
Production-Run Software Failure Diagnosis via Adaptive Communication Tracking

Mohammad Mejbah ul Alam, Abdullah Muzahid
University of Texas at San Antonio

{mohammad.alam, abdullah.muzahid}@utsa.edu

Abstract—Software failure diagnosis techniques work either
by sampling some events at production-run time or by using
some bug detection algorithms. Some of the techniques require
the failure to be reproduced multiple times. The ones that do
not require such, are not adaptive enough when the execution
platform, environment or code changes. We propose ACT,
a diagnosis technique for production-run failures, that uses
the machine intelligence of neural hardware. ACT learns
some invariants (e.g., data communication invariants) on-the-fly
using the neural hardware and records any potential violation
of them. Since ACT can learn invariants on-the-fly, it can adapt
to any change in execution setting or code. Since it records only
the potentially violated invariants, the postprocessing phase
can pinpoint the root cause fairly accurately without requiring
to observe the failure again. ACT works seamlessly for many
sequential and concurrency bugs. The paper provides a detailed
design and implementation of ACT in a typical multiprocessor
system. It uses a three stage pipeline for partially configurable
one hidden layer neural networks. We have evaluated ACT on
a variety of programs from popular benchmarks as well as
open source programs. ACT diagnoses failures caused by 16
bugs from these programs with accurate ranking. Compared
to existing learning and sampling based approaches, ACT has
better diagnostic ability. For the default configuration, ACT
has an average execution overhead of 8.2%.

Keywords-Concurrency bugs; Sequential bugs; Failures; De-
pendence; Neural hardware;

I. INTRODUCTION

A. Motivation

Software bugs are a disappointing aspect of programming.
A recent study [1] has reported that programmers spend 50%
of their effort in finding and fixing bugs. This costs $316 bil-
lion a year throughout the world. The situation is worsened
by the recent flourish of diverse platforms (e.g., multicores,
many cores, data centers, accelerators etc.). Many sequential
as well as concurrency bugs escape into production systems
causing failures. Diagnosing these failures can take weeks or
even months [2], [3]. Besides the challenge of debugging,
our community is currently facing stringent technological
challenges, especially, for energy and faults. Researchers are
forced to investigate alternative designs [4], [5], [6]. The next
frontier in computer architecture is likely to be heteroge-
neous systems with a mix of cores and accelerators. One type
of accelerators that shows a lot of promise is Neural Network
based accelerators [4], [6]. Esmaeilzadeh et al. [6], Belhadj
et al. [4], and Jimenez et al. [7] have demonstrated how
neural networks can be used to approximate computations
in general purpose programs, implement signal processing

applications, and predict branches respectively. Companies
like IBM [8] and Qualcomm [9] have designed chips that
use neural network as a processor building block. Given the
trend, it is likely that we will have some form of neural
hardware (as accelerators or co-processors) in near future.
The ability of such hardware to process data quickly and
accurately in a noisy environment makes it a perfect fit
for production-run failure analysis. Therefore, we propose
a feedback oriented approach that utilizes neural hardware
to diagnose production-run software failures caused by many
sequential and concurrency bugs.

B. Limitations of Existing Software Failure Diagnosis Ap-
proaches

Software failures can be diagnosed by collecting various
events and then, analyzing them. As an example, Arulraj
et al. [10] propose to collect events such as L1 cache
accesses and branch outcomes. Similarly, Lucia et al. [11]
collect thread communication events. The events are col-
lected from successful and failure runs. The collected events
are analyzed using statistical [10] or machine learning [11]
techniques to pinpoint the root cause. Sampling is used
effectively [10], [12], [13], [14] for low-overhead event
collection during production-run. Instead of collecting all
events, sampling techniques collect events only at certain
points during an execution. To account for the missing
events, multiple executions need to be sampled randomly at
different points. In other words, the failure execution needs
to be reproduced and sampled multiple times. Reproducing
the failure run in testing environment can be quite challeng-
ing, especially for concurrency bugs due to their dependance
on thread interleaving. Even for sequential bugs, reproducing
the failure can be often difficult due to inputs, environments,
platforms etc. Thus, there is a need for techniques that
can diagnose failures at production site without requiring
to reproduce them.

Alternatively, we can think of using dynamic bug detec-
tion techniques during production-run to diagnose software
failures. Such approach would pinpoint the bug as soon as
it occurs. Proposals such as Savage et al. [15] and Choi et
al. [16] detect data races whereas AVIO [17], and Atom-
Aid [18] detect atomicity violation bugs. Researchers have
proposed schemes like PSet [19], Bugaboo [20], DefUse [21]
etc. that focus on identifying correct data communications
among threads and provide a general solution to detect any
concurrency bug. Among the existing schemes, AVIO, PSet,

Bugaboo, DefUse, DIDUCE [22] etc. can handle more than
one type of bugs and hence, are suitable for production-run
use. These schemes extract some form of program invariants
(e.g., data communication, correlation, value range etc.)
mainly by analyzing execution traces. This is referred to as
training of these proposals. The invariants are stored along
with the program. At production-run time, if any invariant
is violated, the software failure can be attributed to the
violation.

Software failure diagnosis using an invariant based tech-
nique has the advantage that it can pinpoint the root cause
without reproducing the failure; however, invariants can
change as we observe more executions with different plat-
forms, environments or code modifications. Therefore, the
invariants need to be retrained when such changes occur. On
the other hand, event sampling based diagnosis is unaffected
by the changes but requires the failure to be reproduced
multiple times. The goal of this paper is to achieve the best
of the both worlds by relying on the machine intelligence
provided by neural hardware.

C. Our Approach

Misprediction
rate after an

interval

Misprediction
rate after an

interval

Postprocessing

Offline

Produce a ranking

−dence sequences

of invalid depen−

Offline Training

Learn RAW

sequences by

analyzing traces

dependence

Online Testing

Verify RAW

threshold

Is it above

threshold

Is it below
No

Yes

No

dependences

Online Training

Learn new RAW

sequences

dependence

Yes

Figure 1. Overview of how ACT works.
We choose data communication invariant in our scheme

due to its ability to detect concurrency, semantic as well
as memory bugs [19], [20], [21] (Section II-B). We use
Read After Write (RAW) dependences to represent data
communications. Any other representation is equally appli-
cable within our proposed approach. Figure 1 shows the high
level idea of our scheme, called ACT. ACT first learns the
sequence of RAW dependences by analyzing some execution
traces offline. This is done to make ACT aware of the
most common RAW dependence sequences. ACT uses both
inter-thread and intra-thread RAW dependences. During an
execution, as each RAW dependence occurs, ACT checks
online using neural hardware whether the RAW dependence

is likely to be valid. ACT does so by looking at the sequence
of past few RAW dependences. Keep in mind that we are
considering a futuristic system where each processor core
is tightly integrated with the neural hardware. If the RAW
dependence is predicted to be invalid, ACT logs the relevant
instructions. Since neural hardware can occasionally predict
a valid dependence as invalid, ACT periodically checks
its misprediction rate. If the misprediction rate is above a
certain threshold, it starts learning new RAW dependence
sequences online until the misprediction rate drops below
the threshold again. Thus, ACT goes through online testing
and training phase alternatively during an execution. When
a failure occurs, ACT postprocesses (offline) the log of
invalid RAW dependences to produce a ranking of the
root cause. Since ACT is able to learn new dependences
online even after deployment, it can adapt to any change in
platform, environment or code. Since ACT inspects every
RAW dependence and logs only the ones that are likely
to be invalid, its postprocessing analysis can pinpoint the
root cause fairly accurately without requiring to observe the
failure again.

Scheme Suitable for Effective with a Can adapt
production run? single failure run? to changes?

PBI [10], Aviso [12], 3 7 3
CCI [23]
Recon [11], [14] 7 7 3
Avio, PSet, Bugaboo 3 3 7
ACT 3 3 3

Table I
COMPARISON WITH SOME EXISTING SCHEMES.

D. Contributions

1. We present the first neural hardware based approach,
ACT, to diagnose production-run software failures. It can
diagnose failures without requiring to reproduce them. ACT
employs an adaptive feedback oriented online learning tech-
nique. ACT seamlessly handles many concurrency as well
as sequential bugs. The paper presents a detailed design and
implementation of ACT in a typical multiprocessor system.
Table I shows a comparative analysis of ACT with respect
to some existing schemes.

2. ACT uses a three stage pipeline design for a partially
configurable one hidden layer neural network. We use the
number of multiply-add units in a neuron as a knob to
control the network’s latency.

3. We simulated ACT architecture in a cycle accurate
simulator [24]. We compared our proposed neural network
implementation with an alternative implementation [6] to
justify our design choice. We evaluated ACT on a variety
of open source programs, SPLASH2, PARSEC, SPEC INT
2006, and GNU coreutil applications. We experimented with
11 real world and 5 injected bugs. ACT diagnosed failures
due to all of the 16 bugs and pinpointed the buggy depen-
dences with accurate ranking. ACT has an average execution

overhead of 8.2% which makes it suitable for production-
run deployment. We compared ACT with state-of-the-art
learning based [12] and sampling based [10] approaches to
show its effectiveness.

This paper is organized as follows: Section II provides
some background; Section III explains the main idea of
ACT; Section IV & V outline implementation and additional
issues; Section VI provides the results; Section VII points
out some future directions; Section VIII discusses related
work and finally, Section IX concludes.

II. BACKGROUND

A. Neural Network

A neural network is a machine learning algorithm to learn
a target function. We use learning and training interchange-
ably throughout the paper. A neural network consists of a
number of artificial neurons connected by links. Figure 2(a)
shows an artificial neuron i with inputs a0 to an. W0 to Wn
are the weights of the links. The neuron calculates its output
as o= g(∑n

j=0 Wja j), where g is an activation function. g can
be a simple threshold function or a more complex sigmoid
function [25]. The output of one neuron can act as an input
to another neuron as in Figure 2(b). Here, we have a neural
network with an input layer with two inputs, a hidden layer
with two neurons and an output layer with one neuron. The
input layer does not contain any actual neurons. It provides
raw inputs to the hidden layer. Each hidden layer neuron
calculates its output which then acts as an input to the output
neuron. The output neuron provides the final output. The
learning process of a neural network consists of adjusting
the weight of each link to approximate the function that
it tries to learn. Back propagation algorithm is the most
widely used learning algorithm. If the expected output of the
neuron in Figure 2(a) is t, then err = o× (1− o)× (t− o)
for sigmoid function or err = (t−o) for threshold function.
Then, the link weights are updated as Wj new =Wj +err×o
for 0 ≤ j ≤ n. After the weights are updated for a neuron,
error is propagated back (as a proportion of the link weights)
to the neurons of the previous layer. This process continues
for each training input until an error threshold is reached.

B. Diagnosis via Communication Tracking

The use of data communication invariants to detect bugs
has been popularized by works such as PSet [19], Buga-
boo [20], DefUse [21] etc. ACT uses both inter-thread and
intra-thread RAW dependences to capture the invariants.
Let us consider the concurrency bug shown in Figure 2(c).
Here, p is a pointer allocated and freed by thread T1.
T2 is another thread that uses p if it is not NULL. Note
that none of the threads uses any synchronization. Hence,
the program has data races. In a correct execution, I2
should not interleave between J1 and J2. If we choose to
represent a RAW dependence as W → R where instruction
W wrote some data that instruction R reads, then the valid

Output

Neuron

S1:...

S2:string=inputString(...)

while(...)

 if(*string==’\\’)

 /* check for special

 characters */

 default:

 x++=’\\’

 S3:*x++=*string++

T1 T2
a0 W0

Wnan

o

Input

Hidden Layer

(b)

I1: p=malloc

J1: if(p!=NULL)

J2: p−>...

I2: p=NULL

S1: ifd=0

while(...)

 if(iname=="−")

 S2:get_method(ifd)

 /* process stdin */

 else

 S3:ifd=open_input_file(...)

 S4:get_method(ifd)

 /* process normal file */

(c) Concurrency bug

(d) Gzip semantic bug

(e) Ptx memory bug

(a)

Figure 2. (a), (b) show a neuron and a neural network respectively. (c) -
(e) show how RAW dependences can be used.

RAW dependence sequences of Figure 2(c) are (I1→ J1,
I1 → J2) and (I2 → J1). Either one of them leads to a
correct execution. If I2 interleaves between J1 and J2, the
RAW dependence sequence is (I1→ J1, I2→ J2). I1→ J1
is a valid RAW dependence that requires the next RAW
dependence to be I1 → J2. So, the sequence (I1 → J1,
I2→ J2) is an invalid one that leads to a crash.

Figure 2(d) shows a semantic bug from Gzip. When “-”
appears at the beginning of the inputs, the RAW dependence
sequence is (S1→ S2, S3→ S4, S3→ S4, ...) which makes
ifd zero in S2. So, stdin gets processed inside get method.
Thus, the sequence leads to a correct execution and is
valid. When “-” appears in the middle of the inputs, the
dependence sequence is (S3→ S4, S3→ S2, S3→ S4, ...)
which makes ifd non-zero in S2. So, stdin does not get
processed which is incorrect. S3→ S4 is a valid dependence
which requires the next dependence to be the same, not
S3→ S2. So, (S3→ S4, S3→ S2, S3→ S4, ...) is not valid.

Figure 2(e) shows a buffer overflow bug from GNU
coreutil ptx. S2 initializes string. If string contains an odd
number of consecutive “\”, S3 causes string to go out
of bound. As long as string remains within bound, RAW
dependence S2→ S3 occurs. Thus, (S2→ S3, S2→ S3, ...)
is a valid sequence. When string goes out of bound, S3
depends on some random instruction S1 that writes to the
address next to string. Therefore, the sequence (S2→ S3,
S1 → S3, ...) is an invalid one which causes the failure.
Thus, many software failures due to concurrency, semantic,
and memory bugs can be diagnosed by tracking RAW data
communications.

C. Why Neural Networks Can Be Useful?

Neural networks are very effective in recognizing patterns.
We can formulate bug diagnosis as a pattern recognition
problem. Figure 3(a) shows a code section. The code
accesses variables a, b, and c in sequence. The RAW
data communications that occur with a at different load
instructions are shown as A1 and A2. Thus, each of A1
and A2 represents a dependence similar to I1 → J1 in
Figure 2(c). Similarly, RAW data communications with b
and c are shown as B1, B2, B3 and C1, C2, C3. Consider
that (A1, B1, C1) is a data communication sequence at
a particular instant. Similarly, (A2, B2, C2) and (A1, B3,
C3) are other data communication sequences that occur at
different instances. Let us assume that these three are the
only sequences that are correct. If the first communication is
A2, then we can predict that the next two communications
will be B2 and C2. If the first one is A1, then we know
that the next communication will be either B1 or B3. After
seeing the next communication, we can predict whether the
third communication is going to be C1 or C3. Thus, if we
inspect the sequence of past communications, we can predict
whether the communication that has just happened is valid
or not. In other words, if a neural network is trained with
data communication sequences, then it can fairly accurately
validate the current communication based on the past few
communications. Later, some postprocessing analysis of the
invalid communications can accurately pinpoint the bug
without requiring to reproduce it.

Access b

Access c

Access a

A1

B1

C1

A2

B2

C2

B3

C3

A1

represents

a data communication

(a)

Access a

Access b

Access c

Code 3

Access a

Access b

Access c

Access a

Access b

Access c

A1
B1

C1

A2

B2

C2

Code 1
Code 2

(b)

Figure 3. (a) shows various communication patterns. (b) shows the case
for communication similarity.

Why would one choose neural networks? First, since a
code section often accesses some of the same data that
other code sections access, it can behave similar to those
other sections. That is why, neural networks can predict the
behavior of a completely new code section. This is illustrated
in Figure 3(b) where Code1 and Code2 are code sections
that access a, b, and c. (A1, B1, C1) and (A2, B2, C2)
are communication sequences for these two sections. Code3

is another code section that accesses the same variables.
Hence, it is very likely that the communication sequence
for Code3 will be similar (completely or partially) to those
sequences. So, if a neural network is trained with Code1
and Code2, it can predict how Code3 is supposed to behave
even though it never saw Code3. This property is extremely
useful because a program is continuously modified during its
lifetime. For example, Apache has over 40 releases during
the last 13 years. Existing invariant based approaches would
require retraining of the whole program every time the
program is modified. Neural networks, on the other hand,
can seamlessly adopt such modifications by doing predic-
tion based on similarity. Our experiments show that neural
networks can correctly predict 94% of the communication
sequences of some newly added code (Section VI-D). Last
but not the least, neural networks, when implemented in
hardware, can learn communication sequences on-the-fly
during production-run. Thus, the networks can adapt to new
control and data flow as well as thread interleaving. Hence,
neural network based diagnosis techniques can cope up with
continuous change in code and platforms.

III. ACT DESIGN

A. Overview

ACT learns and tests RAW dependence sequences con-
tinuously during the execution of a program. Initially, ACT
analyzes some traces of the program to learn RAW depen-
dence sequences offline. Note that for a neural network,
learning essentially means determining the weights of the
links. Before production-run deployment, the neural network
is initialized with the weights just learned. As each RAW
dependence occurs, ACT hardware tests the dependence
sequence’s validity online using a neural network. This
mode of operation is referred to as Online Testing mode.
The (potentially) invalid RAW dependence sequences (i.e.,
instruction addresses) are logged in a buffer. When the
software fails (i.e., crash, incorrect output, corrupted report
etc. occur), the log is further processed (offline) to produce
a ranking of the buggy dependences to diagnose the failure.
The offline processing does not require to observe the failure
again. ACT periodically checks its misprediction rate during
an execution. If it is too high, ACT enters into Online
Training mode. In this mode, ACT starts learning RAW
dependence sequences. When the misprediction rate drops
below some threshold, ACT enters into online testing mode
again. Thus, ACT operates in online testing and training
mode alternatively.

B. Offline Training

ACT first learns the RAW dependence sequences of a
program by analyzing some execution traces offline. Similar
learning has been done in prior approaches [19], [20], [21].
Only the traces from correct executions are used. These
traces can be collected by running test suites of a program.

Binary

Instrumentation
Execution

Traces

Input

Generator

Neural

Network

Inputs

Neural

Network

Library

Network

Topology &

Weights

Reorder Buffer

Last Writer

Instruction

Line

Cache

Neural

Network

...

...

Counter

Invalid

Program

(a)

...

Cache

(b)

Mode

Controller

Input Generator

Buffer

Debug Buffer

ACT Module (AM)

Figure 4. (a) shows how offline training works. (b) shows hardware
extensions required

Figure 4(a) shows how offline training works. Initial offline
training ensures that when ACT operates in online mode, it
is aware of the most common RAW dependence sequences.
The traces essentially contain a sequence of memory access
instructions along with the memory addresses. A binary
instrumentation tool (e.g., PIN [26]) can be used for this
purpose. An input generator program analyzes the traces and
forms RAW dependences. Recall that a RAW dependence is
represented as S→ L where L is the instruction address of
a load that reads a memory word last written by a store
at the instruction address S. S and L instructions may not
be executed by the same processor. A RAW dependence
S→ L is assumed to belong to the processor that executes
L. Each RAW dependence is labelled as either inter-thread
or intra-thread. The input generator produces a RAW depen-
dence sequence by forming a group of N consecutive RAW
dependences (and their labels) together. More specifically,
the generator associates each S → L with last (N − 1)
RAW dependences (S−i → L−i) for 1 ≤ i ≤ N − 1, where
(S−i→ L−i) indicates i-th previous RAW dependence from
the same processor. Sequences formed with S→ L act as
positive examples for the neural network. For every valid
S→ L, the input generator also produces an invalid RAW
dependence S′ → L, where S′ is the store before the last
store (to the same address) and associates it with the last
(N − 1) valid dependences to create a negative example.
Both positive and negative examples are provided to a neural
network library [27] to determine the network topology as
well as weights of the links. For a concurrent program,
we use the same topology for each thread. However, the

weights can be different across threads. The program binary
is augmented to store the topology and weights of each
thread (Section IV-B & IV-C).

C. Online Testing and Training

For online testing and training, we propose to add a per
processor module, called ACT Module (AM). Figure 4(b)
shows how it is integrated with a processor. It is connected
to the reorder buffer (ROB) and the cache hierarchy of
the processor. AM has a flag, called Mode, to indicate
whether it is operating in online testing or training mode.
The module contains a neural network, an Input Generator
Buffer, and a Debug Buffer. The Input Generator Buffer
stores recent N RAW dependences to form an input for
the neural network. The Debug Buffer stores few recent
invalid RAW dependences along with their neural network
output. When a failure occurs, the debug buffer provides
necessary information to diagnose the failure. Recall that the
contents of the debug buffer are further processed offline to
pinpoint the root cause. Although it is possible to use a single
buffer instead of two, we use separate buffers to keep the
design simple. Finally, the module has an Invalid Counter
to keep track of invalid dependences and a controller to
control the overall operation. We extend each cache line to
store last writer instruction address. This section explains the
operation of ACT assuming that the last writer information is
stored at word granularity in the cache line. We also assume
that when the line is displaced or invalidated, we write back
the last writer information to main memory. The last writer
information is piggybacked with cache coherence messages.
Section V relaxes these constraints.

When a program starts execution, AM initializes its neural
network with the topology and weights stored in the program
binary. AM uses the weights of the current thread running
in the processor. Whenever a load, L finishes execution
(i.e., data is loaded into the local cache and returned to the
pipeline) and becomes non-speculative (i.e., no unresolved
branch in front of it in ROB), a RAW dependence, S→ L is
formed by using the last writer, S stored with the correspond-
ing word in the cache line. Figure 5 shows the overall steps
for processing the RAW dependence. The RAW dependence
is inserted into the Input Generator Buffer. This buffer keeps
the dependences in FIFO order. If the buffer is full, the oldest
entry is dropped. The newly inserted dependence along with
the last (N−1) dependences from the same buffer forms an
input for the neural network.

During online testing, the neural network calculates its
output for the RAW dependence sequence formed with S→
L. If the output is positive, the sequence is valid. Otherwise,
the sequence is invalid. The magnitude of the output can be
thought of as an approximation of prediction confidence. If
the sequence is predicted to be invalid, the sequence (i.e.,
instruction addresses) along with the neural network output
is recorded into the Debug Buffer. When a failure occurs,

Mode ?

Predicted
Valid ?

Predicted
Valid ?

into input generator buffer
Insert RAW dependence

Apply neural

network

Apply neural

network

instruction addr

Load

instruction addr

Last writer

Online Training Online Testing

No
No

Take N−1 previous RAW dependences

network input
Form a neural

Apply back

propagation

algorithm

Increment

counter
invalid

Record RAW dependence

 into debug buffer

Figure 5. How each RAW dependence is processed.

the contents of the Debug Buffer are used for pinpointing
the root cause.

When the dependence sequence is valid but the neural
network predicts it to be invalid, the program continues
to execute without failure. For this reason, every time a
dependence sequence is predicted to be invalid, the Invalid
Counter is incremented. Just in case the program continues
without failure, AM can check the counter to determine how
many mispredictions have occurred since it last checked the
counter. Thus, this counter is used to calculate misprediction
rate periodically. If this rate goes above a threshold, AM
enters into online training mode.

During online training, all RAW dependences are con-
sidered to be correct. For every load, a RAW dependence
sequence is formed. If the RAW dependence sequence is
predicted to be invalid, the prediction is considered to be
incorrect. The neural network, then, applies back propaga-
tion learning algorithm (Section II-A) to adjust the weights
of the links. AM also increments the Invalid Counter. If the
dependence sequence, on the other hand, is predicted to be
valid, then the neural network does not learn it anymore. Al-
though we consider all RAW dependences to be valid during
online training, some of them might, in fact, be invalid and
can cause a failure. Therefore, as before, all dependence
sequences classified by the neural network as invalid are
still logged into the debug buffer. In case of a failure, the
contents of the debug buffer are used to find the root cause.
Similar to online testing mode, AM periodically checks the
Invalid Counter to calculate the misprediction rate. If the

rate drops below the misprediction threshold, AM enters into
online testing mode again. Thus, AM continuously alternates
between online testing and training mode. Note that it is not
possible to form negative examples during online training
mode without keeping more than one writer information
per word. To keep the hardware requirements minimal, we
choose to accept this limitation.

Note that in both mode of operations, a RAW dependence
is formed when a load finishes execution and is waiting for
its turn to retire. Since AM is a local structure and tightly
integrated with the processor core, the process of forming a
RAW dependence and feeding it to the neural network can
be done before the load reaches the head of the ROB. Only if
the neural network has its internal buffer full (more on this in
Section IV) and cannot accept any more input, the load may
get stalled. When the neural network is finally able to take
further inputs, the load is free to retire. Note that the load
does not need to wait until the neural network calculates its
prediction. As soon as, the neural network accepts the input
corresponding to the load, it is free to retire.

If the neural network predicts an invalid RAW dependence
sequence to be valid and a failure occurs, ACT will not be
able to diagnose it. Since ACT learns continuously during
every execution, this happens rarely in steady state. We
have not encountered this case in any of the 16 failures in
our experiments (Section VI). If such case occurs and the
programmer, with the help of other approaches, is able to
pinpoint the invalid dependence sequence, the sequence can
be fed to the neural network (similar to offline training) as
a negative example.

D. Offline Postprocessing for Ranking

The Debug Buffer contains last few (e.g., 600) invalid
RAW dependence sequences. Analyzing all of them to find
the root cause of a failure is counterproductive. To rectify
this problem, ACT processes the contents of the buffer
in two steps - Pruning and Ranking. The processing is
done offline after a failure. For this purpose, we run the
program few more times (e.g., 2 times in our experiments)
to collect traces of correct executions (similar to initial
offline training). Unlike other schemes [10], [11], we do not
reproduce the failure execution, rather correct executions.
In fact, it is possible to use the same execution traces that
were used for initial offline training. We need to ensure
that the traces contain RAW dependences from the code
sections where the dependence sequences of the Debug
Buffer belong. We can do so if we use actual production
inputs (if available) or test inputs (otherwise) for those code
sections. The traces are passed through Input Generator to
form RAW dependence sequences. These are the sequences
that occur during correct executions. Let us call the set of
these sequences as Correct Set. Any dependence sequence
that is present in the Correct Set is removed from the Debug

Buffer. We call it pruning process. A bug occurs due to any
of the remaining sequences.

After pruning, we need to rank the remaining sequences
according to their likelihood of being the root cause. Each of
the remaining sequences has one or more RAW dependences
that cause a mismatch with the sequences from the Correct
Set. Our ranking algorithm produces higher rank for a
sequence if it has more matched dependences. This is due to
the intuition that if we see more RAW dependences to match,
we are more confident that the mismatched dependence is
the buggy one. One could argue that the sequence with the
most mismatches is the root cause. Such a sequence indicates
that something has already gone wrong, the program starts
to execute wrong sequence of instructions and hence, we
find lot of mismatched dependences. Therefore, the sequence
with the highest match (and hence, the lowest mismatch) is
the point from where the program is likely to go wrong.
For each remaining sequence (A1,A2, ...,AN) of the Debug
Buffer (where Ai, for 1 ≤ i ≤ N, denotes a RAW depen-
dence), we count the number of matched RAW dependences.
The sequences of the Debug Buffer are sorted (descending)
according to this number. If two sequences have the same
number, then the one with the most negative neural network
output appears first in the sorted order. Recall that the Debug
Buffer contains a dependence sequence as well as its neural
network output. After sorting, a programmer can inspect the
sequences from the top as the root cause.

As an example, let us assume the RAW dependence
sequence length, N to be 3. Also assume that the De-
bug buffer has three sequences (A1,A2,A4), (B1,B2,B3)
and (A1,A5,A6). Correct Set contains (A1,A2,A3) and
(B1,B2,B3). Pruning will remove (B1,B2,B3) from the De-
bug Buffer since it is present in the Correct Set. Consider
one of the remaining sequences (A1,A2,A4). Correct Set
has (A1,A2,A3). So, after A1 and A2, mismatch occurs.
Thus, (A1,A2,A4) has 2 matched RAW dependences. Sim-
ilarly, (A1,A5,A6) has 1 matched RAW dependence. So,
our ranking will place (A1,A2,A4) before (A1,A5,A6). Had
the Debug Buffer has any more sequences with 2 matched
RAW dependences, we would consider the associated neural
network output.

IV. IMPLEMENTATION OF ACT MODULE

We focus on a digital neural network design (similar to
Esmaeilzadeh et al. [6]). We add three new instructions to
the ISA to facilitate the operation of AM.

A. Neural Network Design

A fully configurable neural network time multiplexes an
arbitrary network topology to a fixed number of neurons and
incurs scheduling overhead. To eliminate the overhead, we
use a partially configurable neural network with only one
hidden layer. We limit the maximum number of inputs to a
neuron to M. ACT requires only one output from the neural

network. Therefore, the output layer contains one neuron.
Thus, we can have a network topology in the form of i→
h→ 1, where the input layer has i inputs for 1≤ i≤M, the
hidden layer has h neurons for 1 ≤ h ≤M, and the output
layer has one neuron. This gives us a search space of M2

topologies. This neural network can be easily mapped to a
three stage pipeline (Figure 6(a)) without time multiplexing.

N 1

N 2

N M

N out

Weight

Reg

Reg

Input

S1 S2 S3

S1/S2
S2/S3

Head

Tail

Input FIFO

Pipeline Register

(a)

Reg

Accumulator

Multiply−Add
Controller

Sigmoid

Table

Neuron

(b)

Figure 6. Neural network design for ACT.

The first stage, S1, is the input layer that contains an input
FIFO. When an input corresponding to a RAW dependence
arrives, it is stored into the tail of the FIFO. If the FIFO is
full, then the load corresponding to the RAW dependence
is prevented from retiring. The FIFO supplies an input from
its head to the next stage, S2. S2 forms the hidden layer.
When neurons N1, N2, ... NM calculate results, they are sent
to the next stage S3. S3 is the output layer that contains
one neuron. S1 can be done in one cycle. Each of S2 and
S3 takes T cycles where T is the number of cycles it takes
for a neuron to calculate the output. If the FIFO is full, this
pipeline takes an input after every T cycles. If the FIFO is
not full, it can take an input in every cycle.

A neural network operates in a pipelined fashion only
if it is used during online testing. During online training,
after producing the output, the output neuron calculates the
error and propagates it back to the hidden layer which,
then, propagates it back to the input layer. To enable back
propagation, the connections between S1, S2, and S3 have
to be bidirectional. During learning, a neural network has
to process an input completely and then, can accept another
input. Thus, the neural network takes an input after every

4T cycles if the input FIFO is full. If the FIFO is not full,
it takes an input in every cycle.

Figure 6(b) shows the internal structure of a neuron. It
is similar to the one proposed by Esmaeilzadeh et al. [6].
It contains Weight Registers and Input Registers to hold M
weights and M inputs respectively. A weight of zero is used
to disable a particular input. A neuron also contains some
multiply-add units, an accumulator register, a sigmoid table,
and a controller. During testing, a neuron produces output by
calculating o= g(∑M

j=0 Wja j) where g is a sigmoid activation
function, Wj and a j are weights and inputs respectively. The
multiply-add units are used to perform M multiplications
and M additions. If a neuron uses only one multiply-add
unit, then we need M×Tmul−add cycles to complete all the
multiplications and additions, where Tmul−add cycle is the
latency of a multiply-add unit. After that, Trest cycles are
needed for using the accumulator register and sigmoid table.
Typically, M× Tmul−add would be much larger than Trest .
However, if we use x multiply-add units in a cascaded fash-
ion, we would need M/x×Tmul−add cycles for completing
the multiplications and additions. Thus, by increasing the
number of multiply-add units, we can reduce the latency of
a neuron.

Instruction Description
chkwt %r Check if a thread with id [r] has weights
ldwt %ri, %rw Read weight register at index [ri] into

register rw
stwt %ri, %rw Write [rw] into weight register at index [ri]

Table II
NEW INSTRUCTIONS ADDED BY ACT. [.] IS USED TO DENOTE THE

CONTENT OF A REGISTER.

During training, a neuron updates each of its weights,
which requires one multiplication and one addition (Sec-
tion II-A). Thus, for M weights, a neuron performs M
multiplications and M additions. This is similar to test-
ing mode. Therefore, the same analysis also applies here.
However, for propagating the error back, a neuron requires
M additional multiplications. We use as many additional
multipliers as the number of multiply-add units. Thus, the
additional multiplications can be done in parallel with the
original multiplications-additions.

B. New Instructions

ACT adds three new instructions to the ISA. They are
shown in Table II. After offline training, the weights of links
along with thread id are stored in the program binary. It is
possible that during offline training, a particular thread has
not been created. As a result, that the thread won’t have any
weights. This can be checked by using chkwt instruction.
ldwt and stwt are used to read from and write into weight
registers of the neural network that belongs to the current
processor’s AM. The weight registers of all neurons of the
neural network form an array and therefore, the registers are

accessed with an index. Register ri specifies the index of the
weight register and rw contains the corresponding weight.

C. Modifications to Thread Library

We consider a general programming model using a thread
library e.g., pthread. Other models (e.g., task parallel) are
left as a future work. Each thread is identified by an id pro-
vided by the thread library. Although different execution can
create threads in different order, we can uniquely identify a
thread by the order in which the parent thread spawns it [28].
Therefore, we modify the thread library to generate id based
on the parent thread and spawning order. We also extend the
thread creation function (e.g., pthread create) to initialize
the link weights. The function should check if the thread has
any weights stored in the binary. If not, it should initialize
the registers with some default weights. These weights will
cause too many mispredictions and eventually, AM is forced
to enter into online training mode to learn RAW dependence
sequences. If, on the other hand, the weights are available
for the thread, we initialize each weight by using a load
followed by a stwt instruction. On termination of a thread,
we read out the weight registers of the executing processor.
We do this by augmenting the thread termination function
of a threading library (e.g., pthread exit) by a sequence of
ldwt instructions. The weights read this way, are saved in
a special log file. The log is used to patch the binary with
new weights. Thus, the training done during one execution
can be utilized during the subsequent executions. For a
neural network of M → M → 1 topology, there can be at
most M2 + 1 weights. So, each thread can have at most
(M2 + 1)× 4 byte additional data in the binary. The data
is accessed using a loop of ldwt or stwt instruction.

D. Handling Context Switch and Thread Migration

The weight registers are considered to be part of the
architectural state of the processor. Therefore, during context
switch or thread migration, these registers should be saved
and restored by the OS. This is done by issuing a sequence
of ldwt and stwt instructions. To reduce the overhead, OS
can use some lazy context switch technique [29]. The neural
network pipeline should flush the in-flight inputs before
context switch or thread migration starts.

V. ADDITIONAL ISSUES

Cache Line Extension: Maintaining last writer informa-
tion precisely is very expensive. Like prior work [19], [20],
we choose three simplifications. First, we track last writer
information only at cache line granularity. This increases
misprediction rate of a neural network. However, our results
indicate the increase to be insignificant. Second, during
cache line eviction, we do not write last writer information
back to the main memory. As a result, we fail to form RAW
dependences for some loads. Since ACT operates all the
time during an execution and even subsequent executions,

eventually it will be able to form RAW dependences for later
occurrences of the same load and diagnose bugs. Third, we
piggyback last writer information with coherence messages
only for a read miss that generates a cache-to-cache message.
In MESI protocol, this implies that we piggyback last writer
information only for a read miss on a dirty line. As before,
the bug diagnosis ability is not affected in the long run.

Dynamic Loading of Libraries: In order to handle
dynamically loaded libraries, last writer instruction address
is stored in the form of a library id and an offset into the
library.

Filtering of Loads: In order to reduce overhead, only
RAW dependences corresponding to loads of non-stack data
are considered. We use a simple filtering technique where
any load that uses stack registers (e.g., ESP and EBP) is
ignored.

Overfitting: The neural network of AM may overfit (i.e.,
learn only frequently occurring RAW dependences). When a
rare RAW dependence occurs, it may be predicted as invalid.
If a failure occurs after that and the offline processing cannot
prune the rare dependance, the rank of the root cause might
be off by at most one due to the rare dependence.

VI. EVALUATION

The goal of this section is to (i) demonstrate prediction
ability of ACT, (ii) show its failure diagnosis ability, (iii)
calculate its overhead, and (iv) assess the impact of false
sharing.

Architecture Chip multiprocessor with 4, 8, 16 cores
Pipeline Out-of-order; 2-issue/3-retire, 104 ROB
Private L1 cache 32KB WB, 4-way associative., 2-cycle rt
Private L2 cache 512KB WB, 8-way associative, 10-cycle rt
Cache line size 4, 32, 64, 128 B
Coherence Snoopy MESI protocol at L2; 32B-wide bus
Memory 300 cycle rt

Parameters of a neuron
Max input 10
Multiply-add unit 1, 2, 5, 10 with 1-cycle latency
Accumulator 1-cycle latency
Sigmoid unit 1-cycle latency
Input FIFO 4, 8, 16 entries

Parameters of ACT Module
Total neuron 11
Input generator buffer 5 entries
Debug buffer 600 entries
Misprediction threshold 5%

Table III
MULTICORE ARCHITECTURE SIMULATED. BOLD FACED ONES ARE THE

DEFAULT PARAMETERS.

A. Experimental Setup

We use a PIN [26] based tool to collect traces. The traces
are analyzed using a neural network library implemented
in OpenCV [27]. We use PIN along with a cycle accurate
simulator [24] and OpenCV to model a multicore with ACT
modules. We use applications from SPLASH2, PARSEC,
SPEC INT 2006, and GNU coreutil in our evaluation. We
test with 11 real and 5 injected bugs from Apache, MySQL,

PBZip2, Aget, Memcached, GNU coreutil, PARSEC, and
SPLASH2. Table III shows configuration parameters.

Program # of Traces # of RAW Topology %Mispred.
for Training Dep Rate

fft 9 4 8→6→1 0.017
fmm 6 4 8→5→1 0.114
radix 1 4 8→4→1 0.107
volrend 10 4 8→6→1 0.226
lu 1 4 8→4→1 0.000
canneal 1 5 10→4→1 0.001
bodytrack 1 5 10→4→1 2.242
raytrace 6 4 8→5→1 0.008
swaptions 4 5 10→5→1 0.301
fluidani. 10 5 10→4→1 0.090
gzip 10 4 8→10→1 0.000
mcf 10 4 8→10→1 1.179
bc 10 4 8→10→1 1.561
Average 0.448

Table IV
TRAINING OF NEURAL NETWORKS.

B. Prediction Ability

We collect 20 execution traces. 10 traces are used for
testing. Among the rest, up to 10 traces are used for training.
We vary number of RAW dependences from 1 to 5 to form
inputs. The number of neurons in the hidden layer is varied
from 1 to 10. We use back propagation algorithm with a
learning rate of 0.02. During testing, we calculate the num-
ber of mispredictions. It is shown as a percentage of total
instructions. We select the topology that produces the lowest
misprediction rate. Note that during these experiments, we
do not have any invalid RAW dependences in our testing
data. Thus, the mispredictions are essentially false positives.
Table IV shows the results. Except for bodytrack, mcf, and
bc, others have very low misprediction rate. Overall, we
achieve an average misprediction rate of 0.4%. In order to
further assess ACT’s prediction ability, we intentionally form
invalid RAW dependences (e.g., RAW dependences with a
store instruction before the last one). Figure 7(a) shows the
misprediction (i.e., false negative) rate in such cases. The
average misprediction rate is 0.18%.

C. Bug Diagnosis Ability

We test 11 real world bugs from open source programs.
They are shown in Table V. The third column shows how
many traces are used for initial training. We use 10→6→1 as
the network topology for all the bugs except gzip. For gzip,
we use 8→10→1 as the topology. The fourth column shows
where in the debug buffer the invalid RAW dependence
sequence (i.e., root cause) was initially found. The fifth
column shows what percentage of dependence sequences
are filtered by the offline postprocessing. The sixth column
shows the final rank of the root cause. We compare ACT
against a continuous learning based scheme, Aviso [12]
and a state-of-the-art sampling based scheme, PBI [10].
Although the actual goal of Aviso is to avoid failures, it can
be used to to diagnose a failure by inspecting the constraints
that Aviso finds very likely to be related to the failure. For

Bug Description # of ACT Aviso PBI Prog.
Traces Debug Filter Rank Rank (# Rank (Total Status

for Train. Buf. Pos. (%) of fail.) pred.)
Aget Order. vio. on bwritten 4 8 78 4 3 (3) - (35) Comp.
Apache Atom. vio. on ref. counter 15 344 96 7 - (10) 136 (177) Crash
Mem Atom. vio. on item data 13 159 92 2 34 (6) 6 (33) Comp.
-cached
MySQL#1 Atom. vio. causing a loss 8 2478 97 1 628 (3) 222 (748) Comp.

of logged data
MySQL#2 Atom. vio. on thd→proc-info 10 34 91 1 294 (4) 153 (500) Crash
MySQL#3 Atom. vio. in join-init-cache 7 519 96 3 122 (4) - (390) Crash

causing out of bound loop
PBzip2 Order. vio. between threads 7 2 0 1 2 (2) 1 (14) Crash
gzip Semantic bug for get method 2 2 0 1 - (-) - (1) Comp.

wrong file descriptor
seq Semantic bug for wrong 2 5 3 5 - (-) - (11) Comp.

terminator in print numbers
ptx Buffer overflow of string 2 1 0 1 - (-) 1 (2) Comp.

in get method func.
paste collapse escapes reads 2 8 0 8 - (-) 4 (4) Crash

out of buffer of string

Table V
DIAGNOSIS OF REAL BUGS IN APPLICATIONS.

Prog. Function Filter Rank
(%)

fft Touch 93 7
-Array

fmm VListInter 90 23
-action

fluid. Compute 93 18
-Densities
-MT

lu TouchA 71 1
swapt. worker 84 6
Avg 86

Table VI
INJECTED BUG IN NEW CODE

fft fmm radix
volrend

lu canneal
bodytrack

raytrace
swaptions

fluidanimate

gzip mcf bc average

0.0
0.2
0.4
0.6
0.8
1.0

M
is

pr
ed

ic
tio

n
R

at
e(

%
)

(a)

(b)

fft fmm radix
volrend

lu canneal
bodytrack

fluidanimate

raytrace
swaptions

average

0
20
40
60
80

100

In
co

rre
ct

 P
re

di
ct

io
n(

%
)

Figure 7. (a) shows misprediction rate with invalid RAW dependences.
(b) shows incorrect prediction with new code.

Aviso, after a failure occurs, we check whether it can find
the constraint involving the root cause. If it does not find
the constraint, we feed it with more failure runs until it finds
such a constraint. We use a maximum of 10 failure runs. The
seventh column shows the rank and the number of failure
runs required for Aviso. PBI, on the other hand, samples
cache events and branch outcomes and uses a statistical
technique to rank the root cause. We use 15 correct and
1 failure executions for PBI. We use 15 correct executions
because ACT uses at most 15 execution profiles for training.
PBI, as originally proposed, uses 1000 executions out of
which around half are failure runs. In each run, it randomly
samples 1 out of 1000 instructions. Since we use only 16
executions, we sample at every instruction to compensate for
the reduced samples. In a sense, we implement an “extreme”
version of PBI that looks at every instruction and every event
to find the root cause. The eighth column shows the rank
and total number of predicates (i.e., instruction-event pair)
reported by PBI.

Out of 11, 5 bugs cause a crash. For the others, the

programs run to completion with ill effects (e.g., log cor-
ruption). Except for MySQL#1, buggy RAW dependence
sequences are always found in the default sized (i.e., 600
entries) debug buffer. For MySQL#1, ACT cannot find the
buggy sequence without a larger buffer. Offline filtering re-
moves (on average) 50% dependences. ACT finds the buggy
sequence of every failure with a very accurate ranking. For
9 bugs, the ranking is within 5. The worst rank is 8. Aviso
requires the same bug to occur more that once before it can
find a bug related constraint. The ranks of the constraints are
worse too. For Apache, it does not find such constraint even
after 10 failures. Aviso does not work for sequential bugs.
PBI works for both types of bugs. For a single failure run,
its ranks are worse than ACT except for paste. Moreover,
PBI misses 2 sequential bugs because the branch outcomes
do not change from a successful run to a failure run. It
also misses Aget and MySQL#3 bugs. The first miss occurs
because the buggy instruction observes the same cache event
(invalid state) in both successful and failure runs. The second
miss occurs because the buggy instructions are so far apart
that the cache events do no show any consistent pattern. PBI
produces a rank less than 5 only for 3 out of 11 failures.
Overall, ACT performs better than PBI in 10 out of 11
failures.

D. Adaptivity

To demonstrate ACT’s adaptivity, we collect RAW de-
pendences of a program and then remove all dependences
from a randomly chosen function. We only use concurrent
programs because they are the hardest to predict. ACT is
trained with the remaining dependences. Then, it tests the
excluded dependences. This shows how ACT behaves when
the program is augmented with the new code. Figure 7(b)
shows the percentage of new RAW dependences reported as
incorrect. On average, ACT predicts 6.16% of total unique
dependences incorrectly (i.e., accuracy is 93.84%). Note
that we did not use “misprediction rate” because some of
the excluded functions contain loops and hence, the same

fft fmm
radix

volrend

lu canneal

bodytrack

raytrace

swaptions

fluidanimate

gzip
mcf

bc average

0

40

80

120

160

200

240

Tr
ai

ni
ng

 O
ve

rh
ea

d(
%

)

fft fmm
radix

volrend

lu canneal

bodytrack

raytrace

swaptions

fluidanimate

gzip
mcf

bc average

0

5

10

15

20

25

Co
m

bi
ne

d
M

od
e

O
ve

rh
ea

d(
%

)

(a) (b) (c)

fft fmm
radix

volrend

lu canneal

bodytrack

raytrace

swaptions

fluidanimate

gzip
mcf

bc average

0

1

2

3

4

5

6

7

Te
st

in
g

O
ve

rh
ea

d(
%

)

4 Entry FIFO
8 Entry FIFO
16 Entry FIFO

fft fmm
radix

volrend

lu canneal

bodytrack

raytrace

swaptions

fluidanimate

gzip
mcf

bc average

0

20

40

60

80

100

Tr
ai

ni
ng

 O
ve

rh
ea

d(
%

)
fft fmm

radix
volrend

lu canneal

bodytrack

raytrace

swaptions

fluidanimate

gzip
mcf

bc average

0

5

10

15

20

25

30

35

Co
m

bi
ne

d
M

od
e

O
ve

rh
ea

d(
%

)

fft fmm
radix

volrend

lu canneal

bodytrack

raytrace

swaptions

fluidanimate

gzip
mcf

bc average

0

4

8

12

16

20

Te
st

in
g

O
ve

rh
ea

d(
%

) 10 Mul-Add
5 Mul-Add
2 Mul-Add
1 Mul-Add

(d) (e) (f)

Figure 8. (a)-(c) show execution overhead for different number of multiply-add units. (d)-(e) show the same for input FIFO size.

dependence appears multiple times. As a result, mispredic-
tion rate which treats every occurrence of a dependence
separately, would be too distorted to provide any insight.
We further evaluate ACT’s diagnosis ability in the new code
by injecting unsynchronized writes in some of the programs
to induce failures. ACT diagnoses all of them (Table VI).
The offline processing filters 86% dependence sequences and
produces the maximum rank of 23. So, ACT has a reasonable
diagnosis ability even for never-before-seen code. We can
expect the ranking to be similar to that of Table V after
learning the new code few more times.

E. Execution Overhead

We vary the number of multiply-add units as 1, 2, 5,
and 10. To get the lower and upper bound of execution
overhead, we use a misprediction threshold of 10% and 0%
respectively. This causes a program to run entirely in online
testing mode (Figure 8(a)) or training mode (Figure 8(b)).
In both cases, the overhead decreases as we increase the
number of multiply-add units. For our default 2 multiply-add
unit configuration, average testing overhead is 2.5% whereas
average training overhead is 54%. For single multiply-
add unit configuration, these numbers are 11% and 119%
respectively. For the default misprediction threshold of 5%,
ACT switches between online testing and training mode. In
this combined mode (Figure 8(c)), average overhead is 8.2%
for our default 2 multiply-add unit configuration. This is the
overhead we can expect in the steady state (i.e., when ACT
runs mostly in online testing mode). We experiment how the
execution overhead changes with the input FIFO size of a
neural network. Figure 8(d), (e), and (f) show the testing,
training and combined mode overhead respectively. Larger
buffer decreases the overhead. The average testing overhead
decreases form 3.3% to 2.5% to 1.9% as buffer size increases
from 4 to 8 and then, to 16. For training, the numbers are

56%, 54%, and 51% respectively. For combined mode, the
numbers are 13%, 8.2%, and 4.2% respectively. Our default
size is 8. We also implement ACT completely in software
using PIN. The overhead ranges from 104X to 2091X. This
justifies the necessity of neural hardware.

F. Neural Network Design

We compare ACT neural network with an alternative
time multiplexed design [6] that has additional scheduling
and queuing latency. On average, ACT has 8.2% over-
head wheres the alternate design has 17.2% overhead (Fig-
ure 9(a)).

G. Network Traffic Overhead

Figure 9(b) shows traffic overhead caused by piggyback-
ing of last writer in parallel programs. As the number of core
increases, overhead increases slightly. The average overhead
is ≈1.9% for 4 and 8 cores. For 16 cores, it is 2.3%.

H. Effect of False Sharing

We run experiments with cache line size 4, 32, 64, and 128
bytes. Figure 9(c) shows the data. When line size increases
from single word (i.e., 4 bytes) to multi words, misprediction
rate also increases slightly. Average misprediction rate is
0.4%, 1.2%, 2.0%, and 2.6% for 4, 32, 64, and 128 bytes
cache line respectively.

VII. DISCUSSION

There are few issues that we need to address in future
to make ACT more practical. First, execution overhead,
especially when ACT runs in online training mode can
be significant (in the worst case, around 100% in volrend
in Figure 8(b)). To reduce it, we can think of sampling
during online training mode. Second, we need to make
ACT portable across different parallel programming models.
Third, while RAW dependence sequence provides quite

fft fmm radix
volrend

lu canneal
bodytrack

raytrace
swaptions

fluidanimate

average

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Tr
af

fic
 O

ve
rh

ea
d(

%
) 4 core

8 core
16 core

(a)

(b)

fft fmm radix
volrend

lu canneal

bodytrack

raytrace
swaptions

fluidanimate

gzip mcf
bc average

0

10

20

30

40
O

ve
rh

ea
d(

%
)

Time Multiplexed Design
ACT Design

fft fmm radix
volrend

lu canneal
bodytrack

fluidanimate

raytrace
swaptions

gzip mcf bc average

0.0
2.0
4.0
6.0
8.0

10.0
12.0

M
is

pr
ed

ic
tio

n
R

at
e(

%
)

4B
32B
64B
128B

(c)

Figure 9. (a) & (b) show design comparison and traffic overhead. (c)
shows misprediction rate with different cache line size.

favorable diagnosis ability, it may not work for all bugs.
Specially, if the RAW dependences do not differ between
successful and failure runs, ACT will not be able to diagnose
the failure. Thus, we need to incorporate more invariants to
diversify ACT.

VIII. RELATED WORK

Engler et al. [30] proposed the first work to statically
determine invariants and check for violations. The invariants
are programming rules implied by the code. Daikon [31]
starts with a fixed set of possible invariants. It runs the
program over test inputs and determines which invariants are
always satisfied. DIDUCE [22] dynamically detects value
invariants of different expressions and calculates confidence
of every invariant violation. Unlike ACT, DIDUCE works
for sequential bugs only. AVIO [17] works on communica-
tion invariant for concurrency bug detection. AVIO detects
single variable atomicity violations. AtomAid [18] uses
bulk system [32] to avoid atomicity violations. In order
to handle different types of concurrency bugs uniformly,
PSet [19] proposes to use an invariant based on inter-thread
communication. It is called Predecessor Set. Predecessor set
of a memory access instruction includes all other remote
memory access instructions upon which this one immedi-
ately depends. Bugaboo [20] extends PSet by incorporating
a limited form of context information. DefUse [21] uses a
slightly different approach where it finds out all definitions
upon which a read depends. However, AVIO, AtomAid,
PSet and Bugaboo do not learn continuously. Aviso [12]
is a continuous learning based scheme that uses scheduling
constraints to avoid concurrency bugs. Each constraint is
a pair of events (e.g., synchronization operation, signal
handler, and shared access). When a program crashes, Aviso

determines the scheduling constraints that are likely to cause
the failure. Recon [11] is a failure diagnosis technique
for concurrency bugs. Unlike ACT, both Aviso and Recon
require multiple failure executions to be effective. PBI [10]
uses hardware performance counters at production runtime
to sample different events. It can diagnose both concur-
rency and sequential bugs but requires multiple failure runs.
CCI [23] instruments program at certain points and collects
some events at those points during execution. It samples
events to keep the runtime overhead low. It uses a statistical
framework to find the root cause of production failures.
Like PBI, CCI requires multiple failure runs to be accurate.
Moreover, for some applications, its overhead is too large
for production run use. There is a large body of work
on program slicing [33], [34], [35] to diagnose software
failures. Slicing is an effective diagnosis technique. ACT
can complement a slicing based technique by providing an
initial set of dependences (e.g., contents of the debug buffer).

IX. CONCLUSION

This is the first proposal to apply neural hardware for di-
agnosing software failures. Our proposed scheme, ACT, first
determines neural networks’ topology and links’ weights
by analyzing traces. When a program starts execution, the
hardware implemented neural networks are initialized with
the topology and weights. The networks are used to test
and learn RAW dependence sequences alternatively online.
When a failure occurs, postprocessing of invalid depen-
dences accurately pinpoint the root cause without requiring
to reproduce the failure. We provided a detailed design
of ACT in a typical multiprocessor system using a three
stage pipelined neural network. Our evaluation of ACT on
a variety of parallel and serial programs showed that ACT
can diagnose failures from all 16 bugs. ACT has an average
execution overhead of 8.2%.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable
feedback. We also thank the members of PALab for the
discussions and comments. Special thanks go to Tongping
Liu for his feedback on the initial draft of the paper.
This work is supported by the startup package provided by
University of Texas at San Antonio and NSF under Grant
No. 1319983.

REFERENCES

[1] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenel-
lenbogen, “Reversible debugging software.” https://www.jbs.
cam.ac.uk/media/2013/, 2013.

[2] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mis-
takes: a comprehensive study on real world concurrency bug
characteristics,” in ASPLOS, March 2008.

[3] P. Godefroid and N. Nagappan, “Concurrency at Microsoft -
An Exploratory Survey,” in Workshop on Exploiting Concur-
rency Efficiently and Correctly, 2008.

https://www.jbs.cam.ac.uk/media/2013/
https://www.jbs.cam.ac.uk/media/2013/

[4] B. Belhadj, A. Joubert, Z. Li, R. Héliot, and O. Temam, “Con-
tinuous real-world inputs can open up alternative accelerator
designs,” in ISCA, June 2013.

[5] K. Fan, M. Kudlur, G. S. Dasika, and S. A. Mahlke, “Bridging
the computation gap between programmable processors and
hardwired accelerators,” in HPCA, February 2009.

[6] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neu-
ral acceleration for general-purpose approximate programs,”
in MICRO, December 2012.

[7] D. A. Jiménez and C. Lin, “Dynamic Branch Prediction with
Perceptrons,” in ISCA, January 2001.

[8] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar,
and D. Modha, “A digital neurosynaptic core using embedded
crossbar memory with 45pj per spike in 45nm,” in CICC,
September 2011.

[9] Qualcomm, “Zeroth processor.” http://www.qualcomm.
com/media/blog/2013/10/10/introducing-qualcomm-zeroth-
processors-brain-inspired-computing.

[10] J. Arulraj, P.-C. Chang, G. Jin, and S. Lu, “Production-
run software failure diagnosis via hardware performance
counters,” ASPLOS, March 2013.

[11] B. Lucia, B. P. Wood, and L. Ceze, “Isolating and Under-
standing Concurrency Errors Using Reconstructed Execution
Fragments,” in PLDI, June 2011.

[12] B. Lucia and L. Ceze, “Cooperative Empirical Failure Avoid-
ance for Multithreaded Programs,” in ASPLOS, March 2013.

[13] D. Marino, M. Musuvathi, and S. Narayanasamy, “Literace:
Effective sampling for lightweight data-race detection,” PLDI,
June 2009.

[14] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” PLDI, June 2005.

[15] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson, “Eraser: a dynamic data race detector for multi-
threaded programs,” ACM Trans. Comput. Syst., 1997.

[16] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan, “Efficient and precise datarace detection
for multithreaded object-oriented programs,” in PLDI, June
2002.

[17] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “AVIO: Detecting
Atomicity Violations via Access Interleaving Invariants,” in
ASPLOS, October 2006.

[18] B. Lucia, J. Devietti, K. Strauss, and L. Ceze, “Atom-Aid:
Detecting and Surviving Atomicity Violations,” in ISCA, June
2008.

[19] J. Yu and S. Narayanasamy, “A Case for an Interleaving
Constrained Shared Memory Multi-processor,” in ISCA, June
2009.

[20] B. Lucia and L. Ceze, “Finding Concurrency Bugs with
Context-aware Communication Graphs,” in MICRO, Decem-
ber 2009.

[21] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and
W. Zheng, “Do I use the wrong definition? DefUse: definition-
use invariants for detecting concurrency and sequential bugs,”
in OOPSLA, October 2010.

[22] S. Hangal and M. S. Lam, “Tracking down software bugs
using automatic anomaly detection,” in ICSE, June 2002.

[23] G. Jin, A. Thakur, B. Liblit, and S. Lu, “Instrumentation
and sampling strategies for cooperative concurrency bug
isolation,” OOPSLA, October 2010.

[24] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC
Simulator,” January 2005. http://sesc.sourceforge.net.

[25] S. Russell and P. Norvig, Artificial Intelligence A Modern
Approach. Prentice Hall, 2003.

[26] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
building customized program analysis tools with dynamic
instrumentation,” in PLDI, June 2005.

[27] OpenCV, “Open Source Compute Vision.” http://opencv.org/.

[28] J. Steven, P. Chandra, B. Fleck, and A. Podgurski, “jrapture:
A capture/replay tool for observation-based testing,” ISSTA,
August 2000.

[29] NetBSD Documentation, “How lazy FPU context switch
works.” http://www.netbsd.org/docs/kernel/lazyfpu.html,
2011.

[30] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf,
“Bugs as deviant behavior: A general approach to inferring
errors in systems code,” in SOSP, October 2001.

[31] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao, “The daikon
system for dynamic detection of likely invariants,” Science
of Computer Programming, vol. 69, no. 1-3, 2007.

[32] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC:
Bulk enforcement of sequential consistency,” in ISCA, June
2007.

[33] S. K. Sahoo, J. Criswell, C. Geigle, and V. Adve, “Using
likely invariants for automated software fault localization,” in
ASPLOS, March 2013.

[34] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating faulty
code using failure-inducing chops,” ASE, November 2005.

[35] S. Tallam, C. Tian, and R. Gupta, “Dynamic slicing of
multithreaded programs for race detection.,” in ICSM, pp. 97–
106, IEEE Computer Society, September 2008.

http://www.qualcomm.com/media/blog/2013/10/10/introducing-qualcomm-zeroth-processors-brain-inspired-computing
http://www.qualcomm.com/media/blog/2013/10/10/introducing-qualcomm-zeroth-processors-brain-inspired-computing
http://www.qualcomm.com/media/blog/2013/10/10/introducing-qualcomm-zeroth-processors-brain-inspired-computing
http://opencv.org/
http://www.netbsd.org/docs/kernel/lazyfpu.html

