
Detecting, Exposing, and Classifying Sequential Consistency Violations

Mohammad Majharul Islam and Abdullah Muzahid
University of Texas at San Antonio

{mohammadmajharul.islam, abdullah.muzahid}@utsa.com

Abstract—Sequential Consistency (SC) is the most intuitive
memory model for parallel programs. However, modern ar-
chitectures aggressively reorder and overlap memory accesses,
causing SC violations. An SC violation is virtually always a
bug. Most prior schemes either search the entire state space
of a program, or use a constraint solver to find SC violations.
A promising recent scheme uses active testing technique but
fails to be effective for SC violations involving larger number
of threads and variables, and larger codebases. We propose
Orion, the first active testing technique that can detect, expose,
and classify any arbitrary SC violations in any program. Orion
works in two phases. In the first phase, it finds potential
SC violation cycles by focusing on racing accesses. In the
second phase, it exposes each SC violation cycle by enforcing
the exact scheduling order. We present a detailed design of
Orion in the paper. We tested different concurrent algorithms,
bug kernels, SPLASH2, PARSEC applications, and an open
source program, Apache. We experimented with TSO and PSO
memory models. We detected and exposed 60 SC violations
of which 15 violations involve more than two processors
and variables. Orion exposes SC violations quickly and with
high probability. Compared to a state-of-the-art active testing
technique, it has a much better SC violation detection ability.

Keywords-Memory model; Sequential consistency; Active
testing; Parallel programming

I. INTRODUCTION

Among various memory models, Sequential Consistency
(SC) [1] is the most intuitive one. SC guarantees a total
global order among the memory operations where each
thread maintains its program order. However, most com-
mercial architectures sacrifice SC to improve performance.
For example, x86 implements a memory model similar to
TSO [2] which allows a later load operation to bypass
an earlier store operation from the same processor. The
overlapping and reordering of memory accesses can lead
to non-SC behavior of a program, referred to as an SC
Violation.

Let us consider Dekker’s algorithm in Figure 1(a). Pro-
cessor P0 first writes flag1 (I1) and then reads flag2 (I2)
but P1 first writes flag2 (J1) and then reads flag1 (J2). Both
flags are initially 0. In SC, either I2 or J2 will be the last
one to complete. Therefore, either P0 finds flag2 to be 1 or
P1 finds flag1 to be 1. It is even possible to have both flags
to be 1 (e.g., if the completion order is I1, J1, I2, and J2).
In any case, we can never have both flags to be 0. As a
result, only one processor can enter into the critical section
at any time. However, if the underlying memory model is
TSO, it is possible for the load in J2 to bypass the store in

J1 (Figure 1(b)). As a result, the completion order becomes
J2, I1, I2, and J1. Both processors find the flags to be 0
and enter into the critical section simultaneously. The same
problem can occur if I1 and I2 get reordered.

 // Critical

 // Section

 // Critical

 // Section
 // Critical

 // Section

I1: flag1=1

I2: if(flag2==0) J2: if(flag1==0)

J1: flag2=1

(a)

I2: if(flag2==0)

I1: flag1=1

(b)

 // Critical

 // Section

P0 P1 P0 P1

J2: if(flag1==0)

J1: flag2=1

Figure 1. (a) shows Dekker’s algorithm and (b) shows how an SC violation
can occur there.

Detecting SC violations is crucial. Maintaining SC be-
havior is considered to be one of the correctness criteria for
parallel programs. Programmers can ensure SC semantics in
any architecture by writing the programs in a data race free
manner [3], [4]. However, parallel programs can have occa-
sional data races (intentional or unintentional) and hence, SC
violations can occur. The situation gets complicated when
memory model specifications of commercial processors from
Intel and AMD do not even match with the actual behavior
of the machines [5]. Therefore, programmers might not be
able to reason about SC behavior with those specifications.
Last but not least, a recent study [6] has shown that many
real world applications like Apache, MySQL, Mozilla, Gcc,
Java, Cilk [7], Splash2 etc. have SC violations. Only 20%
of those bugs are detected by existing software testing tools.
The rest are discovered by programmers during the analysis
of source code. Such findings warrant a tool that can detect,
expose, and even classify SC violations in any program.

Significant research has been done to detect SC violations.
One line of work [8]–[10] encodes programs and memory
model constraints as axioms and use a constraint solver to
find SC violations. There are some proposals [11]–[13] to
search the state space of a program to find SC violations.
Aglave et al. [14] proposed to use static analysis to detect
critical SC violation cycles in an attempt to insert necessary
fences. Sober [15] and Burnim et al. [16] proposed a run
time monitoring system to check an SC execution in an
attempt to find SC violations in close-by relaxed executions.
Such systems should run along with a model checker to
detect all possible SC violations. Recently, Burnim et al. [17]
proposed an active testing technique, called Relaxer. It first
finds potential SC violations and then, exposes them by
buffering some stores while speeding up or stalling certain

other thread. Relaxer is effective but cannot expose viola-
tions that require complex thread scheduling (e.g., executing
a long sequence of accesses in a certain order) or some stores
to be pending for a long time. Therefore, it cannot expose SC
violations involving more threads (e.g., > 2) and variables
(e.g., > 2).

We propose an active testing technique, called Orion, to
detect, expose, and classify any SC violation - no matter how
many threads and variables are involved or how complex
thread interleavings need to be. We name our scheme Orion
after the Greek God of hunting. Orion starts with a data race
detector to find the races. We collect some execution traces
of the racing accesses and construct a Happened-before [18]
graph to determine cycles [18]. The cycles can be of any
length and involve any number of variables. Each cycle
can potentially create an SC violation. For each cycle, we
run the program with a custom scheduler that enforces the
exact order needed to expose SC violation in a particular
memory model. Finally, we classify the violation based
on the execution outcome. This is the first active testing
technique that can detect, expose and classify any arbitrary
SC violation in any program.

Code Cycle length Number of
SC violations

harris 4 1
bakery 4 1
init 4 2
snark 4 1
lazylist 4 2
dekker 4 3
ms2 4 1

pthread
4 9
6 9
8 1

crypt 4 24
6 3

msn
4 1
5 1
6 1

Total 60

Table I
SC VIOLATIONS DETECTED.

We present a detailed design of Orion in this paper.
We developed our profiler and scheduler using a binary
instrumentation tool, Pin [19]. We tested different concurrent
algorithms, bug kernels, SPLASH2 [20] and PARSEC [21]
applications, and a large open source program, Apache. We
experimented with TSO and PSO memory models. Table I
summarizes the total (i.e., TSO+PSO) SC violations found
in different programs. We did not find any SC violation in
SPLASH2, PARSEC, and Apache. benchmarks. We com-
pared our scheme against Relaxer [17] to show its superior
detection ability.

The paper is organized as follows. Section II gives some
background; Section III describes Orion design; Section IV
presents experimental results; Section V discusses related
work; and finally, Section VI concludes the paper.

II. BACKGROUND

A. Pattern for a Sequential Consistency Violation (SCV)

Shasha and Snir [22] show what leads to an SC violation:
overlapping data races that cause dependences to form a
Happened-before cycle at runtime. Recall that a data race
occurs when two (or more) threads access the same variable
without an intervening synchronization and at least one is
writing. Figure 2(a) shows the required program pattern for
two threads (where each variable is written at least once)
and Figure 2(b) shows the required order of dependences
observed at runtime for SC violations. We assigned reads
and writes to the variables arbitrarily.

B0: rd y

B1: rd x

A0: wr x

A1: wr y

A0: wr x B0: rd y

B1: rd xA1: wr y

PBPA PBPA

(b) (c)

Program order edge

PA PB

(a)

A0: ref(x) B0: ref(y)

A1: ref(y) B1: ref(x)

Dependence edge (From source or earlier access to destination

or later access)

Figure 2. Understanding SC violations.

If at least one of the dependences occur in the opposite
direction (e.g., Figure 2(c)), no cycle can form and hence,
no SC violation occurs. Given the pattern in Figure 2(a),
Shasha and Snir [22] avoid SC violations by placing a fence
between A0 and A1 and another between B0 and B1. These
fences force at least one dependence arrow to go downward.

B. Total Store Order (TSO)

A TSO machine has a write buffer with each processor.
When a store reaches the head of the Reorder Buffer (ROB),
it retires into the write buffer. From there, the stores are
performed in order. Whenever a load reaches the head of
the ROB and the data is returned from the local cache, it
is allowed to retire (i.e., complete) even if the write buffer
contains some earlier stores. When a load completes while
the write buffer is non-empty, the load essentially bypasses
those earlier stores in the buffer. If the processor executes
a load that has the same memory address as one of the
pending stores in the write buffer, TSO allows the load to
get data from the write buffer even if the store has not been
completed yet.

C. Partial Store Order (PSO)

PSO is similar to TSO except that while a store is waiting
in the write buffer, a later store to a different address
can bypass the earlier store and complete. As in TSO, a
processor can load data from a pending store in the write
buffer.

III. OVERVIEW OF ORION

Orion works in 2 phases - detecting potential SC vio-
lations and exposing them. We implement the first phase
by analyzing some execution traces of the program. For
the second phase, we impose some specific scheduling
constraints to expose the SC violations. If the violations can
be exposed, we further classify them as benign or harmful
based on their impact on program execution. If, on the other
hand, some violations cannot be exposed, they are discarded
as infeasible ones.

A. Phase 1: Detecting Potential SC Violations

The goal of this phase is to find a set of potentials SC
violations that we can expose in the second phase. The steps
are as follows:

1) Detecting Data Races: An SC violation requires two
or more data races to overlap in execution [22]. So, the
first step of Phase 1 is to find all data races. There has
been significant research on detecting data races [23]–[26].
Therefore, instead of reinventing the wheel, we use an
existing race detector such as Intel Parallel Inspector [26].
This is a dynamic data race detector based on Happened-
before [18] algorithm. In order to find the data races, we
run the tool with a given program multiple times (e.g., 10)
with different inputs. At the end, we collect all the data
races. Each race is represented by a pair of instructions and
a memory location.

2) Collecting Execution Traces: For this step, we write a
profiler using a binary instrumentation tool such as Pin [19].
From the previous step, we get a list of data races. For each
data race, we know the instructions that are involved. Our
profiler takes a list of such instructions as its input. We run
the program with the profiler. When the program executes
one of the racing instructions, the profiler records the in-
struction and memory address, thread id, and type of access
(i.e., read/write). The profiler also records synchronization
operations (e.g., lock, unlock, barrier, thread creation, thread
join etc.) along with the id of the thread that executes them.
The profiler records everything in an output file. We run
the program multiple times (e.g., 10). Each run results in
a separate output file. A long running program with many
data races may end up creating a large output file which may
not be feasible to process further. In order to deal with this
issue, we configure our profiler such that for each thread, it
records up to a maximum number of dynamic instances of a
racing instruction. A programmer can tune this configuration
parameter based on his/her timing budget.

3) Creating Race Graphs: For each trace, we create a
race graph. A race graph is a directed graph. We construct
it using the racing accesses as nodes and data race and
program order relations as edges. Two accesses have a data
race if they do not have any Happened-before relation and
at least one of them is a store operation. Two accesses have

 T1 T2

 T2

 arrow direction is from
 earlier to later access

 Lock L1

 Unlock L1

 ld (x, I1)
 ld (x, I2)

 ld (x, I1)
 st (y, J1)

 st (y, J1)

 Epoch 1
 Epoch 2 st (x, I3)

 st (x, I3)

 Lock L2

 Unlock L2

 T1

 ld (x, I1)

 st (y, J1)

 ld (x, I2)

 st (x, I3)

 Race
 Program Order

 Execution Trace

 Race Graph

Figure 3. Example race graph created from an execution trace (Phase 1).

a program order relation if they are from the same thread
and one appears before the other during program execution.

Let us consider the execution trace shown in Figure 3. A
load is shown as ld(a, ins), where a is the memory address
and ins is the instruction address of the load. Similarly,
a store is shown as st(a, ins). Let us refer to a thread’s
execution from one synchronization operation to the next
one as an Epoch. In each epoch, we create one node for
all the loads that access the same memory address and have
the same instruction address. The rationale is that if one of
those loads has a data race with another access, other loads
will also have data race with the same access. All the stores
of an epoch that access the same memory address and have
the same instruction address also result in a single node in
the graph. Thus, Epoch 1 contributes 3 nodes labelled as
ld(x, I1), st(y, J1), and ld(x, I2) and Epoch 2 contributes
1 node labelled as st(x, I3). For each thread, we add a
program order edge between 2 nodes if the corresponding
accesses in the trace have program order relation (direct
or transitive). For example, we add a program order edge
from node ld(x, I1) to node st(y, J1) because according
to the execution trace, ld(x, I1) appears before st(y, J1)
in program at least in one instance. We add a program
order edge from st(y, J1) to ld(x, I1) for the same reason.
However, we add a program order edge from st(y, J1) to
ld(x, I2) because the store has a transitive program order
relation with the load. Thus, the program order edges of the
race graph essentially form a transitive closure of program
order relations.

After adding the program order edges, we add data race
edges in the race graph. For each epoch, we determine the
epochs that are parallel (i.e., they do not have any Happened-
before relation). Then, we add data race edges between

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

. . . .

. . . .

(a)

(b)

Figure 4. Two types of minimal SC violation cycle.

the conflicting access nodes of the parallel epochs. Recall
that two accesses conflict with each other if they access
the same address and at least, one of the accesses is a
store operation. Epoch 1 of Figure 3 can execute in parallel
with Epoch 2 (since they are critical sections protected by
different locks). Therefore, we add data race edges between
conflicting access nodes ld(x, I1) and st(x, I3). We add
one edge in each direction since any one of ld(x, I1) and
st(x, I3) can execute first.

4) Detecting SC Violation Cycles: An SC violation cycle
is a Happened-before cycle in the race graph. It consists of
both program order edges and data race edges. A minimal
SC violation cycle can be in one of the two forms [22] as
shown in Figure 4. Each cycle can be represented as A1 →P

A′1 →R A2 →P A′2...A
′
n →R A1, where →P and →R are

program order and data race edges respectively, any Ai or A′i
is a node in the race graph, both Ai and A′i are executed by
the same thread, and A′i and Ai+1 access the same memory
address for any 1 ≤ i < n. For the cycle in Figure 4(a),
we have a sequence of nodes like Aj →P A′j →R Aj+1

for any 1 ≤ j < n. For the cycle in Figure 4(b), we have a
sequence of nodes like Aj →R Aj+1 →R Aj+2 →P A′j+2

for some 1 ≤ j < n − 1 such that Aj is a load, Aj+1 is a
store and Aj+2 is a load access node. For the other values
of j, the sequence is similar to the one found in the cycle
of Figure 4(a).

We use a depth-limited version of depth-first search (DFS)
algorithm to find cycles of different length from the race
graph. Since the smallest SC violation cycle contains 4 nodes
from two different threads, we start by finding cycles of
length 4. DFS finds all possible cycles of length 4. We
discard the ones that do not conform with the categories
of Figure 4. After length 4, we find cycles of length 5, 6,
..., up to some maximum length.

At this point, it is worth mentioning why we choose to
add all possible (i.e., transitive closure) program order edges
between any pair of nodes in the race graph. It makes the
cycle detection algorithm simpler in the sense that if we
want to find SC violation cycles of length n, we just need
to use DFS up to depth n. Without the transitive closure
property, we need to search all possible depths.

T1

 st (x, I1)

 ld (y, J1)

 st (y, J2)

 ld (z, K1)

 st (z, K2)

 st (x, I2)

5

6

1

2

3

4

7

T2 T3

Figure 5. Determining the order of accesses to expose an SC violation.

5) Classifying TSO and PSO Cycles: The last step of
Phase 1 is to classify the cycles according to the memory
models i.e., TSO and PSO. For a cycle A1 →P A′1 →R

A2 →P A′2...A
′
n →R A1 to cause an SC violation in

TSO, Ai and A′i have to be a store and load access node
respectively for, at least, one instance of 1 ≤ i < n.
Otherwise, the cycle cannot cause any SC violation in TSO.
Any cycle that can cause an SC violation in TSO, can also
cause an SC violation in PSO. In addition, the cycles where
both Ai and A′i are store access nodes for some 1 ≤ i < n
can also cause SC violations in PSO.

B. Phase 2: Exposing and Classifying SC Violations

This phase takes the list of potential SC violations found
in Phase 1. It, then, exposes each violation and classifies it
according to the execution outcome. If we cannot expose the
violation, the violation is marked as infeasible.

1) Exposing SC Violations: Researchers have proposed
many schemes to expose SC violations. One such scheme
buffers a store as late as possible to expose SC viola-
tions [16]. Another scheme, Relaxer, buffers a store and
then, speeds up or stalls certain thread to expose SC vio-
lations [17]. There is some work that relies on constraint
solver [8] or explores the state space of a program to find
SC violations [11]. In this work, we choose a different
approach where, given an SC violation cycle, we expose
it by enforcing the exact order required for the cycle.

We start by explaining with an example in Figure 5. If
we consider TSO memory model, st(x, I1) followed by
ld(y, J1) in thread T1 can get reordered. Similarly, st(y, J2)
followed by ld(z,K1) in T2 can get reordered. However, the
accesses of T3 cannot get reordered in TSO. Thus, in order
to have an SC violation, we need to reorder at least one
of the pairs - the access pair of T1 or T2. Without loss
of generality, let us assume that st(y, J2) appears before
st(x, I1) during the execution. Next, we assign an order in
which different accesses of the cycle need to be executed
to create the violation. We assign 1 for st(x, J2) and use
topological sorting to assign a number to each access of
the cycle. Note that topological numbers are correct for the
accesses except the last one i.e., ld(y, J1). If we execute
the accesses according to the number, ld(y, J1) will execute
after st(y, J2). As a result, the (racing) dependence arrow
will point downward and there will not be any SC violation.
Instead, if we buffer the first access i.e., st(y, J2), execute
the rest according to the assigned number and then, execute

the buffered store st(y, J2) at the end, the cycle completes
and an SC violation occurs. In a sense, the execution order
for st(y, J2) changes from 1 to 7. Thus, Orion exposes an
SC violation by reordering only one pair of accesses.

The complete algorithm for exposing an SC violation
cycle in TSO is shown in Algorithm 1. At the high level, we
fast forward (i.e., execute normally without enforcing mem-
ory model or any other constraint) until a thread is about
to execute any access ai in I (Line 5). Fast forwarding is a
popular technique used in various processor simulators [27].
I contains accesses that can be bypassed by the next access
in the cycle. So, for TSO and PSO, I contains only store
accesses. The executing thread buffers ai and assigns an
execution order for the rest of the accesses of the cycle
(Line 7). The threads execute them in that order and at
the end ai is flushed from the write buffer to expose the
cycle. Any time a thread finishes its accesses of the cycle,
it stalls until the cycle completes or certain amount of time
(e.g., d seconds) has passed (Line 15). If a situation arises
where the cycle may not occur, we restart (i.e., we apply the
algorithm from the beginning on the rest of the execution).
This occurs in Line 16, 31, 38, 41, 51, and 65. An example
of such situations could be a wrong thread executing one
of the accesses of the cycle (Line 35). Similarly, if a thread
executes one of the already executed accesses (or addresses)
of the cycle, we also restart (Line 38). For TSO, we keep
buffering stores until the write buffer is full. When the buffer
is full and we have a new store, we execute the earliest
store from the buffer (Line 64). Thus, we create maximum
reordering window. If ai is flushed at any point before the
cycle completes, we restart the algorithm (Line 51 and 65).
Every load is executed right away (Line 54-58). This implies
that even if the write buffer contains a store to the same
address as a load, the load executes before the store. This
behavior is allowed in TSO [3]. A fence always flushes the
corresponding write buffer (Line 12).

The algorithm for PSO would be very similar to Algo-
rithm 1 except if ai is followed by another store in the cycle
(i.e., we need to reorder a pair of stores), we keep ai in
the write buffer until we encounter a fence or the cycle is
complete. If we need to flush the write buffer for any other
reason, we will flush everything except ai.

2) Classifying SC Violations: After exposing an SC vi-
olation, we let the program run to completion or failure.
If a failure occurs, we classify the violation as a harmful
one. We also classify the violation as a harmful one if the
program runs to completion but the output is not correct. On
the other hand, if the program runs to completion and the
output is correct, we classify it as a benign one.

IV. EVALUATION

A. Experimental Setup

We used Pin [19] to develop a profiler and a thread
scheduler. The profiler was used for collecting execution

Algorithm 1 Code for exposing an SCV cycle in TSO
1: Assume that the cycle to expose is C = A1 →P A′

1...→R A1

2: Let E and A be the set of edges and accesses of C
3: Calculate S = {A′

i|A
′
i →R Ai+1 ∈ E for 1 ≤ i < n}

4: Calculate I = {Ai|Ai →P A′
i ∈ E and A′

i can bypass Ai}
5: BEGIN: Fast forward until thread Ti tries to execute ai ∈ I .
6: Buffer ai in Ti’s write buffer, WBTi
7: Calculate execution order of b ∈ A such that orderai

= 1.
8: Initialize Addr = NIL and Rest = A− {ai}
9: Turn = 2 and NextThread = Ti

10: for any access aj or fence by thread Tj do
11: if The instruction is a fence then
12: Flush WBTj

13: else
14: if aj ∈ Rest then
15: Stall Tj until Turn = orderaj

or d seconds have elapsed
16: if d seconds have elapsed then RESTART
17: end if
18: if NextThread = ANY or NextThread = Tj then
19: FLUSH ACCESS(aj , Tj)
20: Turn = Turn + 1
21: Rest = Rest− {aj}
22: if Turn = |A|+ 1 then
23: Flush WBTi
24: Flush other write buffers
25: Fast forward the rest of the execution
26: else if aj ∈ S then
27: NextThread = ANY
28: Addr = addraj

29: Stall Tj until the ai is flushed or d seconds have elapsed
30: else if aj ∈ I then
31: NextThread = Tj

32: Addr = NIL
33: end if
34: else
35: RESTART
36: end if
37: else if aj ∈ A− Rest then
38: RESTART
39: else
40: if addraj

= Addr then
41: RESTART
42: else
43: ACCESS(aj , Tj)
44: end if
45: end if
46: end if
47: end for
48: function FLUSH ACCESS(aj , Tj)
49: if aj is a store then
50: Flush WBTj

and then, execute aj

51: if ai is flushed then RESTART
52: end if
53: else
54: if WBTj

contains a store to addraj
then

55: Execute aj to return the value of the store
56: else
57: Execute aj

58: end if
59: end if
60: end function
61: function ACCESS(aj , Tj)
62: if aj is a store then
63: if WBTj

is full then
64: Remove the earliest store and execute it
65: if ai is executed then RESTART
66: end if
67: end if
68: Buffer aj into WBTj

69: else
70: if WBTj

contains a store to addraj
then

71: Execute aj to return the value of the store
72: else
73: Execute aj

74: end if
75: end if
76: end function
77: function RESTART
78: Flush all write buffers,
79: Reset Addr, Rest, Turn and NextThread
80: Start from BEGIN
81: end function

Phase 1 Phase 2
Codes Approx. # of # of # of dyn. # of Size of Initial Pruned cycles WB 16 WB 32 WB 64 Relaxer

LoC racy var racy ins accesses edges graph(KB) cycles TSO PSO TSO PSO TSO PSO TSO PSO
harris 160 2 2 12 8 0.83 1 0 1 0 0 0 0 0 1 1
bakery 30 2 4 164 409 41.4 2556 1 0 1 0 1 0 1 0 1
init 65 2 7 20 96 9.75 534 1 1 1 1 1 1 1 1 2
snark 150 2 4 45 173 20.6 1655 0 3 0 1 0 1 0 1 1
lazylist 120 3 3 14 12 1.21 2 0 2 0 1 0 2 0 2 2
dekker 20 3 6 27 18 1.82 10 3 0 3 0 3 0 3 0 3
ms2 80 4 5 49 164 16.5 32958 0 2 0 0 0 1 0 1 1
pthread 66 4 7 23 102 10.3 4072 17 3 16 3 16 3 16 3 9
crypt 88 3 12 28 168 17 18549 29 10 19 8 19 8 19 8 24
msn 80 4 6 63 247 25.2 27659 3 5 1 0 1 2 1 2 1
httpd-2.4.20 228314 12 32 2250 92 9.95 0 - - - - - - - - -
bodytrack 14354 2 4 94 548 71.4 0 - - - - - - - - -
streamcluster* 1769 2 3 120 1971 229 1 - - - - - - - - -
raytrace 13841 1 2 - - - - - - - - - - - - -
vips 142959 1 1 - - - - - - - - - - - - -
canneal 2825 1 2 - - - - - - - - - - - - -
sp2.raytrace 6050 1 2 - - - - - - - - - - - - -
swaptions 1119 0 0 - - - - - - - - - - - - -
fluidanimate 4343 0 0 - - - - - - - - - - - - -
blackscholes 914 0 0 - - - - - - - - - - - - -
dedup 3347 0 0 - - - - - - - - - - - - -
Total 192380 37 70 659 3916 445.01 87997 54 27 41 14 41 18 41 19 45

81 55 59 60

Table II
DETAILED RESULTS OF DIFFERENT PHASES OF ORION.

traces and the scheduler was used to control thread inter-
leaving. All experiments were performed on a 4-core system
with Intel core i5-3570 3.0 GHz processor and 8 GB of
RAM. The system had Ubuntu 12.04. We used three sets of
benchmarks (Table III). The first set has implementations of
concurrent data structures and mutual exclusion algorithms
that have potential SC violations [8], [16]. The second set
has some reported SC violation bugs from open source
programs and libraries (e.g., MySQL, GCC). Finally, we
used one application from SPLASH-2 [20], nine applications
from PARSEC [21] and an open source server, Apache [28].

Set Program Description
dekker Algo. mutual exclusion.
bakery Algo. mutual exclusion.
snark Non-blocking double-end. queue.

Conc. Algo. msn Non-blocking queue.
ms2 two-lock queue.
harris Non-blocking set.
lazylist List-based concurrent set.
pthread cancel Unwind code after canceling

Bug from glibc thread needs a fence [29].
kernels crypt util Small table initialization code

from glibc needs a fence [29].
init Available charsets initialization
from MySQL code needs a fence [6].

Full SPLASH-2 1 programs form SPLASH-2.
Apps Parsec 9 programs form Parsec.
Open Src. httpd-2.4.20 Apache HTTP Server.

Table III
APPLICATIONS ANALYZED.

For Phase 1 of Orion, we used Intel Inspector [26]
to detect data races from each program. We recorded all

Happened-before cycles up to length 8. Although we re-
stricted ourselves up to length 8, the restriction is arbitrary.
Programmers can use our tool to find any length cycles.
For Phase 2, we tried to expose each cycle to create an SC
violation. We ran 100 experiments for each cycle.

B. Characterization of Orion

Table II summarizes results for Phase 1 & 2. For each
application listed, we show the number of unique racing
variables and instructions detected by the data race detector
in Column 3 and 4 respectively. Column 5 shows the total
number of dynamic accesses in the profile and Column
6 shows the total number of edges (both program order
and conflict edges) in the graph. The size of the graph
is shown in Column 7. Column 8 reports the number of
detected cycles. The cycles are pruned based on the criteria
in Section III-A4 and classified into TSO and PSO cycles.
They are reported in Column 9 and 10 respectively. Column
11 and 12, 13 and 14, 15 and 16 report the number of
bugs exposed with write buffer of 16, 32, and 64 entries
respectively. We compared our scheme against a state-of-
the-art active testing technique, Relaxer [17]. It is shown in
the last column. Before explaining the results, we should
note that for streamcluster, we profiled only the first 20
accesses per racing variable per thread to limit the size of the
profile and graph. Although this can cause false negatives,
it is essential to work with large applications having sizable
number of dynamic racing accesses.

In summary, Orion finds 81 Happened-before cycles from
Phase 1 — 54 for TSO and 27 for PSO. Phase 2 can expose

55 SC violations with 16 entry write buffer. 41 out of 55
violations are for TSO and the rest are for PSO. With 32
and 64 entry write buffer, Phase 2 can expose 59 and 60
violations respectively. With increased buffer size, there is
no change in the number of TSO violations that Orion can
expose. However, PSO violations increase with write buffer
size. This is expected since larger buffer allows more stores
to get reordered in PSO memory model. We choose 64 as the
default size of the write buffer. Compared to Orion, Relaxer
can expose 45 SC violations out of 81 cycles. This is less
than the violations exposed by Orion(which is 60). This is
due to the fact that Relaxer cannot expose any of the 15
violations that have length greater than 4. It should be noted
that the numbers shown here for Relaxer are much smaller
than those reported in the original paper. This is because
unlike the paper which counts all dynamic instances of SC
violations, we count only the unique SC violations (each
violation is identified by the addresses of the instructions
involved).

C. Exposure Probability

Table IV describes empirical probability of confirming
a cycle with different stalling time. We experimented with
stalling time 0.5s, 1s, 2s, and 10s. Column 4 to 7 show the
average empirical probability of exposing an SC violation
cycle. The data shows that larger cycles usually have less
probability of getting exposed. This is expected since all
accesses need to be executed in a specific order to create
the cycle. On average, with stalling time 2s, we achieved
the highest exposure probability of 0.65 and we selected it
as the default stalling time. With stalling time 0.5s, 1s, and
10s, the average exposure probability is 0.59, 0.58, and 0.47
respectively.

Codes Cycle # of 0.5s (p) 1s (p) 2s (p) 10s (p)
length SCV

harris 4 1 0.43 0.4 0.36 0.31
bakery 4 1 1 1 1 1
init 4 2 0.89 0.94 0.91 0.96
snark 4 1 0.88 0.83 0.92 0.84
lazylist 4 2 0.58 0.56 0.51 0.55
dekker 4 3 0.68 0.74 0.67 0.66
ms2 4 1 0.1 0.17 0.17 0.09

4 9 0.72 0.73 0.9 0.75
pthread 6 9 0.65 0.6 0.65 0.49

8 1 0.08 0.03 0.02 0.02
crypt 4 24 0.46 0.53 0.56 0.28

6 3 0.9 0.4 0.91 0.7
4 1 0.37 0.39 0.31 0.32

msn 5 1 0.85 0.9 0.9 0.91
6 1 0.37 0.17 0.12 0

Average - - 0.59 0.58 0.65 0.47

Table IV
EMPIRICAL PROBABILITY OF EXPOSING A CYCLE.

D. Time Analysis

Table V demonstrates average running time (seconds) of
Phase 1 & 2. The table lists only 12 programs because the
others have none or at most one data race (recall that for

an SC violation, we need at least two data races). Phase 1
time is divided into profiling time, graph creation time, and
cycle detection time. They are shown in Column 2, 3, and
5 respectively. Phase 2 time is the average cycle exposure
time. It is shown in Column 6. If no cycle is found in a race
graph for a given length, the corresponding exposure time is
not shown. From the data, it is obvious that cycle detection
is the most time consuming stage. Detection time increases
for larger cycle length. For our experiments, we limited our
cycle detection time to a maximum of 8 hours.

Profiling Graph Cycle Cycle Exposure
Codes time (s) creation length detection time (s)

time (s) time (s)
harris 0.735 0.004 4 0.004 1.792

5 0.005 -
bakery 0.741 0.035 4 66.404 3.487

5 2777.116 -
init 0.638 0.007 4 0.359 2.472

5 3.611 -
snark 0.726 0.009 4 1.181 13.698

5 32.564 -
4 0.005 1.684

lazylist 0.703 0.004 5 0.004 -
6 0.004 -
7 0.004 -

dekker 0.713 0.009 4 0.006 1.355
4 0.49 2.114
5 5.85 -

ms2 0.718 0.012 6 173.184 -
7 5100.765 -
8 28800* -
4 0.151 1.843
5 0.476 -

pthread 0.648 0.006 6 4.08 2.2
7 40.043 -
8 355.437 2.948
4 1.092 4.268

crypt 0.647 0.01 5 18.149 -
6 439.572 4.9
7 9157.144 -
4 1.41 3.874
5 35.629 10.813

msn 0.703 0.014 6 2623.907 3.695
7 28800* -
8 28800* -
4 0.07 -
5 0.13 -

httpd-2.4.20 1.192 0.017 6 0.19 -
7 0.251 -
8 0.324 -

body- 10.947 0.035 4 1.439 -
track 5 4.366 -
stream- 5.714 0.087 4 42.85 -
cluster 5 375.423 -

Table V
TIME ANALYSIS OF DIFFERENT PHASES.

For each stalling time, we ran a total of 81× 100 = 8100
experiments to expose 81 cycles. We experimented with
4 different stalling times. Figure 6 summarizes the time
required to execute these experiments. More than half of
the experiments were completed within 2s in most cases. For
example, 80.25%, 76.72%, 55.28% and 34.42% experiments
were finished within 2s for stalling time of 0.5s, 1s, 2s, and
10s respectively. Average exposure time for those stalling
times are 2.33s, 2.44s, 3.9s, and 13.6s respectively.

0-0.5
0.5-1

1-1.5
1.5-2 2-3 3-4 4-5 5-10

10-20 20+

Exposure Time (sec)

0

20

40

60

80

100

%
 o

f E
xp

er
im

en
ts

0.5s
1s
2s (default)
10s

Figure 6. Exposure time analysis.

E. Bug Categorization

We observe SC violations’ impact and classify them into
3 categories - harmful, benign, and infeasible SC violations.
Recall that infeasible violations are the cycles which Orion
cannot expose. We tested with two versions (according to the
number of reordering enforced) of Phase 2 - 1 reordering
(default) and all reordering. In 1 reordering version, we
reordered exactly 1 access pair no matter how many pairs
can be reordered in the cycle. In case of all reordering,
we reordered all possible (allowed by the memory model
constraints) access pairs. Overall, we found similar exposure
probability for both versions - 0.65 and 0.61 for 1 and
all reordering version (Figure 7). In addition, both versions
classify SC violations into roughly the same fractions (i.e.,
0.64 and 0.60 for the two versions respectively).

ha
rr

is
_c

l_
4

ba
ke

ry
_c

l_
4

in
it_

cl
_4

sn
ar

k_
cl

_4

la
zy

lis
t_

cl
_4

de
kk

er
_c

l_
4

m
s2

_c
l_

4

pt
hr

ea
d_

cl
_4

pt
hr

ea
d_

cl
_6

pt
hr

ea
d_

cl
_8

cr
yp

t_
cl

_4

cr
yp

t_
cl

_6

m
sn

_c
l_

4

m
sn

_c
l_

5

m
sn

_c
l_

6

A
ve

ra
ge

0

0.2

0.4

0.6

0.8

1.0

S
C

V
 C

at
eg

or
ie

s
(%

)

1R Harmful SCV
1R Benign SCV
1R Infeasible SCV

allR Harmful SCV
allR Benign SCV
allR Infeasible SCV

1 Reordering (1R)

all Reordering (allR)

Figure 7. Bug impact.

F. Case Studies

SC violation cycles can be categorized based on cycle
length, memory model, and bug impact. We use examples
to discuss each case.

1) Cycles of Different Length: Orion detected SC vio-
lation cycles of length 4, 5, 6, and 8. Figure 8 demon-
strates a length-4 and length-8 cycle in pthread cancel init.c
from glibc [29]. Here f1, f2, f3 and f4 corresponds to
libgcc s resume, libgcc s personality, libgcc s getcfa and
libgcc s handle respectively. Figure 8(a) presents the sim-
plified code where each thread tries to initialize all four
pointers if it finds f4 to be null. Figure 8(b) shows a trace

of thread 1 and thread 2. Under PSO memory model, the
write of f4 at line 7 can bypass both the write of f2 and
f3 at line 5 and 6 in thread 1. Thread 2 first finds f2 to be
null at line 15 but inside init, it sees f4 to be not null and
returns. Then, at line 17 thread 2 tries to read f2 which is
still uninitialized. Figure 8(c) shows only the participating
accesses in this violation with the execution sequence (5, 7,
2, 17, and 5). Figure 8(d) shows an SC violation of length
8 where the read of f1, f2, f3 can bypass the write of f2,
f3, f4 in thread 1, 2, and 3 respectively under TSO. Under
PSO, the write of f4 can bypass the write of f1 in thread 4.
Any of these four reorderings can cause the violation. For
example if read of f1 bypasses write of f2 then the execution
sequence (5, 12, 6, 17, 7, 22, 4, 7, and 5) violates SC.

Figure 9 lists simplified enqueue and dequeue methods
from benchmark msn in which Orion detected an SCV of
length 5. Bypassing the write of Q→ tl at line 16 by read
of Q→ hd at line 21 in thread 1 can start an SC violation
cycle (16, 21, 30, 21, 22, and 16). Here, the single access
in thread 2 is a write operation and both of its racy accesses
are read. This is a necessary constraint for a violation of odd
length. Figure 10(b) shows a violation of length 6 detected
in crypt util.c (Figure 10(a)). Details of this example is
described in Section IV-F2.

Program order edge
Conflict edge

17:}

14: CAS2(&Q−>tl,tl,next);

15: }

12: break;

13: }else

16: CAS3(&Q−>tl,tl,n)

 struct Q{

 node *hd, *tl;

 }

 1: void enqueue(Q, data){

 2: node *n, *tl, *next;

 3: n = new_node();

 4: n−>data = data;

 5: n−>next = NULL;

 6: while(TRUE){

 7: tl = Q−>tl;

 8: next = tl−>next

 9: if(tl==Q−>tl)

10: if(next==0){

11: if(CAS1(&tl−>next,next,n))

18: void dequeue(Q){

25: if(hd==tl){

32: }

29: }else

 node *next;

 void* data;

 }

19: node *hd, *tl, *next;

21: hd = Q−>hd;

22: tl = Q−>tl;

23: next = Q−>next;

24: if(hd==Q−>hd){

26: if(next==0)

27: return FALSE;

28: CAS4(&Q−>tl,tl,next);

30: if(CAS5(&Q−>hd,hd,next))

31: break:

33: }

20: while(TRUE){

34: free(hd);

35: return TRUE;

 struct node{

21: hd = Q−>hd;

Thread 1 Thread 2

30: if(CAS5(&Q−>hd,hd,next))

22: tl = Q−>tl;

Thread 3

21: hd = Q−>hd;

 (a) Core of msn benchmark

16: CAS3(&Q−>t1,tl,n)

 (b) Accesses that participate in length−5 SCV

Figure 9. Understanding the SC violation in msn.

Conflict edge
Program order edge

11: init();

17: .. = f2 ;
16: init();

18: }

15: if (f2==NULL)
14: void* t2(void* arg){

13: }

 9: void* t1(void* arg){

12: .. = f1 ;

10: if (f1==NULL)
21: init();

23: }

26: init();

28: }

19: void* t3(void* arg){
20: if (f3==NULL)

22: .. = f3 ;

25: if (f4==NULL)

27: .. = f4 ;

24: void* t4(void* arg){
 5: f2 = .. ;
 6: f3 = .. ;
 7: f4 = .. ;

 4: f1 = .. ;

12: .. = f1 ;

 Thread 1

10: if (f1==NULL)
 2: if (f4!=NULL)
 3: return;

 2: if (f4!=NULL)
 3: return;

 5: f2 = .. ;
 6: f3 = .. ;
 7: f4 = .. ;

 4: f1 = .. ;

 Thread 2

15: if (f2==NULL)

17: .. = f2 ;

 Thread 1 Thread 2

17: .. = f2 ;

 Thread 3 Thread 4

 5: f2 = .. ; 6: f3 = .. ; 7: f4 = .. ; 4: f1 = .. ;

 12: .. = f1 ; 7: f4 = .. ; 22: .. = f3 ;

8: }

4: f1 = .. ;
5: f2 = .. ;
6: f3 = .. ;
7: f4 = .. ;

3: return:
2: if (f4!=NULL)
1: void init(){

 Thread 2 Thread 1

 7: f4 = .. ; 17: .. = f2 ;

 5: f2 = .. ; 2: if (f4!=NULL)

(b) Trace of pthread with an SCV of length 4

 (d) Accesses that participate in the SCV of length 8 in pthread

 (a) Simplified code from pthread_cancel_init.c

Program order edge
Conflict edge

 (c) Accesses that participate in length−4 SCV

Figure 8. Understanding SC violations in pthread cancel from glibc.

2) Cycles of Different Memory Models: An SC violation
can occur due to write-write reordering, write-read reorder-
ing or both. If Orion detects a violation with write-write
reordering only then we categorize it as an SC violation
under PSO. Figure 8(c) shows an SC violation that is
possible under PSO memory model due to the write-write
reordering. On the other hand, the length 5 violation detected
in msn (Figure 9(b)) is possible under TSO memory model
due to the write-read reordering. If multiple reordering is
possible in a violation where at least one of them is a
read bypassing a write, then we categorize it as TSO since
one (TSO allowed) reordering is enough to cause the bug.
However, impact can vary according to the reordering. An
example of such violation is shown in Figure 10(b). In
thread 1, the write of initialized can bypass the write of
a ptr leaving a ptr and b ptr uninitialized. Thread 2 sees
initialized set and tries to read b ptr but finds it to be null.
Note that bypassing the write of b ptr by the read of a ptr
in thread 3 can also cause the violation, but impact will be
different.

3) Cycles with Different Outcomes: We classify the ex-
posed SC violations into harmful and benign ones according
to the program outcome. Except for two SC violations from
dekker, all other exposed SC violations are classified as
harmful. For example, SC violations in Figure 8(c) and 10(b)
cause the program to crash. A benign SC violation example
from dekker is shown in Figure 11. Consider a potential
Happened-before cycle (8, 2, 10, 12, and 8) in Figure 11(b)
extracted from the code of dekker. Initially, thread 1 is in
its critical section and thread 2 is waiting to enter. Thread 1
exits its critical section and then, attempts to re-enter. The
write of 1 to turn at line 8 is buffered and the read of turn at
line 12 gets an old value. This violation is benign because
thread 2 waits (at line 14) for thread 1 to modify turn and
thread 2 eventually sees the write of 1 to turn and enters into

its critical section. More generally, we can see that there is
no need to restrict the read of flag1 at line 2 from bypassing
the write of turn at line 8. The same is true for the read
of flag0 at line 11 and the write of turn at line 17. Note
that, these benign SC violations are different from the ones
detected in Relaxer [17].

Program order edge
Conflict edge

Thread 1 Thread 2
initially flag0 = flag1 = 0

 // section

1: flag0 = 1;
2: while (flag1)
3: if (turn){
4: flag0 = 0;
5: while (turn);
6: flag0 = 1;
7: }
 // Critical
 // section

9: flag0 = 0;
8: turn = 1;

10: flag1 = 1;
11: while (flag0)
12: if (!turn){
13: flag1 = 0;
14: while (!turn);
15: flag1 = 1;
16: }
 // Critical

17: turn = 0;
18: flag1 = 0;

 (a) Core of dekker benchmark

12: if(!turn)

Thread 1
initially flag0 = 1, flag1 = 0 and turn = 0

Thread 2

8: turn = 1;

2: while(flag1)
10: flag1 = 1;

 (b) Trace of dekker with a benign SCV

Figure 11. A benign SC violation in dekker.

4) Infeasible Cycles: All the racing edges in the graph are
conservatively made bidirectional. However, in some cases,
both directions are not possible during the actual execution.
Phase 1 of Orion detected 21 cycles, each consisting of one
infeasible conflict order. These false SC violation cycles are
eventually discarded by Phase 2. Figure 10(c) demonstrates
such a scenario. In the profile, the execution sequence is
(3, 2, 5, and 3). Since we make the racing edge between
2 and 5 bidirectional, Phase 1 detects a cycle (3, 5, 2, and

 8: void* t1(void* arg){

12: }
11: Error ;

 9: init();
10: if(a_ptr==NULL || b_ptr==NULL)

Program order edge
Conflict edge

 14: init();
 20: if(a_ptr==NULL || b_ptr==NULL)

 Thread 2 Thread 3

Program order edge
Conflict edge

 4: b_ptr = .. ;

 20: if(a_ptr==NULL ..)15: if(..b_ptr==NULL)

1: void init(){

3: a_ptr = .. ;
4: b_ptr = .. ;

6: }
7: }

5: initialized = 1 ;

2: if (initialized==0){
 13: void* t2(void* arg){ 18: void* t3(void* arg){

 19: init();

 16: Error ;
 17: }

 15: if(a_ptr==NULL || b_ptr==NULL)
 21: Error ;
 22: }

 Thread 1

 3: a_ptr = .. ;

 5: initialized = 1 ;

 Thread 2 Thread 1

 3: a_ptr = .. ;

 5: initialized = 1 ; 3: a_ptr = ..;

 (a) Simplified code from crypt_util.c

 (b) Accesses that participate in an SC violation of length 6 (c) SC violation is not possible

 2: if(initilized==0) 2: if(initilized==0)

Figure 10. Understanding the SC violation in crypt.

3). During Phase 2, thread 1 sets initialized to 1 at line 5,
thread 2 reads 1 from it at line 2, and never executes the
write of a ptr at line 3 leaving the cycle incomplete. Other
unexposed cycles are also infeasible due to the same issue
of bidirectional edge. The infeasible cycles are eliminated
after Phase 2.

V. RELATED WORK

Most of the software based techniques are either exhaus-
tive search based or constraint solver based approaches [8],
[9], [30]. There are some dynamic approaches based on data
race detection [17], [31]. Atig et al. [32] proved several
decidability results for verification of finite state concurrent
programs under different relaxed memory models. Exhaus-
tive and constraint solver based approaches work well for
small programs and kernels. However, they cannot handle
large applications with many shared memory accesses. Orion
can be applied to large applications by restricting the number
of dynamic accesses to profile. Orion applies active test-
ing [24], [33] technique like the earlier work [17], [34]
to predict and expose SC violations in parallel programs.
For example, Racefuzzer [24] combines race detection with
a randomized thread scheduler in order to find real race
conditions in a concurrent program with high probability
and to discover if the detected real races could cause an
exception or an error in the program. Bensalem et al. [35]
used a directed scheduler to confirm that a potential deadlock
cycle could lead to a real deadlock. Other proposals [36],
[37] also use active testing to confirm potential bugs in
parallel programs.

Run time monitoring algorithms such as Sober [15]
and [16] scale moderately in practice. They rely on a
model checker in order to find all violations of sequential
consistency. They check SC executions to find SC violations
in close enough relaxed executions. However, unlike Orion,
they do not enforce the exact order to expose a violation;
rather, those approaches rely on the worst case reordering
to find violations. Several proposals [15], [32] including

Relaxer have used operational definitions for TSO, PSO and
other relaxed memory models. Orion also uses a conserva-
tive operational model along with some exact scheduling
order to expose a violation.

Recent concurrency bug fixing scheme like CFix [38]
automatically inserts synchronization operations to enforce
the desired orderings and mutual-exclusions. Joshi et al. [39]
proposed a property driven technique that introduces reorder-
bounded exploration to identify the smallest number of
program locations for fence placement. Any specialized
algorithms to automatically insert fences based on static
analysis [22], [40], [41] can guarantee memory-safety in
principle. However, doubts remain about their precision in
the presence of aliasing and loops. Besides, performance
also degrades due to conservative fence insertion.

Most hardware based approaches [4], [42]–[47] detect
data races as proxies for SC violations. Recent propos-
als [29], [48], [49] focus on detecting actual violations.
These schemes are not suitable for real machines.

VI. CONCLUSION

An SC violation is almost always a bug. This paper
proposed Orion, the first active testing technique that can
detect, expose, and classify any arbitrary SC violations in
any program. Orion works in two phases. In Phase 1, it finds
potential cycles by focusing on racing accesses. In Phase
2, it exposes each cycle by enforcing the exact scheduling
order. We presented a detailed design of Orion. We detected
and exposed 60 SC violations of which 15 involve more
than two processors and variables. Compared to a state-of-
the-art active testing technique, Orion has a much better SC
violations detection ability.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable
feedback. We also thank the members of PALab for the
discussions and comments. This work is supported by the
startup package provided by University of Texas at San
Antonio and NSF under Grant No. 1319983.

REFERENCES

[1] L. Lamport, “How to make a multiprocessor computer that
correctly executes multiprocess programs,” IEEE Transac-
tions on Computer, vol. 28, no. 9, pp. 690–691, Sep. 1979.

[2] D. Weaver and T. Germond, The SPARC Architecture Manual
Version 9. Prentice Hall, Englewood Cliffs, N.J., 1994.

[3] S. V. Adve and K. Gharachorloo, “Shared Memory Con-
sistency Models: A Tutorial,” Western Reseach Laboratory-
Compaq. Research Report 95/7, September 1995.

[4] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy, “DRFx: a simple and efficient memory
model for concurrent programming languages,” in Proceed-
ings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation, 2010.

[5] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O.
Myreen, “X86-tso: A rigorous and usable programmer’s
model for x86 multiprocessors,” Commun. ACM, vol. 53,
no. 7, pp. 89–97, Jul. 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1785414.1785443

[6] M. Islam and A. Muzahid, “Characterizing real world bugs
causing sequential consistency violations,” in Workshop on
Hot Topics in Parallelism, June 2013.

[7] “Intel Cilk Plus,” http://cilkplus.org/.

[8] S. Burckhardt, R. Alur, and M. M. K. Martin, “Checkfence:
checking consistency of concurrent data types on relaxed
memory models,” in Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design
and implementation, ser. PLDI ’07. New York, NY,
USA: ACM, 2007, pp. 12–21. [Online]. Available: http:
//doi.acm.org/10.1145/1250734.1250737

[9] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind,
“Nemos: a framework for axiomatic and executable spec-
ifications of memory consistency models,” in Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th
International, April 2004.

[10] G. Gopalakrishnan, Y. Yang, and H. Sivaraj, QB or Not
QB: An Efficient Execution Verification Tool for Memory
Orderings. Springer Berlin Heidelberg, 2004, pp. 401–413.

[11] T. Q. Huynh and A. Roychoudhury, “Memory model sensitive
bytecode verification,” Formal Methods in System Design,
vol. 31, no. 3, pp. 281–305, 2007.

[12] S. Park and D. L. Dill, “An executable specification,
analyzer and verifier for rmo (relaxed memory order),” in
Proceedings of the Seventh Annual ACM Symposium on
Parallel Algorithms and Architectures, ser. SPAA ’95. New
York, NY, USA: ACM, 1995, pp. 34–41. [Online]. Available:
http://doi.acm.org/10.1145/215399.215413

[13] D. L. Dill, S. Park, and A. G. Nowatzyk, “Formal
specification of abstract memory models,” in Proceedings of
the 1993 Symposium on Research on Integrated Systems.
Cambridge, MA, USA: MIT Press, 1993, pp. 38–52. [Online].
Available: http://dl.acm.org/citation.cfm?id=163429.163442

[14] J. Alglave, D. Kroening, V. Nimal, and D. Poetzl, “Don’t
sit on the fence,” in Proceedings of the 16th International
Conference on Computer Aided Verification - Volume 8559,
2014.

[15] S. Burckhardt and M. Musuvathi, “Effective program verifi-
cation for relaxed memory models,” in CAV, Jul 2008.

[16] J. Burnim, K. Sen, and C. Stergiou, “Sound and complete
monitoring of sequential consistency for relaxed memory
models,” in Proceedings of the 17th international conference
on Tools and algorithms for the construction and analysis of
systems: part of the joint European conferences on theory and
practice of software, 2011, pp. 11–25.

[17] ——, “Testing concurrent programs on relaxed memory mod-
els,” in Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ser. ISSTA ’11, 2011.

[18] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21,
no. 7, pp. 558–565, July 1978.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
“Pin: Building customized program analysis tools with
dynamic instrumentation,” in Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’05. New York,
NY, USA: ACM, 2005, pp. 190–200. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065034

[20] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological
Considerations,” in Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, June 1995, pp.
24–36.

[21] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec
benchmark suite: Characterization and architectural implica-
tions,” in Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques, 2008.

[22] D. Shasha and M. Snir, “Efficient and correct execution of
parallel programs that share memory,” ACM Transactions on
Programming Languages and Systems, vol. 10, no. 2, pp.
282–312, Apr. 1988. [Online]. Available: http://doi.acm.org/
10.1145/42190.42277

[23] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson, “Eraser: a dynamic data race detector for multi-
threaded programs,” ACM Trans. Comput. Syst., 1997.

[24] K. Sen, “Race directed random testing of concurrent pro-
grams,” in Proceedings of the 2008 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
2008.

[25] D. Engler and K. Ashcraft, “RacerX: effective, static detection
of race conditions and deadlocks,” in Proceedings of the
nineteenth ACM symposium on Operating systems principles,
2003.

[26] Intel, “Intel parallel studio,” https://software.intel.com/en-us/
intel-parallel-studio-xe, 2015.

[27] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood,
and B. Calder, “Using simpoint for accurate and efficient
simulation,” in Proceedings of the 2003 ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems, 2003.

[28] “Apache Web Server,” http://www.apache.org/.

[29] A. Muzahid, S. Qi, and J. Torrellas, “Vulcan: Hardware
support for detecting sequential consistency violations dy-
namically,” in Proceedings of the 45th annual ACM/IEEE
international symposium on Microarchitecture, ser. MICRO
’12, December 2012.

[30] G. Gopalakrishnan, Y. Yang, and H. Sivaraj, “Qb or not qb:
An efficient execution verification tool for memory order-
ings,” in In Computer-Aided Verification (CAV), 2004.

[31] Y. Duan, X. Feng, L. Wang, C. Zhang, and P.-C. Yew,
“Detecting and eliminating potential violations of sequential
consistency for concurrent c/c++ programs,” in Proceedings
of the 7th annual IEEE/ACM International Symposium on
Code Generation and Optimization, 2009.

[32] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi,
“On the verification problem for weak memory models,”
SIGPLAN Not., vol. 45, no. 1, Jan. 2010.

[33] Z. Lai, S. Cheung, and W. Chan, “Detecting atomic-set
serializability violations in multithreaded programs through
active randomized testing,” in Software Engineering, 2010
ACM/IEEE 32nd International Conference on, May 2010.

[34] C.-S. Park, K. Sen, P. Hargrove, and C. Iancu, “Efficient
data race detection for distributed memory parallel programs,”
in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis,
2011.

[35] S. Bensalem, J.-C. Fernandez, K. Havelund, and L. Mounier,
“Confirmation of deadlock potentials detected by runtime
analysis,” in Proceedings of the 2006 Workshop on Parallel
and Distributed Systems: Testing and Debugging, 2006.

[36] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur,
“Multithreaded java program test generation,” in Proceedings
of the 2001 Joint ACM-ISCOPE Conference on Java Grande,
2001.

[37] S. Park, S. Lu, and Y. Zhou, “Ctrigger: Exposing atomicity
violation bugs from their hiding places,” SIGPLAN Not., Mar.
2009.

[38] G. Jin, W. Zhang, D. Deng, B. Liblit, , and S. Lu, “Automated
concurrency-bug fixing,” in 10th USENIX Symposium on
Operating Systems Design and Implementation, Oct. 2012.

[39] S. Joshi and D. Kroening, “Property-driven fence insertion
using reorder bounded model checking,” in Formal Methods
(FM), ser. LNCS, vol. 9109. Springer, 2015, pp. 291–307.

[40] J. Alglave, D. Kroening, V. Nimal, and D. Poetzl, “Don’t sit
on the fence: A static analysis approach to automatic fence
insertion,” in Computer Aided Verification (CAV), 2014.

[41] X. Fang, J. Lee, and S. P. Midkiff, “Automatic fence insertion
for shared memory multiprocessing,” in Proceedings of the
17th Annual International Conference on Supercomputing,
2003.

[42] C. Blundell, M. M. Martin, and T. F. Wenisch, “Invisifence:
performance-transparent memory ordering in conventional
multiprocessors,” in ISCA, 2009.

[43] C. Gniady, B. Falsafi, and T. N. Vijaykumar, “Is sc + ilp = rc?”
in Proceedings of the 26th annual international symposium
on Computer architecture, 1999.

[44] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Mechanisms for store-wait-free multiprocessors,” in Pro-
ceedings of the 34th annual international symposium on
Computer architecture, 2007.

[45] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “Bulksc:
bulk enforcement of sequential consistency,” in Proceedings
of the 34th annual international symposium on Computer
architecture, 2007.

[46] K. Gharachorloo and P. B. Gibbons, “Detecting violations of
sequential consistency,” in Proceedings of the third annual
ACM symposium on Parallel algorithms and architectures,
1991.

[47] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm,
“Conflict exceptions: simplifying concurrent language se-
mantics with precise hardware exceptions for data-races,” in
Proceedings of the 37th annual international symposium on
Computer architecture, 2010.

[48] X. Qian, B. Sahelices, J. Torrellas, and D. Qian, “Volition:
Precise and Scalable Sequential Consistency Violation De-
tection,” in Proceedings of the 18th international conference
on Architectural support for programming languages and
operating systems, ser. ASPLOS ’13, March 2013.

[49] C. Lin, V. Nagarajan, R. Gupta, and B. Rajaram, “Efficient
sequential consistency via conflict ordering,” in Proceedings
of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems,
2012.

