
1

Bugaroo: Exposing Memory Model Bugs in
Many-core Systems

Mohammad Majharul Islam
Intel Corporation

mohammad.majharul.islam@intel.com
Abdullah Muzahid

University of Texas at San Antonio
abdullah.muzahid@utsa.com

Abstract—Modern many-core architectures such as GPUs ag-
gressively reorder and buffer memory accesses. Updates to shared
and global data are not guaranteed to be visible to concurrent
threads immediately. Such updates can be made visible to other
threads by using some fence instructions. Therefore, missing the
required fences can introduce subtle bugs, called Memory Model
Bugs. We propose Bugaroo to expose memory model bugs in any
arbitrary GPU program. It works by statically instrumenting the
code to buffer some shared and global data for as long as possible
without violating the semantics of any fence or synchronization
instruction. Any program failure that results from such buffering
indicates the presence of subtle memory model bugs in the
program. Bugaroo later provides detailed debugging information
regarding the failure. Bugaroo is the first proposal to expose
memory model bugs of GPU programs by simulating memory
buffers. We present a detailed design and implementation of
Bugaroo. We evaluated it using seven programs. Our approach
uncovers new findings about missing and redundant fences in two
of the programs. This makes Bugaroo an effective and useful tool
for GPU programmers.

I. INTRODUCTION

A. Memory Model Bugs

With the widespread adoption of parallel architectures such
as many-core and multi-core machines, programmability be-
comes a pressing concern for today’s computing world. A
memory model directly affects programmability, performance,
and portability of a parallel architecture. Among various mem-
ory models, Sequential Consistency (SC) [18] is the most intu-
itive one. It guarantees a total global order among the memory
operations where each thread maintains its program order.
However, most commercial architectures do not implement SC
because of its prohibitively large performance overhead. For
example, many-core architectures such as Graphics Processing
Units (GPUs) from NVIDIA implement some form of Relaxed
Memory Ordering (RMO) memory model [4]. RMO [24] al-
lows any later memory access of a thread to bypass any earlier
memory access. The aggressive buffering and reordering of
memory accesses in GPUs can lead to incorrect behavior of a
program unless programmers use sufficient fence instructions
in the code. We refer to such bugs caused by missing fences
as Memory Model Bugs.

Figure 1 shows a code snippet from the book “CUDA
by Example” [21]. It shows how we can implement lock
and unlock operations using atomicCAS and atomicExch

respectively. Unfortunately, the implementation suffers from a
memory model bug that occurs due to a missing fence (i.e.,
__threadfence) in the unlock function. Imagine that there
is no __threadfence before the atomicExch (which sets
the mutex to 0) and we are accessing some global data in a
critical section protected by lock and unlock operations. In that
case, accesses to the global data could potentially get reordered
beyond atomicExch and become unprotected by the critical
section. Thus, the critical section fails to provide mutual
exclusion to those memory accesses. Sorensen et al. [22]
detected this bug and suggested to use __threadfence
before atomicExch. However, Sorensen et al. also suggested
to use another __threadfence (after atomicCAS in the
lock function), which we find to be unnecessary during our
experimental evaluation (Section IV-D). This new finding is
acknowledged in the NVIDIA Developer Forum [20].

__device__ void lock(…) {
 while(atomicCAS(mutex, 0, 1) != 0);
 // __threadfence() not needed
}

__device__ void unlock(…) {
 // Missing __threadfence()
 atomicExch(mutex, 0);
}

Fig. 1: A memory model bug in unlock operation.

B. Why Important?

Absence of any memory model bug is a fundamental cor-
rectness criteria. Therefore, detecting memory model bugs is
crucial for any parallel program. This is particularly important
in the context of GPUs because most GPUs lack adequate for-
malism and documentation in memory model specification. On
top of that, there are inconsistencies and even incorrectnesses
in manuals such as NVIDIA PTX manual (e.g., regarding
.volatile) and CUDA manual (e.g., regarding lock &
unlock operation in Figure 1) [4]. Despite the importance of
memory model bugs, there is hardly any research to detect
these bugs for GPUs. The most relevant one was proposed
by Sorensen et al. [22] which stresses the memory system

2

to expose various memory model bugs. However, our experi-
ments have shown (Section IV-D) that there is still room for
significant improvement and uncover new findings.

C. Our Approach

We propose a novel approach, called Bugaroo, to expose
memory model bugs in a GPU program. At the high level,
Bugaroo works by emulating memory buffering and reordering
at various degrees. Bugaroo instruments GPU code to buffer
various writes to global or shared data for as long as pos-
sible (without violating any constraint of fence instructions).
In other words, Bugaroo makes the writes visible to other
threads whenever the first thread (i.e., the thread whose writes
are buffered) executes any fence instruction. If the program
fails (e.g., deadlocks, crashes, or produces incorrect results),
Bugaroo detects a memory model bug. In that case, Bugaroo
provides detailed debugging information related to the location
of the bug. On the other hand, if the program continues to
execute without any failure, we conclude that the buffering
has not exposed any memory model bug.

D. Contributions

We make the following contributions:
1) Bugaroo is the first proposal to expose memory model

bugs by emulating memory buffering in GPUs. It does
not require any formal specification of memory model
or modification to compiler.

2) We implemented Bugaroo in NVIDIA Tesla K80 GPU
using SASSI [23]. SASSI is a low level assembly
language instrumentation tool for GPU.

3) We evaluated Bugaroo using seven GPU applications
from various reference manuals as well as Rodinia
benchmark suite [11]. Bugaroo detected existing as well
as injected memory model bugs in those applications.
Compared to Sorensen et al. [22], we uncovered two
new findings in two applications.

E. Organization

The rest of the paper is organized as follows: Section II
provides some background related to GPUs and their program-
ming model; Section III explains the main idea of Bugaroo;
Section IV provides the experimental results; Section V points
out some limitations; Section VI discusses related work, and
finally, Section VII concludes.

II. BACKGROUND

Here, we provide necessary background on memory models,
CUDA programming model, and a brief overview of the
instrumentation framework, SASSI [23].

A. Memory Models

A memory model of a multiprocessor system is an archi-
tectural specification of how memory operations of a program
will execute. In other words, the memory model specifies the
values that memory read operations of a program executed

on the multiprocessor system will return [3]. The strongest
memory model, SC, only allows executions that correspond to
an interleaving of different thread’s instructions [18]. However,
due to SC’s extremely high performance overhead, GPUs from
NVIDIA implement some form of RMO memory model [4]
and allows aggressive buffering and reordering of memory
accesses. The buffering and reordering can lead to incorrect
behavior of a program. Such bugs are called Memory Model
Bugs. The bugs can be prevented by placing fence instructions
between some memory access instructions [4].

B. The CUDA Programming Model

In CUDA programming [1], a program consists of host code
that executes on the CPU and device code that executes on the
GPU. The device code is called a kernel, and is executed by
many threads. Threads are grouped into 32-element vectors,
called warps, to improve efficiency. The threads in each warp
execute in SIMT (single instruction, multiple thread) fashion,
all fetching from a single Program Counter (PC) in the absence
of control flow divergence. Warps are grouped into disjoint
sets called blocks; the number of threads (and by extension,
warps) in a block is a parameter for the kernel. Collectively,
the blocks that execute a kernel form a grid; the grid size is
also a parameter for the kernel. Threads in the same block can
communicate using shared memory. A single global memory
region is accessible to all threads in the grid.

1) Fence Instructions in CUDA: The CUDA programming
model assumes a device with a weakly-ordered memory
model. In other words, the order in which a CUDA thread
writes data to shared memory, global memory, page-locked
host memory, or the memory of a peer device is not necessarily
the order in which the data is observed being written by an-
other CUDA or host thread. Ordering can be enforced by call-
ing memory fence operations such as: threadfence block(),

threadfence(), and threadfence system() [1].
Threads within a block can cooperate by sharing data

through some shared memory and by synchronizing their
execution to coordinate memory accesses. More precisely, one
can specify synchronization points in the kernel by calling
the syncthreads() function; syncthreads() waits until all
threads in the thread block have reached this point and all
global and shared memory accesses made by these threads
prior to syncthreads() are visible to other threads in the
block.

Memory fence operations only affect the ordering of mem-
ory operations by a thread. They do not ensure that these
memory operations are visible to other threads. This is where

syncthreads() comes into play. It ensures that memory
operations are visible to other threads within a block [1].

C. SASSI

SASSI is a compiler-based instrumentation framework that
runs as the final pass in NVIDIA’s production backend com-
piler and assembler, ptxas [23]. Because SASSI is invoked
after the original, uninstrumented SASS (NVIDIA’s ISA) has
already been finalized, the injected instrumentation does not

3

disrupt the perceived final instruction schedule or register
usage.

SASSI must be instructed where to insert instrumentation
as well as what code to insert. For each of the instrumentation
sites, SASSI will insert a CUDA ABI compliant function call
to a user-defined instrumentation handler function, passing
site-specific information as arguments to the handler. There-
fore, users must instruct SASSI what information to pass to
the instrumentation handler(s). In this paper, we use SASSI to
inject instrumentation code before all SASS instructions and
after the SASS instructions that modify memory locations. We
extract and pass only memory information (e.g., addresses read
and written) to the instrumentation handler of each site.

Unlike CPU instrumentation, GPU instrumentation must
coordinate with the host CPU to both initialize instrumentation
counters and to gather their values. We use the CUPTI
library to initialize counters before kernels launch and to copy
information off the device after kernels exit.

III. DETECTING MEMORY MODEL BUGS

Bugaroo relies on SASSI [23] to instrument the original
code statically. It instruments all memory and fence instruc-
tions. At the high level, when a thread tries to write to a
shared or global data, it simulates a write buffer and stores the
new value into that buffer. Bugaroo uses separate buffers for
global and shared data. Bugaroo keeps buffering writes until
it encounters a fence instruction. Bugaroo, then, flushes all
values buffered so far (according to the semantic of the fence
instruction). Eventually, if the program crashes, deadlocks, or
produces incorrect results, Bugaroo reports a memory model
bug. To pinpoint the bug, Bugaroo first determines whether
the bug occurs due to the buffering of global or shared data.
Then, Bugaroo does a binary search to determine the exact
location of the bug.

A. Code Instrumentation

We need to insert instrumentation code both before and
after some instructions. Fortunately, SASSI provides both
options. More specifically, sassi_before_handler and
sassi_after_handler functions can be used for this pur-
pose respectively. Bugaroo uses sassi_before_handler
to instrument any type of instructions (i.e., by specifying
all flag during compilation) before it is executed and
extract additional information related to memory accesses
(i.e., by specifying mem-info flag). In addition, we use
sassi_after_handler to instrument any memory re-
lated instruction (i.e., by specifying memory flag) after the
instruction is executed. Inside the handlers, Bugaroo checks
an instruction’s opcode to determine its type. For NVIDIA
GPUs (our experimental system), the type could be an ac-
cess to shared or global memory, __threadfence, or
__syncthreads.

B. Simulating Write Buffers

NVIDIA GPUs implement some form of RMO memory
model [4]. RMO [24] is a weaker memory model that allows

a later store to bypass an earlier store or load to a different
location. Similarly, it also allows a later load to bypass an ear-
lier load or store to a different location. If we consider a single
thread with some number of memory access instructions, there
can be exponential number of possible reorderings in RMO.
Instead of enforcing each of them one by one, we randomly
select some writes with probability pw and buffer their updates.
By changing the value of pw, we can simulate different degrees
of buffering. Bugaroo buffers the selected writes for as long
as possible. The intuition is that by buffering those writes the
longest, Bugaroo is likely to expose their worst case reordering
scenarios.

In order to facilitate the buffering, we implement a per-
thread write buffer. Bugaroo has separate buffers for shared
and global data. Figure 2 provides the high level idea.
When a thread, say T1 issues a store operation to a shared
or global variable, Bugaroo checks if it can select the
store randomly with probability pw. If Bugaroo selects the
store, it buffers the new value in the corresponding write
buffer. In other words, the variable still holds the old
value. To implement this, Bugaroo records the old value
of the variable immediately before it is written (i.e., inside
sassi_before_handler). Immediately after the variable
is written (i.e., inside sassi_after_handler), Bugaroo
places the variable’s new value into the thread’s write buffer
and restores the variable’s old value back. The handler ex-
ecutes __threadfence to ensure that the old value is
propagated to every thread in the device. During a brief period
when the variable has its new value (i.e., right before the old
value is restored back), it is possible that some other thread
could observe the variable’s new value. In order to prevent that,
we can use a single global lock such that Bugaroo acquires
the lock inside sassi_before_handler, and releases the
lock inside sassi_after_handler right after restoring
the old value back. This essentially serializes all handlers.
However, we have not noticed any difference in results when
Bugaroo uses the global lock versus when Bugaroo does not
use the lock. Therefore, we have not used any global lock
during our implementation of Bugaroo.

Bugaroo flushes the buffered values according to fence
instructions i.e., __syncthreads and __threadfence.
When the thread T1 is about to execute any of those in-
structions (i.e., inside sassi_before_handler), Bugaroo
writes the buffered values to the respective variables. Then,
the thread executes the subsequent __syncthreads or
__threadfence instruction and the updated values get
propagated to other threads accordingly. In other words,
__threadfence flushes the new values to shared and global
memory to make sure ordering of writes are maintained
over all the threads of the device whereas __syncthreads
flushes the new values to shared and global memory so that
they are visible to other threads of the same block (not
throughout the device like __threadfence).

C. Complete Algorithm
Algorithm 1 shows the SASSI handler functions of Bugaroo.

At the high level, sassi_before_handler keeps record-
ing old value of some randomly selected stores to global or

4

Algorithm 1 Main handler functions
1: data structures:
2: store count[GLOBAL] is a per-thread counter for global

stores
3: store buffer[GLOBAL] is a per-thread buffer for global

stores
4: store count[SHARED] is a per-thread counter for shared

stores
5: store buffer[SHARED] is a per-thread buffer for shared

stores
6:
7: procedure SASSI BEFORE HANDLER(...)
8: asssumptions:
9: i is the instrumented instruction

10: tid is the thread id
11: random is a flag set to TRUE with pw probability
12: begin:
13: if store count[GLOABAL][tid] ≥MAX STORE then
14: flush all stores(GLOBAL, tid)
15: execute __threadfence
16: if store count[SHARED][tid] ≥MAX STORE then
17: flush all stores(SHARED, tid)
18: execute __threadfence
19: if i is a load from global or shared data then
20: TYPE = type of data (i.e., GLOBAL or SHARED)
21: for each store st in store buffer[TY PE][tid] do
22: if memory address of i = st.address then
23: load the value form store buffer[TY PE][tid]
24: terminate the loop
25: else if i is a store to global or shared data then
26: TYPE = type of data
27: for each store st in store buffer[TY PE][tid] do
28: if memory address of i = st.address then
29: write st.value form store buffer[TY PE][tid]

into st.address
30: execute __threadfence
31: store count[TY PE][tid] ←

store count[TY PE][tid]− 1
32: terminate the loop
33: set random to TRUE with probability pw
34: if random = TRUE then
35: record address and old value of i
36: else if i is __threadfence then
37: flush all stores(GLOBAL, tid)
38: flush all stores(SHARED, tid)
39: else if i is __syncthreads then
40: flush all stores(SHARED, tid)
41: else if i is EXIT from kernel then
42: flush all stores(GLOBAL, tid)
43: flush all stores(SHARED, tid)

44:
45: procedure SASSI AFTER HANDLER(...)
46: asssumptions:
47: i is the instrumented instruction
48: tid is the thread id
49: begin:
50: if i is a store to global or shared data and random = TRUE

then
51: TYPE = type of data
52: restore old val(TY PE, i, tid)

T2 T3 nT1T

S
h

ar
ed

 W
ri

te
 B

u
ff

er

S
h

ar
ed

 W
ri

te
 B

u
ff

er

S
h

ar
ed

 W
ri

te
 B

u
ff

er

S
h

ar
ed

 W
ri

te
 B

u
ff

er

G
lo

b
al

 S
h

ar
ed

 B
u

ff
er

G
lo

b
al

 S
h

ar
ed

 B
u

ff
er

G
lo

b
al

 S
h

ar
ed

 B
u

ff
er

G
lo

b
al

 S
h

ar
ed

 B
u

ff
er

Shared Memory Global Memory

...

Fig. 2: Illustration of per-thread write buffer. T1, T2, ..., Tn

are threads. Shared memory is shared within threads from the
same block. Global memory is shared across all threads.

shared data (Line 35) and sassi_after_handler keeps
retrieving the new value of each such store and restores the
old value back (Line 50-52). If the thread has a read after
write dependence to one of the buffered stores (Line 19-
24), it reads the latest value from the store buffer. In other
words, a thread will never read old or pre-write value after
it writes. Additionally, if the thread has a write after write
dependence to one of the buffered stores (Line 25-32), it
flushes the older store. All other buffered stores still remain in
the corresponding store buffer. If there is a __threadfence
(Line 36) or __syncthreads (Line 39) or kernel exit (Line
41) or a maximum number of stores already buffered (Line
13, 16), the thread flushes stores from the proper buffer. If a
thread needs to flush stores due to store buffer size limit or
write after write dependence, it executes __threadfence
(Line 12 and 22 respectively) to ensure that the old values are
propagated to other threads.

Algorithm 2 shows the helper functions used in Algo-
rithm 1. flush all stores flushes all the buffered stores of
a particular thread and a particular type and updates the
per-thread store count. Flushing is done by writing the
buffered value of a store to its address. restore old value
records the current value of a store and puts back the old
value into the same address (Line 7-8). The thread executes
__threadfence to ensure that the old value is propagated
to all other threads (Line 9). The current value is stored in the
proper store buffer.

D. Root Cause Analysis

If Bugaroo causes a program to crash, deadlock or produce
incorrect results, Bugaroo reports a memory model bug. When
we observe crash, deadlock or incorrect results, we perform a
root cause analysis to determine the location of the bug. We
do the analysis in the following steps:

5

Algorithm 2 Helper functions
1: procedure RESTORE OLD VALUE(TY PE, i, tid)
2: input parameters:
3: store instruction i
4: thread id tid
5: type TY PE of i
6: begin:
7: read current value of i.address and insert it into

store buffer[TY PE][tid]
8: write old recorded value to i.address
9: execute __threadfence

10: store count[TY PE][tid]← store count[TY PE][tid]+1

11:
12: procedure FLUSH ALL STORES(TY PE, tid)
13: input parameters:
14: thread id tid
15: type TY PE of stores
16: begin:
17: for each store st in store buffer[TY PE][tid] do
18: write st.value into st.address
19: store count[TY PE][tid]← 0

1) Which data? We execute the program with Bugaroo one
more time instrumenting only shared data. We ensure
that the same seed is used for randomization so that
random goes through the same sequence of values. If
the program still fails, the bug is related to shared data.
Otherwise, the bug is related to global data.

2) Which kernel? If the program has multiple kernels, we
instrument one kernel at a time. We can do this easily
using SASSI by extracting the name of the kernels.
If the program fails only when a specific kernel is
instrumented, we can conclude that the bug lies within
that kernel.

3) Which location? Once we determine the specific kernel
and data type, we need to find out the exact location
where __threadfence should be inserted. In order to
do so, we put one __threadfence after each access
of the specific type in the specific kernel. If we execute
the program with Bugaroo, now it will not fail, i.e.,
the bug is resolved due to __threadfences. To find
out which __threadfence is necessary to resolve
the bug, we apply binary search technique. We omit
half of the __threadfences. If the program does
not fail, we can conclude that one of the remaining
__threadfences is necessary. On the other hand,
if the program fails, we can assert that the omitted
half contains the necessary __threadfence. We keep
omitting half of the __threadfences this way, un-
til we finally find out the exact __threadfence
that resolves the memory model bug. We report this
__threadfence as part of the debugging informa-
tion. If the kernel is missing multiple fences, we can find
the location of only one fence in this way. We can repeat
the whole process except this time we keep the fence
that we just identify as required during the binary search
process. If program fails during the search process, we
will be able indentify the second fence. This way, we
can find all missing fences.

IV. EXPERIMENTAL RESULTS

The goal of this section is to (i) characterize the applications
used, (ii) evaluate Bugaroo’s ability to detect existing as well
as injected memory model bugs in those applications, and (iii)
show instrumentation overhead.

A. Experimental Setup

We used SASSI [23], a low level assembly language
instrumentation tool for GPU to implement Bugaroo. All
experiments were performed on an NVIDIA Tesla K80 GPU.
It features 4992 NVIDIA CUDA cores with a dual-GPU
design, 24 GB of GDDR5 memory, and display driver version
340.21. This GPU was connected to a machine with four Intel
2.30GHz Xeon E5-2686 v4 CPUs and 61 GB main memory.
All experiments used CUDA 7 toolkit. Finally, we used 256
as the size of each write buffer.

B. Characterization of Applications

To evaluate the effectiveness of Bugaroo, we need appli-
cations that use fine-grained concurrency. We used two sets
of GPU applications to evaluate Bugaroo. The first set has
four GPU applications that are known to use fine-grained
concurrency. These applications are taken from Sorensen et
al. [22]. The second set has three GPU applications from Ro-
dinia benchmark suite [11]. In order to determine whether an
application fails or not, we add a function with each applica-
tion. The function compares the application’s results produced
by GPU with those produced by CPU. This comparison is done
at the end before the application exits. We adopt this approach
because applications may exhibit nondeterminism. Therefore,
it may not be sufficient to check repeated computations with
identical results.

The evaluated applications are summarized in Table I. The
table shows details about the application source code, the
nature of communication, and the condition to check for
failure. All applications in the first set are shown in the first
four rows of the table. Except for ct-octree, the other three
applications in the first set have the failure checking function.
For ct-octree, we collected meta-data during the executions
and used the data to check for failures. For applications in the
second set (shown in the bottom three rows in the table), we
obtained reference solutions from non-instrumented version
of the applications. We checked for failures by comparing the
computed values with the reference values.

We find that all application executions terminate within 4
seconds (natively), dominated by initialization of the CUDA
framework. Kernel execution itself accounts for a small frac-
tion of total time. To catch errors such as deadlocks and hangs,
we set a timeout limit of 60 seconds per application execution.
We ran each application 1000 times to collect the relevant data.

C. Instrumentation Details

1) Application Metadata: Table II summarizes applica-
tions’ metadata collected by Bugaroo. For each application, we
show the number of dynamic instructions, number of shared
stores, and number of global stores executed (in instrumented

6

Program Description Communication Failure Checking Condition
cbe dot Dot product routine given in the book Global final reduction across blocks GPU result matches a CPU reference

CUDA by Example [21] protected by a custom mutex result
ct octree Octree partitioning routine by Ceder- Concurrent access to non-blocking All original particles are in final

man and Tsigas queues octree
sdk red Reduction routine from the CUDA 7 Last block (via atomic counter) com- GPU result matches a CPU reference

SDK bines block-local results result
cub scan Prefix scan from the CUB GPU library Blocks communicate partial results GPU result matches a CPU reference

using MP-style handshake result
kmeans Clustering algorithm used extensively Only block level synchronization Relative distance between clusters matches

in data-mining with syncthreads results from reference implementation
streamcluster Modified upon the streamcluster ben- No synchronization Relative distance between clusters matches

chmark in the Parsec results from reference implementation
hotspot Estimates processor temperature Only block level synchronization Instrumented result match results from

with syncthreads reference implementation

TABLE I: Applications analyzed.

kernels) in Column 2, 4, and 5 respectively. Column 3 shows
the total number of dynamic fence instructions executed in
instrumented kernels along with the static count (i.e., unique
fences) inside parenthesis. We have experimented with two
versions of the cbe dot. Original (i.e., cbe dot 2 fence) ver-
sion has fence inside lock and before unlock. Other version
(cbe dot 1 fence) has only one fence before the unlock.
Except for kmeans and streamcluster, all the applications
have both shared and global stores. Kmeans and streamcluster
have only global stores. The values presented in Table II for
streamcluster are for simsmall input.

of dyn. # of dyn. # of dyn. # of dyn.
Codes Inst threadfence shared st global st
cbe dot 2 fence 1076216 64(2) 16352 32
cbe dot 1 fence 1075828 32(1) 16352 32
ct octree 31362438 41(1) 1372676 15623
sdk red 999846 8192(1) 49600 130
cub scan 2769764 10529(3) 83185 62435
kmeans 306772 0(0) 0 3600
streamcluster 2294132736 0(0) 0 5519623
hotspot 1841064 0(0) 29160 4096

TABLE II: Application Metadata

2) Characterizing Write Buffers: When a thread is about
to flush stores of global or shared write buffer, we collect
the number of stores in the corresponding buffer. For each
application we present the collected data as a histogram of
flush lengths over all threads.

Figure 3 shows the characterization of global stores for all
seven applications, whereas, figure 4 shows the characteriza-
tion of shared stores for five applications as streamcluster and
kmeans do not have any store to shared memory. Since both
cbe dot 2 fence and cbe dot 1 fence have same number of
stores buffered and produce same histograms, we show a single
histogram in both Figure 3(a) and Figure 4(a).

As it is demonstrated in the histograms of global and shared
stores, most of the stores have a flush length of only 1. Overall,
69.71% of global stores (Figure 3) and 72.24% of shared stores
(Figure 4) have a flush length of 1. Figure 3(e) demonstrates
the flush length histogram for global stores in kmeans which
has the highest flush length of 34. In a nutshell, a small

write buffer (say, with 32 entries) will be enough for all the
applications except for kmeans. Some of the stores in kmeans
will find the store buffer to be full which will, then, force full
flush of the buffered stores.

3) Runtime Overhead: Table III shows the average exe-
cution time (seconds) of native and instrumented versions of
applications in column 2 and column 3 respectively. Column 4
shows the overhead (%) of Bugaroo. The median runtime over-
head is 8.91%. The highest is 117.91% for streamcluster as
Bugaroo has to instrumnet all 5519623 global stores (table II).
On average, Bugaroo requires 15.39% less time to instrument
cbe dot 1 fence (2.546s) than cbe dot 2 fence (3.009). We
see the same trend in native runs as cbe dot 1 fence (2.447s)
is 11.34% faster than cbe dot 2 fence (2.760s). This is be-
cause cbe dot 1 fence executes threadfence() 32 times less
than cbe dot 2 fence (since it does not have any fence inside
lock). Possible performance gain by skipping threadfence()
inside lock will be much more for large codebases since the
number of dynamic threadfence() count will be much larger.

Run time (s)
Codes Native Instrumented Overhead (%)
cbe dot 2 fence 2.760 3.009 9.02%
cbe dot 1 fence 2.447 2.546 4.05%
ct octree 2.792 3.117 11.64%
sdk red 2.335 2.658 13.83%
cub scan 2.761 3.024 9.53%
kmeans 2.765 2.907 5.14%
streamcluster 3.623 7.895 117.91%
hotspot 2.654 3.004 13.91%
MEAN 2.767 3.520 27.21%
MEDIAN 2.761 3.007 8.91%

TABLE III: Runtime Overhead

D. Findings and Comparison

To measure Bugaroo’s bug detection ability, we ran each
original application 1000 times with four different versions of
Bugaroo with values of pw = 0.25, 0.5, 0.75 and 1. First set of
benchmark applications in Table I contain fence instructions
which we removed to create no fence variants. For cub scan
that has 3 different fence instructions, we created four variants

7

1

Flush length

0

20

40

60

80

100

(%
)

of
 s

to
re

s

1 2 6 9

Flush length

0

5

90

95

100

(%
)

of
 s

to
re

s

1 2

Flush length

0

5

10

15

85

90

95

100

(%
)

of
 s

to
re

s

(a) cbe dot (b) ct octree (c) sdk red

1 2 5 6

Flush length

0

5

90

95

100

(%
)

of
 s

to
re

s

1 34

Flush length

0

5

10

85

90

95

100

(%
)

of
 s

to
re

s

1 2

Flush length

0

5

10

15

85

90

95

100

(%
)

of
 s

to
re

s

(d) cub scan (e) kmeans (f) streamcluster

1

Flush length

0

20

40

60

80

100

(%
)

of
 s

to
re

s

(g) hotspot

Fig. 3: Histogram of flush length for write buffers (global stores).

1

Flush length

0

20

40

60

80

100

(%
)

of
 s

to
re

s

1 2 5 8

Flush length

0

5

90

95

100

(%
)

of
 s

to
re

s

1

Flush length

0

20

40

60

80

100

(%
)

of
 s

to
re

s

(a) cbe dot (b) ct octree (c) sdk red

1 2 4 6

Flush length

0

20

40

60

80

100

(%
)

of
 s

to
re

s

1 2

Flush length

0

20

40

60

80

100

(%
)

of
 s

to
re

s

(d) cub scan (e) hotspot

Fig. 4: Histogram of flush length for write buffers (shared stores).

8

by removing all three fences or one at a time. Like Sorensen
et al. [22], this allows us to test if the provided fences are
(a) experimentally needed to prevent memory model bugs
and (b) sufficient to prevent memory model bugs. Findings
from these experiments are demonstrated application wise.
We compare each finding with that of Sorensen et al. [22] to
determine whether the finding is a new one or not. As kmeans,
streamcluster, and hotspot applications do not have any fence
instruction and the original versions run without any failure,
we discard them from further discussion.

1) cbe dot
After Alglave et al. [4] reported missing fences, NVIDIA
updated cbe dot by placing __threadfence in-
side lock and unlock. We refer this variant of
cbe dot as cbe dot original 2 fence. Then we re-
moved the __threadfence inside lock (Figure 1)
and created another variant - cbe dot 1 fence. Fi-
nally, we removed both of the __threadfence
and created a variant - cbe dot no fence. After 1000
runs of cbe dot original 2 fence and cbe dot 1 fence,
we did not observe any failure with any of the
four versions of Bugaroo. This proves our ar-
gument presented in section I-A empirically that
__threadfence inside lock is unnecessary. We refer
cbe dot original 2 fence as overfenced. However, fail-
ure probability of cbe dot no fence variant is 1 for each
of four versions of Bugaroo (although, % error increases
with higher value of pw) and is denoted as underfenced.
So, only cbe dot 1 fence shows the correct behavior
with the minimum number of __threadfence and
we refer to it as the optimal variant.

2) ct octree
All four versions of Bugaroo detects memory model
bug with failure probability 1 for original ct octree
application. Original version has no fence and we denote
it as ct octree original no fence. After performing root
cause analysis as described in Section III-D, we were
able to detect missing __threadfence inside push
method that enqueues a task to the shared array. As
shown in Figure 5, the __threadfence should be
placed in the push method between accesses to shared
array dh and deq. The bug will appear whenever these
two accesses are reordered (or buffered). This bug is also
detected by Sorensen et al. [22]. We created a variant
denoted as ct octree 1 fence placing this fence. This
variant shows no failure.

3) sdk red
In sdk red application, the reduction kernel reduces an
arbitrary sized array in a single kernel invocation. It
does so by keeping track of how many blocks have
finished. After each thread block completes the reduction
of its own block of data, it takes a ticket by atomically
incrementing a global counter. If the ticket value is
equal to the number of thread blocks, then the block
holding the ticket knows that it is the last block to
finish. This last block is responsible for summing the
results of all the other blocks. In order for this to work, a

{

 deq[... + dh[blockIdx.x.tail] = ...;

 // Missing __threadfence();

 dh[blockIdx.x].tail++;

 ...

}

__device__ void DLBABP::push(..)

 Code from lbabp.h

Fig. 5: Fence instruction details of ct octree

__threadfence is required to make sure that before a
block takes a ticket, all of its memory transactions have
completed. In other words, __threadfence ensure
that the results of all outstanding memory transactions
within the calling thread are visible to all other threads.
This is why, when we created sdk red no fence variant
by removing the __threadfence, it fails with em-
pirical probability of 1 for each of the four versions of
Bugaroo (and like cbe dot no fence, % error increases
with higher value of pw).

4) cub scan
Application cub scan has 3 different fence instruc-
tions. As shown in Figure 6a, first __threadfence
(f1 fence) is placed in Sync method which implements
a software global barrier among thread blocks within
a CUDA grid. Second __threadfence (f2 fence) is
placed in SetInclusive method between the updates of
tile inclusive value and tile status (Figure 6b). Third
and final __threadfence (f3 fence) is placed in
SetPartial method between the updates of tile partial
value and tile status (Figure 6b).
We created 5 different variants from all fence
active variant, cub scan original all 3 fence to
cub scan no fence where all 3 fences are removed.
Column 2 of Table IV shows all different variants
of four applications. For example, f1 f2 fence for
cub scan means that fence f1 and f2 are active and f3
is removed. After running Bugaroo for all 5 variants
of cub scan we conclude that all three fences are
necessary as removing any of them will cause failure.
This is a new finding as Sorensen et al. [22] suggested
having only 2 fence is enough to produce a correct
result. As presented in column 3 to 6 of Table IV,
probability of failure varies for different variants. For
example, for cub scan f2 f3 fence where we skip the
__threadfence (f1 fence) inside function Sync,
failure probability is very low (0.001) compared to the
failure probability of 0.857 for cub scan f1 f3 fence.
This is because there is a __syncthread immediately
after the (skipped) f1 fence in orginal code (Figure 6
(a)) which will execute and synchronize stores

9

Codes Version Failure Probability (P) Comment New
Buffer Buffer Buffer Buffer Findings
100% st 75% st 50% st 25% st

original 2 fence 0 0 0 0 Overfenced
cbe dot 1 fence 0 0 0 0 Optimal Yes

no fence 1 1 1 1 Underfenced
ct octree original no fence 1 1 1 1 Underfenced No

1 fence 0 0 0 0 Optimal
sdk red original 1 fence 0 0 0 0 Optimal No

no fence 1 1 1 1 Underfenced
original all 3 fence 0 0 0 0 Optimal
f1 f2 fence 0.002 0 0 0 Underfenced

cub scan f1 f3 fence 0.857 0.714 0.29 0 Underfenced Yes
f2 f3 fence 0.001 0 0 0 Underfenced
no fence 0.861 0.51 0.285 0 Underfenced

TABLE IV: Summary of findings

within blocks. This makes the memory model bug
in cub scan f2 f3 fence very rare. Overall, we refer
cub scan original all 3 fence as the optimal version
and the rest as underfenced.

{

 // Update tile inclusive value

 ThreadStore<..>(... tile_inclusive);

 __threadfence(); // fence f2

 // Update tile status

 ThreadStore<..>(d_tile_status ...);

}

__device__ __forceinline__ void SetInclusive() const

__device__ forceinline__ void SetPartial(...)

{

 //Update tile partial value

 ThreadStore<..>(... tile_partial);

 //Update tile status

 __threadfence(); // fence f3

 ThreadStore<..>(d_tile_status ...);
}

 ...

{

}

 __threadfence(); // fence f1

 (b) Code from single_pass_scan_operators.cuh

 (a) Code from grid_barrier.cuh

__device__ __forceinline__ void Sync(...) const

Fig. 6: Fence instruction details of cub scan

Table IV summarizes all findings for above described ap-
plications and their different variants for corresponding values
of pw. We compare the findings against Sorensen et al. [22]
in the last column.

E. Memory Overhead

Memory overhead of instrumented code comes from per
thread write buffers (global and shared) and the corresponding
counters. For a GPU with 65535 threads, this causes an
overhead of 0.45 GB for each of shared and global write buffer.
Here, we assume that each buffer has 256 entries. Thus, the
total memory overhead is slightly less than 1 GB.

V. LIMITATIONS

We identified two limitations of Bugaroo. First, Bugaroo
keeps buffering some randomly selected stores for as long
as possible. Although this approach is likely to expose many
scenarios of reordering, not all reordering scenarios will be
exposed. Thus, Bugaroo might miss some memory model
bugs. However, if we run more experiments with different
probabilities, we may be able reduce such misses. Second,
in our current implementation, root cause analysis is done by
executing the application with Bugaroo few more times with a
slightly changed (due to less instrumentation and more fences)
scenario. Since this might create a different interleaving, we
may need to verify the root cause by doing the same analysis
few more times.

VI. RELATED WORK

Despite the importance of memory model bugs, there are
very few proposals to detect these bugs in GPUs. The most
relevant one was proposed by Sorensen et al. [22] which
stresses the memory to expose memory model bugs. Compared
to Sorensen et al. [22], Bugaroo has a better bug deetection
ability and it uncovered two new findings in two applications.
In addition to that, Bugaroo performs a better root cause
analysis to determine the location of the bug. Litmus test is
one of the most popular techniques to detect weak behaviors
on CPUs. TSOTOOL [15] ran tests on systems with the TSO
memory model (e.g., x86 CPUs). Litmus test has recently been

10

applied to GPUs with the tool GPU LITMUS [4]. Unlike these
tools, Bugaroo is built on SASSI [23], a low level assembly
language instrumentation tool. Another tool SASSIFI [16]
is also built on SASSI [23]. SASSIFI is an error injection
tool. It studies the soft error resilience of massively parallel
applications running on NVIDIA GPUs. Alglave et al. [5]
survey static methods for inserting fences to restore sequential
consistency in CPU applications, evaluating each method
based on the number of fences inserted and the associated
runtime overhead. They propose a new method based on linear
programming.

Current GPU program analysis tools focus on data-race
freedom, barrier properties and memory safety. The CUDA-
MEMCHECK [2] tool, provided with the CUDA SDK, dy-
namically checks for illegal memory accesses and data-races,
but does not account for weak memory effects.

Several methods exist to analyze and detect memory model
bugs in CPUs. The JUMBLE [13] tool creates an execution
environment which intentionally provides stale values (sim-
ulating weak behaviors) attempting to crash applications. It
classify race conditions as destructive or benign on systems
with relaxed memory models. Orion [17] is an active testing
technique that can detect, expose, and classify any arbitrary
Sequential Consistency (SC) violations in any program. Orion
works by first, finding potential SC violation cycles by focus-
ing on racing accesses. Then it exposes each SC violation cycle
by enforcing the exact scheduling order. Burnim et al. [10]
proposed another active testing technique, called Relaxer. It
first finds potential SC violations and then, exposes them by
buffering some stores while speeding up or stalling certain
other thread. The CDSCHECKER tool [19] buffers loads and
stores and is configured to simulate the C++11 memory model.
All these tools detects memory model bugs in CPUs whereas,
Bugaroo exposes memory model bugs in GPUs.

There are some software based techniques that either search
exhaustively or use constraint solver to detect weaker memory
model bugs in CPUs [7], [25], [14]. There are some dynamic
approaches based on data race detection [12], [10]. Exhaustive
and constraint solver based approaches work well for small
programs and kernels. However, they cannot handle large ap-
plications with many shared memory accesses as well as GPU
applications. There are some runtime monitoring algorithms
such as Sober [8] and [9] to detect memory model related bugs.
They rely on a model checker in order to find all violations
of sequential consistency. They check SC executions to find
SC violations in close enough relaxed executions. However,
they are only applicable to CPU applications. Several propos-
als [8], [6] including Relaxer have used operational definitions
for TSO, PSO and other relaxed memory models. However,
Bugaroo does not need any such definitions to expose memory
model bugs.

VII. CONCLUSION

Memory model bugs are crucial in the context of GPU
applications. We proposed Bugaroo to expose memory model
bugs in any arbitrary GPU program. It works by statically
instrumenting the code to buffer some shared and global

data for as long as possible. Any program failure after such
buffering indicates the presence of subtle memory model bugs
in the program. Bugaroo, then, provides detailed debugging
information regarding the failure. Bugaroo is the first proposal
to expose memory model bugs of GPU programs by simulat-
ing memory buffers. We evaluated it using 7 programs and
uncovered 2 new findings in 2 applications. Bugaroo opens
up new ways to uncover memoy model bugs in many-core
applications.

VIII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feed-
back. We also thank the members of PALab for the discussions
and comments. This work is supported by NSF under Grant
No. 1652655.

REFERENCES

[1] “CUDA C programming guide, version 7,” .http://docs.nvidia.com/cuda/
pdf/CUDA C Programming Guide.pdf.

[2] “Nvidia. CUDA-memcheck,” https://developer.nvidia.com/
CUDA-MEMCHECK, 2015.

[3] S. V. Adve and H.-J. Boehm, “Memory models: A case for rethinking
parallel languages and hardware,” COMMUNICATIONS OF THE ACM,
vol. 53, no. 8, pp. 90–101, 2010.

[4] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan, J. Ketema,
D. Poetzl, T. Sorensen, and J. Wickerson, “Gpu concurrency: Weak be-
haviours and programming assumptions,” in Proceedings of the Twenti-
eth International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’15, 2015, pp. 577–
591.

[5] J. Alglave, D. Kroening, V. Nimal, and D. Poetzl, “Don’t sit
on the fence: A static analysis approach to automatic fence insertion,”
ACM Trans. Program. Lang. Syst., vol. 39, no. 2, pp. 6:1–6:38, May
2017. [Online]. Available: http://doi.acm.org/10.1145/2994593

[6] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi, “On the
verification problem for weak memory models,” SIGPLAN Not., vol. 45,
no. 1, Jan. 2010.

[7] S. Burckhardt, R. Alur, and M. M. K. Martin, “Checkfence:
checking consistency of concurrent data types on relaxed memory
models,” in Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, ser. PLDI ’07.
New York, NY, USA: ACM, 2007, pp. 12–21. [Online]. Available:
http://doi.acm.org/10.1145/1250734.1250737

[8] S. Burckhardt and M. Musuvathi, “Effective program verification for
relaxed memory models,” in CAV, Jul 2008.

[9] J. Burnim, K. Sen, and C. Stergiou, “Sound and complete monitoring
of sequential consistency for relaxed memory models,” in Proceedings
of the 17th international conference on Tools and algorithms
for the construction and analysis of systems: part of the joint
European conferences on theory and practice of software, ser.
TACAS’11/ETAPS’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp.
11–25. [Online]. Available: http://dl.acm.org/citation.cfm?id=1987389.
1987393

[10] ——, “Testing concurrent programs on relaxed memory models,” in
Proceedings of the 2011 International Symposium on Software Testing
and Analysis, ser. ISSTA ’11, 2011.

[11] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and
K. Skadron, “A characterization of the rodinia benchmark suite
with comparison to contemporary cmp workloads,” in Proceedings
of the IEEE International Symposium on Workload Characterization
(IISWC’10), ser. IISWC ’10, 2010, pp. 1–11.

[12] Y. Duan, X. Feng, L. Wang, C. Zhang, and P.-C. Yew, “Detecting and
eliminating potential violations of sequential consistency for concurrent
c/c++ programs,” in Proceedings of the 7th annual IEEE/ACM
International Symposium on Code Generation and Optimization, ser.
CGO ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
25–34. [Online]. Available: http://dx.doi.org/10.1109/CGO.2009.29

[13] C. Flanagan and S. N. Freund, “Adversarial memory for detecting
destructive races,” in Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’10. New York, NY, USA: ACM, 2010, pp. 244–254.
[Online]. Available: http://doi.acm.org/10.1145/1806596.1806625

11

[14] G. Gopalakrishnan, Y. Yang, and H. Sivaraj, “Qb or not qb: An efficient
execution verification tool for memory orderings,” in In Computer-Aided
Verification (CAV), 2004.

[15] S. Hangal, D. Vahia, C. Manovit, J. Y. J. Lu, and S. Narayanan, “Tsotool:
a program for verifying memory systems using the memory consistency
model,” in Proceedings. 31st Annual International Symposium on Com-
puter Architecture, 2004., June 2004, pp. 114–123.

[16] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“Sassifi: An architecture-level fault injection tool for gpu application
resilience evaluation,” in 2017 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), April 2017, pp.
249–258.

[17] M. M. Islam and A. Muzahid, “Detecting, exposing, and classifying
sequential consistency violations,” in 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE), Oct 2016, pp.
241–252.

[18] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” IEEE Transactions on Computer,
vol. 28, no. 9, pp. 690–691, Sep. 1979. [Online]. Available:
http://dx.doi.org/10.1109/TC.1979.1675439

[19] B. Norris and B. Demsky, “Cdschecker: Checking concurrent data
structures written with c/c++ atomics,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’13. New
York, NY, USA: ACM, 2013, pp. 131–150. [Online]. Available:
http://doi.acm.org/10.1145/2509136.2509514

[20] NVIDIA, “NVIDIA Developer Forum,” https://devtalk.nvidia.com.
[21] J. Sanders and E. Kandrot, CUDA by Example. Addison-Wesley, 2011.
[22] T. Sorensen and A. F. Donaldson, “Exposing errors related to weak

memory in gpu applications,” in Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’16, 2016, pp. 100–113.

[23] M. Stephenson, S. K. S. Hari, Y. Lee, E. Ebrahimi, D. R. Johnson,
D. Nellans, M. O’Connor, and S. W. Keckler, “Flexible software profil-
ing of gpu architectures,” in 2015 ACM/IEEE 42nd Annual International
Symposium on Computer Architecture (ISCA), June 2015, pp. 185–197.

[24] D. Weaver and T. Germond, The SPARC Architecture Manual Version
9. Prentice Hall, Englewood Cliffs, N.J., 1994.

[25] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind, “Nemos:
a framework for axiomatic and executable specifications of memory
consistency models,” in Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International, April 2004.

