
Hardware Support for Production Run Diagnosis of
Performance Bugs

Abdullah Muzahid
Department of Computer Science

University of Texas at San Antonio
San Antonio, TX 78249

Email: abdullah.muzahid@utsa.edu

Abstract—Performance bugs cannot be easily debugged in the
same way correctness bugs are debugged. They are debugged
mostly by analyzing execution profiles which is slow, tedious,
and heavily involved. As a result, even for a mature program,
performance bugs often slip into production systems. This pa-
per presents a hardware based approach, called Prometheus,
that detects loop related performance bugs during production
runs with negligible overhead. Prometheus works by detecting
redundant memory read accesses in loop iterations. If many
loop iterations access the same set of memory locations and the
same set of values, then Prometheus reports a performance bug.
Prometheus detects the redundant accesses in hardware using
bloom filter based signatures. Prometheus is automatic and does
not require a programmer to analyze large execution profiles.
Moreover, Prometheus is parameterized to achieve different
levels of accuracy and detection ability. Prometheus is the first
hardware based scheme for automatically detecting performance
bugs related to redundant accesses. This paper presents a detailed
design and implementation of Prometheus hardware. Prometheus
is evaluated on a variety of real world performance bugs. It
detects 8 out of 10 performance bugs. Once the bugs are fixed,
Prometheus does not falsely detect any bug except in one case. It
has a negligible execution overhead of 1.87%. Last but not the
least, Prometheus requires only (≈)1 Kbyte of extra hardware
structures.

I. INTRODUCTION

A performance bug is a programming error that causes
significant performance degradation [6]. Performance bugs can
lead to increased latency, reduced throughput, and wasted
resources (e.g., energy, memory etc.) of a computer system.
A program can have low performance because of the high
complexity of the algorithm, high I/O intensity, wrong choice
of data structures, redundant memory accesses and computa-
tions, slow hardware structures, over use of synchronizations,
overloading of the system etc. Although many of these factors
can be eliminated by making changes in the program, others
cannot be eliminated without changing system infrastructure
substantially. Therefore, in the context of this paper, the factors
that can be eliminated/reduced by making changes in the
program are referred to as Performance Bugs.

Unlike correctness bugs, performance bugs often get little
or no attention of the programmers. Therefore, even ma-
ture programs have many performance bugs escaped into
the production systems. As an example, Windows 7’s Inter-
net Explorer has several high impact performance bugs that
escaped into production systems and remain undiscovered
for a long period of time [13]. Performance bugs can slip
into production systems due to several reasons. First, well
known software testing techniques based on test cases are

not suitable for performance bugs. Second, a conventional
profiling based approach to pinpoint performance bugs is quite
slow and tedious. Third, performance bugs are often evident
when a program needs to process huge amount of data/inputs.
This coupled with the fact that performance bug debugging
requires a programmer to analyze execution profiles mostly
manually, often discourages him(her) to spend much of the
debugging effort on this issue. Finally, due to a strict deadline
of product delivery, a programmer is often satisfied with good-
enough performance in testing and development environments.
Such practices can lead to performance bugs even in mature
programs, which get exposed when those programs run in high
stress production environments.

Detecting performance bugs during production runs war-
rants a mechanism that has several features. First, it should
automatically detect performance bugs without requiring a
programmer to analyze profiles. Second, it should not im-
pose significant execution overhead. Finally, it should detect
performance bugs with high accuracy. Toward this end, we
propose Prometheus. Prometheus is a hardware based approach
to detect performance bugs automatically during production
runs with negligible execution overhead. Since 90% of the per-
formance bugs are related to loops [23], Prometheus focuses on
loop related performance bugs. At the high level, Prometheus
works by detecting redundant memory read accesses in loop
iterations. If a significant fraction of loop iterations reads the
same set of memory locations and the same set of values,
then Prometheus reports a performance bug. The rationale
is that if some memory locations are read multiple times
and the same set of values are returned, they are redundant
accesses and can be optimized to improve overall performance.
Prometheus detects these redundant accesses in hardware using
bloom filter based signatures [7]. As a result, Prometheus
has a very low execution overhead and can be used during
production runs. Prometheus does not require a programmer
to analyze large execution profiles. Moreover, Prometheus is
parameterized. Therefore, it can be tuned to achieve differ-
ent levels of accuracy and detection ability. Prometheus is
the first hardware based scheme for automatically detecting
performance bugs related to redundant accesses. This paper
presents a detailed design and implementation of Prometheus
hardware. We implement it in a cycle accurate execution driven
simulator. We evaluate Prometheus on a variety of real world
performance bugs. It detects 8 out of 10 performance bugs.
Once the bugs are fixed, Prometheus does not falsely detect any
bug except in one case. It has a negligible execution overhead
of 1.87% which makes it suitable for production run diagnosis.
It adds only (≈)1 Kbyte of extra hardware structures.

II. BACKGROUND

a) Performance Bug Detection: There has been sig-
nificant research on profiling based performance diagnosis.
TraceAnalyzer [11] provides a general framework to compose
different filter functions to analyze traces. Hauswirth et al. [14]
propose a technique that collects performance and behavioral
data from all components of a system (e.g., application, virtual
machine, and hardware) and then uses statistical and visualiza-
tion techniques to understand the overall system performance.
There are several commercial and open source tools (e.g.,
Intel vTune [8], DCPI/ProfileMe [9] etc.) that use hardware
performance counters to profile an application’s performance.

There has been some notable progress in detecting perfor-
mance bugs without any profiles. Jin et al. [16] propose to
extract efficiency rules form patches of known performance
bugs and use those rules to Nistor et al. [23] propose a
technique, called Toddler, that detects loop related performance
bugs. A programmer writes many test cases and the tool finds
the test cases where many loop iterations access the same
sequence of memory locations and read the same sequence
of values. Although Prometheus bears some similarities with
Toddler, there are some major differences. Toddler is designed
to be used in testing environment whereas Prometheus is
designed to be used on-the-fly during production runs. In other
words, Prometheus targets hard-to-detect performance bugs
that escape into production systems. Therefore, Prometheus
needs to rely on special hardware structures to make it suit-
able for production run deployment. Finally, unlike Toddler,
Prometheus detects a performance bug even if the memory
locations are accessed out of sequence.

b) Bloom Filter Based Signature: A signature is a
long hardware register (e.g., 2Kbits long) based on Bloom
Filter [5]. Signatures have been used in the Bulk system [7]
to dynamically disambiguate groups of addresses accessed
by different processors. Signatures have been shown to be
useful in the context of various hardware based bug detection
proposals [20].

... ...1 0 1 10 00

Address

(b) Membership check

H

... ...

1H Hn

Address

(a) Insert

... ...1 0 1 10 00

H

Bit Array

Hash function

1 1 10 0 0 0 0

Address

...

(c) Parallel signature

Fig. 1: (a), (b) show insertion and membership checking
operation on a single signature, (c) shows a parallel signature.

Typically, signatures are used to accumulate addresses
accessed by a processor. A signature contains a bit array
(Figure 1(a) and (b)). Figure 1(a) shows the insertion of an
address into a signature. As an address is generated by a
processor, a hash function (e.g., H) is applied to the address.
According to the output of the hash function, one of the bits in
the array is set using logical OR operation. Figure 1(b) shows
the checking of an address in a signature. After applying the
hash function, the corresponding bit in the bit array is checked
(using logical AND operation) to determine whether the bit is
already set. If the bit is already set, the address is considered

to be present in the signature. Operations on signatures may
produce false positives (i.e. addresses not inserted into a
signature might be found there), although not false negatives.
A good signature design is a a parallel one (Figure 1(c)), where
multiple hash functions operate independently [25].

III. PROMETHEUS: DETECTING PERFORMANCE BUGS

A. An Example

Let us consider a simplified code fragment from Apache
Common Collections Bug 406 [3]. This is referred to as Bug
1 in Section V.

List<E> subtract(List<E> list1,
List<E> list2) {

ArrayList<E> result =
new ArrayList<E>(list1);

for(E e: list2) result.remove(e);
return result;

}

The subtract function takes two List objects (list1
and list2), creates a new object result, populates it
with the elements of list1 that are not present in list2.
Each iteration of the for loop takes one element of list2
and removes it from result which was initialized with the
elements of list1. The remove function is shown below.

boolean remove(Object o) {
for(int index=0; index<size; index++)
if(o.equals(elementData[index])
// remove the element and return

}

The remove function reads each element of result. When
the desired element is found, it is removed from result.
Thus, for each element of list2, the same elements of
result are read starting from the beginning. Therefore,
the for loop wastes time by doing redundant memory read
accesses.

B. Overview

At the high level, Prometheus works by calculating re-
dundant memory read accesses in each iteration. A memory
read access is considered to be redundant in an iteration if
the same location is read by an earlier iteration and the same
data is returned. If a significant fraction of iterations performs
redundant read accesses most of the time, then Prometheus
identifies the loop as having a performance bug.

C. Definitions

A loop iteration that performs at least one memory read
access is called a Data Iteration (DI). A data iteration that
performs at least Access Threshold (ATH) number of memory
read accesses is called a Data Intensive Iteration (DII). Here,
ATH is a tunable parameter set by a programmer. If the ratio of
redundant and total memory read accesses of a data intensive
iteration is greater than or equal to Redundancy Threshold
(RTH), then the iteration is called a Redundant Iteration (RI).
Here, RTH is another tunable parameter set by a programmer.

D. Detailed Algorithm

The start and end of a loop as well as its iterations are
annotated with special instructions. Prometheus maintains a
set, called Read Set (RS), that contains the addresses as well as
data values of all the read accesses performed inside the loop.
In other words, each element of RS is a pair (A, D) where A
denotes the memory address of a read access and D denotes
the actual data returned by the read. The detailed algorithm
is shown in Figure 2. Prometheus associates two counters
with a loop - Data Iteration Counter (DIC) and Redundant
Iteration Counter (RIC). When a loop starts, Prometheus clears
RS, DIC, and RIC. Every time an iteration starts, Prometheus
initializes two counters - Total Read Counter (TRC) and
Redundant Read Counter (RRC). TRC is incremented every
time a memory read access is performed. If the read accesses
address A and returns data D, then (A, D) is checked against
the contents of RS. If RS already has an element (A’, D’)
such that A’ = A and D’ = D, then this read is identified as
a redundant read and RRC is incremented. It should be noted
that we allow RS to contain multiple elements whose addresses
are the same (e.g., A) but the data values are different (e.g.,
D’, D”, D”’, D”’, ... etc.). If the newly performed read causes
a match with one of these elements, then Prometheus identifies
the read access as redundant. However, if no match is found
in RS, a new element corresponding to (A, D) is inserted into
RS. This ensures that if a future iteration has a read access that
reads the same location and value, that access will be identified
as a redundant one.

At the end of an iteration, if TRC is greater than zero, then
the iteration is identified as a data iteration (DI, according to
Definition 1). DIC is incremented in such a case. In addition, if
TRC is greater then ATH , then this iteration is a data intensive
iteration (DII, according to Definition 2). In that case, the ratio
of RRC and TRC is compared against RTH . If the ratio is
at least as large as RTH , then a significant number of read
accesses of this iteration is redundant. So, the iteration is
identified as a redundant iteration (RI, according to Definition
3) and RIC is incremented. At the end of a loop, the ratio of
RIC and DIC is calculated and compared against a threshold,
called Redundant Iteration Threshold (RITH). If the ratio is at
least as large as RITH , then the loop has a significant fraction
of redundant iterations and is therefore, identified as having
a performance bug. Note that RITH is another programmer
tunable parameter for Prometheus. In case of nested loops,
when the outer loop starts, all annotations of inner loops are
ignored, essentially treating all memory read accesses of inner
loops as part of a single iteration of the outer loop.

IV. IMPLEMENTATION

Each element of RS is a pair (A, D) where A is the address
and D is the data of a memory read operation. When a load is
about to retire from the reorder buffer, a processor concatenates
the address and the corresponding data and sends it to RS. We
use signature [25] to implement RS. One signature is used to
store addresses (Address Signature or AS) and another is used
to store data values (Data Signature or DS). To check whether
an element (A, D) is already present in RS, A is checked
against AS and D is checked against DS. If any one of the
intersections is null, then (A, D) is not an element of RS. We

− Clear TRC and RRC

Iteration starts

− Clear RS

− Clear DIC and RIC

Loop starts

− Inc TRC

− If (A,D) is present in RS

 Inc RRC

 Else

 Insert (A,D) into RS

Memory read at address A for data D

TH and RRC/TRC >= R

− If TRC > 0

 Inc DIC

− If TRC >= A TH

Iteration ends

Inc RIC

− If RIC/DIC >= RI TH

 Report a bug

Loop ends

This is done

 multiple times

Fig. 2: Detailed algorithm of Prometheus.

use n physical ASs to implement one logical AS. Similar is
for DS.

AS 0 AS 1 AS n

DS 0 DS 1 DS n

(a)

...
Selection

Logic

RIC TRC DIC RRC

Loop

ID

Reorder Buffer

Address, Data

Sig Func.

 Unit

Read

Set

Ended

Loop

Control Logic

Prometheus Module

(b)

athr rthr rithr

Address Data

...
Selection

Logic

Fig. 3: Implementation of (a) Read Set and (b) Prometheus
Module.

A processor pipeline is equipped with a module called,
Prometheus Module (Figure 3(b)). The module contains four
counters - Data Iteration Counter (DIC), Redundant Iteration
Counter (RIC), Total Read Counter (TRC), and Redundant
Read Counter (RRC). The module also contains three floating
point registers - Access Threshold Register (athr), Redundancy
Threshold Register (rthr), and Redundant Iteration Threshold
Register (rithr). They contain tunable parameters of Prome-
theusİn addition, the module contains RS and the associated
Signature Functional Unit. The module contains a flag, called
Loop Entered (LE) and a register, called Loop Id (lid). LE is
used to indicate whether the execution is inside a loop. The
register lid stores information to identify a loop. Finally, the

module contains some Control Logic.

Prometheus adds several new instructions in the ISA. They
are listed in Table I. This instructions are inserted automatically
during compilation time by a compiler.

Instruction Description
lpstart Save instruction address of lpstart in lid.

Clear DIC, RIC, and RS.
Set LE flag.
Clear RRC and TRC.

itrend If TRC≥0, inc DIC.
If TRC≥ [athr] and RRC/TRC≥ [rthr],

inc RIC.
Clear RRC and TRC.

lpend If RIC/DIC≥ [rithr], log bug at loop [lid].
Clear lid and LE.

cple Copy LE flag to Zero Flag.
setle Set LE flag.
clrle Clear LE flag.

TABLE I: New instructions added by Prometheus. [.] is used
to denote the content of a register.

V. EVALUATION

A. Experimental Setup

We model Prometheus’s architecture using a PIN [17]
based cycle-accurate execution-driven simulator [24]. We
model an out-of-order core. The cache hierarchy consists of a
write through L1 cache and a write back L2 cache. Table II
shows the architectural parameters. When we have a choice,
we use the boldfaced values as defaults.

Core pipeline Out-of-order; 2-issue/2-retire.
ROB size 64 entries.
Load buffer size 32 entries.
Write buffer size 32 entries.
Private L1 cache 32KB WT, 4-way, 6-cycle round trip.
L1 MSHR size 64 entries.
L2 cache 512KB WB, 8-way, 14-cycle round trip.
L2 MSHR size 64 entries.
Cache line size 32B.
Memory 300 cycle round trip.
Signature 512, 1024 or 2048 bit using H3 hash [20].
Total 4, 8 or 16 of each type.
Thresholds ATH=10, RTH=90%, RITH=80%

TABLE II: Architectural parameters evaluated.

B. Benchmarks

We use two sets of applications for evaluation. The first set
has 10 real world performance bugs from Apache Common
Collections Library [4], Google Core Library [12], and Ant
Build Tool [2]. For each of these, we write a test program to
exercise the bugs. Table III gives a description of the bugs. The
other set has 7 SPEC benchmarks. We use them to determine
execution overhead of Prometheus.

C. Characterization of Loop Iterations

We run programs (mentioned in Table III) with perfor-
mance bugs. We also run the same programs with developers’
patches applied to fix the performance bugs. We refer to the
former set as Buggy Programs and the later set as Fixed
Programs. The patch for Bug 9 requires a significant rewriting
of code which ends up removing the loop. Therefore, we

1 2 3 4 5 6 7 8 9 10 Avg
Bug Id

0
10
20
30
40
50
60
70
80
90

100

Ite
ra

tio
ns

(%
)

1 or more accesses
5 or more accesses
10 or more accesses

25 or more accesses
50 or more accesses

1 2 3 4 5 6 7 8 9 10 Avg
Bug Id

0

10

20

30

40

50

Ite
ra

tio
ns

(%
)

(a) Read accesses for iterations of buggy programs.

(b) Read accesses for iterations of fixed programs.

Fig. 4: Distribution of read accesses among iterations.

exclude it from fixed programs. We count the number of
memory read accesses in each loop iteration. Figure 4(a) shows
what fraction of total iterations of buggy programs perform
certain number of read accesses. Except for bug 1 and 9,
other applications have a significant fraction of iterations with
at least 1 read access. On average, 30% iterations have at
least 1 read access. In reality, almost all of those iterations
have at least 5 read accesses. Moreover, 23%, 22%, and 12%
of all iterations have at least 10, 25, and 50 read accesses
respectively. On the other hand, fixed programs, shown in
Figure 4(b), have very few iterations with at least 1 read
access. On average, 2%, 1%, 0.9%, and 0.7% iterations have
at least 1, 5, 10, 25, and 50 read accesses respectively. We
also count the number of redundant read accesses in each
iteration. Figure 5(a) and 5(b) shows what fraction of iterations
have certain percentage of redundant read accesses. For buggy
programs, except for bug 10, more than 80% iterations have at
least 50% redundant read accesses. On average, 84% iterations
of buggy programs have at least 50% redundant accesses.
Almost all of those iterations have at least 90% redundant
read accesses. For fixed programs, on average, 58% iterations
have at least 50% redundant read accesses. For these programs,
54% iterations have at least 90% redundant read accesses.
We choose redundancy threshold (RTh) to be 90% i.e. if
an iteration has 90% redundant read accesses, it will be a
redundant iteration.

D. Sensitivity to Signature

We experiment with different size and number of signa-
tures. First, we keep the total number of signatures fixed
at 8 (for each type). We vary the size of signature from
512 bit to 2048 bit. The result is shown in Figure 6(a). It
shows what fraction of total iterations of buggy programs are
redundant. Note that if a signature has a high false positive
rate, then more read accesses will be found in the read set
(Section ??). As a result, more read accesses will be considered
as redundant and more iterations will be identified as redundant
iterations. Figure 6(a) shows that as signature size increases,
relatively fewer iterations are identified as redundant. This due

Bug # Program Related Class Description
1 Apache Com. Col. ListUtils subtract function reads one element of list1 and compares against

each element of list2 in every iteration.
2 Apache Com. Col. ListOrderedSet removeAll function iterates over all elements of coll and can cause

unnecessary scan of setOrder’s elements.
3 Apache Com. Col. ListOrderedSet addAll function iterates over all elements of coll and inserts them in

an ArrayList. This causes repeated read of the elements of the list.
4 Apache Com. Col. SetUniqueList addAll function iterates over all elements of coll and inserts them in

a LinkedList. This causes repeated read of the elements of the list.
5 Apache Com. Col. CollectionUtils subtract function reads one element of an Iterable and compares

against all elements of an ArrayList. This is done in every iteration.
6 Apache Com. Col. DualHashBidiMap For each element of a View object, removeAll function checks again-

st the elements of a Collection object. For a list type Collection
object, the checking causes repeated read of every element.

7 Apache Com. Col. AbstractLinked- For each element of the list, removeAll function checks against
List the elements of a Collection object. For a list type Collection

object, the checking causes repeated read of every element.
8 Apache Com. Col. ListOrderedMap remove checks against every element of ArrayList even when not required.
9 Google Core Lib. LinkedHashMulti- For smaller map sizes, removeAll function of AbstractSet is slow

Map because of the repeated read of the set elements.
10 Ant Build Tool VectorSet For each element of a VectorSet, retainAll function searches every

element of a Collection object causing redundant read operations.

TABLE III: Bug descriptions.

1 2 3 4 5 6 7 8 9 10 Avg
Bug Id

0
10
20
30
40
50
60
70
80
90

100

Ite
ra

tio
ns

(%
)

50% or more redun.
80% or more redun.
90% or more redun.

95% or more redun.
99% or more redun.

1 2 3 4 5 6 7 8 9 10 Avg
Bug Id

0
10
20
30
40
50
60
70
80
90

100

Ite
ra

tio
ns

(%
)

(a) Redundant accesses for iterations of buggy programs.

(b) Redundant accesses for iterations of fixed programs.

Fig. 5: Distribution of redundant read accesses.

to less false positives of larger signatures. On average, 512 bit
signatures cause 84% iterations to be identified as redundant.
For 1024 and 2048 bit signatures, the number is 81% and
79% respectively. Since the impact of larger signatures is not
very significant, we choose 512 bit signatures for Prometheus.
Figure 6(b) shows the fraction of redundant iterations for
different number of total signatures. When we use 4 signatures,
on average, 87% iterations are identified as redundant. For 8
and 16 signatures, the number is 84% and 78% respectively.
For Prometheus, we use a total of 8 signatures to keep
the hardware requirement low while maintaining acceptable
accuracy. On a related note, the data also justifies our choice of
redundant iteration threshold (RITH) to be 80% for the default
signatures. This implies that with this threshold, Prometheus
will be able to detect most of the performance bugs when the
fraction of redundant iterations exceeds this threshold.

1 2 3 4 5 6 7 8 9 10 Avg
Bug Id

0
10
20
30
40
50
60
70
80
90

100

R
ed

un
da

nt
 It

er
at

io
ns

(%
)

512 bit sig 1024 bit sig 2048 bit sig

1 2 3 4 5 6 7 8 9 10 Avg
Bug Id

0
10
20
30
40
50
60
70
80
90

100

R
ed

un
da

nt
 It

er
at

io
ns

(%
)

4 sig 8 sig 16 sig

(a) Effect of signature size.

(b) Redundant accesses for iterations of fixed programs.

Fig. 6: Impact of size and number of signatures.

E. Bug Detection

The most important metric is the ability to detect perfor-
mance bugs. Table IV shows the data. We experiment with
buggy programs to determine how many bugs are detected.
In addition, we experiment with fixed programs to determine
whether Prometheus falsely identifies any of them as buggy.
We compare against a recent software based performance bug
detection scheme, Toddler [23]. For Toddler, we only run the
buggy programs. Prometheus detects 8 out of 10 bugs. It does
not detect bug 7 and 10. Recall that a bug is detected if the
fraction of redundant iterations is greater than or equal to
RITH . Bug 7, although not detected with our default value
of RITH (i.e. 80%), can be easily detected if the threshold
is set to a slightly lower value. This clarifies the importance
of choosing an appropriate threshold value. If a programmer
can afford to spend more time on debugging, then (s)he should
choose a lower threshold to detect all potential bugs. Of course,

lower threshold might report some bugs that end up being
false bugs. On the other hand, if a programmer is under tight
timing constraint, (s)he should choose a higher threshold to
detect only the true bugs. But, such a higher threshold might
end up missing some real bugs. Bug 10, on the other hand,
have only 17% redundant iterations. Therefore, even with a
lower threshold, this bug cannot be detected. This is due to
the fact that our test program for this bug failed to generate
redundant read accesses. This demonstrates the importance of
having hardware support for production run diagnosis so that
a bug can be detected as soon as it occurs.

Id Buggy Prog. Fixed Prog. Toddler
Red. Iter. Bug Red. Iter. Bug Bug

(%) Det? (%) Det? Det?
1 92 Yes 58 No Yes
2 89 Yes 37 No Yes
3 99 Yes 62 No Yes
4 98 Yes 69 No Yes
5 87 Yes 44 No Yes
6 94 Yes 61 No Yes
7 79 No 46 No Yes
8 97 Yes 82 Yes Yes
9 86 Yes - - Yes
10 17 No 39 No Yes

TABLE IV: Detection of bugs. Fixed version of bug 9 does
not have any loop.

For the fixed programs, Prometheus does not falsely report
any bug except for bug 8. This bug has some redundant read
accesses but eliminating them would not improve performance
significantly. So, the programmer chose to keep it that way.
Toddler, a software based approach, detects all 10 bugs cor-
rectly. In a nutshell, although Prometheus misses 2 bugs, its
detection ability is comparable to a software based approach.

F. Bug Analysis

We identified two reasons for redundant accesses in the
buggy code - inefficient data structures and inefficient algo-
rithm. As an example of inefficient data structure, in bug 1,
the programmer creates an array, populates it with necessary
data, and then removes some of the elements one at a time.
Each removal process traverses the whole array repeatedly. The
fixed version of this bug uses a hash table instead of an array
and thus, prevents the repeated traversal of the whole structure
during the removal process. Bug 5, 6, 7, and 10 are like this. As
an example of inefficient algorithm, in bug 2, the programmer
removes an element from one data structure and then from
another internal data structure. However, if the first removal
shows that the element is not present in the first data structure,
the second removal becomes unnecessary. But the programmer
does it anyway. The fixed version basically eliminates the
unnecessary second removal operation. As an another example,
in bug 3, the code inserts one element at a time in an array
instead of inserting all elements together at once. Bug 4,8,
and 9 result from inefficient algorithms. Note that for the
fixed programs, there are often significant number of redundant
accesses. We identified mainly two reasons - programmer effort
and redundancy in test cases. Often a read operation reads the
same set of values but in a different sequence. Eliminating this
type of redundancy requires a lot of programming effort with
very little potential benefit and hence, the programmers choose
not to do it. Some of the test cases used by the developers

contain significant redundancies to expose the bug. This is
exactly the case for bug 8. Therefore, even a fixed version has
some redundant accesses.

G. Execution Overhead

Since our test programs are relatively small, we use 7
SPEC benchmarks for determining execution overhead. We
collect the total number of different loops as well as the
total number of iterations. We also calculate the resulting
execution overhead. Table V shows the data. Prometheus incurs
overhead from 0.71% to 3.72%, with an average of 1.87%.
This overhead is low enough for production run diagnosis.

Program Num. Loop Num Iter. Overhead
(x1000) (%)

bzip2 348 1129430 3.72
gcc 4165 37176 1.57
gzip 168 8899 2.28
mcf 72 7605 1.44
perlbmk 149 237 2.02
twolf 751 5360 1.39
vpr 206 18312 0.71
Average 837 172431 1.87

TABLE V: Execution overhead.

H. Hardware Requirement

Prometheus uses 8 address signatures and 8 data signatures.
Each signature is 512 bit long. In addition to this, Prometheus
module contains 4 counters, 3 floating point registers, 1 register
to hold the id of a loop, and 1 one bit flag. All the counters and
registers are assumed to be 32 bit long. So, in total, Prometheus
requires 1056 byte ≈ 1 Kbyte of extra hardware.

VI. CONCLUSION

This paper proposed Prometheus, the first hardware based
scheme for automatically detecting performance bugs related
to redundant accesses. Prometheus works by by detecting
redundant memory read accesses in loop iterations. If a signif-
icant fraction of loop iterations reads the same set of memory
locations and the same set of values, then Prometheus reports
a performance bug. Prometheus detects the redundant read
accesses in hardware by using bloom filter based signatures.
Prometheus is automatic, does not require a programmer to
analyze large execution profiles and can be tuned to achieve
different levels of accuracy and detection ability. We evaluated
Prometheus on a variety of 10 real world performance bugs. It
detects 8 out of 10 bugs. When the bugs are fixed, Prometheus
does not falsely detect any bug except in one case. It has a
negligible execution overhead of 1.87%. It requires only (≈)1
Kbyte of extra hardware structures.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] “GNU gprof,” https://sourceware.org/binutils/docs/gprof/.
[2] Apache, “Ant Build Tool,” http://ant.apache.org/.
[3] ——, “Apache Collections Bug 406,” https://issues.apache.org/jira/

browse/COLLECTIONS-406.

[4] ——, “Apache Common Collection Library,” https://commons.apache.
org/proper/commons-collections/.

[5] B. Bloom, “Space/Time Trade-Offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 11, no. 7, July 1970.

[6] Bugzilla@Mozilla, “Bugzilla keyword descriptions,” https://bugzilla.
mozilla.org/describekeywords.cgi.

[7] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas, “Bulk Disambiguation
of Speculative Threads in Multiprocessors,” in ISCA, June 2006.

[8] I. Corporation, “Intel vTune,” http://software.intel.com/en-us/
intel-vtune.

[9] J. Dean, J. Hicks, C. Waldspurger, W. Weihl, and G. Chrysos, “Pro-
fileme: hardware support for instruction-level profiling on out-of-order
processors,” in MICRO, Dec 1997.

[10] J. Demme and S. Sethumadhavan, “Rapid identification of architectural
bottlenecks via precise event counting,” in ISCA, June 2011.

[11] A. Diwan, M. Hauswirth, T. Mytkowicz, and P. F. Sweeney, “Trace-
analyzer: A system for processing performance traces,” Softw. Pract.
Exper., vol. 41, no. 3, March 2011.

[12] Google, “Google Core Library,” http://code.google.com/p/
guava-libraries/.

[13] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, “Performance debugging
in the large via mining millions of stack traces.” in ICSE, June 2012.

[14] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind, “Vertical
profiling: Understanding the behavior of object-priented applications,”
in OOPSLA, October 2004.

[15] Y. Huang, Z. Cui, L. Chen, W. Zhang, Y. Bao, and M. Chen, “Halock:
Hardware-assisted lock contention detection in multithreaded applica-
tions,” in PACT, September 2012.

[16] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and
detecting real-world performance bugs,” in PLDI, June 2012.

[17] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in PLDI, June
2005.

[18] D. Mituzas, “Embarrassment,” http://dom.as/2009/06/26/
embarrassment/.

[19] G. E. Morris, “Lessons from the Colorado Benefits Manage-
ment System Disaster,” http://www.ad-mkt-review.com/public html/air/
ai200411.html.

[20] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas, “Sigrace: signature-
based data race detection,” in ISCA, June 2009.

[21] NetBSD Documentation, “How lazy FPU context switch works,” http:
//www.netbsd.org/docs/kernel/lazyfpu.html, 2011.

[22] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in PLDI, June 2007.

[23] A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler: Detecting
performance problems via similar memory-access patterns,” in ICSE,
June 2013.

[24] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC Simulator,”
January 2005, http://sesc.sourceforge.net.

[25] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam, “Implementing
signatures for transactional memory,” in MICRO, December 2007.

[26] G. Xu, M. Arnold, N. Mitchell, A. Rountev, and G. Sevitsky, “Go with
the flow: Profiling copies to find runtime bloat,” in PLDI, June 2009.

[27] G. Xu, N. Mitchell, M. Arnold, A. Rountev, E. Schonberg, and
G. Sevitsky, “Finding low-utility data structures,” in PLDI, June 2010.

