
Communication Algorithm-Architecture Co-Design
for Distributed Deep Learning

Jiayi Huang
UC Santa Barbara
jyhuang@ucsb.edu

Pritam Majumder
Texas A&M University
pritam2309@tamu.edu

Sungkeun Kim
Texas A&M University

ksungkeun84@tamu.edu

Abdullah Muzahid
Texas A&M University

abdullah.muzahid@cse.tamu.edu

Ki Hwan Yum
Texas A&M University
yum@cse.tamu.edu

Eun Jung Kim
Texas A&M University
ejkim@cse.tamu.edu

Abstract—Large-scale distributed deep learning training has
enabled developments of more complex deep neural network
models to learn from larger datasets for sophisticated tasks.
In particular, distributed stochastic gradient descent intensively
invokes all-reduce operations for gradient update, which dom-
inates communication time during iterative training epochs.
In this work, we identify the inefficiency in widely used all-
reduce algorithms, and the opportunity of algorithm-architecture
co-design. We propose MULTITREE all-reduce algorithm with
topology and resource utilization awareness for efficient and
scalable all-reduce operations, which is applicable to different
interconnect topologies. Moreover, we co-design the network
interface to schedule and coordinate the all-reduce messages
for contention-free communications, working in synergy with
the algorithm. The flow control is also simplified to exploit
the bulk data transfer of big gradient exchange. We evaluate
the co-design using different all-reduce data sizes for synthetic
study, demonstrating its effectiveness on various interconnection
network topologies, in addition to state-of-the-art deep neural
networks for real workload experiments. The results show that
MULTITREE achieves 2.3× and 1.56× communication speedup,
as well as up to 81% and 30% training time reduction compared
to ring all-reduce and state-of-the-art approaches, respectively.

Index Terms—distributed deep learning, data-parallel training,
all-reduce, interconnection network, algorithm-architecture co-
design

I. INTRODUCTION

The onset of the big data era and rapid advances of accel-
erator architectures have enabled deep learning applications
to achieve superhuman accuracy on complex real-world prob-
lems, such as image recognition, natural language processing,
and autonomous driving. State-of-the-art DNN models such as
GPT-3 [1] have hundreds of billions of parameters, requiring
trillions of compute operations and hundreds of gigabytes of
storage and massive bandwidth. Recent work projects that
orders of magnitude growth of dataset and model size are
required to exceed human-level accuracy, which can take
weeks to train a single epoch for language modeling [2]. As
data keep exploding and DNNs evolve to be larger and deeper,
it is crucial to provide scalable solutions to fulfill the trend in
computing requirements.

This research was supported in part by NSF Grant #1931078.

To this end, grids of specialized accelerators have been
designed and deployed to train DNN models in a parallel
and distributed manner [3], [4]. In particular, data-parallelism,
as the easiest model of parallel and distributed computing,
has been widely used in large-scale DNN training [5], [6].
Stochastic gradient descent (SGD) is a typical optimization
algorithm to improve DNN accuracy through iterative training,
which intensively invokes all-reduce communication. As the
dominant component of communication, all-reduce can stall
the computations of the next training epoch significantly. Thus,
all-reduce can quickly become a bottleneck for large scale
distributed training [7].

Several communication algorithms have been proposed for
all-reduce operation [8]–[11]. Baidu Research implemented a
bandwidth-optimal ring all-reduce algorithm [9], [12], which
has been later included in NVIDIA Collective Communica-
tion Library (NCCL) [13] and other popular deep learning
frameworks [14], [15]. However, ring all-reduce suffers from
long latency and may have low resource utilization in certain
network topologies, for instance, only 25% link utilization rate
in a 4×4 2D Torus network. Several attempts have been made
to improve all-reduce latency by reducing the algorithmic
steps [10], [11], [16]. Halving-doubling reduces the latency
through recursive distance doubling and halving in the reduce-
scatter and all-gather phases, respectively [11]. Double binary
tree (DBTree), which is also implemented in NCCL, improves
the latency through two-tree reduction and broadcast [10],
[16]. These two algorithms perform better than ring all-reduce
for short to medium messages. However, for large messages,
they can lead to significant network congestion since their
communication patterns map poorly on to the physical network
topology, turning out to be worse than rings1 [11], [19]. There-
fore, it is crucial to consider the physical network topology for
all-reduce algorithm design with proper message scheduling
to achieve low latency for short to medium messages and
contention-free communication for large data sizes.

1NVIDIA NCCL enables double binary tree when message size is small
while disables it and uses ring all-reduce when message is larger than a
threshold, which requires tuning for different systems [17], [18].

TABLE I: Comparisons of All-Reduce Algorithms.

Algorithms
Small data Large data Applied Well on

Latency Bandwidth Contention Various Topologies

Ring [9], [12] high optimal none X

DBTree [10], [16] low optimal high × (Topo-oblivious)
2D-Ring [28] low sub-optimal none × (2D Torus/Mesh)
HDRM [29] low optimal none ×(BiGraph)

MULTITREE low optimal none X

Recently, dedicated networks with accelerator pods have
been deployed to accelerate emerging deep learning applica-
tions, such as Cloud TPU [4] and Catapult [3]. While com-
putation acceleration has been significantly studied [20]–[27],
communication specialization with architecture-algorithm co-
design is still in its infancy [28], [29]. Ying et al. adopted
2D-ring all-reduce for the 2D Torus network in TPU clusters
to fully utilize the links and reduce communication steps [28].
Although achieving full link utilization, its 2D nature increases
the amount of communicated data, which can be double the
optimal communicated data as the network scales out. For a
2D N×N Torus network, 2D-ring transmits 2N(N − 1) data
while flat ring communicates N2− 1 data. More recently, Al-
ibaba proposed the EFLOPS training platform by co-designing
algorithm and system with a new server architecture [29]. It
extends the halving-doubling algorithm with rank mapping
(HDRM) on a two-stage fully connected BiGraph topology
to avoid contention, showing promising potential for the co-
design approach. However, it is not trivial to scale due to
its full connections among switches. These algorithms are
limited to specific topologies (2D Torus and BiGraph) and
do not generalize to other network topologies. With the trend
for larger and deeper DNN models, more accelerator grids
are deployed for large-scale distributed training. Therefore,
more scalable solutions are required to work in synergy with
various topologies that can practically interconnect a large
number of nodes [4]. Moreover, communication acceleration
through specialization is urgently needed to keep up with the
computation throughput. In addition, the lack of hardware
support for coordination and communication scheduling may
miss potential optimization opportunities to further improve
performance. Furthermore, the fine-grained flow control and
arbitration designed for general purpose networks can be
inefficient to support such large gradient exchanges, resulting
in extra performance and significant energy/power overhead.
Table I summarizes the comparisons among these works.

In this work, we co-design an all-reduce communication
algorithm and interconnection architecture to support efficient
and scalable all-reduce operation. We propose MULTITREE, a
scalable topology-aware all-reduce algorithm that is applicable
to various topologies. MULTITREE couples tree construction
and message scheduling with topology and global link utiliza-
tion awareness to build trees from roots in a top-down fashion.
It leverages the insight that tree levels closer to the roots are
more sparse and tree levels closer to the leaves are denser.
Based on this, MULTITREE moves more communication closer
to the roots to make communication closer to the leaves sparse

so that communications are balanced in all levels of the trees.
Moreover, we co-design the network interface according to
the proposed communication algorithm and to facilitate the
all-reduce schedule management to achieve contention-free
all-reduce. We also simplify the flow control and arbitration
to exploit the characteristics of large gradients in all-reduce
operations. As a result, MULTITREE tackles the limitations in
previous work, as summarized in Table I.

In summary, the contributions of this paper are as follows.
• We identify the inefficiency in the state-of-the-art all-

reduce algorithms, and co-design all-reduce algorithm
and interconnect hardware for large gradient exchange.

• We propose MULTITREE, an all-reduce algorithm that is
applicable to various interconnect topologies and couple
tree construction and communication scheduling, with
topology and global link utilization awareness, to effi-
ciently coordinate concurrent reduction/broadcast trees.

• We augment the network interface to support hardware
based scheduling for MULTITREE and facilitate the lock-
step communications in the schedule, while simplifying
the flow control dedicated for large gradient all-reduce.

• Our evaluations using synthetic messages and state-of-
the-art DNNs show that MULTITREE greatly improves
scalability over prior works, and achieves 2.3× and 1.56×
communication speedup, as well as up to 81% and 30%
training time reduction compared to ring all-reduce and
the state-of-the-art approach [28], respectively.

The rest of the paper is organized as follows: §II introduces
the background and motivation. §III presents the proposed
MULTITREE all-reduce algorithm followed by the co-designed
architecture detailed in §IV. The methodology is described in
§V and the evaluation is presented in §VI, respectively. Further
discussions are outlined in §VII followed by more related work
in §VIII. Finally, we conclude the paper in §IX.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the background of data-
parallel deep neural network training followed by all-reduce
communication in distributed stochastic gradient descent syn-
chronization.. Then, we motivate this research by outlining the
limitations of existing all-reduce algorithms.

A. Data-Parallel Deep Neural Network Training

DNN training is usually done using stochastic gradient
descent where each training sample goes through forward
propagation, gradient calculation followed by backward prop-
agation. Backward propagation uses the gradient to update
weights of the DNN model in order to minimize a loss
function. To make training faster, mini-batch is used where
there is one pass of weight update for each mini-batch of
training samples. It is a daunting task to train large DNNs
with huge amounts of data. Thus, distributed training is
performed on multiple compute nodes. Each compute node
may be equipped with GPUs and accelerators. This creates
the challenges regarding resource usage, communication band-
width provisioning, and trade-off between computation and

In[1][0]

In[1][1]

In[1][2]

In[1][3]

In[0][0]

In[0][1]

In[0][2]

In[0][3]

In[3][0]

In[3][1]

In[3][2]

In[3][3]

In[2][0]

In[2][1]

In[2][2]

In[2][3]

Out[1]

Out[0]

Out[3]

Out[2]

Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3

Re
du

ce
-S

ca
tte

r

Ou
ti

=
&! "#
$

O
ut

[i]
In

[k
][i

]
 Out[0]

Out[1]

Out[2]

Out[3]

Out[0]

Out[1]

Out[2]

Out[3]

Out[0]

Out[1]

Out[2]

Out[3]

Out[0]

Out[1]

Out[2]

Out[3]

Node 0 Node 1 Node 2 Node 3

A
ll-

G
at

he
r

Fig. 1: Reduce-scatter and all-gather in ring all-reduce.

storage [30], [31]. Different parallel strategies have been used
to enable scalable and efficient distributed training.

Data parallelism is the most common way for distributed
DNN training where a non-overlapping set of training sam-
ples are distributed to different compute nodes. Each node
calculates gradients based on its own training set. Gradients
are then aggregated to update weights using either a central-
ized or a decentralized approach. The centralized approach
relies on a parameter server where each node periodically
reports its computed parameter updates to a (set of) parameter
server(s) [8]. However, parameter servers are not efficient
in terms of bandwidth and latency for larger DNNs. An
alternative is the decentralized approach where compute nodes
exchange parameter updates via an all-reduce operation, where
the all-reduce algorithm plays an important role. A widely
used one is ring all-reduce [9], [12] that only requires a tree
topology to achieve no contention and optimal bandwidth,
where a tree topology is typically embedded in any network
topology. However, it is not latency-optimal [12].

B. All-Reduce for Distributed Stochastic Gradient Descent

Baidu popularized ring all-reduce using a sequence of
reduce-scatter followed by all-gather operations [9], [32].
Reduce-scatter and all-gather operations are further optimized
to exploit the hierarchical nature of communication band-
widths of heterogeneous network architecture [33].

Fig. 1 shows an example. Let us assume that each row
represents one segment of tensors with segment 0 being the
top row and segment 3 being the bottom one. Each node forms
a ring with the next node. Reduce-scatter is done on segment
0 starting from Node 1. In the first iteration, segment 0 is
sent from Node 1 to Node 2 where the tensors are aggregated.
Thus, two out of four sets of tensors are aggregated in the
first iteration. In the second iteration, segment 0 is sent from
Node 2 to Node 3 and in the third iteration, segment 0 is sent
from Node 3 to Node 0. Thus, after 3 iterations, all tensors
of segment 0 are aggregated to Node 0. Similarly, segment 1
starts from Node 2 and after 3 iterations, gets reduced to Node
1. Segments 2 and 3 end up getting reduced to Nodes 2 and
3, respectively. Thus, it takes 3 iterations for reduce-scatter.

After the sequence of reduce-scatter operations, all-gather
operations are done similarly. In the first iteration, segment 0
is sent from Node 0 to Node 1. Now, Node 1 has two out of
four segments (namely segments 0 and 1). Similarly, at the end
of the first iteration, other nodes end up having 2 segments.
In the second iteration, segment 0 is sent from Node 1 to

Node 2 and subsequently from Node 2 to Node 3 in the third
iteration. Thus, after 3 iterations, all nodes will end up having
all 4 aggregated segments.

C. Motivation

Widely used ring all-reduce has been proved bandwidth-
optimal [12], which makes it suitable for large gradient ex-
changes [9], [13], [34]. However, it faces link under-utilization
in certain topologies such as Torus and Mesh. Furthermore, it
suffers from long latency as the system scales out. Several
attempts have been made to improve link utilization and
latency [10], [16], [28]. 2D-ring all-reduce utilizes all the
links and reduces the communication steps in 2D Torus and
Mesh networks [28], but it transmits twice the amount of
data compared to bandwidth-optimal algorithms. For instance,
2D-ring communicates 2N(N − 1) data while ring all-reduce
communicates N2−1 data in a 2D N×N Torus network. On
the other hand, the double binary tree algorithm builds two
logical binary trees to reduce latency for small to medium
messages [10], [16]. It constructs the two trees in a way such
that the leaf nodes in one tree are the internal nodes in the other
tree. Therefore, each tree can take half of the data and all the
nodes can send and receive data simultaneously, outperforming
single-tree all-reduce. It better utilizes the end-node bandwidth
and works well on networks with all-to-all like topology
for small to medium messages. For large messages, it can
experience significant contention since the two trees are not
mapped well on the physical network topology, especially
severe on unfriendly topology such as Torus [19]. The recently
proposed EFLOPS extends halving-doubling by mapping the
ranks to the nodes to achieve contention-free communication
for large datasets [29]. Since each communication pair always
involves one node connected with an upper switch and one
node connected with a lower switch, it never exploits the one-
hop distance between nodes connected to the same switch,
failing to expedite latency-sensitive communications for small
messages. Furthermore, these algorithms are not general to
apply to different network topologies while achieving good
performance for both latency and bandwidth.

Typical interconnection networks for general-purpose com-
munications use fine-grained flow control that well supports
short messages. However, it can generate many small packets
for large gradients, which can lead to extra bandwidth and ar-
bitration overheads. To mitigate such an overhead, flow control
can be streamlined to take advantage of large gradients. In the
conventional packet-based flow control, a packet consists of a

0%

10%

20%

30%

32 128 512 2048

Pa
ck

et
 H

ea
d

O
ve

rh
ea

d

Packet Payload Size (Bytes)

4-Byte Flit 8-Byte Flit 16-Byte Flit

CMP NoC

Off-Chip
Interconnection Network

Fig. 2: Packet head flit bandwidth overhead.

few flits, including a head flit for metadata and body/tail flits
for payload, where the head flit incurs bandwidth overhead.
For on-chip networks, the payload of a packet is a cache line
whereas, for off-chip networks, payload size varies from 64
to 256 bytes with 16-byte flits, incurring 6%–25% bandwidth
overhead, as shown in Fig. 2. In distributed DNN training,
streams of consecutive large gradients flow from one node
to the other using many small packets, following the same
route with consecutive addresses. So the head flits of these
consecutive packets contain redundant information, leading to
unnecessary bandwidth overhead. Thus, flow control can be
simplified to exploit this distinct characteristic.

III. MULTITREE ALL-REDUCE ALGORITHM

In this section, we first explain the rationales behind the
MULTITREE approach. Then, we illustrate the main idea with
an example followed by its algorithm.

A. Rationales and Insights

1) Spanning Trees Instead of Rings: In reduce-scatter and
all-gather phases of all-reduce, each node leads a reduction
and a broadcast of one chunk of data. In ring all-reduce, each
node communicates a chunk of data in a unidirectional ring,
which takes (n− 1) steps in both phases for n nodes. If each
such communication can take place in a tree structure, it can
reduce the algorithmic steps to 2 logk n with a k-ary tree for
n nodes. Thus, the proposed algorithm is not only bandwidth-
optimal but also reduces latency by constructing multiple trees
instead of rings, thereby improving all-reduce scalability.

2) Topology Awareness: If trees are constructed without
considering network topology and link utilization, it may lead
to even worse performance than ring all-reduce, especially
when multiple trees contend for the same link at the same time
without careful scheduling. Furthermore, tree levels closer
to leaves are denser than tree levels closer to roots. Thus,
when reducing from leaves to roots, the reduce-scatter phase
can experience dense to sparse communications, leading to
high contention near leaf nodes. MULTITREE exploits this
insight to combine message scheduling and tree constructions,
with topology and link utilization awareness to schedule more
communication near the roots to sparsify communication near
leaves. In addition, instead of constructing the trees one

0

2

(0)

1
(4)

(2)

3
(6)

(5)
(1)

(7)

(3)

(a) Time step 1

0

2

1
(10)

3
(8)

(11)

(9)

(b) Time step 2

T0-2

T0-3

(8)

T0-1 T1-3

T1-2

(9)

T1-0 T2-0

T2-1

(10)

T2-3 T3-1

T3-0

(11)

T0-0

(0) (4)

T1-1

(1) (5)

T2-2

(2) (6)

T3-3

(3)

T3-2

(7)

(c) Tree construction (link allocation) at levels (time steps) 1 and 2

Time step 1

Time step 2 T0-2

T0-0

T0-1 T1-3

T1-1

T1-0 T2-0

T2-2

T2-3 T3-1

T3-3

T0-3 T1-2 T2-1

T3-2

T3-0

(d) Reduce-scatter schedule trees (reduction)

Time step 3

Time step 4 T0-2

T0-3

T0-0

T0-1

T1-1

T1-3 T1-0

T1-2

T2-2

T2-0 T2-3

T2-1

T3-3

T3-1 T3-2

T3-0

(e) All-gather schedule trees (broadcast)
Fig. 3: MULTITREE construction with link allocation and scheduling
for all-reduce communication of a (2×2) Mesh network. Node n in
tree T is denoted as T-n and label (i) of an edge is the allocation
sequence of that link while label t of an edge is the communication
time step between the two nodes: (a) link allocation sequence of the
topology graph for level 1 (time step 1); (b) when no more links
are available for the predecessor levels 0 and 1, a new link topology
graph is used for allocation for level 2 (time step 2); (c) the tree
construction process indicated by edge labels; (d) the constructed
reduce-scatter schedule trees and (e) all-gather schedule trees.

by one, MULTITREE builds them concurrently, generating
balanced trees with global coordination.

B. Main Idea

Given a network G(V,E) with nodes V and edges E, finally
|V | spanning trees are created. To move more communications
near the roots, MULTITREE builds the trees from roots in
a top-down approach, making the predecessor levels denser
and communications balanced across the tree levels. During
tree construction, for each time step (tree level), a topology
graph is used to allocate links to connect remaining nodes to
the spanning trees, and the allocated links are removed from
the graph. When there are no more available links to connect
remaining nodes to any of the trees, a new topology graph is
used for the next time step (tree level).

R0-0 R0-1 R0-3 R0-2

R3-3 R3-2 R3-0 R3-1

R1-1 R1-3 R1-2 R1-0

R2-2 R2-0 R2-1 R2-3

(a) Ring-based all-gather

T0-0

T0-2

T0-1 T0-3

T1-1

T1-2 T1-0

T1-3

(b) Double binary tree broadcast
Fig. 4: All-gather or broadcast phase of the ring-based and double
binary tree algorithms: (a) Ring-based all-gather with Ri-n for
a node n involving in data chunk i, and (b) double binary tree
broadcast with black/red edge color indicating communication at
even/odd step.

We illustrate the main idea by walking through an example2

that constructs schedule trees for a (2×2) Mesh network as
shown in Fig. 3. Fig. 3a and 3b show the topology graphs that
are used to facilitate tree constructions for time steps 1 and 2,
respectively. The edge label (i) in Fig. 3a, 3b and 3c indicates
the global link allocation sequence that connects a node to its
parent during the tree construction. Fig. 3c shows all the trees
and their construction sequences, where the trees take turns to
add one node at a time, sustaining tree balance. At sequence
number 7, after the last edge (3→ 2) is added to connect nodes
2 (T3-2) and 3 (T3-3) in tree 3, the topology graph for
time step 1 in Fig. 3a runs out of all the edges. Then, a new
topology graph in Fig. 3b is used to start time step 2, which
creates a new level for the trees. (lines 4–14 of the Algorithm 1
in §III-C). These newly constructed trees are used to build
the reduce-scatter schedule trees and finally, are adjusted to
generate all-gather schedule trees, as shown in Fig. 3d and
3e, respectively. Note that the trees are well balanced and
symmetric in shape, but not necessarily structurally symmetric.
Structural symmetry requires special representation of each
node with respect to the remaining network and only applies
to specific symmetric networks. Moreover, for networks like
a (4×4) Mesh where the longest distance from a source node
varies depending on its position, the trees are asymmetric with
different heights.

Fig. 4 shows the all-gather and broadcast schedules for
ring and double binary tree (DBTree) on the same network,
respectively. Compared to MULTITREE, ring needs one more
step which leads to longer latency. It also shows rings can
be considered as unary spanning trees. Fig. 4b shows the two
trees in DBTree. Although it has the same logical height as
MULTITREE, its physical height is deeper since the connection
between nodes 1 and 2 crosses two hops due to the mismatch
of tree structure and physical topology. Such a mismatch is
even more severe in larger networks. In addition, DBTree
schedules the communications in even/odd steps (black/red
color) such that a node never receives or sends data simul-
taneously in both trees, which can lengthen the completion
time. Note that each edge in MULTITREE maps to a physical
link, which is only one-hop distance.

2For demonstration purposes, we use a 2×2 Mesh network that is too small
to show the benefit of MULTITREE. Although a larger network can show the
advantages of MULTITREE, we cannot accommodate it due to page limit.

Algorithm 1: MULTITREE All-Reduce Algorithm.
Input: topology graph G(V,E)
Output: reduce scatter schedule, allgather schedule

// Initialization
1 for each node i ∈ V of graph G(V,E) do
2 Tree Ti adds node i to tree Ti as root;

3 t = 0;

// Compute all-gather schedules
4 while not all trees completed do

// Start a new time step t with a new G

5 t = t+ 1;
6 G′(V ′, E′) = G(V,E);

// Add new nodes to trees and schedule
// communications for this time step

7 while E′ has free edges to add new nodes do
// Trees take turns for balancing

8 Select next tree T by root ID in ascending order;

9 for p ∈ T ’s nodes added by previous time steps do
10 if there is an edge (p→ c) ∈ E′ then
11 Add node c to T and connect to p;
12 Remove edge p→ c from E′;

// Schedule message p→ c at t
13 Add (p→ c, t) to T ’s allgather schedule;

14 break;

15 Calculate total time steps tot t = t;

// Compute reduce-scatter schedule, which
// is the reverse of all-gather

16 for (p→ c, t′) ∈ allgather schedule of each tree T do
17 Add (c→ p, tot t− t′ + 1) to T ’s

reduce scatter schedule;
// Adjust all-gather schedule

18 Replace (p→ c, t′) with (p→ c, tot t+ t′);

C. Algorithm Design

More formally, MULTITREE is presented in Algorithm 1.
For ease of understanding, we describe it for direct networks,
and provide the steps to extend for switch-based networks.

1) Algorithm Description: The algorithm initializes a tree
for each node in the network as the root and the time step t
(lines 1–3). Then it starts to construct the schedule trees for
the all-gather phase (broadcast) instead of reduce-scatter, since
it is more natural for the top-down approach to start from the
root (lines 4–14). For every new time step t, a full topology
graph G′(V ′, E′) is used, whose edges are removed while
adding new nodes to the trees. During this time step t, trees
take turns to add one node c to connect to a predecessor node p
added in previous time steps. Then the edge p→ c is removed
from the topology graph and scheduled for communication at
the current time step t. Note that trees alternate by root ID in
ascending order for simplicity, which works fine in most cases,
especially for symmetric networks like Torus. For asymmetric
or irregular networks, trees with larger remaining height can
be prioritized so that communication on the longest path is
scheduled earlier. At line 9, nodes are examined breadth-first

in their order of adding to the tree by previous time steps
so as to make the predecessor levels denser. For selecting a
neighbor of p (line 10), it first checks the neighbors in Y
dimension then in X dimension for Torus and Mesh networks.
Other structural information can be used for asymmetric and
irregular networks, which we leave for future study. When
the topology graph runs out of edges to connect remaining
nodes to any of the trees, it starts a new time step and
repeats the same link allocation procedure until all the all-
gather schedule trees are completed. After all-gather schedule
trees are constructed, they are used to construct reduce-scatter
trees and adjusted for communication time step (lines 16–18).
Since reduce-scatter goes in the opposite direction with respect
to all-gather communication, the algorithm simply reverses the
communication pairs of all-gather schedule trees with adjusted
time steps. The all-gather schedules are also adjusted in time
to run after reduce-scatter schedules. In static systems, the
algorithm only needs to run once and can be used for any
DNN workloads. In dynamic and shared systems, it runs every
time a new set of nodes is allocated for the workloads.

2) Complexity Analysis: The most expensive part of the
algorithm is the loop for all-gather schedule tree constructions
(lines 4–14). Let us consider a topology graph G(V,E). The
core part of adding new nodes to schedule trees is from lines
9–14. To add a new node, the algorithm checks whether the
already added nodes of that tree still have edges connected to
a pending node. In the worst case, it may check all the edges
of the graph, which is |E|. In total, we have |V | trees and
each tree has |V | nodes. So the worst case is O(|V |2|E|).

3) Indirect Networks Support: In switch-based networks,
only some switches are connected to end nodes, other switches
connect with each other to form the indirect network. In
Algorithm 1, the topology graph G(V,E) is the adjacency lists
of switch-to-switch connections in a direct network, where
each switch is attached with a node. In order to support indirect
networks, we extend G(V,E) with additional node-to-switch
and switch-to-node connection lists. To find an available
child c for a node p, it follows breadth-first search on these
three topology components as described in the following steps:

(1) Get p’s attached switch sw0 from its node-to-switch list.
(2) When multiple nodes are attached to the same switch,

check whether sw0’s switch-to-node has connections to
connect with p. If there is an available connection, pick
a node as c and remove one connection (p→ sw0) from
p’s node-to-switch list and one connection (sw0 → c)
from sw0’s switch-to-node list, then return. If there is
no available connection, go to step 3.

(3) Get the neighbor switch sw1 from the switch-to-switch

list of sw0. Repeat the same process as step 2 with
sw1 until a node c is found or no connection is avail-
able. In this case, if a node is found, besides the con-
nections removed in step 2, connections in traversed
switch-to-switch lists should also be removed for the
allocated links.

Reduce 3 1 nil nil nil nil 1

Reduce 1 1 nil nil nil nil 2

Reduce 2 2 1 nil nil nil 2

Gather 0 nil 1 2 nil nil 3

Gather 2 2 1 nil nil nil 4

Accelerator 0

Reduce 2 0 nil nil nil nil 1

Reduce 0 0 nil nil nil nil 2

Reduce 3 3 0 nil nil nil 2

Gather 1 nil 0 3 nil nil 3

Gather 3 3 0 nil nil nil 4

Accelerator 1

Reduce 1 3 nil nil nil nil 1

Reduce 3 3 nil nil nil nil 2

Reduce 0 0 3 nil nil nil 2

Gather 1 nil 0 3 nil nil 3

Gather 0 0 3 nil nil nil 4

Accelerator 2

Reduce 0 2 nil nil nil nil 1

Reduce 2 2 nil nil nil nil 2

Reduce 1 1 2 nil nil nil 2

Gather 3 nil 1 2 nil nil 3

Gather 1 1 2 nil nil nil 4

Accelerator 3

Op FlowID Parent Children Step Start Addr Size

Op FlowID Parent Children Step Op FlowID Parent Children Step

Op FlowID Parent Children Step Op FlowID Parent Children Step

All-Reduce Schedule Table Entry Op: Reduce, Gather, NOP
FlowID: tree ID

Fig. 5: All-Reduce schedule tables for the example in §III-B (The
Start Addr and Size fields are omitted in the tables for brevity).

IV. ARCHITECTURAL SUPPORTS

In this section, we outline the co-designed communication
architecture and the specialized flow control mechanism for
MULTITREE all-reduce operations.

A. All-Reduce Schedule Management

We co-design the network interface (NI) to facilitate MUL-
TITREE all-reduce scheduling. Algorithm 1 constructs trees for
each data chunk. These tree schedules can be converted into
schedule tables (one table per node). Fig. 5 shows the all-
reduce schedule tables for the example in §III-B. Each table
entry consists of an Op filed for the opcode, a FlowID field
for the tree flow (tree ID), a Parent and Children fields for
the dependencies in this tree flow3. In addition, the Step field
indicates the time step in which this communication should be
initiated. The Start Addr and Size fields are for the starting
address and the size for the gradient message, respectively.

There are three opcodes for all-reduce, namely, Reduce,
Gather, and NOP. During Reduce operation, communication
happens from the leaf to the root. Each internal node of the
trees must receive Reduce before communicating to its parent.
For example, in Fig. 5, accelerator 0 can send a Reduce to
its parent (accelerator 1) for tree flow 3, because it is the
leaf node at step 0 in tree 3. The last Reduce of accelerator 0
should not be sent to the parent (accelerator 2) until it receives
a dependent Reduce from its child (accelerator 1) in the flow
tree 2. On the other hand, during Gather operation, a node
sends messages to the children after receiving a Gather from
the parent unless the node is the root of the tree.

We also provide a NOP to maintain the communication of
different time steps in a lockstep manner. Link contention
can happen without proper scheduling of messages among
the trees. This is more frequent in topologies that generate
imbalanced trees, such as large-scale Mesh, and can limit
the improvement or even degrade performance by destroy-
ing the scheduling. Therefore, a mechanism to maintain the
communication in a lockstep fashion is needed to achieve the

3The size of the Children field is calculated as the bandwidth ratio
between the network interface and a network link bandwidth.

Op FlowID Parent Children Step Start Addr Size

Timestep
Counter

= [nil, nil, nil, nil]

=

[Reduce] Send to Parent
(FlowID, Start Addr, Size)

= nil

[Gather] Send to Children
(FlowID, Start Addr, Size)

Reduce/Gather/NOP

Decode

DMA Engine

Lockstep
Down Counter

[NOP] Set Counter
Reduce/Gather

0

Idle

>

Increment
Counter

DMA Req DMA Resp

Reduce/Gather
Message to Network

Data

Step > Timestep

❸

❶

❷

Reduce Message
from Network

=

Reduction
Logic

❹

Gather Message
from Network

❺❻

Fig. 6: Architecture of all-reduce schedule management.

best performance. One option is to use some simple message
passing scheme but that can introduce additional coordina-
tion overhead, which can be very high especially for small
messages. Therefore, we propose a lockstep mechanism for
implicit coordination by exploiting the static communication
patterns in all-reduce. Given the message size, the step time is
estimated as the serialization latency assuming no contention4.
When a NOP is inserted, the all-reduce injection is forced to
stall for the estimated step time. Although NOP may leave links
under-utilized, based on our observations, it only happens in
irregular networks and at the leaves of the trees, while other
time steps can fully utilize the links5. Pruning and adjusting
the trees may help in these cases, we leave it for future
exploration. In addition, the estimated lockstep mechanism
does not require a global synchronization across all the NIs.
When the data size is small, minor variation in the same time
step in different nodes has minimum impact as bandwidth
is not the bottleneck. When the data size is large, the long
serialization latency becomes dominant, making the small
clock variance insignificant.

Fig. 6 depicts the architecture for all-reduce schedule man-
agement and injection regulation. It includes an all-reduce
schedule table, a timestep counter, a decoder, a lockstep down-
counter and the conventional NI facilities. Upon an all-reduce
operation, the schedule table is initialized; the timestep and
lockstep counters are reset by the processor to configure the
scheduling. During all-reduce, the head entry of the table

4The step time is estimated as the number of flits (num_flits) for the per-
step data chunk if the NI buffers can hold it completely. Otherwise, it is
estimated as num_flits subtracting the NI buffer size (translating to flit size).

5Note that even in best-effort utilization, links may be under-utilized as
data size may not be perfectly divisible by the aggregated bandwidth.

is inspected (1). If the Step is the same as the timestep
counter value and the children (for Reduce) or parent (for
Gather) dependencies are satisfied, the operation is issued to
send the messages. Then, the Op is decoded to decide the
corresponding action (2). If it is a NOP, the lockstep counter
is set and starts down counting for an estimated time step. If
it is a Reduce/Gather, the Start Addr and Size are used to
request the DMA engine for bulk data transfer. When the data
comes back, the FlowID is encapsulated with other address
information in the data packet to start communication. When
the lockstep counter is zero and the all-reduce units are idle,
the timestep counter is incremented if the next operation in the
schedule table is for the next step (3). Upon receiving Reduce

messages, it is issued to the reduction logic for aggregation
(4). Once the aggregation for Reduce of the current step is
finished, they are used to clear the dependencies of future
Reduce/Gather (5). When a Gather is received, it is directed
to the schedule table to clear the parent dependence for the
upcoming Gather (6).

B. Message-based Flow Control for Big Gradient Exchanges

Unlike general purpose applications, all-reduce communi-
cation in data-parallel DNN training has a relatively fixed
traffic pattern. With a specific all-reduce algorithm, the com-
munication pattern is known in advance for a training task.
For example, MULTITREE constructs schedule trees before
training starts. This prior knowledge can be leveraged for sim-
pler control and arbitration in hardware, thereby simplifying
logic and improving energy efficiency. MULTITREE algorithm
aims to coordinate among the trees with a global view, where
less dynamism in interconnection networks helps maintain
the communication schedules, thereby keeping concurrent
communications progressing at a similar rate. In addition, the
long traffic (between a communicating pair) for all-reduce of
large gradients unnecessarily incurs bandwidth overhead of
massive number of packet head flits. To optimize these aspects,
we revisit the traditional flow control techniques and redesign
them specifically for all-reduce communication.

Fig. 7a shows a commonly used packet-based switching
mechanism, where large gradients are divided into many
messages. Each message is partitioned into multiple packets.
Each packet consists of a head flit and body/tail flits. The
highlighted head flits consumes bandwidth and incurs extra
control such as routing and arbitration, causing extra delay
and energy consumption. On the other hand, we adapt a
message-based approach to reduce such overheads, as shown
in Fig. 7b. Instead of having a fixed message size, we take
the whole chunk of gradients as a message, which can be
further converted to many sub-messages starting with a head
sub-message and ending with a tail sub-message. Each sub-
message is divided into sub-packets, where the first sub-packet
of the head sub-message is a head sub-packet, which behaves
as the head of the large gradient message. The last sub-
packet of the tail sub-message is the tail sub-packet to end the
gradient message. Similarly, the sub-packets are partitioned
into flits. Unlike conventional packet-based switching, body

Message Message … Message

Packet Packet … Packet

Head
Flit

Body
Flit …

Tail
Flit

Gradients

n Flits

(a) Original gradient message

Head Sub-Message Body Sub-Message … Tail Sub-Message

Gradients

Body
Sub-Packet

Body
Sub-Packet … Body

Sub-Packet

Head
Flit

Body
Flit … Sub

Tail

Head
Sub-Packet

Body
Sub-Packet … Body

Sub-Packet
Body

Sub-Packet
Body

Sub-Packet …
Tail

Sub-Packet

Body
Flit … Sub

Tail
Body
Flit …

Tail
Flit

n-1 Flitsn Flits n-1 Flits

(b) Big gradient message
Fig. 7: Flow control: (a) original many messages with small packets of gradients and (b) big message with large packet of full gradients.

VC Type Packet Info Header Info

2 3 101

(a) Head and head&tail flit

VC Type unused Payload

2 3 3

(b) Body and tail flit

Packet Info Route Info Dest Src⟹⟹
244

(c) Normal packet information in head flit

Packet Info Route Info Tree Info Next Eject Tree ID⟹⟹
3 4346

(d) Sub-packet information in head flit
Fig. 8: Flit formatting in a (4×4) Torus network for (a) head and
head&tail flit, (b) body and tail flit, (c) packet information in head
flit for normal packet, and (d) sub-packet.

and tail sub-packets start with a body flit, while head and body
sub-packets end with a sub-tail flit to indicate the completion
of a sub-packet. This leads to only one head flit for a large
gradient message, achieving near perfect bandwidth efficiency
to improve performance and energy efficiency. This not only
gains the benefit of circuit switching without setup time, but
also avoids blocking other critical short packets from using
the physical links.

TABLE II: Packet and Flit Types
Normal Packet Flit Code

Head 0 0 0

Body 0 0 1

Tail 0 1 0

Head & Tail 0 1 1

Sub-Packet Flit Code

Head 1 0 0

Body 1 0 1

Sub-Tail 1 1 0

Tail 1 1 1

Fig. 8a and 8b show the flit formats for head/head&tail
flit and body/tail flit, respectively. The VC field indicates the
allocated virtual channel and the Type field specifies the
packet and flit type, as listed in Table II. The Packet Info

field is encoded differently for normal packets and all-reduce
sub-packets, as shown in Fig. 8c and 8d. For normal packets,
the Packet Info is simply the Route Info, including Dest

and Src that are used by the distributed routing algorithms. For
all-reduce sub-packets, Packet Info includes both Route

Info and Tree Info, where the Tree Info is the Tree

ID that this message belongs to. Since MULTITREE only

communicates between neighbors, we use source routing to
include the next hop output port Next and ejection port
Eject in the head flit. In the network interface, these pieces
of information are pre-computed and stored in Route Info,
which can be directly used in the routers. More specifically,
in the source router, the Next field is used to route to the
neighbor, which will interchange with the Eject field after
the routing computation stage. The Next field is kept toward
the destination in order to identify which child the message is
from to clear dependencies for scheduling purposes.

Since MULTITREE all-reduce only schedules communica-
tions between two neighboring nodes, the flits always take one
hop. Therefore, such a design does not increase the possibility
and risk of deadlock. Note that it can still work with wormhole
switching seamlessly to support other types of traffic, such as
control and synchronization traffic. Virtual channels are used
to avoid starvation of other short messages.

V. METHODOLOGY

A. System Modeling and Configuration

We extended SCALE-Sim [35], a DNN inference simulator,
to support back-propagation for training, where output station-
ary dataflow is applied. We configure a TPU-like accelerator
with 16 processing elements (PEs), where each PE has a
(32×32) systolic array. We assume double buffering and suf-
ficient memory bandwidth (such as high bandwidth memory)
to maintain the peak compute throughput. The accelerator is
also used for aggregation during all-reduce communication.

We use BookSim [36] for interconnect modeling and imple-
mented a python interface between SCALE-Sim and BookSim
so that the accelerator and network can interact through net-
work interface, which implements the co-designed all-reduce
scheduling. The extra hardware overhead includes a schedule
table and two counters, one for the lockstep down counter and
the other for the time step counter. Since each tree needs two
entries in each node, one for reduce-scatter and one for all-
gather, the number of table entries is double the number of
trees, which is the total number of nodes. So a table needs
2N entries for an N -node system. For a 64-node system,
each table entry needs 200 bits and the table needs only
128 entries, which incurs 3.2 KB overhead. The schedules
are computed once during initialization and loaded to network
interfaces for reuse in the iterative training epochs. Since the
offloading and scheduling of communication are supported
in hardware, protocol and software overhead compared to

TABLE III: System Configurations
Parameter Configuration

PE
MAC array 32×32

Dataflow Output Stationary
Precision 32 bits

Accelerator
Number of PEs 16

Clock 1 GHz

Network

Number of Accelerators 16, 32, 64
Topology 2D Torus, Mesh, Fat-Tree, BiGraph

Flow Control Virtual Cut-Through
Router Clock 1 GHz

Number of VCs 4
VC Buffer Depth 318 flits

Data Packet Payload 256 Bytes for Baselines
Link Latency/Bandwidth 150 ns / 16 GB/s

software scheduling can be reduced. Note that this scheduling
mechanism is applied to all the baselines for fair comparison.
We configure the buffer size to cover the credit round-trip loop,
the link to match the targeting bandwidth, and the payload size
that is used in modern training systems [37]. Note that larger
link bandwidth can relax the pressure of all-reduce, but the
benefit of MULTITREE over other approaches still holds.

To demonstrate the effectiveness and generality of MULTI-
TREE, we study several topologies, including 2D Torus, Mesh,
Fat-Tree (similar to NVIDIA DGX-2 [38]) and the recent
BiGraph [29]. For all the networks, we test a smaller scale (16-
node or 32-node) and a larger scale (64-node). We also conduct
a scalability study on Torus by scaling out to 256 accelerators.
The 2D Torus and Mesh direct networks are similar to Google
Cloud TPU [4], whose network interface is integrated on chip.
We also assume the network interface bandwidth matches the
network bandwidth of the attached router in direct networks.
For switch-based networks, each accelerator is connected with
a NIC that connects to a port of the leaf switch. We also use
a 2D 8×8 Torus for DNN benchmark evaluation. The system
configuration parameters are listed in Table III.

B. Workloads

We conduct synthetic study for all-reduce bandwidth on net-
work topology (§VI-A) and for scalability evaluation (§VI-B).
The all-reduce data size is chosen such that good amounts of
communication is created to stress the network and simulations
can finish in reasonable time. To test all-reduce bandwidth on
different network topologies, we vary the all-reduce data size
from 32 KiB to 64 MiB. For scalability study, we use an all-
reduce size of 375×N KiB, where N is the number of nodes.

We also evaluate the DNN models provided by SCALE-
Sim [35] (§VI-C), including AlexNet [39], AlphaGoZero [40],
FasterRCNN [41], GoogLeNet [42], NCF recommendation
(NCF) [43], ResNet50 [44] and Transformer [45], [46]. We
run with a mini-batch size of 16×N for an N -node system (16
samples per accelerator)6 and evaluate the training time for one

6We choose a mini-batch size of 16×N for an N -node system to fully uti-
lize the compute resources, while trade-off between mini-batch size, training
time and model accuracy is out of our scope [47].

iteration for both non-overlap (forward+back-propagation+all-
reduce) and computation-communication overlap (layer-wise
all-reduce). In layer-wise all-reduce, each layer is queued for
all-reduce once they finish back-propagation. So communica-
tion overlaps with computation while SGD is propagating back
to previous layers [48].

VI. EVALUATION

We evaluate the MULTITREE without and MULTITREEMSG
with the message-based flow control enabled, respectively. We
also compare our proposed approach with several state-of-the-
art all-reduce algorithms as follows.
• RING: ring all-reduce algorithm [9] that can be applied

to all our evaluated topologies.
• DBTREE: double binary tree [10], [16] that is topology-

oblivious and can be applied to all network topologies.
• 2D-RING: two-dimensional ring all-reduce that is dedi-

cated to 2D Torus and Mesh networks [28].
• HDRM: halving-doubling with rank mapping that is

dedicated to BiGraph topology in EFLOPS [29].

A. All-Reduce Bandwidth

To show the applicability of MULTITREE on various net-
work topologies, we configure 4×4 and 8×8 Torus networks,
4×4 and 8×8 Mesh networks, a 16-node Fat-Tree network
similar to DGX-2 but with one physical network and a 64-
node 8-ary 2-level Fat-Tree, 32-node 4×8 and 64-node 4×16
BiGraph networks. We applied the extended version of the
algorithm described in §III-C3 to switch-based systems such
as Fat-Tree and BiGraph. We vary the all-reduce data size from
32 KiB to 64 MiB and evaluate the bandwidth by calculating
the all-reduce data size divided by simulation time. The results
are shown in Fig. 9.

As shown in Fig. 9a and 9b, MULTITREE and MUL-
TITREEMSG always achieve better bandwidth than others
regardless of the data size. This is because when data size is
small, MULTITREE can finish the all-reduce with less steps;
when data size is large, MULTITREE exploits the network
topology and increases the link utilization. Particularly for
DBTREE, it is the worst in these two topologies since the tree
nodes map poorly to the network, which causes severe con-
tention. 2D-RING is better than RING in Torus and 4×4 Mesh
but always worse than MULTITREE and MULTITREEMSG
since 2D-RING is not bandwidth-optimal and communicates
much more data than MULTITREE due to its two ring all-
reduce phases in the two dimensions of the networks. Inter-
estingly, 2D-RING is worse than RING in the larger 8×8 Mesh
network. The reason is twofold. First, there is no perfect ring
topology in a dimension of the Mesh network, the latency is
determined by the slowest pair, which is the two farthest nodes
in the same dimension. Second, 2D-RING is bandwidth sub-
optimal and can send twice the amount of data compared to
bandwidth-optimal algorithms (RING and MULTITREE).

In both Fat-Tree and BiGraph as shown in Fig. 9c and
9d, MULTITREE and MULTITREEMSG outperform RING with
smaller data size; when data size is large, they achieve

MultiTreeMsg MultiTree DBTree 2D-Ring Ring HDRM

64KB 512KB 4MB 32MB
All-Reduce Data Size -- 16-node 4× 4 Torus

0

5

10

15

20

25

30

Ba
nd

w
id

th
 (G

B/
s)

64KB 512KB 4MB 32MB
All-Reduce Data Size -- 64-node 8× 8 Torus

0

5

10

15

20

Ba
nd

w
id

th
 (G

B/
s)

(a) Torus networks

64KB 512KB 4MB 32MB
All-Reduce Data Size -- 16-node 4× 4 Mesh

0

2

4

6

8

10

12

14

Ba
nd

w
id

th
 (G

B/
s)

64KB 512KB 4MB 32MB
All-Reduce Data Size -- 64-node 8× 8 Mesh

0

2

4

6

8

10

12
Ba

nd
w

id
th

 (G
B/

s)

(b) Mesh networks

64KB 512KB 4MB 32MB
All-Reduce Data Size -- 16-node Fat-Tree (DGX-2)

0

2

4

6

8

10

Ba
nd

w
id

th
 (G

B/
s)

64KB 512KB 4MB 32MB
All-Reduce Data Size -- 64-node 2-level Fat-Tree

0

2

4

6

8

10

Ba
nd

w
id

th
 (G

B/
s)

(c) Fat-Tree networks

64KB 512KB 4MB 32MB
All-Reduce Data Size -- 32-node 4× 8 BiGraph

0

2

4

6

8

10

Ba
nd

w
id

th
 (G

B/
s)

64KB 512KB 4MB 32MB
All-Reduce Data Size -- 64-node 4× 16 BiGraph

0

2

4

6

8

10

Ba
nd

w
id

th
 (G

B/
s)

(d) BiGraph networks
Fig. 9: All-Reduce bandwidth on different topologies with various data size: (a) 4×4 and 8×8 Torus, (b) 4×4 and 8×8 Mesh, (c) 16-node
(similar to DGX-2) and 64-node 2-level Fat-Tree, (d) 32-node 4×8 and 64-node 4×16 BiGraph in EFLOPS.

16 36 64 100 144 196 256
Number of Nodes in 2D Torus Network

0
2
4
6
8

10
12
14
16
18

N
or

m
al

iz
ed

 R
un

tim
e MultiTreeMsg

MultiTree
2D-Ring
Ring

Fig. 10: Scalability with 375×N KiB all-reduce data size normalized
to 16-node performance of RING, where N is the number of nodes.

almost the same performance. In these two topologies, both
MULTITREE and RING derive the same number of steps.
In MULTITREE, nodes first communicate with the nodes
that are connected to the same switch and have less link
traversals, which is very critical for reducing latency in off-
chip interconnection networks. In contrast, RING’s latency
is serialized by the slowest pair of nodes that connect to
different leaf switches, causing more link traversal. Therefore,
MULTITREE is better with a small data size which is latency-
sensitive. When with large data size, both algorithms fully
utilize the bandwidth and achieve the same performance.
In DBTREE-friendly networks, DBTREE can achieve better
latency compared to RING due to smaller number of steps,
but it suffers from contention when messages get large. For
larger network size such as 64-node systems, their break-even
data size point is shifted right. We also compare MULTITREE
and MULTITREEMSG with HDRM that is co-designed with
the BiGraph network [29]. Although HDRM has a smaller

number of steps than MULTITREE, the extra link traversal
incurred for each communication between the upper and lower
switches offsets its benefit, leading to worse performance with
small data size. When dealing with large data sizes, HDRM
also fully utilizes the bandwidth. MULTITREEMSG increases
the payload bandwidth by another 6%.

B. Scalability

Fig. 10 shows the weak scalability with the all-reduce size
of 375×N KiB for an N -node system, and scaling out N
from 16 to 256. The communication time is normalized to
RING’s 16-node network performance. All the three algorithms
scale linearly to the number of nodes while sustaining different
linear factors, where MULTITREEMSG is the best and RING
is the worst. Although both fully utilize the network links,
MULTITREEMSG is better than 2D-RING because 2D-RING
is bandwidth sub-optimal and can communicate nearly twice
the amount of data compared to MULTITREEMSG. As RING
does not fully utilize the network links, it achieves the least
performance. In summary, MULTITREEMSG achieves 3× and
1.4× speedup over RING and 2D-RING, respectively. We also
experimented with strong scalability with a large problem size
and there is only small variation for each algorithm since
they are all contention-free and serialization latency is more
dominant for large all-reduce size.

C. DNN Benchmark Performance

Fig. 11 shows the training time breakdown on an 8×8 Torus
network normalized to RING, for both non-overlapped training
approach (Fig. 11a) and computation-communication overlap
approach (Fig. 11b). As shown in Fig. 11a, except for AlexNet,

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

0.0

0.5

1.0

1.5

2.0

2.5
N

or
m

al
iz

ed
 R

un
tim

e
Br

ea
kd

ow
n

AlexNet FasterRCNN GoogLeNet ResNet50 AlphaGoZero NCF Transformer

All-Reduce Forward+Back-Propagation All-Reduce Speedup

0.0

0.5

1.0

1.5

2.0

2.5

A
ll-

Re
du

ce
 S

pe
ed

up

(a) Non-overlapped training time breakdown and all-reduce speedup

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

Ri
ng

D
BT

re
e

2D
-R

in
g

M
ul

tiT
re

e
M

ul
tiT

re
eM

sg

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 R
un

tim
e

Br
ea

kd
ow

n

AlexNet FasterRCNN GoogLeNet ResNet50 AlphaGoZero NCF

Communication Dominant

Transformer

Communication Computation-Communicatioin-Overlap Computation

(b) Overlapped training time breakdown with layer-wise all-reduce
Fig. 11: Training time breakdown of DNN training on an 8×8 Torus network: (a) forward+back-propagation computation and all-reduce
communication breakdown (primary) and all-reduce speedup (secondary) normalized to RING using non-overlapped training approach; (b)
computation and computation-communication overlap as well as communication time breakdown normalized to RING using overlapped
training approach with layer-wise all-reduce.

other DNNs have a considerable amount of time on all-
reduce communication. CNNs such as AlexNet, FasterRCNN,
GoogLeNet, and ResNet50 are compute-intensive and need to
compute transposed convolution to for input gradients in order
to propagate back to the previous layer. In contrast, NCF and
Transformer have more embedding and attention layers, which
have less computation requirements, making communication
more dominant. In summary, communication time can vary
from 30%–88% in the baseline RING. For compute-intensive
CNNs, MULTITREE improves training performance by up to
34% and 15% compared to RING and 2D-RING, respectively.
For communication-intensive DNNs, MULTITREE improves
training performance by 81% and 30% compared to RING
and 2D-RING, respectively.

Fig. 11a also shows normalized all-reduce speedup over
RING. On average, MULTITREE achieves 2.2× and 1.51×
speedup over RING and 2D-RING, respectively. When ap-
plying message-based flow control, all-reduce performance is
further improved by 6%, leading to an average of 2.3× and
1.56× speedup compared to RING and 2D-RING, respectively.

It also shows that double binary tree (DBTREE) is worse
than all other algorithms on 2D Torus. Since DBTREE is
a topology-oblivious algorithm that builds two logical trees,
where the tree nodes map poorly onto the physical network.
As a result, the connected nodes in the trees can cross
multiple hops and cause network contention. Furthermore, the
contention on links of large messages due to large models even
worsen the performance. Note that message-based flow control
can also be applied to other algorithms. The 6% bandwidth
saving on head flits can contribute to nearly the same amount
of improvement for all-reduce communication.

To understand the effect of computation-communication
overlap on reducing all-reduce communication overhead, we
also experimented with an overlapped training approach using
layer-wise all-reduce. The training time breakdown for compu-
tation, computation-communication overlap and communica-
tion is depicted in Fig. 11b. In general, MULTITREE achieves
the best performance while DBTREE performs the worst. For

computation dominant workloads such as CNNs (AlexNet,
FasterRCNN, GoogLeNet, ResNet50), computation can largely
overlap with most of the all-reduce communication time and
mitigate the communication bottleneck. For these workloads,
MULTITREE improves training performance by up to 10%
compared to RING. And 2D-RING can perform similarly
to MULTITREE but it has a larger portion of computation-
communication overlap due to its longer communication time.
On the contrary, for communication dominant DNNs such as
NCF and Transformer, computation can only overlap a small
amount of communication time. These workloads have large
amounts of embedding and attention computations, which have
less computation requirements, leaving communication still a
bottleneck. In such cases, MULTITREE can still achieve 2×
1.37× speedup compared to RING and 2D-RING, respectively,
in terms of training performance. Recent study shows that most
of the DNN computation cycles are on non-CNN layers [49],
meaning most DNN models in data centers are communication
dominant. Therefore, MULTITREE is promising to drive faster
distributed training at scale.

VII. DISCUSSIONS

A. Bandwidth versus Latency

An ideal algorithm should be optimal for both bandwidth
and latency. Theoretically, MULTITREE aims to build mul-
tiple k-ary trees, which have tree height of logk n for n
nodes, where ring and butterfly exchanges [50] are special
cases whose k is 1 and 2, respectively. When the all-reduce
data size is small, butterfly can achieve better latency than
ring due to less number of steps. However, it suffers from
contention for large data size, where serialization latency
plays a more important role [12]. Similar to DBTREE, the
multi-hop communication on butterfly-unfriendly topologies
can further worsen the situation. In cases of multi-phase rings,
the benefit of algorithmic step reduction can be offset by more
communicated data and require more bandwidth for large data
sizes, leading to higher serialization latency similar to 2D-
RING. In contrast, MULTITREE is not only bandwidth optimal,

but also low-latency by reducing the communication steps and
hops in switch-based networks.

B. Broader Applications

Although MULTITREE is designed for data parallelism,
it can also support hybrid-parallel inference and training.
Reduce-scatter and all-gather are naturally supported. The
message-based flow control can also be used to improve
bandwidth efficiency in both cases. In addition, MULTITREE
can speed up data-parallel components in a hybrid approach.
When the parallelism strategy and DNN workload are de-
termined, MULTITREE runs for the nodes that involve all-
reduce communication. The all-gather trees can also easily
support all-to-all collective in recent DNN workloads such
as DLRM [51]. MultiTree can also be implemented in soft-
ware, but the scheduling and synchronization can offset the
benefit. For networks with heterogeneous link bandwidths,
the topology graph can be modeled as a multigraph where
each edge is a unit of bandwidth, and wider links can be
modeled as multiple edges proportional to the link bandwidth,
so MULTITREE applies properly. MULTITREE can also sup-
port general purpose cluster networks or public clouds if the
network topology is provided or can be probed. However, it
may not achieve best performance due to interference if the
training job is co-located with other jobs.

C. Opportunities

Although the theoretical number of steps is logarithmic of
the number of nodes for trees, the best number of algorithmic
steps MULTITREE achieves is limited to the network diameter
when considering network topology. Nonetheless, MULTI-
TREE demonstrates the effectiveness of algorithm-architecture
co-design for communication acceleration by exploiting net-
work topology and big message size of all-reduce for dis-
tributed deep learning. This study also reveals more co-design
opportunities with topology, such as topology design for data-
parallel training [29] or more complex hybrid-parallel deep
learning. In addition, reducing the number of trees by trading
bandwidth and latency as an attempt in recent work [17] can
be further explored. We leave these aspects for future work.

VIII. ADDITIONAL RELATED WORK

A. Collectives Acceleration for DNN Training.

Recent research has also considered topology information
with tree structures to improve all-reduce [52]. However,
the linear programming complexity does not scale well to
larger networks in practice. Another implementation applies a
partitioning optimization algorithm to build trees from leaves,
which only supports a specific network topology [53]. Its
backtracking operation using exhaustive search can take days
to find a single solution even with a small network. Therefore,
it is neither practical nor portable to various network con-
figurations. The recently proposed Blink [17] also generates
multiple directed spanning trees to increase link utilization.
However, spanning trees for DGX-2 is a dedicated design
but not from the main algorithm. In contrast, MULTITREE

is generalized for various topologies and generates the same
trees as Blink’s dedicated DGX-2 design. In addition, Blink
has no control on the usage order among the trees on
the same link, while MULTITREE’s co-design provides fine-
grained control to schedule link communication earlier for
the critical tree. Blink’s main algorithm first creates trees
stemming from the same root for DGX-1 using approximate
packing and then minimizes the number of trees using integer
linear programming (ILP). Such a flow rate optimization does
not consider the all-reduce computation dependency, while
MULTITREE inherently considers the computation dependency
in tree construction. Since multiple trees swan from the same
root, only one way of the bidirectional links attached to the
root are used for receiving or sending data in the distinct
reduction and broadcast phases, leaving the link bandwidth
under-utilized. In MULTITREE, each node is both a root of
a tree and internal/leaf node(s) in all other trees in order
to utilize all the bidirectional links. Moreover, MULTITREE
scales well to larger network size while Blink may be limited
by the expensive ILP. Recently, Luo et al. designed a library
for the cloud to probe the physical network and schedule a
two-level hierarchical aggregation plan for efficient gradient
update [54]. Li et al. addressed the communication overhead of
DNN training by applying in-network acceleration [55]. More
recently, Klenk et al. proposed an in-network architecture for
in-switch reduction to accelerate all-reduce [56], which targets
shared-memory multiprocessors.

B. Flow Control and Arbitration

General flow control techniques are used to ensure correct
flow of packets from source to destination. In addition to the
basic functionality, Peh et al. extended the flow control to
reserve the path using a control packet ahead of data packet
arrival [57]. It allows them to achieve better buffer usage,
and eliminates latency for routing and arbitration decisions.
With similar motivation, Ahn et al. proposed pseudo-circuit
by exploiting communication temporal locality [58]. Kumar
et al. proposed a token based technique for improving routing
and flow control [59], which also tries to establish a bypass
path to avoid the routing and switching arbitration logic.

IX. CONCLUSIONS

In this paper, we identify the inefficiency in the widely
used all-reduce algorithms and the opportunity of algorithm-
architecture co-design. We propose MULTITREE all-reduce
algorithm that constructs multiple trees with topology and
link utilization considerations for contention-free all-reduce
scheduling. We augment the network interface to coordi-
nate the communications among the trees by enforcing the
scheduling with a simple lockstep estimation mechanism. The
evaluation shows that the message-based flow control can
achieve 6% bandwidth improvement. Furthermore, the co-
design works well on different topologies and achieves 2.3×
and 1.56× communication speedup (up to 81% and 30%
training time reduction) over RING and state-of-the-art 2D-
RING, respectively.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions. This work was
done while Jiayi Huang was with Texas A&M University and
supported by a TAMU Dissertation Fellowship.

REFERENCES

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language Models are Few-Shot Learners,” arXiv
preprint arXiv:2005.14165, 2020.

[2] J. Hestness, N. Ardalani, and G. Diamos, “Beyond Human-level Accu-
racy: Computational Challenges in Deep Learning,” in Proceedings of
the 24th Symposium on Principles and Practice of Parallel Program-
ming, ser. PPoPP ’19, 2019, pp. 1–14.

[3] Microsoft, “Project Catapult,” https://www.tacc.utexas.edu/systems/
catapulta, [Online; accessed 4-November-2019].

[4] C. Chao and B. Saeta, “Cloud TPU: Codesigning Architecture and
Infrastructure,” HotChips 2019 Tutorial, 2019. [Online]. Available:
https://www.hotchips.org/hc31/HC31 T3 Cloud TPU Codesign.pdf

[5] A. Krizhevsky, “One Weird Trick for Parallelizing Convolutional Neural
Networks,” CoRR, vol. abs/1404.5997, 2014. [Online]. Available:
http://arxiv.org/abs/1404.5997

[6] J. Huang, M. Patwary, and G. Diamos, “Coloring Big Graphs with
AlphaGoZero,” CoRR, vol. abs/1902.10162, 2019. [Online]. Available:
http://arxiv.org/abs/1902.10162

[7] S. A. Mojumder, M. S. Louis, Y. Sun, A. K. Ziabari, J. L. Abellán,
J. Kim, D. Kaeli, and A. Joshi, “Profiling DNN Workloads on a Volta-
based DGX-1 System,” in 2018 IEEE International Symposium on
Workload Characterization (IISWC), 2018, pp. 122–133.

[8] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling Distributed Machine
Learning with the Parameter Server,” in 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), 2014, pp.
583–598.

[9] A. Gibiansky and J. Hestness, “baidu-research/tensorflow-allreduce,”
https://github.com/baidu-research/tensorflow-allreduce, 2017, [Online;
accessed 4-November-2019].

[10] P. Sanders, J. Speck, and J. L. Träff, “Two-tree Algorithms for Full Band-
width Broadcast, Reduction and Scan,” Parallel Computing, vol. 35,
no. 12, pp. 581–594, 2009.

[11] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of Collective
Communication Operations in MPICH,” The International Journal of
High Performance Computing Applications, vol. 19, no. 1, pp. 49–66,
2005.

[12] P. Patarasuk and X. Yuan, “Bandwidth Optimal All-Reduce Algorithms
for Clusters of Workstations,” Journal of Parallel and Distributed
Computing, vol. 69, no. 2, pp. 117–124, 2009.

[13] NVIDIA, “NVIDIA Collective Communication Library (NCCL),” https:
//developer.nvidia.com/nccl, 2017, [Online; accessed 4-November-2019].

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System
for Large-Scale Machine Learning,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), 2016,
pp. 265–283. [Online]. Available: https://www.usenix.org/system/files/
conference/osdi16/osdi16-abadi.pdf

[15] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “MXNET: A Flexible and
Efficient Machine Learning Library for Heterogeneous Distributed
Systems,” CoRR, vol. abs/1512.01274, 2015. [Online]. Available:
http://arxiv.org/abs/1512.01274

[16] S. Jeaugey, “Massively Scale Your Deep Learning
Training with NCCL 2.4,” https://devblogs.nvidia.com/
massively-scale-deep-learning-training-nccl-2-4/, Feburary 2019,
[Online; accessed 6-February-2020].

[17] G. Wang, S. Venkataraman, A. Phanishayee, J. Thelin, N. Devanur, and
I. Stoica, “Blink: Fast and Generic Collectives for Distributed ML,” in
MLSys 2020, 2020.

[18] L. Luo and S. Jeaugey, “[Question] NCCL Logs with multiple nodes.”
https://github.com/NVIDIA/nccl/issues/226, May 2019, [Online; ac-
cessed 6-February-2020].

[19] S. Shi, Z. Tang, X. Chu, C. Liu, W. Wang, and B. Li, “Communication-
Efficient Distributed Deep Learning: Survey, Evaluation, and Chal-
lenges,” arXiv preprint arXiv:2005.13247, 2020.

[20] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, “DianNao Family:
Energy-efficient Hardware Accelerators for Machine Learning,” Com-
mun. ACM, vol. 59, no. 11, pp. 105–112, Oct. 2016.

[21] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
ser. ISCA ’17, 2017, pp. 1–12.

[22] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks,” in Pro-
ceedings of the 43rd International Symposium on Computer Architecture,
ser. ISCA ’16, 2016, pp. 367–379.

[23] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in Proceedings of the 43rd International Symposium
on Computer Architecture, ser. ISCA ’16, 2016, pp. 243–254.

[24] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“PRIME: A Novel Processing-in-memory Architecture for Neural Net-
work Computation in ReRAM-based Main Memory,” in Proceedings of
the 43rd International Symposium on Computer Architecture, ser. ISCA
’16, 2016, pp. 27–39.

[25] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling Low-
power, Highly-accurate Deep Neural Network Accelerators,” in Proceed-
ings of the 43rd International Symposium on Computer Architecture, ser.
ISCA ’16, 2016, pp. 267–278.

[26] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and Efficient Neural Network Acceleration with 3D Memory,”
in ACM SIGARCH Computer Architecture News, vol. 45, no. 1. ACM,
2017, pp. 751–764.

[27] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling Flexible
Dataflow Mapping over DNN Accelerators via Reconfigurable Inter-
connects,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2018, pp. 461–475.

[28] C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng, “Image Classifica-
tion at Supercomputer Scale,” arXiv preprint arXiv:1811.06992, 2018.

[29] J. Dong, Z. Cao, T. Zhang, J. Ye, S. Wang, F. Feng, L. Zhao, X. Liu,
L. Song, L. Peng, Y. Guo, X. Jiang, L. Tang, Y. Du, Y. Zhang,
P. Pan, and Y. Xie, “EFLOPS: Algorithm and System Co-design for
a High Performance Distributed Training Platform,” in Proceedings
of the 26th International Symposium on High Performance Computer
Architecture6(HPCA-25), February 2020, pp. 610–622.

[30] R. Mayer and H.-A. Jacobsen, “Scalable Deep Learning on Distributed
Infrastructures: Challenges, Techniques and Tools,” ACM Computing
Surveys (CSUR), vol. 53, no. 1, pp. 1–37, 2020.

[31] T. Ben-Nun and T. Hoefler, “Demystifying Parallel and Distributed Deep
Learning: An In-depth Concurrency Analysis,” ACM Comput. Surv.,
vol. 52, no. 4, pp. 65:1–65:43, Aug. 2019.

[32] A. Gibiansky, “Bringing HPC Techniques to Deep Learning,” http://
andrew.gibiansky.com, 2017, [Online; accessed 24-November-2019].

[33] M. Cho, U. Finkler, M. Serrano, D. Kung, and H. Hunter,
“BlueConnect: Decomposing All-Reduce for Deep Learning on
Heterogeneous Network Hierarchy,” in SysML 2019, 2019. [Online].
Available: https://www.sysml.cc/doc/2019/130.pdf

https://www.tacc.utexas.edu/systems/catapulta
https://www.tacc.utexas.edu/systems/catapulta
https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1902.10162
https://github.com/baidu-research/tensorflow-allreduce
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://arxiv.org/abs/1512.01274
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
https://github.com/NVIDIA/nccl/issues/226
http://andrew.gibiansky.com
http://andrew.gibiansky.com
https://www.sysml.cc/doc/2019/130.pdf

[34] A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed
Deep Learning in TensorFlow,” CoRR, vol. abs/1802.05799, 2018.
[Online]. Available: http://arxiv.org/abs/1802.05799

[35] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna,
“SCALE-Sim: Systolic CNN Accelerator Simulator,” CoRR, vol.
abs/1811.02883, 2018. [Online]. Available: http://arxiv.org/abs/1811.
02883

[36] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
D. E. Shaw, J.-H. Kim, and W. J. Dally, “A Detailed and Flexible Cycle-
Accurate Network-on-Chip Simulator,” in International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2013, pp. 86–
96.

[37] NVIDIA, “NVIDIA Tesla P100 Whitepaper,” NVIDIA Corporation,
2016. [Online]. Available: https://images.nvidia.com/content/pdf/tesla/
whitepaper/pascal-architecture-whitepaper.pdf

[38] A. Ishii, D. Foley, E. Anderson, B. Dally, G. Dearth, L. Dennison,
M. Hummel, and J. Schafer, “NVSwitch and DGX-2,” in Hot Chips,
2018.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in International Conference
on Neural Information Processing Systems (NIPS), 2012, pp. 1097–
1105.

[40] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
Game of Go without Human Knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[41] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks,” in Advances
in Neural Information Processing Systems, 2015, pp. 91–99.

[42] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper With Convolutions,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

[43] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
Collaborative Filtering,” in Proceedings of the 26th International Con-
ference on World Wide Web, 2017, pp. 173–182.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is All You Need,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Curran Associates, Inc., 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

[46] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and Ł. Kaiser,
“Universal Transformers,” CoRR, vol. abs/1807.03819, 2018. [Online].
Available: http://arxiv.org/abs/1807.03819

[47] N. S. Keskar, J. Nocedal, P. T. P. Tang, D. Mudigere, and M. Smelyan-
skiy, “On Large-batch Training for Deep Learning: Generalization
Gap and Sharp Minima,” in 5th International Conference on Learning
Representations, ICLR 2017, 2017.

[48] S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna, “ASTRA-SIM:
Enabling SW/HW Co-Design Exploration for Distributed DL Training
Platforms,” in IEEE International Symposium on Performance Analysis
of Systems and Software, ISPASS 2020, Boston, MA, USA, August 22-26,
2020. IEEE, 2020.

[49] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, B. Jia, H.-H. S. Lee, A. Malevich, D. Mudi-
gere, M. Smelyanskiy, L. Xiong, and X. Zhang, “The Architectural
Implications of Facebook’s DNN-based Personalized Recommendation,”
in 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 488–501.

[50] R. Rabenseifner, “Optimization of Collective Reduction Operations,” in
International Conference on Computational Science. Springer, 2004,
pp. 1–9.

[51] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia,
L. Xiong, and M. Smelyanskiy, “Deep Learning Recommendation
Model for Personalization and Recommendation Systems,” CoRR, vol.
abs/1906.00091, 2019. [Online]. Available: https://arxiv.org/abs/1906.
00091

[52] L. Wang, M. Li, E. Liberty, and A. J. Smola, “Optimal Message
Scheduling for Aggregation,” in SysML 2018, 2018. [Online]. Available:
https://www.sysml.cc/doc/2018/178.pdf

[53] C. Yang, “Tree-based Allreduce Communication on MXNet,”
https://web.ece.ucdavis.edu/∼ctcyang/pub/amaz-techreport2018.pdf,
Tech. Rep., 2018, [Online; accessed 26-August-2019].

[54] L. Luo, P. West, A. Krishnamurthy, L. Ceze, and J. Nelson, “PLink:
Discovering and Exploiting Datacenter Network Locaility for Efficient
Cloud-based Distributed Training,” in MLSys 2020, 2020.

[55] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang,
A. Schwing, H. Esmaeilzadeh, and N. S. Kim, “A Network-Centric
Hardware/Algorithm Co-Design to Accelerate Distributed Training of
Deep Neural Networks,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018, pp. 175–188.

[56] B. Klenk, N. Jiang, G. Thorson, and L. Dennison, “An In-Network Ar-
chitecture for Accelerating Shared-Memory Multiprocessor Collectives,”
in 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2020, pp. 996–1009.

[57] L.-S. Peh and W. J. Dally, “Flit-Reservation Flow Control,” in Proceed-
ings of the 6th International Symposium on High-Performance Computer
Architecture (HPCA-6), 2000, pp. 73–84.

[58] M. Ahn and E. J. Kim, “Pseudo-Circuit: Accelerating Communication
for On-Chip Interconnection Networks,” in Proceedings of the 2010 43rd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’43, 2010, pp. 399–408.

[59] A. Kumar, L.-S. Peh, and N. K. Jha, “Token Flow Control,” in Pro-
ceedings of the 41st Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 41, 2008, pp. 342–353.

http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1811.02883
http://arxiv.org/abs/1811.02883
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://www.sysml.cc/doc/2018/178.pdf
https://web.ece.ucdavis.edu/~ctcyang/pub/amaz-techreport2018.pdf

	Introduction
	Background and Motivation
	Data-Parallel Deep Neural Network Training
	All-Reduce for Distributed Stochastic Gradient Descent
	Motivation

	MultiTree All-Reduce Algorithm
	Rationales and Insights
	Spanning Trees Instead of Rings
	Topology Awareness

	Main Idea
	Algorithm Design
	Algorithm Description
	Complexity Analysis
	Indirect Networks Support

	Architectural Supports
	All-Reduce Schedule Management
	Message-based Flow Control for Big Gradient Exchanges

	Methodology
	System Modeling and Configuration
	Workloads

	Evaluation
	All-Reduce Bandwidth
	Scalability
	DNN Benchmark Performance

	Discussions
	Bandwidth versus Latency
	Broader Applications
	Opportunities

	Additional Related Work
	Collectives Acceleration for DNN Training.
	Flow Control and Arbitration

	Conclusions
	References

