
from the previous shortcomings. Our proposed scheme, Dissector, works in two phases
- an online phase to detect (potential) SCVs using a lightweight hardware and an offline
post processing phase to filter out false alarms and extract detailed debugging informa-
tion using a software. Dissector, targets TSO memory model for its widespread avail-
ability. In addition, it is streamlined for detecting 2 processor SCVs because of their
sweeping majority [22, 14]. Dissector exploits the fact that TSO allows only one type
of memory reordering - a load bypassing an earlier store. Therefore, an SCV can occur
when the earlier bypassed store communicates with some remote load or store. When-
ever a write miss (due to a store, S1) invalidates (step 1 in Fig. 1(c)) a line accessed by
a load L0, the processor P0 responds (step 2) with a count of stores. The count includes
all completed stores as well as any pending store that is earlier (according to the pro-
gram) than L0. In a sense, the count expresses after how many stores, L0 appears to be
ordered. Upon receiving the response, the processor P1 keeps tagging (step 3) the lines
accessed by subsequent memory instructions with the count. When P0 sends an invali-
dation (due to a store, S0) to P1 (step 4), P0 piggybacks a count of its total completed
stores. If this count is smaller than the tag stored with the invalidated line, S0 must be
one of P0’s pending stores that initially got bypassed by L0. Hence, an SCV is reported
by the Dissector hardware. The report consists of two instructions - S0 and the mem-
ory instruction, A1 that accessed the invalidated line in step 4. However, a 2-processor
SCV requires 4 instructions - S0, L0, S1, and A1. In order to determine the other two
instructions, Dissector keeps logging every communicating pair like L0 and S1, where
L0 is a bypassing load that gets invalidated by S1 (before the prior stores of L0 are com-
pleted). Let us denote (L0, S1) as the First Pair (FP) and (S0, A1) as the Second Pair
(SP). The post processing software takes the report of FPs and SPs and enumerates over
their possible combinations. For each combination, it profiles some memory accesses
and applies Shasha-Snir’s SCV detection algorithm [28] to either confirm a true SCV
or prune a false alarm. Since Dissector is a two-phased detection scheme, we envision
its usage model to either (ii) reactive (default mode) where the report is processed only
after a failure (crash, incorrect result etc.) occurs or (ii) proactive where the report of
potential SCVs are processed immediately after the execution.

Dissector hardware relies solely on messages generated by cache coherence proto-
cols. It does not introduce any new messages. It does not alter the behavior of coherence
protocols either. It only piggybacks few extra bytes with existing coherence messages.
Dissector requires a small amount of hardware structures per processor. The hardware
requirement does not change with processor count. Dissector hardware works seam-
lessly with branch mispredictions. Dissector, with the help of its post processing phase,
prunes false positives and provides detail information (i.e., all instruction and memory
addresses) about true SCVs. Dissector is unconcerned about compiler induced SCVs.
The paper presents a detail design of Dissector. We evaluated it in a multiprocessor sys-



tem using a cycle accurate simulator [25] and Pin [18]. We experimented with different
concurrent algorithms, bug kernels, SPLASH2, and PARSEC applications. Our results
show that even with a simple non-intrusive design, Dissector has a better SCV detection
ability than a prior state-of-the-art technique. For a 4-processor system, it incurs a neg-
ligible execution and network overhead of 0.02% and 2.78% respectively. It requires
only 3.5KB hardware per processor.

This paper is organized as follows. Section 2 gives a brief overview of background;
Section 3 describes Dissector design; Section 4 explains implementation issues; Sec-
tion 5 presents experimental results; Section 6 discusses related work; and finally, Sec-
tion 7 concludes the work.

2 Background

2.1 TSO Memory Model

A TSO machine has a write buffer with each processor. When a store reaches the head
of the Reorder Buffer (ROB), it retires into the write buffer. From there, the stores are
performed in order. A store is completed when the local cache receives all invalidation
acknowledgements for the write. When a store is completed, it is removed from the
write buffer. Whenever a load reaches the head of the ROB and the data is returned
from the local cache, it is allowed to retire even if the write buffer contains some earlier
stores. This process essentially lets a load to bypass earlier stores in TSO. A load is said
to complete when it retires from the ROB.

2.2 Patterns for an SCV

Shasha and Snir [28] show what leads to an SCV: overlapping data races that cause
dependences to form a happened-before cycle at runtime. Recall that a data race occurs
when two (or more) threads/processors access the same location without an intervening
synchronization and at least one is writing. Fig. 2(a) shows the required program pattern
for two processors (where each variable is written at least once) and Fig. 2(b)-(d) show
the required order of the dependences for SCVs in TSO. The dependences are Write-
After-Read or Write-After-Write dependences. Each arrow is shown from the earlier
access to the later one. So, we refer to the earlier access as the Source and the later
access as the Destination of the dependence.

If at least one of the dependences occur in the opposite direction or any other pat-
tern appears at runtime, no cycle can form and hence, no SCV occurs. Note that for the
pattern in Fig. 2(b), each dependence occurs between a store and a remote load whereas
for the patterns in Fig. 2(c) and (d), the dependences occur between a store and a re-
mote load/store. Thus, in TSO, an SCV can occur when a store depends on a remote
load/store.

3 Dissector: A Hardware Software Co-Designed Approach

Dissector consists of a lightweight hardware to detect SCVs and a post processing soft-
ware to prune false alarms later. We will start by explaining the overall approach of
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Fig. 2: Understanding SCVs in TSO.

Dissector hardware assuming a two processor system with a single word cache line in
section 3.2. Section 3.4 & 3.5 extend the design to handle multiword cache line and
more than two processors respectively. Section 3.6 handles all the subtleties of cache
coherence protocol. Finally, Section 3.7 describes the post processing analysis. Keep in
mind that Dissector is designed to detect two processor SCV cycles.

3.1 Definitions

We start by defining some terms that will be used throughout this section. (i) Completed
Store Counter (CSC) is a per processor counter to keep track of the stores that the
processor completed. (ii) If a processor completes a load while some earlier stores are
pending, Violating Store Point (V SP ) denotes the number of total completed stores
(from the same processor) after which the load appears to be ordered. If the count of
earlier pending stores is denoted by PS, then V SP is essentially the sum of CSC and
PS i.e., V SP = CSC + PS. (iii) Each processor assigns a Serial Number (SN ) to a
memory reference instruction during the issue stage. SN is a scalar quantity that starts
from 1 for the first memory reference instruction of a processor and keeps incrementing
for subsequent memory reference instructions. SN is used to determine program order
among memory reference instructions. (iv) For a multiword cache line, we keep 1 bit
per word to indicate whether any access to that word can potentially cause an SCV. The
bit is referred to as Unsafe (U) bit. (v) Finally, a two processor SCV cycle consists of
two dependences (Section 2.2). The dependence that occurs first is referred to as the
First Pair (FP) and the other one is referred to as the Second Pair (SP).

3.2 Basic Operation of Dissector Hardware

Let us assume that a processor, say P0 completes a load L and the line accessed by the
load gets invalidated by a remote store. P0 responds with V SP . Recall that V SP =
CSC +PS where PS is the number of pending stores that are earlier than L. After P0

completes a total of V SP stores, the load appears to be ordered and no longer causes
any SCV. If the invalidated line of P0 was last accessed by a store S (instead of the
load L), the store should be already ordered in TSO i.e., PS = 0. So, P0 responds with
V SP = CSC.
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Fig. 3: (a) shows an overview of Dissector. (b) explains the assignment of VSP.

Let us consider the example in Fig. 3(a) where the load A1 bypasses the pending
store A0 in processor P0. Assume that P0 has completed CSC = 10 stores so far. When
P0 receives an invalidation due to the store B0, A0 is still pending (i.e.,, PS = 1). So,
P0 replies with V SP = CSC + PS = 11. Thus, P0 is letting P1 know that the load
A1 will appear to be ordered when P0 completes a total of 11 stores. P1 starts tagging
all later (issued) references (e.g., B1 & B2) with V SP = 11. When A0 generates an
invalidation request, P0 sends CSC (which is still 10) along with the request. The load
of the invalidated line, B1, is tagged with V SP = 11. Since CSC has not reached
V SP yet, P0 has not completed all necessary stores to make A1 appear to be ordered
yet. This implies that the invalidation is coming from the pending store A0 which was
bypassed by A1. Thus, the reordering of A0 and A1 gets exposed to P1 and an SCV
is detected. When A0 completes, CSC of P0 becomes 11. Now consider the store A2

which is younger than A1 and hence, is not reordered with A1. When A2 causes an
invalidation request, P0 sends CSC=11 with it. The load of the invalidated line, B2 has
VSP=11. Since CSC has reached VSP, P0 has completed all the stores necessary to
make A1 appear to be ordered. So, no SCV is detected.

Note that the dependence B0 → A1 starts the happened-before cycle. Therefore,
FP is the instruction pair (B0, A1). The dependence A0 → B1 finishes the happened-
before cycle and therefore, SP is the instruction pair (A0, B1). When A0 causes an
invalidation and an SCV is detected with B1, Dissector hardware logs the instruction
address of A0 and B1 as SP in a memory mapped file. We assume that instruction
address of A0 is piggybacked with the invalidation message. To capture FP, Dissector
hardware finds every instance where the line accessed by a bypassing load (e.g., A1) is
invalidated due to a store (e.g., B0) and logs the instruction address of A0 and B1 as FP.
This will cause dependences other than B0 → A1 to be logged as FPs as well. Those
are filtered by the post processing software.

3.3 How VSP is Assigned?

Consider Fig. 3(b). Assume that P0 has already completed a total of CSC = nc stores.
Processor P0 has some pending stores. The topmost box indicates a portion of execution
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Fig. 4: SCV detection using CSC and VSP.
where P0 has n0 pending stores. Subsequent boxes represent more execution portions
where P0 has n1 and n2 pending stores respectively. Processor P1 sends a request to P0

due to a store B0. This creates a (write-after-read) dependence A0 → B0, where A0 is a
load from P0. As in Section 2.2, the dependence arrow is shown from the earlier access
to the later access. P0 responds with nc +n0 +n1 as VSP. Any of the n0 +n1 pending
stores from P0 can cause an SCV with B0 or later reference instructions. In other words,
those pending stores can expose the reordering of A0. Therefore, any memory reference
instruction from B0 to B1 is tagged with nc + n0 + n1 as VSP. For store B1 in P1,
P0 responds with nc + n0 as VSP (due to the dependence A−1 → B1). Note that
even if some (say, n0′ ) of the n0 pending stores complete by the time B1 causes an
invalidation request, CSC will be increased to nc + n0′ while PS will be decreased
to n0 − n0′ . At the end, V SP returned by P0 will still be nc + n0. Therefore, for
the sake of simplicity, we can assume that P0 does not complete any of its pending
stores for the rest of the discussion. B1 causes the receipt of nc + n0 as V SP . Thus,
the dependence A−1 → B1 allows B1 and later memory reference instructions of P1

to have an SCV with any of the n0 pending stores from P0. On the other hand, the
dependence A0 → B0 allows B1 and later reference instructions to have an SCV with
any of the n0 as well as n1 pending stores from P0. Therefore, B1 and later reference
instructions (up to B2) are tagged with nc + n0 + n1 as V SP . In other words, V SP of
a memory reference instruction is set to the larger of the two - V SP of the preceding
(in program order) memory reference instruction and the V SP received, if any, from
another processor. Note that V SP is received only for a store. Therefore, a load simply
inherits its V SP from the preceding reference instruction. Finally, store B2 receives
nc + n0 + n1 + n2 as V SP from P0. This is larger than the V SP of the preceding
reference instruction (which is nc + n0 + n1). Hence, B2 and later memory reference
instructions have nc + n0 + n1 + n2 as V SP . A curious reader might wonder what
happens if P0 completes all of its pending stores before receiving the invalidation of
B0. In that case, B0 and later reference instructions will have nc + n0 + n1 + n2 as



V SP . Although this is an over-estimated value, invalidations of future stores from P0

will have at least nc + n0 + n1 + n2 as CSC and hence, no false positives will occur.
Note that V SP of a memory reference instruction is used when a remote store has

a dependence with it. A memory reference instruction has to complete before a remote
store can depend on it. Therefore, a processor assigns V SP to a memory reference
instruction when it completes. Thus, misspeculated loads are automatically discarded
by Dissector hardware. When a memory reference instruction completes, the ROB (or,
write buffer) no longer holds that reference. Therefore, each processor uses a buffer,
called DBuf. DBuf keeps the reference instructions according to the order of issue (i.e.,
based on SN ). When a memory reference instruction completes, SN and V SP are
kept along with its memory and instruction address in DBuf. We only need to keep the
last reference instruction to a particular address for SCV detection. Therefore, any new
entry in DBuf can cause removal of earlier entries (i.e.,, the ones with smaller SN ) with
the same memory address. This buffer is checked in parallel with the local cache when
an invalidation request arrives.

In TSO, when a store completes, some of the later loads from the same processor
might already have completed. Therefore, when the store completes and V SP is as-
signed to it, a processor needs to check later loads (i.e.,, the ones with larger SN ) and
possibly update their V SP s. Recall that when a load completes, it inherits its V SP
from the preceding memory reference instruction. The preceding reference instruction
can be a pending store with no V SP assigned yet. In that case, the processor keeps
inspecting the reference instructions in decreasing SN order until it finds one with an
assigned V SP . The load simply inherits that V SP . Eventually, as the pending stores
complete, the load gets its V SP updated.

3.4 Handling Multiword Cache Line

The algorithm described so far, works fine for a single word cache line system be-
cause any store that creates an interprocessor dependence causes a cache coherence
message and the processors can piggyback CSC and V SP with those messages. For
a multiword cache line system, not all stores that create interprocessor dependences
cause cache coherence messages. Therefore, anytime a store generates a cache coher-
ence message, the processors need to piggyback information not only for the requested
word but also for other words in the same line. Assume that each cache line contains
W words.

The straightforward way to extend the single word cache line algorithm is to send
separate V SP for each word in the same cache line. Communication and storage of
such V SP s would cause significant overhead. Therefore, a processor sends only 1
V SP for the entire cache line and associates 1 U bit with each word to indicate whether
any access to that word can be potentially involved with an SCV. The algorithm is shown
in Fig. 4. When processor P0 sends a request due st x, it sends CSCP0 . P1 finds the
last reference instruction to x in its DBuf and checks if the associated V SP is larger
than CSCP0

. If so, P1 reports an SCV by logging the relevant instructions as an SP.
After checking for an SCV, for each word i, for 0 ≤ i < W , P1 counts the number of
pending stores PSi earlier than the last access to that word. If PSi is not 0, there are
some earlier pending stores that can cause an SCV with a remote access to the word.



Thus, the remote access could be unsafe and so, unsafe bit Ui associated with the word
is set. If there are some pending stores before the last access to word x (i.e.,, PSix 6= 0),
the dependence is logged as an FP. P1 summarizes all PSi by taking the maximum, de-
noted by PS. Thus, an access from P1 to any word of the cache line bypasses at most
PS pending stores. So, PS is a conservative estimate of pending stores and can lead
to false positives. V SP is calculated by adding PS and CSCP1

. P1 sends all Ui bits
and V SP with the reply message. After receiving these, P0 stores Ui bits and V SP
with the cache line so that they can be used in future. If the unsafe bit associated with
word x (i.e., Uix ) is set, P0 sets V SP of st x as the V SP of the preceding memory
reference instruction or the V SP just received, whichever is the larger. If, however, Uix

is cleared, there are no pending stores in P1 (before its last access to x) that can cause
an SCV. Hence, st x copies its V SP from the preceding reference instruction. When
the store is drained from P0’s write buffer, an entry is inserted into DBuf, CSCP0

is
incremented and V SP s of later loads are updated as usual.

3.5 Handling More Processors

Assume that the system has N processors for N > 2. Here, when a processor Pi, for
0 ≤ i < N , sends an invalidation due to a store, more than one processor can reply.
The reply from processor Pj , for 0 ≤ j < N and j 6= i, contains V SPPj

and unsafe
bits Ujl, for 0 ≤ l < W . Pi combines the replies. If a reply has all unsafe bits cleared,
the corresponding processor has all of its last accesses to the line appear to be ordered.
Hence, the reply is not considered during the combination process. From the remain-
ing replies, unsafe bits are combined by taking the logical OR of the corresponding
bits. So, if a word is marked unsafe at least in one reply, it is also marked unsafe after
the combination. Thus, the resultant reply contains Um bits, for 0 ≤ m < W , where
Um = OR(U0m, ..., U(N−1)m). V SP s are conservatively combined by taking the max-
imum from the remaining replies. Such merging can lead to false positives. Thus, the
algorithm in Fig. 4 remains the same except that P0 needs to combine the replies before
applying steps (vi)-(viii).

3.6 Issues with Cache Coherence Protocol

Let us consider a bus based snoopy system. Section 4 explains a directory based scheme.
Without loss of generality, let us assume an MSI protocol. We will discuss all cases –
store miss/hit and load miss/hit. When a processor suffers a write miss due to a store,
it broadcasts an invalidation. Every processor snoops on the bus and responds. All the
steps mentioned in Fig. 4 are applied. When a store causes a write hit, the associated
cache line contains unsafe bits and V SP which are used to calculate V SP of the store
and possibly update V SP s of later loads in DBuf. However, a write hit can lead to
both false positives and negatives. A write hit implies that the cache line is in modified
state. Hence, no other processor has accessed it since the completion of the store that
originally brought the line in modified state. Therefore, there is no new pending store
from other processors that precedes those processors’ last access to the line. Hence, the
associated V SP still correctly specifies the stores (from those other processors) that
can cause an SCV with an access to this line. So, V SP associated with the modified



line is still accurate. The unsafe bits, however, may stay unsafe for longer. This is due
to the fact that the pending stores might have completed. Moreover, instead of a write
hit if the store could cause a write miss, other processors would have received an in-
validation request, checked for an SCV with their last access to the requested word,
and (sometimes) logged an FP. Such checking and logging cannot be done when a
write hit occurs to a previously unaccessed word. Thus, when a write hit happens for
a previously unaccessed word, the requested processor can end up using overestimated
information (due to unsafe bits) which can cause false positives, other processors can
lose a chance to detect an SCV resulting in false negatives, and some FPs may not be
logged. False positives will be pruned by the post processing step. Missing SCVs (i.e.,,
false negatives) will eventually be detected since we envision the hardware to be active
in every execution even during the production run. Missing of some FPs are discussed
in Section 3.7.

A load always inherits its V SP from the preceding (or even earlier) memory refer-
ence instruction. Therefore, a cache line that is brought due to a read miss has its unsafe
bits and V SP assigned to the initialized values (i.e., all 0s). Any future write miss on
the same line brings up-to-date V SP and unsafe bits. A read (hit/miss) simply causes
the associated load to get its V SP from the preceding (or even earlier) instruction.

3.7 Postprocessing by Dissector Software

The goal of the postprocessing software is to filter out false SCVs and with the help of
FPs and SPs, provide detail information for true SCVs. Recall that an FP is a depen-
dence between a store and a load that bypasses some stores in another processor. An SP
is a dependence between a store and a load/store in another processor where an SCV is
detected. A 2-processor SCV consists of an FP and an SP. Consider the SCV in Fig. 3(a)
where FP is the dependence between B0 and A1, and SP is the dependence between A0

and B1. Dissector hardware logs a set of FPs, SPs along with the id processors involved
. An SP can be associated with any one of the FPs to cause an SCV. Therefore, Dissector
software checks all possible combinations of FPs and SPs. Let us consider a combina-
tion where FP is between a store Fs and a load Fl, and SP is between a store Ss and a
load/store Sls. According to Shasha and Snir [28], this combination can cause an SCV
if (i) there are data races between Ss and Sls as well as Fs and Fl, (ii) Ss and Sls access
a location different than Fs and Fl, (iii) in the program, Ss is earlier than Fl in the same
thread and Fs is earlier than Sls in the same thread, and (iv) there is no fence between
Ss and Fl (Fig. 5). One might wonder why we did not consider the case where there is
a fence between Ss and Fl but no fence between Fs and Sls (when Sls is a load). Such
a scenario can cause an SCV due to the reordering of Sls and Fs. Therefore, (Ss, Sls)
would be logged as an FP instead of an SP and vice versa. Thus, without the loss of
generality, we consider the absence of a fence only between Ss and Fl as the required
constraint.

Ss

Fl Sls

Fs

Data race
Program order

Fig. 5: Required constraints for an SCV.



To check the constraints for a combination (Ss, Sls, Fs, Fl), the program is run with
a profiler using the same inputs as the original run. The profiler profiles Ss, Sls, Fs, and
Fl instructions. It also profiles any other instruction that accesses the same locations as
these instructions. For each of these instructions, it records the instruction and memory
address and the id of the executing thread. The profiler captures the order of execution of
different memory access instructions from the same thread. The profiler also captures
any fence and synchronization operation executed. The output of the profiler is a file
that contains all these information. A happened-before race detection [23] algorithm is
applied to the contents of the file. If a pair of memory accesses to the same location
do not have any happened-before relation and at least one of them is a store, the pair is
marked as a racing pair. Any instance of Ss, Sls, Fs, or Fl that is not involved in a data
race is discarded from further considerations. Algorithm 1 is then applied. It checks
one thread at a time. It finds every instance of Ss and Fl in the same thread where Ss

is earlier than Fl in the program and is not intervened by a fence or a local store to the
same location as Fl. If such an instance exists, it finds every instance of Fs and Sls that
races with Fl and Ss respectively. If, at least once, Fs executes before Sls by the same
thread, then we identify a scenario where the combination (Ss, Sls, Fs, Fl) can cause an
SCV. If such a scenario is not found, the combination is filtered out as a false positive.
In any case, the software then applies the same algorithm for other combinations of FPs
and SPs.

Algorithm 1 Processing a combination (Ss, Sls, Fs, Fl)
for each thread t do

for each Ss in t do
for each Fl that is later than Ss in t, accesses a location different than Ss, and is not intervened by a fence or a
store to the same location as Fl in t do

for each Sls that (data) races with Ss do
for each Fs that (data) races with Fl do

Check if Fs and Sls are from the same thread r such that r 6= t and Fs is earlier than Sls.
If so, confirm an SCV and break.

end for
end for

end for
end for

end for

Note that our software phase relies on the presence of data races to confirm an SCV.
It is possible that the required data races might not occur when we run the program with
the profiler. To remedy this, we inject random delay during profiling and run the profiler
several (e.g., 20) times. Since we are focusing mostly on 4 instructions at a time, it is
even possible to consider tools like CHESS [21] to generate all possible interleavings.
Finally, a write hit can cause the missing of an FP. To remedy this, we can record FPs
found during different executions and use them all to generate different combinations
with a set of SPs.

4 Implementation Issues

Additional Hardware Structures Each processor is equipped with DBuf. DBuf holds a
memory reference instruction and associated information after it completes. Since an



entry is allocated after the completion of a reference instruction, the allocation process
is outside the critical path of the pipeline. DBuf is implemented as a circular ordered list
as shown in Fig. 6. The entries are ordered according to SN . The entry for the oldest
reference is pointed to by tail and the newest reference is pointed to by head. The list
grows up to a maximum size. When it reaches that size and a new memory reference
instruction needs to be inserted, the oldest reference instruction is removed from the
tail and the new reference instruction is added to the head. When a memory reference
instruction is completed and the (word) address it accessed is already present with some
older entry in the list, the older entry is removed and the newer one is inserted. DBuf
might need to be accessed using a memory (word) address. To facilitate this process,
a hash table is associated with the list (Fig. 6). Each entry in the hash table contains
memory address and a pointer to an entry in the list that accessed the same address.

Memory

Address

Head

Tail

Counting

Bloom 

Filter

Hashtable

...

VTable

Line addr, U bits, VSP 

SN, Addr, Ins addr, VSP 

  DBuf

Fig. 6: Hardware structures required for Dissector.

So far we assumed that unsafe bits and VSP of a cache line is stored in the cache
with the line itself. This can lead to significant overhead. Therefore, we keep unsafe
bits and VSP in a per-processor small cache like structure, called VSP Table (VTable)
as shown in Fig. 6. This is similar to Volition [24]. When a write miss brings unsafe
bits and VSP, an entry containing them is inserted into VTable. The entry does not store
actual data. When a line is invalidated or evicted from the processor’s cache and VTable
contains an associated entry, the entry is removed from VTable.

Handling Cache Line Evictions When a line is evicted from the cache, some of the
words of that line might still be present in the associated DBuf. We propose to use a
Counting Bloom Filter (CBF) [4] that hashes (word) addresses of all entries of DBuf
(similar to prior schemes [22, 24]). When there is an invalidation request in the bus, the
CBF is checked to determine if the requested word may be present in DBuf. If so, the
entry corresponding to the word is searched in DBuf and processed.

Handling a Directory Based Scheme Dissector requires that a processor receives an
invalidation request for any address in DBuf. If the corresponding line is present in the
cache, the directory will send an invalidation request. However, if the line is not present,
no invalidation will be sent. This issue is partially addressed if cache lines are evicted
silently. Next store to the same line will cause the directory to send an invalidation
request to processors whose cache previously contained that line. After this point, the
directory will have updated information about the sharers and no more invalidations



will be sent to those processors. However, those processors might still have some words
of the evicted line in DBuf. Although it is possible to force the directory to send future
invalidations to those processors with the help of some CBFs that keep track of the
addresses in DBuf, such modifications will complicate the directory protocol. So, we
choose not to change the directory protocol and accept few more false negatives.

Handing a Race Condition Consider Fig. 3(a) where A1 and B1 are completed. Now,
A0 and B0 try to complete simultaneously. As a result, before P0’s response arrives and
changes V SP of B1, P1 checks for SCV at B1 and detects no SCV. Similarly, before
P1’s response has a chance to update V SP of A1, P0 checks for SCV at A1 and detects
no SCV. To prevent this race condition, whenever a processor handles an incoming
invalidation request while one of its pending stores is in progress (i.e., already sent out
invalidation request), the processor serializes the processing of requests according to
some pre-defined order based on processor id. In the previous example, lets assume that
the order is P0 and then, P1. In that case, P0 will not process P1’s invalidation request
until P0 receives the response for its ongoing store A0. The response will update V SP
of A1 and then P0 handles P1’s request and detects an SCV. On the other side, P1 does
not wait for P0’s response due to B0 and processes the incoming request due to A0.
P1 does not detect any SCV and responds back to P0. Eventually when P0’s response
arrives, it updates V SP of B1. The same principle can be applied to any number of
processors.

Wrap-Around of VSPs, CSCs and SNs When wrap-around occurs, two numbers that
should be comparable become very far apart. Therefore, it is possible to detect this
event by looking at few higher order bits. If they are completely opposite, Dissector
hardware can realize that the smaller number is supposed to be higher than the other
one.

5 Evaluation

Experimental Setup We model Dissector hardware using a cycle accurate execution
driven simulator [25]. We simulate a chip multiprocessor with private L1 caches and a
shared L2 cache. Table 1 shows the architectural parameters. When there is a choice,
the values in bold are the default ones. We use PIN [18] to write the profiler.

We use three sets of benchmarks for evaluation (Table 2). The first set has im-
plementations of concurrent data structures and mutual exclusion algorithms that have
potential SCVs [5, 6]. The second set has some reported SCV bugs from open source
programs and libraries (e.g., MySQL, Gcc, Cilk). Finally, we use eight applications
from SPLASH-2 and two applications from Parsec.

SCV Detection To measure Dissector’s SCV detection ability, we run each application
multiple times - the smaller ones 100 times and the larger ones (i.e. SPLASH2 & Parsec)
5 times. In each run, we force different interleavings by introducing some randomness.
For each application, we collect, over all the runs, the number of unique SPs and FPs
observed. The post processing software takes the report of FPs and SPs and enumerates



Architecture Chip multiprocessor with 4, 8 or 16 cores.
Core pipeline Out-of-order; 3.0GHz; 2-issue/2-retire.
ROB size 128 entries.
Write buffer size 16 entries.
Private L1 cache 32KB WB, 4-way associative, 6-cycle rt.
Shared L2 cache 1MB WB, 8-way associative, 12-cycle rt.
Cache line size 32B or 64B.
Coherence Snoopy MSI protocol; 3.0GHz 32B-wide bus.
Consistency TSO
Memory 300 cycle rt.

DBuf: 32, 128 or 1024 entries.
Dissector SN, VSP, CSC: 4B each.
Parameters VTable: 32, 64 or 128 entries.

CBF: 128B with 2 bit counters, H3 hash.

Table 1: Multicore architecture evalu-
ated.

Set Program Description
dekker Algo. mutual exclusion.
snark Non-blocking double-end. queue.

Conc. Algo. msn Non-blocking queue.
harris Non-blocking set.
lazylist List-based concurrent set.
peterson Algo. for mutual exclusion.
pthread cancel Unwind code after canceling

Bug from glibc thread needs a fence [22].
kernels crypt util Small table initialization code

from glibc needs a fence [22].
init Available charsets initialization
from MySQL code needs a fence [14].
Cilk unlock Cilk unlock needs full fence
from cilk instead of store-store fence [8].

Full SPLASH-2 8 programs form SPLASH-2.
Apps Parsec 2 programs form Parsec.

Table 2: Applications analyzed.

over their all possible combinations. For each combination, it either confirms a true
SCV or prunes a false alarm. We compare our scheme against an existing hardware
based SCV detector, Vulcan [22]. The comparison remains the same even if we consider
Volition [24] that is tuned to detect 2 processor cycle (Volition*). Fig. 7(a) shows the
results and comparisons for different applications.

Codes FP SP Total Filtered True Vulcan/
comb. comb. SCV Volition*

harris 2 1 2 2 0 0
lazylist 0 1 0 0 0 0
msn 3 1 3 3 0 0
snark 3 2 6 6 0 0
crypt util 2 2 4 2 2 2
pthread can. 4 4 16 13 3 2
dekker 2 1 2 2 0 0
peterson 3 3 9 5 4 3
init 2 4 8 7 1 1
Cilk unlock 2 0 0 0 0 0
fft 5 1 5 5 0 0
radix 8 5 40 40 0 0
lu 2 0 0 0 0 0
ocean 121 5 605 605 0 0
water-ns 9 11 99 99 0 0
water-sp 9 7 63 63 0 0
barnes 29 15 435 435 0 0
fmm 35 13 455 452 3 3
swaptions 10 2 20 20 0 0
stream. 1 8 8 8 0 0
Total 252 86 1780 1767 13 11

P0

A0: pb->mp_expansion[]=...

A1:while(interaction_synch!=num_children)

B0:interaction_synch+=1

B1:pb->mp_expansion[]=...

P1

(a) SCVs found in different applications 

(b) New SCV found in fmm 

Fig. 7: Detected SCVs

Fig. 7(a) shows that Dissector hardware logs a total of 252 FPs and 86 SPs. The
post processing software enumerates over 1780 combinations. For each combination, it
collects a number of profiles (up to 20). It filters 1767 combinations as false alarms and
reports detail information (i.e. instruction and memory addresses of all accesses) for
the rest (i.e., 13) of the SCVs. Except for pthread cancel and peterson, both Dissector
and Vulcan/Volition* detect equal number of the SCVs. Dissector detects more SCVs
in those programs. This is due to the fact that Vulcan/Volition* identifies an SCV only
by the last pair of instructions (i.e., SP). Therefore, multiple different SCVs might be



reported as a single one. Dissector, on the other hand, is able to distinguish and report
them as separate SCVs. Note that even with a simpler and smaller hardware, Dissector
does not have any false negatives.

We like to understand whether profiles of data races can be used in conjunction
with a software based scheme such as Relaxer [7] to find out SCVs. We used fmm as an
example. We found 15 data races using Intel Inspector [13]. The profile contained 24.3
million accesses. It was too much to be used with Relaxer. So, profile based software
only schemes are not suitable especially for large applications.

We found a previously unreported SCV in fmm. It was detected by both Dissector
and Vulcan/Volition*. In fmm, different threads can process boxes in opposite order.
This can lead to an interleaving shown in Fig. 7(b). Here, processor P0 reads interac-
tion synch in A1 before modifying mp expansion in A0. Another processor P1 modifies
interaction synch in B0 and then modifies mp expansion in B1. Although no reorder-
ing is possible between B0 and B1 in TSO, the reordering of A0 and A1 causes an
SCV. Note that interaction synch is declared as volatile in code. However, its read in
A1 can still bypass A0 and cause an SCV. To fix this bug, interaction synch needs to be
declared as atomic in C/C++.

ha
rri

s
la

zy
lis

t
m

sn
sn

ar
k

cr
yp

t_
ut

il
pt

hr
ea

d_
ca

nc
el

de
kk

er
pe

te
rs

on in
it

C
ilk

_u
nl

oc
k fft

ra
di

x lu
oc

ea
n

w
at

er
-n

s
w

at
er

-s
p

ba
rn

es
fm

m
sw

ap
tio

ns
st

re
am

cl
us

te
r

Av
er

ag
e0

20
40
60
80

100
120
180

Fi
lte

re
d 

C
om

b. 32 Entry DBuf
128 Entry DBuf
1024 Entry DBuf

(c)

ha
rri

s
la

zy
lis

t
m

sn
sn

ar
k

cr
yp

t_
ut

il
pt

hr
ea

d_
ca

nc
el

de
kk

er
pe

te
rs

on in
it

C
ilk

_u
nl

oc
k fft

ra
di

x lu
oc

ea
n

w
at

er
-n

s
w

at
er

-s
p

ba
rn

es
fm

m
sw

ap
tio

ns
st

re
am

cl
us

te
r

Av
er

ag
e0

20
40
60
80

100
120

Fi
lte

re
d 

C
om

b. 32 Entry VTable
64 Entry VTable
128 Entry VTable
All CL VTable

(d)

ha
rri

s
la

zy
lis

t
m

sn
sn

ar
k

cr
yp

t_
ut

il
pt

hr
ea

d_
ca

nc
el

de
kk

er
pe

te
rs

on in
it

C
ilk

_u
nl

oc
k fft

ra
di

x lu
oc

ea
n

w
at

er
-n

s
w

at
er

-s
p

ba
rn

es
fm

m
sw

ap
tio

ns
st

re
am

cl
us

te
r

Av
er

ag
e0

20
40
60
80

100
120

Fi
lte

re
d 

C
om

b.

Dissector 1VSP (default)
Dissector 2VSP
Dissector 4VSP

(a)

ha
rri

s
la

zy
lis

t
m

sn
sn

ar
k

cr
yp

t_
ut

il
pt

hr
ea

d_
ca

nc
el

de
kk

er
pe

te
rs

on in
it

C
ilk

_u
nl

oc
k fft

ra
di

x lu
oc

ea
n

w
at

er
-n

s
w

at
er

-s
p

ba
rn

es
fm

m
sw

ap
tio

ns
st

re
am

cl
us

te
r

Av
er

ag
e0

20
40
60
80

100
120
140
160

Fi
lte

re
d 

C
om

b. 1VSP 32B Line
1VSP 64B Line

(b)

Fig. 8: Sensitivity to (a) number of VSP, (b) cache line size, (c) size of DBuf, and (d)
size of VTable.

Sensitivity Analysis We evaluate three choices - 1VSP (default), 2VSP, and 4VSP per
cache line. We compare each with Vulcan/Volition*. Dissector does not have any false
negative in any case. We count the average number of false SCVs filtered by the postpro-
cessing software (Fig. 8(a)). The average is calculated for each execution. On average,
for each application, Dissector filters 17.29 combinations in the default version. How-
ever, 2VSP and 4VSP filter 6.55 and 1.24 combinations per application respectively.
Recall that the filtering is done offline by the post processing software and the default
choice is to do it only after a failure execution. We opt for 1VSP as our default design.



We experiment with 2 cache line sizes - 32 and 64 Byte. Dissector does not have any
false negative for 32 Byte line but 1 false negative in peterson program for 64 Byte line.
Fig. 8(b) shows the average number of combinations filtered for each execution. For 32
Byte line, the average is 17.29 per application whereas for 64 byte line, the number is
17.27. Dissector has two structure DBuf and VTable. In order to assess the impact of
DBuf, we keep the size of VTable to be 128 and change the size of DBuf to be 32, 128,
and 1024. For 32 entry DBuf, Dissector has 1 false negative in init program. For larger
sizes, Dissector does not have any false negative. The filtered combinations are shown
in Fig. 8(c). On average, for each application, the post processing software filters 13.59,
17.29, and 20.45 combinations per execution for 32, 64, and 128 entry DBuf respec-
tively. We keep the size of DBuf to be 128 and change the size of VTable to be 32, 64,
128. We also simulate a case where VSP is stored with each cache line (All CL). There
are no false negatives in any case. On average, for each application, the number of fil-
tered combinations per application per execution are 17.25, 17.25, 17.29, and 16.41 for
32, 64, 128 entry VTable and All CL configuration respectively (Fig. 8(d)).
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Criteria Dissector Vulcan Volition
Add. message None 1 type 5 type
Coh. protocol Unmodified Modified Modified
Source of None False sharing False sharing
false positive (bit level), (bit level),

branch branch
mispred. mispred.

Source of Limited hw, Limited hw Limited hw
false negative some write hit
Per core hw for
4, 8, 16 core 3.5, 3.5, 3.5 KB 9, 17, 33 KB 6, 6, 6 KB
Scope 2 proc SCV 2 proc SCV 2+ proc SCV
Debugging All inst. Last 2 inst Last 2 inst.
info. & mem. addr. addr. addr.

(c) Comparison of Dissector, Vulcan and Volition.

Fig. 9: (a) shows network traffic overhead, (b) shows execution overhead, and (c) shows
comparison.

Network Traffic & Execution Overhead We calculate execution and network traffic
overhead. For overhead calculation, we use only large applications (i.e. SPLASH2 and
Parsec). The overheads are calculated with respect to a baseline TSO machine. Fig. 9(a)
shows the network overhead due to the piggybacking of VSP and unsafe bits with write
misses. On average, the overhead for a 4-core default system is (≈) 2.8%. It increases
by less than 1% for higher processor count. The piggybacked traffic causes an average
slowdown of (≈) 0.02% for a 4-core system (Fig. 9(b)). This overhead remains virtu-
ally the same for more processors. The post processing phase requires 0.007s, 0.005s,
0.006s, 0.007s and 2456s to confirm true SCVs in crypt, init, peterson, pthread cancel
and fmm respectively. To discard a false alarm, it takes 5 hours in the worst case. This



happens for fmm. Recall that post processing is done offline and the default choice is to
do it only after a failure execution.

6 Related Work

The table in Fig. 9(c) shows a comparison between Dissector and the closest related
work Vulcan & Volition. Besides them, majority of the existing work to detect SCVs
focus on data races. Specifically, one line of work detects incoming coherence messages
on data that has local outstanding loads or stores. This work started with Gharachorloo
and Gibbons [9] and now includes many aggressive speculative designs (e.g., [3, 11,
31]). Another line of work detects a conflict between two concurrent synchronization-
free regions. This includes DRFx [19] and Conflict Exceptions [17]. In general, all
of these works look for a data race with two accesses that occur within a short time.
Dissector, on the other hand, detects SCV cycles, not just data races. There are many
proposals to implement SC. Most proposals to implement SC fall under two categories
- in-window speculation [10] and post-retirement speculation [3, 11, 31]. At the high
level, these proposals allow some accesses that would have been stalled in SC, to pro-
ceed speculatively. In case, there is a possibility of an SCV, the speculative accesses are
squashed and retried. Some recent work [16, 29] has been proposed that does not rely
on speculation. Conflict Ordering [16] ensures SC by allowing an access to bypass a
prior pending access unspeculatively. Singh et al. [29] proposed to implement SC by
enforcing order only among shared accesses. Marino et al. [20] used the same principle
to implement an SC preserving compiler. Dissector is different from this line of work
in the sense that its goal is to detect SCVs.

7 Conclusion

This paper proposed Dissector, a hardware software co-designed SCV detector for a
typical TSO machine. Dissector hardware works by piggybacking information about
pending stores with cache coherence messages. Later, it detects if any of those pend-
ing stores cause an SCV cycle. The post processing software filters out false positives
and extracts detail debugging information. Dissector hardware is very lightweight, does
not generate any extra network message and seamlessly handles speculatively executed
loads. Our results showed that Dissector has better SCV detection ability than a state-
of-the-art hardware based SCV detector. Our experiments found a previously undiscov-
ered SCV in fmm. Dissector induces a negligible execution overhead of 0.02% which
remains the same for more processors. Finally, it requires 3.5KB/core extra hardware.
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