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Abstract—Embedded applications are increasingly offload-
ing their computations to a cloud data center. Determining
an incoming application’s sensitivity toward various shared
resources is a major challenge. To this end, previous research
attempts to characterize an incoming application’s sensitivity
toward interference on various resources (Source of Inter-
ference or SoI, for short) of a cloud system. Due to time
constraints, the application’s sensitivity is profiled in detail
for only a small number of SoI, and the sensitivities for the
remaining SoI are approximated by capitalizing on knowledge
about some of the applications (i.e. training set) currently
running in the system. A key drawback of previous approaches
is that they have attempted to minimize the total error of the
estimated sensitivities; however, various SoI do not behave the
same as each other. For example, a 10% error in the estimate
of SoI A may dramatically effect the QoS of an application
whereas a 10% error in the estimate of SoI B may have
a marginal effect. In this paper, we present a new method
for workload characterization that considers these important
issues. First, we compute an acceptable error for each SoI
based on its effect on QoS, and our goal is to characterize an
application so as to maximize the number of SoI that satisfy
this acceptable error. Then we present a new technique for
workload characterization based on Locality Sensitive Hashing
(LSH). Our approach performs better than a state-of-the-art
technique in terms of error rate (1.33 times better).

Keywords-Application characterization, data center, locality
sensitive hashing.

I. INTRODUCTION

Embedded systems are increasingly becoming an insep-
arable part of modern life. Due to the advances in man-
ufacturing and software industry, embedded systems are
implementing various functionalities; however, they have
limitations ranging from limited memory, bus speed, battery
life, clock frequency etc. Fortunately, cloud computing can
be used to alleviate some of the limitations. Devices like
Amazon Echo [6], voice activated GPS, smart watch etc. are
offloading most of their processing to a cloud data center.
Therefore, it is imperative to classify embedded and cloud
applications properly so that a better application response
time (i.e. QoS) as well as data center utilization can be
achieved.

Applications in a data center can interfere with each other
due to various shared resources. Such interference can lead

to performance degradation [25]. The situation gets wors-
ened by continuous load fluctuation, application diversity,
heterogeneity of the servers [23], [11] etc. Therefore, cloud
operators often disallow application co-location or use an
over-provisioning of resources for high-priority tasks. Due
to such scheduling approaches, data center utilization has
been found to be notoriously low [23], [11]. A major step
toward successful scheduling while maintaining desired QoS
and utilization would be a way to extract better insight about
applications’ characteristics.

Most prior techniques [25], [29] rely on a detailed offline
approach or a long term monitoring and modeling approach
for characterizing recurring applications. As a result, they
are not effective for large data centers that receive tens of
thousands of potentially unknown and often non-recurring
applications each day. Recently, there is some work [16],
[30], [17] that takes a two-fold approach. First, it char-
acterizes an application’s behavior towards various shared
resources (referred to as Sources of Interference, or SoIs).
Then, it schedules the application or adapts currently run-
ning applications accordingly. This is a promising direction.
Inspired by this line of research, this paper ventures into the
same overall approach but aims to increase characterization
accuracy and scheduling efficiency. It takes inspiration from
the domain of computational geometry.

When an application arrives, we would like to characterize
the application by measuring its sensitivity toward various
SoIs. Sensitivity of an application toward a particular SoI
is denoted by its Sensitivity Score. It is measured as a
fraction of the total available resource (corresponding to
the SoI) which is required, at least, to maintain 95% of
the application’s stand-alone performance (i.e. QoS) in the
best server [16]. Details of sensitivity score are discussed in
Section II. Prior approaches treat each SoI equally; however,
our experiments indicate that the same amount of error in
estimating sensitivity scores for different SoIs can have sig-
nificantly different effects on a scheduler’s ability to pick the
right server. Hence, the impact on QoS of applications can
vary too. This is shown in Figure 1. The graph is obtained by
artificially injecting inaccuracy in different SoI’s sensitivity
scores and measuring what fraction of applications achieve
95% or more QoS at the end. We used a state-of-the-art



scheduler, Paragon [16], for this experiment. 20% error in
estimating sensitivity toward Integer Processing Unit and
Memory Capacity causes 9% and 11% fewer applications
to achieve 95% or more QoS. On the contrary, the same
amount of inaccuracy for Storage Capacity causes only 5%
applications to lose the QoS threshold. Thus, the experiment
suggests that we can tolerate different ranges of errors in es-
timating sensitivity of different SoIs. To exploit this insight,
we present a novel method for workload characterization that
considers varying error tolerance intervals for different SoIs.
For each sensitivity score, we determine the error interval
that causes a 5% decrease in the number of applications
achieving a QoS of 95% (or more). As seen in Figure 1, the
memoryCapacity sensitivity score can be underestimated by
20% but cannot be overestimated by more than 10%. We
would like to obtain a sensitivity score that is within this
error range. We call this range the Desired Error Interval
(DEI). We compute the DEI for each sensitivity score. We
attempt to characterize an incoming workload so that our
predicted sensitivity scores fall within the DEI of as many
sensitivity scores as possible. To this end, we propose a
new online workload characterization technique based on
Locality-Sensitive Hashing (LSH) [8]. Given a set of n
points in a d-dimensional Euclidean space, LSH is a hashing
technique that allows us to find nearest neighbor points for
any query point with nearly asymptotically optimal running
time. We maintain a Training Set of applications for which
all sensitivity scores are known. When a new application
arrives, we quickly profile the new application for a few
SoIs (the ones that need to be more accurate) and calculate
sensitivity scores for those SoIs. We, then, use LSH to find
applications in the training set with similar sensitivity scores
so that we can predict the remaining sensitivity scores.
We predict the remaining scores by taking the median of
the similar applications’ corresponding sensitivity scores.
In order to take advantage of recurring nature of many
embedded applications, we keep the sensitivity scores of
recent applications in a table. When an application arrives,
we check if it appears in the table. If so, it is a recurring
application and we use the previously computed sensitivity
scores. If, on the other hand, this is a new application, then
we apply LSH based algorithm to compute the sensitivity
scores.

We evaluated our scheme using SPEC, SPLASH2, PAR-
SEC, PUMA Hadoop [5], CloudSuite [19], MiBench [21],
AMB [26], MediaBench [3] as well as multiprogrammed
workloads. We experimented with 10 different server con-
figurations. Our approach predicts SoIs with higher accuracy.
Compared to a state-of-the-art scheme, Paragon [16], we are
1.33 times more accurate. It takes only 0.011s for prediction.
The result remains consistent across different servers.

The paper is organized as follows: Section II-A and II pro-
vide a background on sources of interference and locality-
sensitive hashing; Section III explains the main idea; Sec-
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Figure 1: How application QoS is affected due to errors in
different SoIs.

tion IV outlines the implementation issues; Section V pro-
vides the experimental results; Section VI discusses related
work and finally, Section VII concludes.

II. BACKGROUND

A. Sources of Interference

We develop a set of kernels to characterize an applica-
tion’s sensitivity toward SoIs. For each SoI, we calculate two
metrics - one to measure how much resource interference
this application can tolerate from other applications and
another to measure how much resource interference this ap-
plication causes to other applications. Each of them are real
numbers in [0, 1]. For each SoI, we develop a kernel whose
intensity (i.e. its consumption of the particular resource
expressed as a fraction of the total resource) can be pro-
gressively tuned up. The kernels are similar to iBench [15].
To calculate the Tolerate metric, we run the kernel for
the SoI in parallel with the application and progressively
tune up the intensity of the kernel until the application’s
performance degrades to 95% of its isolated performance in
the best server. An application with a high tolerance toward
the SoI will have a high value for this metric. To determine
the Cause metric, we run the kernel in parallel with the
application as before. This time, we tune up the intensity
of the kernel until the kernel’s performance degrades to
95% of its original isolated performance in the best server.
The metric is then set to the value of 1 − intensity. An
application that consumes a lot of the resource will have
a high value for this metric. We use the term Sensitivity
Score to refer to both of these metrics. Since our kernels
and measuring technique of sensitivity scores are similar to
iBench, we are going to present only the high level idea of
each kernel here. Interested readers can look into that paper
for more details. We consider 10 SoIs. The SoIs are memory
capacity and bandwidth, storage capacity and bandwidth,



network bandwidth, LLC capacity and bandwidth, TLB ca-
pacity, integer processing unit and floating point processing
unit. The following shows a brief overview of how kernels
for memory capacity and bandwidth can be written. Other
kernels are developed similarly.

Memory Capacity (memCapacity): The kernel allocates
x% of total memory (i.e. mem size) to run at intensity
level x. Memory is allocated at page granularity. The kernel
runs for the same duration for each intensity level. After
allocating memory, the kernel randomly accesses some of
the allocated pages. The number of accesses is determined
by the intensity level. At lower intensity, the kernel might
need to remain idle after finishing all accesses. This is done
to ensure equal processing time for each intensity level.
The idle time is determined by the number of accesses as
well as intensity level. After the duration has completed
for the current intensity, the kernel tunes up its intensity.
We consider intensity levels from the following discrete set:
{0, 10, 20, . . . , 90, 100}. Instead of increasing intensity level
linearly, we use binary search in order to find an intensity x
such that the performance level at intensity x is over 95%
and at intensity x+ 10 is under 95%.

mem x=mem size ∗ x
w h i l e ( cove rage<mem x )

d a t a = ma l lo c ( p a g e s i z e )
p a g e l i s t . append ( d a t a )
c o v e r a g e += p a g e s i z e

t =0
w h i l e ( t<d u r a t i o n )

t s = t ime ( )
d a t a = p a g e l i s t . g e t ( r )
temp+= d a t a [ r ]
w a i t ( . . . )
t += t ime ()− t s

Memory Bandwidth (memBandwidth): The kernel in
this case performs a sequence of memory accesses. The
number of memory accesses increases with intensity. At
the highest intensity, the kernel occupies the entire memory
bandwidth of the system. The accesses are done in an as-
sembly function to ensure that the compiler cannot optimize
them away. To reduce function-call overhead, the accesses
are done in batch mode.

B. Nearest Neighbor Search

Our approach for workload profiling utilizes techniques
from computational geometry, namely nearest neighbor
search. In this subsection we give our motivation for con-
sidering these techniques, and we then provide some back-
ground on these techniques.

Motivation. In our profiling scheme, we will maintain a
training set T of n applications for which we will determine
all sensitivity scores in an offline preprocessing step. As
described above, for each SoI we obtain sensitivity scores

for two different metrics which gives us a total of twenty
sensitivity scores. For each application tj ∈ T , we denote
its sensitivity scores s1j , s

2
j , . . . s

20
j where s1j and s2j are the

tolerate and cause sensitivity scores for SoI-1, s3j and s4j
are similar scores for SoI-2, etc. When a new application ai
arrives, we choose a small number of SoI and determine the
exact sensitivity scores for these SoIs and approximate the
remaining scores in an effort to save time. These approxi-
mate scores are determined by identifying the applications
in T which are the most similar to ai with respect to the
computed scores.

To illustrate our high level idea, consider the following
example. For simplicity, suppose that there are six total
sensitivity scores, and suppose the applications t1, . . . , t5
in Table I are the applications in T for which we know all
six scores. Suppose for a new application ai we determine
s1i = 0.2 and s2i = 0.3, and we now wish to approximate
the remaining four scores for ai. The applications in T that
are the most similar with respect to s1 and s2 are t1 and
t3. We obtain the approximations for ai as a function of the
known scores of t1 and t3.

T s1 s2 s3 s4 s5 s6

t1 0.1 0.3 0.7 0.6 0.1 0.3
t2 0.7 0.6 0.4 0.5 0.9 0.7
t3 0.2 0.4 0.6 0.5 0.3 0.2
t4 0.5 0.2 0.4 0.1 0.8 0.6
t5 0.7 0.6 0.1 0.2 0.5 0.5

Table I: Training set example.
In order for this approach to be successful, we need

to maintain a large enough training set T so that all
incoming applications will have a few applications in T
that are “similar” with respect to the sensitivity scores.
At the same time, it is important that we can efficiently
search T for the applications which are the most similar
to an incoming application ai. Thus the challenge is to
model the problem in a way that we can simultaneously
maintain a large, representative training set while being able
to perform fast queries. To this end, we model the problem
as a geometric nearest neighbor search problem. As each
application has twenty sensitivity scores, each of which is
a real number, it is natural to view each application as a
point in R20 where the sensitivity scores are the coordinates
of the point. Formally, for each application aj we have a
point pj = (s1j , s

2
j , . . . , s

20
j ) (in the example, we have p1 =

(0.1, 0.3, 0.7, 0.6, 0.1, 0.3), p2 = (0.7, 0.6, 0.4, 0.5, 0.9, 0.7),
etc.). Now consider two such points pj and pj′ in R20. If
these points are “close” to one another in the geometric
space, then their sensitivity scores are also “close” to one
another, and therefore the corresponding applications aj and
aj′ perform similarly with respect to the SoI. Likewise, if
pj and pj′ are “far apart” from one another then aj and
aj′ perform differently with respect to the SoI. Therefore
we can find applications in T which are similar to ai by
performing nearest neighbor queries on these points.



Locality-Sensitive Hashing. One technique for nearest
neighbor search is Locality-Sensitive Hashing (LSH). The
high level idea behind LSH is to build a hash table on the
points in P such that points that are nearby in P get hashed
to the same “bucket” and points that are far apart in P get
hashed to different buckets. Then nearest neighbor queries
can be performed by determining which bucket the query
point q lies in and then scanning the points of P that were
hashed to the same bucket. LSH was originally introduced in
1999 [20] and several improvements have since been given
[7], [13]. A C++ implementation given by the authors of [7]
has been made available [2], and this is the implementation
that we use.

LSH can be used to solve several variants of nearest
neighbor search, and the variant that will be considered in
this paper is randomized R-near neighbor reporting. That
is, given parameters R > 0 and δ ∈ [0, 1), we will use LSH
to report points in P whose distance to a query point q
is at most R, and each such point will be reported with
probability 1 − δ. Note that every point in P could be
reported if R is large enough and could return no points if
R is small enough; however, our motivation for considering
this variant is that for an appropriately chosen R, all points
whose distance to the query is at most R will be strong can-
didates for approximating sensitivity scores. Additionally we
can obtain this set of candidates very quickly as the hashing
does not depend on the size of T , and it scales very nicely
for high-dimensional data (e.g. thousands of dimensions).
This is sufficient background on LSH for understanding our
workload profiling and scheduling techniques (in particular,
knowing how it is implemented is not important for this
paper); we refer the interested reader to see [8] for a nice
introduction to LSH.

III. MAIN IDEA: CHARACTERIZING WORKLOADS

In this section, we give the details of our approach to
workload profiling using locality-sensitive hashing. We will
present two procedures in this section. The first is an offline
procedure which is given a pool of applications for which we
know the exact sensitivity scores, and it carefully chooses
a subset of applications from the pool to serve as the
training set. The procedure then outputs the associated LSH
data structure. The second procedure is an online procedure
which, given a new application, uses the LSH hash table
given by the offline procedure to provide a fast and accurate
approximation of the new application’s sensitivity scores.

Offline Procedure. Let A denote a set of applications for
which we know all twenty sensitivity scores. The offline
procedure begins by choosing a training set T ⊆ A of
cardinality n for some parameter n. Recall that these ap-
plications naturally map to points in R20. Intuitively, we
want the points associated with the training set applications
to be distributed throughout R20, so that any new application
received in the online procedure will have a few points in

the training set nearby. To achieve this, we use the well-
known k-means clustering algorithm [22] to partition A into
k clusters for some constant k (i.e. k = 10). We interpret
the applications assigned to the same cluster as being of
the same “type”, and we choose our training set to contain
several applications from each of the different “types”. To
do this, we randomly choose n/k applications from each
cluster to be in T .

Now that we have chosen our training set T of n ap-
plications, we are ready to build the LSH data structure.
In the online procedure we will receive a new application
ai, and we choose α SoI to compute the associated 2α
sensitivity scores (for some parameter α, e.g., α = 2) and
then approximate the remaining scores. Recall that each
sensitivity score has a DEI, and our goal is to maximize the
number of approximate sensitivity scores which fall within
their DEI. The DEI has the form (−Y,X) which implies
that we can underestimate the score by at most Y% and
we can overestimate the score by at most X%. We define
the width of a DEI to be X + Y . Since each SoI has two
sensitivity scores, it also has two associated DEIs. Let w1

and w2 denote the two corresponding DEI widths of a SoI.
We define the width of an SoI to be the minimum of w1 and
w2. The SoI with the smallest widths have the least room
for error, and accordingly we want to compute exact scores
for the SoI with the smallest widths. To this end, we use the
α SoI with the smallest widths.

Let S denote the set of α SoI with the smallest widths.
When a new application arrives in the online procedure, we
will exactly compute the 2α sensitivity scores associated
with S. From this we obtain a point pi ∈ R2α, and
therefore we want to perform nearest-neighbor queries in
a 2α-dimensional space. For each application in T , we
construct a point with 2α dimensions to be inserted into the
LSH table. The coordinates of this point consists of the 2α
sensitivity scores associated with S. We call this point the
projection onto the SoI of S. Recall that for some parameters
R and δ, the LSH table will return any point within distance
R from a query point with probability 1− δ. We choose R
to be 2α

10 so that training set points whose distance is at
most .1 away from our query point in each coordinate (on
average) are returned. We choose δ to be 0.05 so that each
point within distance R is returned with probability 0.95.

For example, again consider the training set given in Table
I. Suppose α = 1, and that the first SoI has the smallest
width. Then we will exactly compute the first two sensitivity
scores associated with this SoI in the online procedure,
and therefore we want to build an LSH table based on
these scores in the offline procedure. The projection of
application t1 onto these scores gives us the point (0.1, 0.3),
the projection of t2 gives us (0.7, 0.6), and the remaining
points are constructed similarly. See Algorithm 1 for a
formal description of our offline procedure. We remark that
when implemented, one could execute this offline procedure



several times per day (e.g. every hour) to ensure that the
training set is a good representation of the applications that
are being received.

Algorithm 1 Offline Procedure
Let A be a set of applications for which all sensitivity
scores are known. Use the k-means algorithm to partition
A into k clusters. Let C denote output clusters.
T ← ∅
for all clusters C ∈ C do

Let C ′ ⊂ C be a randomly-chosen subset of elements
in cluster C such that |C ′| = n/k.
T ← T ∪ C ′

end for
Let S denote the α SoI with the smallest widths, and let
P denote the n points in R2α obtained by projecting the
applications in T onto the SoI in S.
Build and save the LSH hash table P for parameters R =
2α
10 and δ = 0.05.

Online Procedure. Now we assume that we have the
LSH hash table stored in memory, and we are given a new
application ai for which we currently do not know any of its
sensitivity scores. We compute the exact sensitivity scores
of ai for the 2α sensitivity scores associated with S, and
this gives us a point pi ∈ R2α. We use the hash table to
obtain a set of points N ′ in the training set within distance
R of query point pi. We then let N be the subset of N ′

consisting of the at most c points in N ′ that are closest to
pi for some parameter c (e.g., c = 5). We take the median of
the scores of the applications in N to determine our estimate
of the remaining scores for ai. See Algorithm 2 for a formal
description.

Algorithm 2 Online Procedure
Let ai denote a new application for which we have no
prior no knowledge of its sensitivity scores.
Let S denote the α SoI with the narrowest DEIs, and
generate the 2α associated sensitivity scores for ai. Let
pi denote the associated point in R2α.
Let N ′ be the set of points returned by LSH when using
the query point pi, and let N ⊆ N ′ be the at most c points
from N ′ that are closest to pi, breaking ties arbitrarily. If
N ′ = ∅ then randomly choose scores for ai and exit.
for all choices r such that sri is unknown do

Let Nr denote the set of all scores srj for each pj ∈ N .
Set sri to be the median of Nr.

end for

Extending to Many Server Configurations. In a heteroge-
neous data center, the effect of interference on an application

may be quite different on different server configurations.
Accordingly, the sensitivity scores for an application with
respect to some SoI may be quite different for different
configurations. In a data center with 10 server configurations,
an application will have 200 sensitivity scores (20 scores
for each server configuration). Our approach is similar to
our previous one for a single server configuration. First,
we choose the α SoI with the smallest widths, and then
we compute the sensitivity scores with respect to these
SoI for three different server configurations. We choose
the configurations so that we are obtaining the scores
for the “best” configuration, “median” configuration, and
“worst” configuration. The scheduler keeps apriori list of
“best”, “median” and “worst” server configuration for a
given SoI. The intuition is sensitivity scores for “good”
server configurations may not be effective for predicting
the scores for “bad” server configurations. For example,
two applications which do not cause much interference on
the best configuration may perform quite differently on the
worst server configuration, and therefore we may not be able
to accurately predict the scores for the worst configuration
from the score of the best configuration. Given our choice
of α SoI and three server configurations, we compute the
6α corresponding sensitivity scores (two scores per SoI per
configuration). We then perform a LSH query to find points
in the training set whose scores are similar to our computed
scores, and we take the median of the scores of these points
to approximate the remaining 200− 6α scores.

IV. IMPLEMENTATION

We design a Profile Manager (PM) to characterize an
incoming application. PM perfoms short initial profiling runs
and then, applies Algorithm 1 and 2 to predict the sensitivity
scores of the application. PM starts by extracting architec-
ture specific information (e.g., number of cores, available
memory, LLC capacity, TLB size etc.) for the server where
it is running. A data center can have 8-10 different server
configurations at a time [16]. For each configuration, one
server (of that configuration) is randomly picked and a copy
of PM runs on it. When an application arrives, each PM
profiles it for α SoIs that have the narrowest DEIs. DEIs
are assumed to capture the significance of various shared
resources in a particular data center and hence, remain fixed
for a given data center. The profiling is done quickly and in
parallel (in a minute) and then Algorithm 2 is used to predict
sensitivity scores for the rest of the SoIs. All scores are
stored in a local disk of the server. Periodically (every hour
or so), each PM applies Algorithm 1 on the locally stored
sensitivity scores to build the training set and LSH data
structures. This is done to ensure that the training set remains
a good representation of the data center applications. Locally
stored sensitivity scores for older applications are removed
in every few hours to keep the storage consumption under
a limit. When sensitivity scores of an incoming application



are calculated by PMs, the data center scheduler considers
those scores to schedule the application.

One might wonder what happens to applications that
go through different phases. For those applications, the
sensitivity scores might not characterize them properly
once they enter into a different phase. This can lead to
wrong server selection. We can handle such situations by
monitoring the performance of applications, repeating the
classification when performance degrades by some factor,
and then reschedule them if necessary.

Cloud architecture (e.g., ZeroVM [27]) that runs on top of
the storage clusters (e.g., Openstack Swift [4]) often targets
short lived jobs (e.g., duration less than 2 minutes) using
MapReduce model. To handle this type fo architecture, PM
characterizes short lived map jobs from the complete run
of a stage and all the later stages of the application get the
same sensitivity scores.

V. EVALUATION

The characterization parameters and server configurations
for our experiments are given in Table II. Our data center
contains 10 different server configurations and 5 servers for
each configuration. We use all applications from SPEC CPU
2000 & 2006, Splash2, Parsec, PUMA Hadoop, CloudSuite,
MiBench, AMB, and MediaBench benchmarks. We also
generate 100 multiprogrammed workloads, each consisting
of 4 applications from SPEC.

Character- Num. cluster, k = 5, 10, 15, 20
ization Num. train. set, n = 50, 100, 150, 200
parameter Num. near. neighbor, c = 5, 6, 7,..., 15

Num. train. SoI, α = 2, 3, 4,..., 10
Def. Server core i5, 2.3GHz, 8 core, 8GB mem., 8MB LLC
Best Server xeon E5, 2GHz, 12 core, 32GB mem., 15MB LLC
Worst Server P4, 2.8GHz, 1 core, 1GB mem., 1MB LLC

Table II: Parameters for experiments. Bold values are the
defaults.

Sensitivity Score: Figure 2 shows how kernels are used
to measure sensitivity scores. Figure 2(a) shows how an
application, namely adpcmEncode, behaves with different
intensity of the kernel for intProcUnit. “*” denotes the 95%
performance point. This graph used for calculating the Tol-
erate sensitivity score. Figure 2(b) shows how the kernel’s
performance (w.r.t. its standalone performance) changes with
different intensity. This graph is used for calculating the
Cause sensitivity score. The Tolerate and Cause score for int-
ProcUnit are 0.12 and (1-0.9)=0.10 respectively. Figure 2(c)
and (d) show similar graphs for memCapacity.

DEI Analysis. We experiment with different errors in-
jected in SoI scores (SS) and measure what fraction of
applications achieve at least 95% QoS. We construct DEI
of an SoI as the error interval outside which 5% or more
applications (compared to the ones obtained by using ac-
curate SS) fail to reach the QoS threshold. Table III shows

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.2 0.4 0.6 0.8 1.0

A
p
p
l
i
c
a
t
i
o
n
 
p
e
r
f
o
r
m
a
n
c
e

Kernel intensity

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.2 0.4 0.6 0.8 1.0

K
e
r
n
e
l
 
p
e
r
f
o
r
m
a
n
c
e

Kernel intensity

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.2 0.4 0.6 0.8 1.0

A
p
p
l
i
c
a
t
i
o
n
 
p
e
r
f
o
r
m
a
n
c
e

Kernel intensity

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.2 0.4 0.6 0.8 1.0

K
e
r
n
e
l
 
p
e
r
f
o
r
m
a
n
c
e

Kernel intensity

(c) (d)

Figure 2: Sensitivity scores - (a) and (b) for intProcUnit and
(c) and (d) for memCapacity.

the DEIs for different SoIs. memBandwidth and tlbCapacity
have the smallest widths. Hence, we choose them for initial
profiling.

SoI Tolerate Cause Width
(%, %) (%, %)

floatProcUnit (-100, 100) (-60, 10) 70
intProcUnit (-100, 100) (-60, 100) 160
llcBandwidth (-20, 0) (-20, 60) 20
llcCapacity (-20, 100) (-20, 10) 30
memBandwidth (-10, 0) (-30, 20) 10
memCapacity (-20, 0) (-100, 100) 20
netBandwidth (0, 20) (-10, 10) 20
storageBandwidth (-60, 30) (-60, 20) 80
storageCapacity (0, 100) (-100, 0) 100
tlbCapacity (0, 10) (-10, 30) 10

Table III: DEI for different SoIs.

Prediction Ability. Figure 3a shows the comparison of
LSH based approach against two versions of Paragon. One
version chooses the same initial SoIs as LSH while the
other (Paragon(r)) chooses SoIs randomly. For implementing
Paragon, we used a hand tuned version of matrix factor-
ization algorithm available from Apache Mahout [1]. For
illustration, the figure shows the case for an ideal predic-
tor. For each approach, we calculate how many sensitivity
scores (SSs) fall within the corresponding DEIs. LSH based
approach consistently performs better or similar to both
versions of Paragon. The first version of Paragon performs
better than Paragon(r). Therefore, from now on, we will only
consider the first version. For the default choice of 2 SoIs,
LSH predicted 14 out of 16 SSs correctly. This is 1.33 times
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Figure 3: Prediction error for lsh and Paragon.

more accurate than Paragon.
Figure 3(b) shows correct SSs as we increase the training

set size. As before, we keep other parameters fixed at the
default values. In LSH-based approach, with larger training
set, we are likely to find many workloads that very similar
to the incoming one and hence, the accuracy increases. For
Paragon the accuracy tends to increase too. However, it
always remains below the one for LSH. Figure 3(c) shows
the accuracy as we increase the number of nearest neighbors
in LSH-based approach. The accuracy increases with more
neighbors since we can find many similar applications. For
the default value of 5 neighbors, it predicts 14 SSs per
workload.

Figure 4(a) shows the number of correctly predicted SSs
per workload for different server configurations. In each
configuration, our approach works better than Paragon. For
the best (i.e. Server 10) and worst (i.e. Server 1) server LSH
predicts 14 and 10.5 SSs correctly. Figure 4(b) shows, for
each SS, what fraction of applications has been correctly
predicted with LSH based approach and Paragon. Here,
we are considering the worst server. Out of 16 SSs, LSH
based approach and Paragon predicts 5 scores with similar
accuracy. Among the remaining scores, LSH predicts 8
scores more accurately whereas Paragon predicts 3 scores
more accurately. Other servers provide similar results.

QoS and Utilization. We measure the QoS of different
applications running in the data center. Figure 5 shows
distribution of QoS using actual sensitivity scores as well as
LSH and Paragon based scores. We used Paragon scheduler
for our data center. Each stack corresponds to the % of
applications that suffer from a certain level of QoS degra-
dation. Using actual scores, 87% applications suffer from
QoS degradation of at most 5%. For LSH and Paragon,
the number is 83% and 79% respectively. So, compared to
Paragon, LSH based prediction allows 4% more applications
to achieve QoS of 95% or more. Note that the numbers
for Paragon look different than those reported due to the
large disparity among the server configurations and their
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Figure 4: Breakdown of prediction ability.

quantities.
Figure 6 shows data center wide server utilization. The

graph shows utilization for each server configuration. Fig-
ure 6(b) & (c) show utilization using LSH and Paragon
based prediction. This is contrasted with utilization achieved
using actual scores (Figure 6(a)). The graphs are similar
except for server configuration 4 and 5. Paragon over utilizes
configuration 4 while under utilizes configuration 5. LSH
based approach distributes the load between these two con-
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Figure 6: Server utilization using (a) actual scores, (b) LSH, and (c) Paragon based scores.
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Figure 5: QoS achieved using different approaches.

figurations more evenly. Overall, average server utilization
using actual sensitivity scores, LSH, and Paragon based
scores are 59.4%, 59.3%, and 57.3% respectively.

Time Analysis. Finally, we measure how the prediction
time per workload changes as we change the size of training
set (Figure 7). Prediction time tends to remain the same
for training set size up to 100. After that, it tends to
increase slightly. For our default training set size of 150, the
prediction time is 0.011 seconds for each workload. This is
extremely fast. Our initial profiling takes (≈)60 seconds.

VI. RELATED WORK

There has been significant work on data center workload
characterization and modeling [14], [18], [24], [9], [10].
This line of work generates workloads with characteristics
that closely resemble those of the original applications.
The generated workloads are then used in system studies.
Although this is a viable approach, the generated workloads
sometimes cannot capture every aspects of the applications.
Moreover, they are not suitable for unknown applications.
Mars et al. [25], [30] designed two kernels that create tunable
contention in memory capacity and bandwidth to quantify
the sensitivity of a workload to memory interference. The
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Figure 7: Running time analysis.

kernels are used during either offline profiling [25] or online
profiling [30]. Tang et al. [28] designed SmashBench, a
benchmark suite for cache and memory contention. De-
limitrou et al. [15] proposed iBench, a benchmark suite
to obtain sensitivity curve of a workload for 15 shared
resources. The kernels that we used in our approach are
influenced by iBench. None of the work [25], [30], [28], [15]
predict sensitivity of a workload based on its similarity to
existing workloads. Paragon [16] is the first work to predict
a workload’s sensitivity based on the knowledge about ex-
isting applications. The prediction is done using Netflix [12]
algorithm. Once the sensitivity scores are predicted, Paragon
applies a greedy algorithm for sever selection to maximize
utilization while minimizing interference. The work is later
extended in Quasar [17] where server selection is done based
on predicted sensitivity scores and performance constraints
given by a user.

VII. CONCLUSION

We have presented new method of evaluating workload
characterization and have presented a new technique that is
based on locality-sensitive hashing. Given a new application,
we are interested in approximating its dependence on certain



resources. Due to time constraints, we can only spend a
small amount of time profiling the application. After this
profiling, we are able to identify similar applications from a
training set extremely quickly using locality-sensitive hash-
ing. We then use these similar applications to approximate
the remaining information for the new application. We
demonstrated the effectiveness of our approach with respect
to our new evaluation metric by comparing our results with
that of Paragon, a technique based on the Netflix algorithm.
We demonstrate that our approach predicts more accurately
(by a factor of 1.33) than Paragon.
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