
Approximate Lock: Trading off Accuracy for Performance by
Skipping Critical Sections

Riad Akram, Mohammad Mejbah ul Alam, Abdullah Muzahid
University of Texas at San Antonio

{riad.akram, mohammad.alam, abdullah.muzahid}@utsa.edu

Abstract—Approximate computing is gaining a lot of traction
due to its potential for improving performance and conse-
quently, energy efficiency. This project explores the potential
for approximating locks. We start out with the observation
that many applications can tolerate occasional skipping of
computations done inside a critical section protected by a
lock. This means that for certain critical sections, when the
enclosed computation is occasionally skipped, the application
suffers from quality degradation in the final outcome but
it never crashes/deadlocks. To exploit this opportunity, we
propose Approximate Lock (ALock). The thread executing
ALock checks if a certain condition (e.g., high contention,
long waiting time) is met and if so, the thread returns without
acquiring the lock. We modify some selected critical sections
using ALock so that those sections are skipped when ALock
returns without acquiring the lock. We experimented with 14
programs from PARSEC, SPLASH2, and STAMP benchmarks.
We found a total of 37 locks that can be transformed into
ALock. ALock provides performance improvement for 10
applications, ranging from 1.8% to 164.4%, with at least 80%
accuracy.

Keywords-Multithreaded program; Lock; Approximate com-
puting; Accuracy; Performance;

I. INTRODUCTION

Since the end of Dennard’s scaling [1], there has been
limited improvement in transistor speed and energy effi-
ciency. This slows down the steady growth of performance
and energy efficiency of general purpose computers. Thus,
performance and energy efficiency have become a press-
ing challenge for modern computing systems. Approxi-
mate computing [2]–[4] is gaining a lot of traction as a
promising approach to tackle the challenge. Approximate
computing trades off accuracy for other benefits such as
performance. Many application domains have an inherent
tolerance towards inaccuracy. As an example, video encoders
are designed to give up perfect accuracy for faster encoding
and smaller videos [5]. Machine learning algorithms are
designed to produce probabilistic models that are not 100%
accurate. Almost all scientific computations (e.g., n-body
simulations [6]) are inherently inaccurate in that they are
designed to produce an approximation to an ideal result.

Researchers have explored different avenues where ap-
proximation techniques can be applied. Loop perforation [2],
for example, skips some iterations of a loop to improve
performance. Rinard [7] proposes to approximate barrier
synchronizations by releasing the processors early. Es-
maeilzadeh et al. [4] propose to approximate certain func-

tions of a program using a neural network based accelerator.
EnerJ [3] proposes some type qualifiers to declare approx-
imate data with the goal of utilizing the underlying low
power storage devices and operations. Samadi et al. [8], [9]
propose approximation techniques for data parallel and GPU
applications. This paper investigates lock synchronization
operations (and the associated critical sections) as a potential
source of approximation. Locks are the most widely used
synchronization operations for parallel programs. A lock
ensures mutual exclusion for shared data. When a thread
acquires a lock and other threads attempt to acquire it simul-
taneously, they need to wait until the first thread releases the
lock. This is commonly referred to as contention of the lock.
Lock contention is a major source of performance problems
for parallel programs [10], [11]. This paper explores the
potential of approximation to reduce lock contention and
thereby, improve performance.

The intuition behind Approximate Lock (ALock for short)
is that many lock protected critical sections can be occasion-
ally skipped without causing a failure (e.g., crash, deadlock
etc.). This is due to the fact that the threads, often, process
the same (or similar) data inside a critical section. So, even
if a thread occasionally skips some processing of the data,
other threads continue to process the same (or similar) data.
As a result, the overall inaccuracy caused by the skipped
processing remains within a tolerable range. For example,
application X264 of PARSEC [12] uses a lock at line 888
in frame.c file. The lock forces a thread to wait until a
certain number of pixels of a frame are ready. If the thread
occasionally skips the associated critical section, there will
be less number of pixels to process. Thus, depending on how
many pixels are skipped, the output image might have little
or no visible difference. Figure 1 shows the output images
for different rate of skipping. The figure shows no visible
difference among the images. We can have up to 4.9%
performance improvement due to the skipping of this critical
section alone. Keep in mind that we use lock skipping and
critical section skipping interchangeably throughout the text.

ALock works by making a decision about whether to skip
a lock or not. The decision can be based on contention (e.g.,
whether the lock has a lot of waiting threads or whether
a thread has been waiting for a long time for the lock
etc.) or some target skip rate. In order to decide where to
use ALock, we thoroughly test each of the existing locks
using a coverage driven testing tool [13]. The locks that

(a) Original (b) 20% skip rate (c) 40% skip rate

(d) 60% skip rate (e) 80% skip rate (f) Complete skipping

Figure 1. Images produced due to different rate of skipping.

never cause any failure when skipped, are selected as the
potential candidates. We replace each of the candidate locks
with ALock (one at a time) and determine accuracy loss as
well as performance improvement. We also replace multiple
candidate locks together and determine the corresponding
accuracy loss and performance improvement. Based on the
results, we choose the configuration that provides the best
performance within a certain accuracy limit. ALock is dif-
ferent from prior work [14], [15] that proposes to eliminate
locks completely to trade-off accuracy for performance.
First, unlike that work, ALock does not eliminate locks
alone. ALock skips locks as well as the associated critical
sections. As a result, it does not introduce any new data
races at all. The issue of not introducing any new data races
is particularly important since data races can violate the in-
tuitive sequentially consistent execution model [16], thereby
rendering any multithreaded execution impossible to reason
about [17], [18]. Second, prior work [14], [15] eliminates
a lock completely; hence, the approach is applicable only
for a few locks and in some cases, requires the code to be
rewritten from scratch. ALock, on the other hand, skips a
lock and its critical section only under certain conditions.
Thus, ALock has a much broader applicability. It does not
require the program to be rewritten from scratch. Last but
not least, unlike the prior work, ALock is dynamic because
it decides at runtime when to skip.

This paper presents the first proposal to approximate locks
dynamically without introducing any new data races. The
paper provides a detailed design and implementation of
ALock in the standard pthread library. We experimented
with 6 applications from PARSEC [12], 3 applications from
SPLASH2 [19] and 5 applications from lock-based STAMP
benchmark suite [20]. We selected 37 locks as the candi-
date locks. We determined the best configuration for each
application. For an inaccuracy limit of 20%, ALock provides
performance improvement for 10 applications, ranging from
1.8% to 164.4%.

This paper is organized as follows: Section II explains
the programming model of ALock; Section III explains the
design of different ALocks; Section IV points out caveats of
ALock; Section V provides the results; Section VI discusses

related work, and finally, Section VII concludes.

II. PROGRAMMING MODEL

There are two major issues to program with ALock. First,
how do we select the appropriate locks/critical sections to
approximate and second, how do we use ALock. We are
assuming that the program has been already developed using
standard locks, we have access to the source code, and we
want to modify the code to use ALock. The modification
should not a require a complete overhaul of the existing
code.

A. Selecting Locks and Critical Sections

Ideally, we would like to focus on locks that are protecting
computations of various quantities so that any skipping of
those computations does not lead to a failure (e.g., crash,
deadlock etc.). However, locks can protect a myriad of
shared resources such as pointers, data structures, counters,
system resources etc. Moreover, the same lock can be used in
multiple places creating multiple different critical sections.
Therefore, we need to select locks carefully. There are 2
ways to tackle this issue. Either we can test each lock
thoroughly and choose the ones that will not cause any
failure when skipped or we can be less rigorous in choosing
locks but have some runtime recovery mechanism (e.g.,
checkpoint and rollback [21]) to avoid any failure when the
locks are skipped. In this paper, we take the former approach
because it does not require any expensive runtime support
for logging and recovery. We leave the later as a future work.

Figure 2 shows the algorithm to select candidate locks for
approximation. We start with one lock (say, L) at a time. We
skip every instance of L (i.e., every code section where L is
used) and its associated critical section with different rates
(e.g., 20%, 40%, 60%, 80%, 90%, and 100%). The code in
Listing 1 shows how to skip L randomly at a rate of r.

1 i f (u n i f o r m r a n d () > r) {
2 / / C o n d i t i o n added t o s k i p l o c k L and i t s c r i t i c a l

s e c t i o n a t a r a t e o f r
3 p t h r e a d m u t e x l o c k (&L) ;
4 . . .
5 p t h r e a d m u t e x u n l o c k (&L) ;
6 }

Listing 1. Modified code to skip a lock and its critical section

Lock L

Skip all instances of L and its
critical sections at rate r = 20%,

40%, 60%, 80%, 90%, and 100%

Test each rate with Maple

Any
failure?

Select L as a
Complete Candidate

Skip one instance of L and its
critical section at rate r = 20%,

40%, 60%, 80%, 90%, and 100%

No

Yes

Test each rate with Maple

Any
failure?

Select the instance
of L as a Partial

Candidate

No

Failure avoidance
code?

Yes

Discard the
instance of L

No

Add avoidance code
and test with Maple

Yes

Any
failure?

Select the instance
of L as a Partial

Candidate

No

Yes

Discard the
instance of L

Repeat for each
instance of L

Optional

Figure 2. Algorithm to select a candidate lock.

For each instance of r, the resulting program is tested
using a tool, called Maple [13]. Maple is a state-of-the-
art testing tool with a high coverage and can expose more
bugs than other existing tools [22]. If none of the tests
causes any failure, we choose L as a Complete Candidate
for approximation. L is called a complete candidate because
we can approximate every instance of L. If any test with
Maple leads to a failure, we focus on each instance of L
in the code separately. We repeat the following steps for
each instance of L. We skip one instance of L and its
critical section with different rates. As before, the resulting
program is tested with Maple. If no failure occurs during
testing, the particular instance of L is chosen as a candidate
for approximation. We call L a Partial Candidate because
only some instance of L can be approximated. However,
if any testing with Maple leads to a failure, we try to
add some Failure Avoidance Code with the critical section.
The step with failure avoidance code is optional and is
meant to avoid failures due to some common cases that
can occur when the critical section is skipped. Section II-A1
describes in detail about failure avoidance code. In any case,
as before, we modify the particular instance of L and its
critical section to skip at different rates. Failure avoidance

code (if exists) is executed when the critical section is
skipped. The resulting program is tested with Maple. If any
failure occurs, the particular instance of L is discarded from
consideration. Otherwise, the instance of L is selected as a
partial candidate.

Note that the choice of a testing tool does not affect the
design and implementation of ALock. It affects the set of
locks that can be replaced with ALock. For example, a model
checking [23] based testing tool may find new cases where
skipping of a particular lock leads to a failure and thus,
discards the lock from consideration. Since Maple has a
reasonably high coverage [13], such cases will be very rare.
This implies that a lock selected by Maple may lead to a
failure only during rare occasions; hence, we argue that such
a lock should be considered for approximation too.

1) Failure Avoidance Code: Failure avoidance code is
optional. Its purpose is to avoid some common causes of
failures when a critical section is skipped. Note that this code
is not supposed to rectify any incorrectness that may have
occurred by the skipping. It is the best effort code to avoid
some failures. An example is shown in Listing 2. The code
is taken Raytrace of SPLASH2. Inside the critical section,
a thread returns EMPTY if it does not find an entry;
otherwise, it returns a non empty status code. If there is no
failure avoidance code and the critical section is skipped,
the later part of the program (not shown here) returns a non
empty status code. As a result, the thread tries to process an
EMPTY entry and crashes. To avoid this, the avoidance
code returns EMPTY when the critical section is skipped;
hence, the thread no longer tries to access an EMPTY
entry.

1 i f (u n i f o r m r a n d () > x) {
2 . . . ∗wpent ry = NULL
3 p t h r e a d m u t e x l o c k (. . .) ;
4 wpent ry = workpool [p i d] [0] ;
5 i f (! wpen t ry) {
6 w p s t a t [p i d] [0] = EMPTY;
7 p t h r e a d m u t e x u n l o c k (. . .) ;
8 r e t u r n EMPTY;
9 }

10 . . .
11 p t h r e a d m u t e x u n l o c k (. . .) ;
12 } e l s e {
13 / / F a i l u r e a v o i d a n c e code
14 w p s t a t [p i d] [0] = EMPTY;
15 r e t u r n EMPTY;
16 }

Listing 2. When the critical section is skipped, failure avoidance code
prevents a failure.

We outline some informal guidelines to write failure
avoidance code. First, when we add this code, we should
not introduce any new data race. This implies that the
avoidance code should access local or thread private vari-
ables only. For example, in Listing 2, the code modifies
wpstat[pid][0] which is private to the current thread
(i.e., with id pid). Hence, the access does not introduce any
data race. If the code cannot be added without data races

or additional synchronizations, we discard the particular
instance of lock and its critical section from consideration.
Second, we often need to use stale, constant or initial value
for different variables inside the avoidance code. Listing 3
shows how we can use a constant value in the avoidance
code. The example is taken from Canneal of PARSEC. Here,
seed is the only shared variable inside the critical section.
It is used to initialize a random number generator. seed is
initialized to 0 and goes up to some maximum value. When
the critical section is skipped, the failure avoidance code
can use any constant value within that range to initialize
the random number generator. This prevents failure because
_rng is no longer uninitialized or NULL. Last but not least,
we do not use any avoidance code that requires a major
modification (e.g., changing an entire function, class etc.)
of the original code. In our experiments, we used failure
avoidance code only to avoid null objects and improper
status code. We used avoidance code for 2 out of 37
candidate locks.

1 i f (u n i f o r m r a n d () > x) {
2 p t h r e a d m u t e x l o c k (. . .) ;
3 rng = new MTRand (seed ++) ;
4 p t h r e a d m u t e x u n l o c k (. . .) ;
5 } e l s e {
6 / / F a i l u r e a v o i d a n c e code
7 / / We can use a c o n s t a n t 1 f o r s eed h e r e
8 rng = new MTRand (1) ;
9 }

Listing 3. Use of a constant value in failure avoidance code.

B. How to Use an Approximate Lock

Each of the candidate locks and its critical section is
transformed to use ALock. An example code is shown
in Listing 4. ALock returns SKIPPED when a certain
condition is satisfied (details in Section III). In that case, the
critical section is completely skipped and failure avoidance
code (if exists) is executed. If, on the other hand, ALock
does not return SKIPPED, the lock is assumed to be
acquired, the critical section is executed, and finally, the lock
is released.

1 i f (ALock acqui re (. . .) != SKIPPED) {
2 / / C r i t i c a l s e c t i o n i s n o t s k i p p e d
3 . . .
4 ALock re l ea se (. . .) ;
5 } e l s e {
6 / / C r i t i c a l s e c t i o n i s s k i p p e d
7 / / O p t i o n a l f a i l u r e a v o i d a n c e code
8 }

Listing 4. How ALock is used?

C. Impact on Semantic

When we use ALock, either the critical section is executed
as in the original program or it is completely skipped and
failure avoidance code (if exists) is executed. Moreover, the
failure avoidance code is intentionally written as data race
free. Thus, ALock does not introduce any new data race. In

other words, the semantic of multithreaded execution model
(i.e., sequential consistency [16]) remains unchanged. How-
ever, other bugs such as null pointer dereference, deadlock,
use of uninitialized data, memory leak etc. can occur. We
use the candidate selection algorithm (Figure 2) to filter out
those cases.

III. DESIGN OF APPROXIMATE LOCK

We propose 3 types of approximate locks — Counting
Approximate Lock (CALock), Timed Approximate Lock
(TALock), and Rate-Based Approximate Lock (RALock).
We propose the first two to handle high contention. The
last one is contention oblivious. The design of these locks
is driven by two principles – (i) we want a thread to do
additional computations (required for making a decision
to skip) when it would, otherwise, wait for the lock (i.e.,
additional computations become part of the waiting period)
and (ii) we want the implementation to be data race fee.

A. Counting Approximate Lock

The intuition behind CALock is that if there are a lot of
threads waiting for a lock, we do not want to increase the
contention anymore; hence, a new thread will not wait to ac-
quire the lock. In order to decide whether to allow the thread
to wait for the lock, we need a threshold for the number of
currently waiting threads. If the number of currently waiting
threads reaches the threshold, the new thread does not wait
for the lock and just skips the corresponding critical section.
The threshold can be set to the average number of waiting
threads over a period of time. We can also use a fraction,
f of the average as a threshold. When the average itself is
used as a threshold, f is essentially 1.0. Algorithm 1 shows
how CALock acquire works.

We start out with an explanation of the variables used
in Algorithm 1. tid is the unique id to identify the current
thread. tryCount is used to keep track the number of times
a thread finds the lock to be contended (i.e., unavailable)
and therefore, tries to decide whether to wait or skip.
waitingCount is used to keep a total of waiting threads
found during the tries. currentlyWaiting keeps track of
the total number of threads currently waiting for the lock.
avgWaiting denotes the average number of waiting threads
during an acquire call. tryCount and waitingCount are
accessed per thread basis whereas currentlyWaiting and
avgWaiting are shared among the threads. The variables
are initialized during lock initialization.

If the lock L is already available, the thread acquires it
and returns ACQUIRED status. Otherwise, it checks if the
number of currently waiting threads reaches the threshold
(i.e., f × avgWaiting). If not, the thread decides to wait
for L. The thread updates currentlyWaiting and (its own)
waitingCount. The thread also periodically (i.e., after every
INTERV AL tries) recalculates avgWaiting. Note that
instead of having a thread deciding to recalculate the average

Algorithm 1 Pseudocode for CALock Acquire
1: function CALOCK ACQUIRE(L)
2: Let tid be the thread id.
3: if L is available then
4: Acquire L
5: return ACQUIRED
6: else
7: skip = TRUE
8: Increment tryCount[tid]
9: if currentlyWaiting ≤ f × avgWaiting then

10: Increment currentlyWaiting
11: waitingCount[tid] = waitingCount[tid] +

currentlyWaiting
12: skip = FALSE
13: end if
14: if callCount[tid]%INTERV AL is 0 then
15: totalTry = SUM of tryCount of each thread
16: totalWaiting = SUM of waitingCount of each thread
17: avgWaiting =
18: totalWaiting/totalTry
19: end if
20: if skip is TRUE then
21: return SKIPPED
22: else
23: Wait and acquire L
24: Decrement currentlyWaiting
25: return ACQUIRED
26: end if
27: end if
28: end function

based on its own tryCount, we could have used a shared
counter to accumulate the total number of tryCount of all
threads and decided based on the counter. We choose not to
do so in order to keep the number of shared counters and
the associated cache contention at a minimum level. Finally,
based on the earlier decision (to skip/wait), the thread either
skips the lock or waits to acquire it. Here, waiting is done
through a system call (e.g., futex in Linux). In each case,
appropriate status code is returned.
tryCount, waitingCount, currentlyWaiting, and

avgWaiting can be accessed by multiple threads simul-
taneously. In order to make the accesses data race free,
those variables are read/written using atomic instructions
(e.g., fetch-and-increment, exchange etc.). Note that the
use of atomic instructions cannot make the process of
accumulating both tryCount and waitingCount atomic.
Therefore, the calculated average is an approximation to the
actual average. This is perfectly reasonable since we use the
average as an approximation to the lock’s average contention
level. Finally, to reduce false sharing due to tryCount
and waitingCount, we use appropriate padding with them.
CALock release function is the same as the normal lock
release function (e.g., pthread mutex unlock) and hence,
is not discussed here.

B. Timed Approximate Lock

The intuition behind TALock is that if a thread waits
for a long time, it will not wait any longer i.e., it will
skip the corresponding critical section. Like CALock, we
need a threshold for waiting time after which the thread
decides to skip. We use a fraction, f of the average waiting

Algorithm 2 Pseudocode for TALock Acquire
1: function TALOCK ACQUIRE(L)
2: Let tid be the thread id.
3: if L is available then
4: Acquire L
5: return ACQUIRED
6: else
7: Increment tryCount[tid]
8: if callCount[tid]%INTERV AL is 0 then
9: totalTry = SUM of tryCount of each thread

10: totalWait = SUM of waitT ime of each thread
11: avgWaitT ime =
12: totalWait/totalTry
13: end if
14: startT ime = Read TSC
15: timeOut = 1
16: repeat
17: currentT ime = Read TSC
18: elapsedTime =
19: currentT ime − startT ime
20: if elapsedTime > timeOut then
21: if L is available then
22: Acquire L
23: waitT ime[tid] = waitT ime[tid] + elapsedTime
24: return ACQUIRED
25: else
26: timeOut = timeOut × 2
27: end if
28: end if
29: until elapsedTime > f × avgWaitT ime
30: waitT ime[tid] = elapsedTime
31: return SKIPPED
32: end if
33: end function

time of the threads as the threshold. Algorithm 2 shows the
implementation of TALock acquire.
waitT ime keeps track of waiting time of each thread.

Like CALock acquire, tryCount keeps track of how
many times a thread finds the lock to be contended. Both
of these variables are accessed per thread basis. When
TALock acquire is invoked, the thread checks if L is
available. If so, the thread immediately acquires it and
returns ACQUIRED status. If L is not available, the
thread increments its own tryCount (i.e., tryCount[tid]).
The thread, then, checks if it needs to recalculate the
avgWaitT ime; if so, the the average is calculated in the
same way as in CALock acquire. TALock acquire uses
Timestamp Counter (TSC). TSC is a 64 bit per processor
register to keep track of clock cycles. It is supported by all
recent x86 processors [24]. The thread reads the the initial
value of TSC. It keeps reading TSC until elapsedT ime
is greater than the threshold (i.e., f × avgWaitT ime).
Instead of checking the lock after f × avgWaitT ime has
elapsed, the thread uses exponential backoff algorithm to
check whether the lock is available in the meantime. If
so, it acquires the lock, updates its own waitT ime, and
returns ACQUIRED status. Otherwise, the thread waits
for f×avgWaitT ime and then, decides to skip. The thread
updates its own waitT ime with elapsedT ime and returns
SKIPPED status.

As in CALock acquire, tryCount, waitT ime, and
avgWaitT ime are accessed using atomic instructions to

prevent data races. Moreover, waitT ime array is properly
padded to avoid false sharing. Finally, TALock release
remains the same as the normal lock release function.

C. Rate-Based Approximate Lock

Unlike CALock and TALock, a thread decides to acquire
or skip a lock in RALock randomly based on a target rate.
Thus, RALock is contention oblivious. So, it is applicable
to both high and low contention scenario. A careful reader
might wonder if RALock does not consider lock contention,
why would it be useful. RALock can be useful because by
skipping critical sections, it can still reduce the amount of
work that needs to be done by different threads. Thus, it can
contribute to performance improvement.

Algorithm 3 Pseudocode for RALock Acquire
1: function GET RDATA(r)
2: Allocate rData
3: rData.callCount = 0
4: Let rData.bitmap caches probabilistic decision
5: Let SIZE denotes the length of rData.bitmap
6: for i = 0 to SIZE − 1 do
7: if uniform rand() < r then
8: rData.bitmap[i] = 0
9: else

10: rData.bitmap[i] = 1
11: end if
12: end for
13: return rData
14: end function

15: function RALOCK ACQUIRE(L, rData)
16: Increment rData.callCount
17: if rData.bitmap[rData.callCount%SIZE] is 1 then
18: Acquire the L similar to a normal acquire function
19: return ACQUIRED
20: else
21: return SKIPPED
22: end if
23: end function

Algorithm 3 shows the pseudocode of RALock. Unlike
CALock and TALock, a thread calling RALock acquire
decides whether to skip the lock, even before checking if the
lock is free. Therefore, we need to make the decision very
quickly. A naive approach would use some uniform random
number generator inside RALock acquire to skip the lock
randomly at a certain rate. However, calling the random
number generator adds a significant overhead, especially
when the lock is free and the thread decides to acquire
it. Therefore, we cache the random probabilistic decisions
(for some number of calls) in bitmap and use those de-
cisions repeatedly. rData is the meta data associated with
RALock. rData has two elements - bitmap for caching
the decisions and callCount to keep track of how many
times RALock acquire has been called. A programmer
uses get RData to allocate and initialize rData. The
function initializes callCount to 0 and bitmap with 1 or
0 with probability r. When RALock acquire is called,
the thread increments callCount associated with rData.
It, then, checks if the proper bit in bitmap is set. If so,
the thread acquires lock L, just like a normal lock acquire

function. On the other hand, if the bit is clear, the thread
skips the lock. In any case, appropriate status is returned.
callCount and bitmap are both accessed by multiple

threads. However, bitmap is read-only after initialization.
Hence, it does require atomic instructions. callCount, on
the other hand, is accessed using atomic instructions to avoid
data races.

D. Selecting an Optimal ALock

Each candidate lock can be approximated using one of
the three ALocks. To find an optimal one, we modify
the program to use a particular ALock in place of the
original lock and enumerate over different design param-
eters. For example, we use CALock with different val-
ues of f i.e., f = 0.1, 0.2, 0.3, ..., 1.0 and collect data
for performance improvement and accuracy degradation.
Similarly, we use TALock with f = 0.1, 0.2, 0.3, ..., 1.0.
For RALock, we, first, use different values of r (e.g.,
r = 10%, 20%, 30%, ..., 100%) and collect data for perfor-
mance improvement and accuracy degradation. Then, we use
regression analysis (e.g., Quadratic Polynomial Regression)
to predict an interval for r that can lead to a (positive)
performance improvement (note that a negative performance
improvement is equivalent to a slow down of the program).
As an example, let us assume that the regression analysis
predicts that any r ∈ [70%, 90%] leads to a performance
improvement. We run experiments with all values of r in
progression of 1% (e.g., 70%, 71%, 72%, ..., 89%, 90%)
within the predicted interval and collect data for performance
improvement and accuracy degradation. Whichever ALock
provides the highest performance improvement without de-
grading accuracy below a predefined threshold is selected as
the optimal ALock.

We would like to elaborate a few issues regarding the
above mentioned selection algorithm. First, we use regres-
sion analysis only for RALock. We do not use it for the
other two ALocks, because those ALocks tend to provide
monotonically increasing performance improvement and ac-
curacy degradation. Therefore, experimenting with a fixed
set of values is found to be enough. Second, for RALock,
we predict an interval for performance improvement, not for
accuracy degradation, because performance is found to be
more predictable than accuracy. Finally, in order to get a sta-
tistically significant result, we experiment with each design
choice multiple times (e.g., 10 times) and take an average
for performance improvement and accuracy degradation.

E. Composability

With ALock, when a thread acquires a lock, the thread
acquires it using the same algorithm used in a normal
lock acquire function (e.g., pthread mutex lock function).
Moreover, the release function remains the same. Therefore,
ALocks can easily co-exist with other ALocks or normal
locks.

IV. CAVEATS

First, as mentioned in Section II-A, the set of locks chosen
for approximation depends on the choice of a testing tool.
We used Maple [13] because it is open source and a state-of-
the-art coverage driven testing tool. A more comprehensive
(e.g., model checking based) testing tool may discard some
of the candidate locks that Maple selected. However, the
design, implementation, and programming model of ALock
is orthogonal to the choice of a testing tool. Second, failure
avoidance code is the best effort code to avoid some of the
failures that occur due to skipping of a critical section. It
is an optional step that a programmer can choose to ignore.
Third, we have not considered adhoc synchronizations found
in many large applications.

V. EVALUATION

A. Experimental Setup

We ran experiments on a 2 socket 12 core Intel Xeon 2.00
GHz system with 32GB memory. We implemented our locks
in glibc pthread library. We used gcc 4.4.7 with -O3 opti-
mization. For 16 threaded executions, we ran experiments
on a 2 socket 16 core Intel Xeon 2.00 GHz system. We
used 6 applications from PARSEC [12], 3 applications from
SPLASH2 [19] and 5 applications from STAMP [20] bench-
mark suite. We manually converted STAMP benchmarks to
use locks. By default we used native input set with 8 threads.
For 16 threads (Section V-D3), we used simsmall, simlarge
and native input sets. Table I shows the accuracy metric used
for different applications. We considered 20% accuracy loss
as acceptable.

App. Accuracy Metric
Canneal Relative distance of routing cost.
X264 Video encoding quality.
Bodytrack Relative distance between poses vector.
Ferret Difference between the number of similar images.
Fluidanimate Relative distance between particle position, acceleration, and force.
Dedup Compression ratio and decoding ability.
Raytrace Relative distance between pixel value.
Radiosity Relative distance between pixel value.
Fmm Relative distance between particle position.
kmeans Number of cluster changed or dropped
genome Comparison of produced sequence with given gene
ssca2 Difference between number of undirected edges
Intruder Difference between number of network attacks
vacation Difference between number of transactions

Table I
ACCURACY METRIC.

B. Characterization of Locks and Critical Sections

Table II shows the candidate locks. These locks are
selected by our algorithm in Section II-A. The 3rd and
4th columns show how many profile and test runs were
performed by Maple [13]. At the high level, the tool collects
some “dangerous” interleaving patterns during profile runs
and changes thread scheduling during test runs to expose
them. The tool performed anywhere from 1 to 6137 profile
runs and 1 to 2915 test runs. The 5th column shows the

type of candidate locks. There are 23 complete candidate
locks. Others are partial candidates. The 7th and 8th columns
show the average number of waiting threads and the average
waiting period for the threads. These two values indicate the
contention level of the original lock. Most of the locks do not
have a significant lock contention. Raytrace, Genome, Ssca2,
and Intruder have some contention for candidate locks. The
last column shows the rate interval predicted for RALock.
‘-’ indicates that the regression analysis did not find any rate
interval where there can be some performance improvement.
The analysis predicted intervals for 15 locks.

C. Overhead of ALock

In order to determine the overhead of ALock, we de-
signed a small kernel. The kernel creates 4 (for low con-
tention scenario) or 8 (for high contention scenario) threads.
Each thread calls lock acquire and release functions 1
million times in a loop. We used pthread mutex lock
and pthread mutex unlock in our baseline execution. For
CALock and TALock, we experimented with different
INTERV AL (e.g., 100, 500, 1000, 5000, and 10000) and
used the average waiting threads/periods as threshold. For
RALock, we experimented with different skip rates (e.g.,
20%, 40%, 60%, 80%, and 100%). In order to isolate the
impact of skipping, we used two versions of each ALock
- one where the acquire function applies the algorithm of
Section III but always returns ACQUIRED status (no
skip) and one where the acquire function returns either
ACQUIRED or SKIPPED status according the algo-
rithm (with skip). Figure 4 shows the data.

Figure 4(a) shows overhead for CALock. When there is
no skipping during high contention, CALock has less than
1% overhead for every interval. During low contention, the
overhead stays below 1% except at 10000 interval. At that
interval it rises to 1.6%. When skipping of critical sections
is enabled, CALock performs better at high contention.
Overall, having a high interval is not effective. So, we chose
100 as the default value of INTERV AL. For that interval,
CALock has a maximum overhead of slightly more than
1%. Figure 4(b) shows overhead for TALock. When there
is no skipping, TALock performs more or less the same
during every interval and contention level. When skipping of
critical sections is enabled, TALock actually provides some
performance improvement (negative overhead means speed
up). The improvement is more for high contention. This also
implies that TALock is able to skip more critical sections
compared to CALock. We chose the same default value
of INTERV AL for TALock. Figure 4(c) shows overhead
for RALock. During every contention level, RALock has
around 1% overhead when there is no skipping. When
skipping is enabled, RALock provides linear performance
improvement. Overall, RALock provides more improve-
ment than both TALock and CALock.

App. Lock (Id) Maple Related Candidate Description Avg waiting Avg waiting Predicted
Profiles # Tests Type threads period (µsec) rate interval

Canneal seed lock (1) 8 48 Part.* Protects seed for random number generation. Corrective code uses 0.5 1125 60%-80%a fixed seed.
X264 frame (2) 5 164 Comp. Forces a thread to wait until a certain number of pixels are ready. 0 0 90%-100%

Bodytrack mDatalock (3) 6 46 Part. Forces a thread to wait for a new image when the buffer is empty. 0 0 -
l (4) 9 26 Part. Protects a counter. 0 0.013 90%-100%

Ferret mutex (5) 5 168 Part. Protects queuing operation. 0 0 1%-20%

Fluidanimate ipar (6) 5 1 Comp. Protects calculation of force and acceleration. 0 0 -
iparNeigh (7) 7 7 Comp. Protects calculation of force and acceleration. 0 0 -

Dedup chunk header lock (8) 10 586 Part. Protects file write operation. 0 0 -
Ht lock (9) 8 498 Part.* Protects free operation of reference counted object. 0.001 0.002 25%-38%

Raytrace ridlock (10) 9 698 Comp. Protects a single variable increment operation. 0.002 0.01 -
memlock (11) 6 225 Part. Protects free operation. 0.002 0.22 10%-100%

Radiosity

elem ev1 ev lock (12) 27 1 Comp. Protects rgb calculation. 0 0 -
elem ev2 ev lock (13) 15 1 Comp. Protects rgb calculation. 0 0 -
elem ev3 ev lock (14) 23 1 Comp. Protects rgb calculation. 0 0 -
ev ev lock (15) 16 1 Comp. Protects rgb calculation. 0 0 -
elem elem lock (16) 7 1 Part. Protects list insert operation. 0 0.002 1%-5%
global bsp tree lock (17) 25 1 Comp. Protects bsp tree initialization and traversal. 0 0 1%-10%
global avg radiosity lock (18) 36 1 Part. Protects rgb calculation. 0 0 -
global free interaction lock (19) 1 1 Part. Protects free operation of list elements. 0.008 0.0136 -
e elem lock (20) 6137 1 Part. Protects rgb calculation. 0 0 1%-10%

Fmm

io lock (21) 2 1 Comp. Protects I/O operation 0 0 -
cb exp lock index (22) 4 1 Comp. Protects data used in calculating multipole expansion. 0 0 -
b exp lock index (23) 2 1 Part. Protects data used in calculating multipole expansion. 0 0 -
pb exp lock index (24) 2 1 Part. Protects data used in calculating multipole expansion. 0 0 -
dest exp lock index (25) 2 1 Comp. Protects data used in calculating multipole expansion. 0 0 -

Kmeans

lock 1 (26) 9 171 Comp. Updates objects of new cluster centers 0 0 -
lock 2 (27) 10 67 Comp. Update task queue after checking for convergence 0 0 -

lock 3 (28) 3 1 Comp. Update a global variable which is checked against threshold that 0 0 -Determines whether to continue the clustering

Genome

lock 1 (29) 9 2828 Comp. Insert segments into hashtable 0.00028 46.589 1%-100%
lock 4 (30) 9 1653 Comp. Insert hashes of segment substrings into hashtable 0.454 0.0162 -
lock 5 (31) 11 2915 Comp. Insert constructEntries and endInfoEntries into hashtable 0.0025 1.0736 -
lock 6 (32) 14 1649 Comp. Match ends to starts by using hash-based string comparison 0.1434 1.0291 -

Ssca2 lock 2 (33) 8 448 Comp. Use auxiliary array to store the undirected edge 0.1560 0.8496 15%-30%
Intruder lock 2 (34) 5 290 Part. Process network packet for finding number of attacks 0.1350 17.411 1%-10%

Vacation
lock 1 (35) 10 203 Comp. Process add customer and car reserve transaction 0.0094 140.71 15%-30%
lock 2 (36) 9 304 Comp. Process flight reserve transaction 0 0 15%-30%
lock 4 (37) 6 201 Comp. Process reserve room transaction 0 0 15%-30%

Table II
DESCRIPTION OF THE LOCKS THAT CAN BE SKIPPED. COMP. = COMPLETE, PART. = PARTIAL, AND PART.* = PARTIAL WITH FAILURE AVOIDANCE

CODE.

(a) canneal (b) x264 (c) bodytrack (d) ferret (e) fluidanimate

(f) dedup (g) raytrace (h) radiosity (i) fmm (j) kmeans

(k) genome (l) ssca2 (m) intruder (n) vacation

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-2
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

Pe
rfo
m
an
ce
(%
)

CALock
TALock
RALock(100%)
RALock(90%)
RALock(80%)
RALock(70%)
RALock(60%)
RALock(50%)
RALock(40%)
RALock(30%)
RALock(20%)
RALock(10%)
Prediction

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-5
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0

Pe
rfo
m
an
ce
(%
)

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-4
-2
0
2
4
6
8
10
12

Pe
rfo
m
an
ce
(%
)

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-100
0.0

100.0
200.0
300.0
400.0
500.0
600.0

Pe
rfo
m
an
ce
(%
)

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-60

-50

-40

-30

-20

-10

0

Pe
rfo
m
an
ce
(%
)

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-80
-60
-40
-20
0
20
40
60

Pe
rfo
m
an
ce
(%
)

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-6

-4

-2

0

2

4

Pe
rfo
m
an
ce
(%
)

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-20
-10
0
10
20
30
40
50
60

Pe
rfo
m
an
ce
(%
)

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-20

-16

-12

-8

-4

0

4

Pe
rfo
m
an
ce
(%
)

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2

Pe
rfo
m
an
ce
(%
)

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-20
0
20
40
60
80
100
120
140
160

Pe
rfo
m
an
ce
(%
)

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-20
0
20
40
60
80
100
120
140
160

Pe
rfo
m
an
ce
(%
)

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-20
0
20
40
60
80
100
120
140
160

Pe
rfo
m
an
ce
(%
)

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-20
0
20
40
60
80
100
120
140
160

Pe
rfo
m
an
ce
(%
)

Figure 3. Single lock approximation results

(a) CALock (b) TALock (c) RALock

0 5000

10000

Interval

0

0.5

1.0

1.5

2.0

O
ve

rh
ea

d(
%

)

low cont. no skip
high cont. no skip

low cont. with skip
high cont. with skip

0 5000

10000

Interval

-5
-4
-3
-2
-1
0
1
2
3

O
ve
rh
ea
d(
%
)

0% 20% 40% 60% 80% 100%
Skip Probability

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10

O
ve

rh
ea

d(
%

)

Figure 4. Overhead of different ALocks.

D. Accuracy & Performance

1) Single Lock Approximation: For each candidate
lock, we experimented with all three types of ALocks.
For CALock and TALock, we used f = 0.1, 0.2, ..., 1.0
i.e., 10 different f values. For RALock, we used
r = 10%, 20%, ..., 100% as well as the predicted interval
values. We used the original program with 8 threads and
native input as the baseline. Figure 3 shows the accuracy
vs performance plot for Canneal (3(a)), X264(3(b)),
Bodytrack(3(c)), Ferret(3(d)), Fluidanimate(3(e)),
Dedup(3(f)), Raytrace(3(g)), Radiosity(3(h)), Fmm(3(i)),
Kmeans(3(j)), Genome(3(k)), Ssca2(3(l)), Intruder(3(m))
and Vacation(3(n)). Any point with accuracy at least 80%
is acceptable. Within this accuracy constraint, we observed
performance improvement in Canneal, X264, Bodytrack,
Ferret, Raytrace, Radiosity, Genome, Ssca2, Intruder, and
Vacation.

Table III shows the best lock for each program that
has some performance improvement. The best lock for a
program is the one which improves performance without
sacrificing accuracy by no more than 20%. Overall, we
observed performance improvement from 1.8% to 154.6%
and accuracy from 80.1% to 100%. We observed more than
10% performance improvement in 5 applications. In most
of the cases RALock provides the best solution. CALock
and TALock are designed to handle high contention but our
candidate locks do not have that much contention. That is
why, RALock works the best for these locks. In 2 cases,
TALock performed better than others. This happens when
there is a moderate to high contention.

App. Lock Best ALock Accu.(%) Perf. Imp.(%)
Canneal 1 RALock (60%) 89.0% 2.8%
X264 2 RALock (100%) 99.6% 4.9%
Bodytrack 4 RALock (92%) 84.1% 10.4%
Ferret 5 RALock (5%) 81.1% 17.3%
Raytrace 11 RALock (90%) 91.5%, 1.8%
Radiosity 17 RALock (3%) 80.1% 54.8%
Genome 29 RALock (80%) 100.0% 154.6%
Ssca2 33 TALock (0.1) 81.3% 31.5%
Intruder 34 RALock (6%) 81.2% 2.1%
Vacation 35 TALock (0.3) 82.4% 43.4%

Table III
BEST PERFORMING LOCKS WITH AT LEAST 80% ACCURACY.

Case Studies: We give a brief overview of some of
the locks in Table III. Specifically, we look into the ones
with performance improvement more than 10%. Lock 29

of Genome gives the highest performance improvement of
154.6%. Genome implements a gene sequencing program.
In the first step, duplicate segments are removed using hash-
set which is protected by lock 29. When we skip the lock,
some of the segments are dropped from hash-set. Thus,
the search needs to be done on less number of segments.
But the segments are still sufficient enough to construct the
source gene. Thus, we get the same accuracy with improved
performance. Lock 17 of Radiosity results in 54.8% per-
formance improvement. The lock protects tree generation
process. Skipping the lock drops some nodes from the tree.
As a result, the threads need to process less number of
nodes. Lock 35 of Vacation results in 43.4% performance
improvement. This lock protects customer addition and car
reservation transaction. Skipping this lock skips some num-
ber of transactions and hence, performance improves. Both
lock 17 and 35 take a hit on accuracy too. Lock 33 of Ssca2
yields 31.5% performance improvement. This lock protects
edge creation in a graph. Skipping it causes the graph to have
less number of edges. As a result performance is improved
but accuracy is also degraded. Lock 5 of Ferret provides
17.3% performance improvement. This lock is similar in
functionality to lock 17 and hence, the same explanation also
applies here. Finally, lock 4 of Bodytrack provides 10.4%
performance improvement. Skipping this lock drops work
units to be processed by other threads. So, performance is
improved.

2) Multiple Lock Approximation: For the applications
that have multiple candidate locks, we combine the ALocks
that do not violate the accuracy constraint. We can form
such combination for Fluidanimate, Bodytrack, Raytrace,
Radiosity, Fmm, Kmeans, Genome, and Vacation. The ap-
plications that have only 2 candidate locks, can have only
1 combination. In case of more than 2 candidate locks, we
experimented with all possible combinations of locks. Since
RALock has been found to work the best, we experimented
with RALock in majority of the cases. Figure 6 shows the
results for Fluidanimate (6(a)), Bodytrack (6(b)), Raytrace
(6(c)), Radiosity (6(d)), Fmm (6(e)), Kmeans (6(f)), Genome
(6(g)), and Vacation (6(h)).

Table IV shows the best combination for each application
where we observed performance improvement without any
violation of the accuracy constraint. Multiple lock approxi-
mation can improve performance by 10.3% up to 164.4%.
We also observed that in all cases, combinations involving
RALock provides the best solution.

App. Lock Best ALock Accu.(%) Perf. Imp.(%)
Bodytrack 3,4 RALock (91%) 87.1% 10.3%
Fluidanimate 6,7 RALock (100%) 89.7% 16.3%

Radiosity 13,14,
RALock (7%) 80.5% 49.0%15,19

Genome 29,31 RALock (80%) 100.0% 164.4%
Vacation 35,36 RALock (11%) 80.9% 23.7%

Table IV
BEST PERFORMING COMBINATIONS OF LOCKS WITH AT LEAST 80%

ACCURACY.

(a) Performance Improvement (b) Accuracy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
Lock

-100

0

100

Ac
cu
ra
cy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
Lock

-100

0

100

200

Pe
rfo

rm
an

ce

8 thread native
16 thread native
16 thread simlarge
16 thread simsmall

Figure 5. (a) Performance and (b) accuracy results across inputs.

(a) fluidanimate (b) bodytrack

(d) radiosity (e) fmm

(g) genome

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-20
-16
-12
-8
-4
0
4
8
12
16
20

Pe
rfo
m
an
ce
(%
)

RALock

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-2
0
2
4
6
8
10
12

Pe
rfo
m
an
ce
(%
)

RALock

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-4

-3

-2

-1

0

1

2

Pe
rfo
m
an
ce
(%
)

RALock

(c) raytrace

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-20
-10
0
10
20
30
40
50
60

Pe
rfo
m
an
ce
(%
)

RALock

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-4

-3

-2

-1

0

1

Pe
rfo
m
an
ce
(%
)

RALock

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10

Pe
rfo
m
an
ce
(%
)

RALock

(f) kmeans

0 10 20 30 40 50 60 70 80 90 100
Accuracy(%)

0
20
40
60
80
100
120
140
160
180

Pe
rfo
m
an
ce
(%
)

RALock

0 10 20 30 40 50 60 70 80 90 100

Accuracy(%)

-20
0
20
40
60
80
100
120
140
160

Pe
rfo
m
an
ce
(%
)

RALock

(h) vacation

Figure 6. Multiple lock approximation results

3) Results with Different Inputs: To show that ALocks
and their combinations provide consistent results, we take
the best performing ALock for each candidate lock and their
combinations and ran experiments on a 16 core machine
with different inputs. Figure 5 shows the results. Locks
marked with id from 38 to 42 are the combinations shown
in Table IV in that order. Most of the locks were consistent
in terms of performance improvement and accuracy degra-
dation. Lock 10, 16, 18, 20, 29, 39, and 41 showed variation
in performance whereas locks from 26 to 37 and 8, 41, 42
showed some variation in accuracy. This suggests that while
most locks work well with ALock, some require to adapt
rate/fraction of ALock dynamically based on a feedback
loop. We leave such an advanced design for future.

VI. RELATED WORK

There has been a growing interest in the field of approx-
imate computing. Loop perforation [2] identifies tunable
loops of a program and transforms them to execute a subset
of iterations. Using greedy search it identifies patterns of

loop which are suitable for perforation. Rinard proposed to
skip tasks as a way to make applications more robust in the
face of faults [25]. Such skipping can translate in accuracy
degradation. Parrot Transformation [4] leverages hardware
accelerator to produce approximate results. It replaces pro-
grammer identifed code segment with a trained neural net-
work that mimics the region of code. Apporoximate com-
puting introduces opportunities to alleviate synchronization
bottlenecks in parallel programs. One such approach is early
phase termination [7]. It eliminates the idling of processors
at barrier synchronization points by terminating the parallel
phase when there are too few of them remaining. This
technique applies statistical model to characterize the effect
of terminating tasks. Misailovic et al. [26] proposed the
use of loop perforation for quality of service profiling to
help developers find subcomputations that can be replaced
with new (and potentially less accurate) subcomputations
that deliver significantly increased performance in return
for acceptably small quality of service losses. Hoffmann et
al. [8], [27], [28] proposed system that dynamically adjust
approximation level to optimize performance, power and
energy consumption. We believe ALock can complement the
existing approximation techniques.

VII. CONCLUSION

This paper explored the potential for approximating locks.
This is the first paper to approximate locks dynamically
without introducing any data race. We started out with the
observation that many applications can tolerate occasional
skipping of computations done inside a critical section
protected by a lock. To exploit this opportunity, we proposed
3 types of ALock. The thread executing ALock checks if a
certain condition (e.g., high contention, long waiting time)
is met and if so, the thread returns without acquiring the
lock. Using ALock, we converted some selected critical
sections so that those sections are skipped when ALock
returns without acquiring the lock. We experimented with
14 programs from PARSEC, SPLASH2, and STAMP bench-
marks. We found a total of 37 locks that can be transformed
into ALock. ALock provides performance improvement for
10 applications, ranging from 1.8% to 164.4%.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable
feedback. This work is supported by University of Texas
at San Antonio and NSF under Grant No. 1319983.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger, “Dark silicon and the end of multicore
scaling,” in ISCA, June 2011.

[2] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and
M. Rinard, “Managing performance vs. accuracy trade-offs
with loop perforation,” in FSE, September 2011.

[3] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman, “Enerj: Approximate data types
for safe and general low-power computation,” in PLDI, June
2011.

[4] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger,
“Neural Acceleration for General-Purpose Approximate Pro-
grams,” in MICRO, December 2012.

[5] “x264,” http://www.videolan.org/x264.html.

[6] S. Aarseth, Gravitational N-Body Simulations: Tools and
Algorithms. Cambridge University Press, 2003.

[7] M. C. Rinard, “Using early phase termination to eliminate
load imbalances at barrier synchronization points,” in OOP-
SLA, 2007.

[8] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and
S. Mahlke, “Sage: Self-tuning approximation for graphics
engines,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-
46. New York, NY, USA: ACM, 2013, pp. 13–24. [Online].
Available: http://doi.acm.org/10.1145/2540708.2540711

[9] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke,
“Paraprox: Pattern-based approximation for data parallel
applications,” in Proceedings of the 19th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’14. New
York, NY, USA: ACM, 2014, pp. 35–50. [Online]. Available:
http://doi.acm.org/10.1145/2541940.2541948

[10] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield,
“Analyzing lock contention in multithreaded applications,” in
PPoPP, February 2010.

[11] R. Gu, G. Gin, L. Song, L. Zhu, and S. Lu, “What change
history tells us about thread synchronization,” in FSE, August
2015.

[12] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec
benchmark suite: Characterization and architectural implica-
tions,” in PACT, October 2008.

[13] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A
coverage-driven testing tool for multithreaded programs,” in
Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications,
ser. OOPSLA ’12, 2012.

[14] L. Renganarayana, V. Srinivasan, R. Nair, and D. Prener,
“Programming with relaxed synchronization,” in Proceedings
of the 2012 ACM Workshop on Relaxing Synchronization for
Multicore and Manycore Scalability, ser. RACES ’12, 2012,
pp. 41–50.

[15] M. Rinard, “Parallel synchronization-free approximate data
structure construction,” in The 5th USENIX Workshop on Hot
Topics in Parallelism. Berkeley, CA: USENIX, 2013.

[16] L. Lamport, “How to Make a Multiprocessor Computer that
Correctly Executes Multiprocess Programs,” IEEE Tran. on
Comp., July 1979.

[17] S. V. Adve and K. Gharachorloo, “Shared Memory Con-
sistency Models: A Tutorial,” Western Reseach Laboratory-
Compaq. Research Report 95/7, September 1995.

[18] S. Adve, “Data races are evil with no exceptions: Technical
perspective,” Commun. ACM, vol. 53, no. 11, Nov. 2010.

[19] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological
Considerations,” in Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, June 1995, pp.
24–36.

[20] C. C. Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun, “Stamp: Stanford transactional applications for multi-
processing,” in IEEE International Symposium on Workload
Characterization, Sept 2008, pp. 35–46.

[21] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn, “Respec: Efficient online multiprocessor
replayvia speculation and external determinism,” in Proceed-
ings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems,
ser. ASPLOS XV, 2010.

[22] M. Musuvathi, S. Qadeer, and T. Ball, “CHESS: A systematic
testing tool for concurrent software,” Microsoft Research,
Tech. Rep. MSR-TR-2007-149, November 2007.

[23] C. Baier and J.-P. Katoen, Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[24] Intel, “How to benchmark code execution times on intel ia-32
and ia-64 instruction set architectures,” https://www-ssl.
intel.com/content/dam/www/public/us/en/documents/
white-papers/ia-32-ia-64-benchmark-code-execution-paper.
pdf.

[25] M. Rinard, “Probabilistic accuracy bounds for fault-tolerant
computations that discard tasks,” in Proceedings of the
20th Annual International Conference on Supercomputing,
ser. ICS ’06. New York, NY, USA: ACM, 2006, pp.
324–334. [Online]. Available: http://doi.acm.org/10.1145/
1183401.1183447

[26] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard,
“Quality of service profiling,” in Proceedings of the
32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ser. ICSE ’10. New York,
NY, USA: ACM, 2010, pp. 25–34. [Online]. Available:
http://doi.acm.org/10.1145/1806799.1806808

[27] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard, “Dynamic knobs for responsive
power-aware computing,” in Proceedings of the Sixteenth
International Conference on Architectural Support for
Programming Languages and Operating Systems, ser.
ASPLOS XVI. New York, NY, USA: ACM, 2011, pp.
199–212. [Online]. Available: http://doi.acm.org/10.1145/
1950365.1950390

[28] H. Hoffmann, “Jouleguard: Energy guarantees for
approximate applications,” in Proceedings of the 25th
Symposium on Operating Systems Principles, ser. SOSP ’15.
New York, NY, USA: ACM, 2015, pp. 198–214. [Online].
Available: http://doi.acm.org/10.1145/2815400.2815403

