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Abstract
Data races are a major contributor to parallel software unrelia-

bility. A type of race that is both common and typically harmful is
the Asymmetric data race. It occurs when at least one of the rac-
ing threads is inside a critical section. Current proposals that target
them are software-based. They slow down execution and require
significant compiler, operating system (OS), or application changes.

This paper proposes the first scheme to tolerate asymmetric data
races in production runs with negligible execution overhead. The
scheme, called Pacman, exploits cache coherence hardware to tem-
porarily protect the variables that a thread accesses in a critical sec-
tion from other threads’ requests. Unlike previous schemes, Pac-
man induces negligible slowdown, needs no support from the com-
piler or (in the baseline design) from the OS, and requires no ap-
plication source code changes. In addition, its hardware is rela-
tively unintrusive. We test Pacman with the SPLASH-2, PARSEC,
Sphinx3, and Apache codes, and discover two unreported asymmet-
ric data races.

1. Introduction
Data races are arguably the most common type of concurrency

bug. They occur when two threads access the same variable without
any intervening synchronization and at least one of the accesses is a
write. Debugging data races can be notoriously hard and, as a result,
there is much research in this area (e.g., [7, 17, 18, 27]). In practice,
it is easy to get bogged down uncovering the large majority of the
races that are relatively harmless [8, 18] (so-called benign races) at
the expense of the harmful ones that cause program crashes, ma-
chine hangs, or incorrect program results.

One class of data race that is both common and likely harmful is
the Asymmetric data race. It occurs when at least one of the racing
threads is inside a synchronization-protected critical section [23].
In this case, while a thread (call it safe) is accessing shared vari-
ables inside a critical section, a second thread (call it unsafe) races
in, corrupting the state or reading inconsistent state. For example,
Figure 1 shows a case where thread T1 is the safe thread. These
races are common in bug reports, and can often appear in well-
tested codes that interact with third-party or legacy routines [23].
They are likely harmful because the data being corrupted is criti-
cal data already protected by synchronization. Interestingly, these
races have received little attention [22, 23].

The conventional approach to cope with data races is to detect
and remove them through extensive in-house testing. A comple-
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T1 T2
Lock
if (point != NULL){
     point−>x = X1;
     point−>y = X2;
}
Unlock

point = NULL;

Figure 1. Example of an asymmetric data race.

mentary approach is to tolerate the remaining races during produc-
tion runs. This approach includes techniques that prevent the race
from manifesting or that modify the interleaving in a way that min-
imizes the chances of it (e.g., [21, 28, 30]). This approach is attrac-
tive because, even after extensive in-house testing, races have been
shown to remain in the code after deployment. Moreover, even for
harmful bugs, it takes a long time between the detection of the bug
in the field and the release of a fix by the manufacturer [29]. In the
meantime, tolerating the race would be beneficial.

Asymmetric data races are good candidates for race-tolerance.
Indeed, the structure of the race already suggests a way to mini-
mize the potential harm of the race: prevent the unsafe thread from
corrupting the state or reading inconsistent state while the safe one
is in the critical section. This technique is attractive because, un-
like many race-tolerance techniques, it requires no correct-run train-
ing. Moreover, for those asymmetric races caused by third party or
legacy code interfering with well-tested code, race-tolerance may
be the only option, as the unsafe thread code may be unavailable.

There are only two proposals that specifically target asymmet-
ric data races: ToleRace [23] and ISOLATOR [22]. They both use
race tolerance and are software-based. When the safe thread enters
a critical section, the software makes a copy of the data in the crit-
ical section and redirects the safe thread’s accesses to the copy. In
addition, it may also protect the accesses to the page that contains
the original data. Unfortunately, these approaches slow down exe-
cution and require significant compiler, operating system (OS), or
application changes.

To address these issues, this paper proposes the first scheme
to tolerate asymmetric data races in production runs with negli-
gible execution overhead. The scheme, called Pacman, exploits
cache coherence hardware to temporarily protect the variables that
a thread accesses in a critical section from other threads’ requests.
Unlike prior schemes for asymmetric races, Pacman induces negli-
gible slowdown, needs no support from the compiler or (in the base-
line design) from the OS, and requires no application source code
changes — although small changes are needed in some libraries.
Pacman’s hardware is largely unintrusive, since it is concentrated
in a module in the global network, rather than in the cores. Finally,
Pacman embodies a primitive that can be applied to other software
development and debugging uses.

We evaluate Pacman for the SPLASH-2, PARSEC, Sphinx3, and
Apache codes. We show that it has negligible execution overhead.
Moreover, we uncover two unreported asymmetric races.



Application Source Description Outcome
Apache1.1 Beta Bug number 1507 AppenderAttachableImpl object should be Exception

protected by synchronization in AsyncAppender.getAllAppenders
MySQL6.0 Bug number 48930 lock state is updated by two different threads holding different mutexes System hangs
Mozilla-JS Bug number 622691 The write to cx→runtime→defaultCompartmentIsLocked Incorrect result

is not consistently protected by the lock
Mozilla-XPConnect Bug number 557586 One thread sets gLock to null before another thread drops the lock Segmentation fault
Mozilla-Video/Audio Bug number 639721 mInfo is written by nsBuiltinDecoderReader without Incorrect result

its lock while mInfo is read from HaveNextFrameData with a lock
Pbzip2-0.9.4 Paper [29, 32] main() frees fifo→mut without protection Segmentation fault
Windows Kernel Case study 2 in slides of [8] Two threads access the same structure with different mutexes Incorrect result
Windows Kernel Case study 3 in slides of [8] parentFdoExt→idleState is not protected by a lock Incorrect result
Windows Kernel Real data race example in [8] gReferenceCount is updated without protection Incorrect result
Trie benchmark An example in [22] The prefix match function reads the leaf field of the root object Incorrect result

without acquiring a lock on the trie

Table 1. Real examples of harmful asymmetric data races. We found that 20% of harmful data races are asymmetric.

This paper is organized as follows: Section 2 motivates the prob-
lem; Sections 3, 4, and 5 describe Pacman’s architecture and imple-
mentation; Section 6 evaluates Pacman; Section 7 discusses related
work; and Section 8 concludes.

2. Asymmetric Races: Common & Harmful
The focus of this paper is a common and likely harmful type of

data race called Asymmetric. This is a data race where at least one
of the racing threads is inside a synchronization-protected critical
section [22, 23]. In addition, we are interested in efficiently tolerat-
ing them in production runs.

Harmful asymmetric data races are common in the real world.
To assess their frequency, we examined 50 harmful data race bugs
from bug libraries of open source software and from Microsoft re-
ports. We define harmful as being a bug that the user wants fixed
— as opposed to the many data races explicitly created by the pro-
grammer for performance. Of the 50 harmful races, we found 10
that are asymmetric. This is a significant 20%. They are shown and
described in Table 1.

The high frequency of asymmetric data races is confirmed by
Microsoft researchers in [22, 23], who claim that they frequently
encounter them in software development. They provide two intu-
itive sources of asymmetric data races. One source is code devel-
oped by good software developers that has to share memory state
with less-tested code developed outside of the house — e.g., vari-
ous device drivers. A second source is legacy. Specifically, a library
may have been written assuming a single-threaded environment, but
later the requirements change to multithreading. This requires that
all the threads acquire a lock before accessing shared state. Unfor-
tunately, some corner cases are missed.

Asymmetric data races are likely harmful. Indeed, all of the ones
shown in Table 1 that come from bug libraries have been confirmed
as bugs in the libraries, and fixed in future releases of the software.
In addition, the fact that the programmer protected one thread’s ac-
cesses to the racy variables in a critical section suggests that these
are important variables. The atomicity of the critical section ac-
cesses, as intended by the programmer, is broken through accesses
from other threads; this is likely to be harmful.

2.1. Our Goal
Our goal is to tolerate asymmetric data races in production runs

without needing training tests. This approach is complementary to
conventional in-house data-race debugging. It is motivated by four

facts. First, even after extensive testing, date race bugs appear in re-
leased code. Second, it often takes years between the time when a
bug is detected in the field and when a fix is available from the ven-
dor [29]. Third, for the fraction of asymmetric races caused by third
party or (perhaps) legacy code, fixing the bug may not be a feasi-
ble option because the source code may be unavailable. Finally, the
structure of these races already suggests a way to minimize their
potential harm: prevent the unsafe thread from corrupting the state
or reading inconsistent state while the safe one is in the critical sec-
tion.

3. Pacman: Tolerating Asymmetric Races
3.1. Overview of the Idea

We want to prevent unsafe threads from corrupting the state or
reading inconsistent state while the safe thread is in the critical sec-
tion. We must ensure that an access A from an unsafe thread that
conflicts with an access inside the critical section is ordered in the
same way with respect to all of the accesses in the critical section.
As shown in Figure 2(a), the first write by T2 can proceed, but the
second one has to be prevented until after the unlock. Similarly, the
first read by T2 in Figure 2(b) can proceed, but the second one has
to wait until after the unlock.

T1

Lock

Unlock 
(b)

a=

T2

    = a;

a=     = a;

T1

Lock

    = a;
    = a;

Unlock 

a=

T2

a=

(a)

OK
NOT

 OK  OK
NOT
OK

Figure 2. General approach to handle asymmetric data races.

The idea behind Pacman is to leverage the hardware cache co-
herence protocol in a multiprocessor to temporarily protect the vari-
ables that a thread is accessing in a critical section. The hardware
performs two concurrent actions. One is to record the addresses of
(a subset of) the variables that the safe thread is accessing while
executing a critical section. In fact, to a large extent, we only need
those addresses that can be observed by the cache coherence proto-
col, as we will see. The second action is to reject any requests from
the unsafe threads that conflict with these variables, until the safe
thread leaves the critical section.

For efficiency, Pacman does not record the addresses in a table.
Instead, it uses a Bloom filter [2] to encode them into a hardware
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Figure 3. SigTable organization (a) and operation (b).

address signature. Moreover, to make the hardware as unintrusive
as possible, the signature is stored in a module called SigTable that
is connected to the on-chip network and sees all coherence transac-
tions. Physically, the SigTable is associated with the bus controller
in a bus-based multiprocessor, or is distributed across the differ-
ent directory modules in a directory-based multiprocessor. Since
multiple processors may be executing critical sections concurrently,
the SigTable stores as many signatures as critical sections are in
progress.

The application code is unmodified. However, Pacman assumes
that the critical section entry and exit points of safe threads are
marked in the code with synchronization macros or libraries. In-
side these macros or libraries, Pacman makes sure that there is a
network access, implemented as part of the synchronization opera-
tion as we will see. As a result, the SigTable always knows when a
processor enters and exits a monitored critical section.

In this section, we describe Pacman’s basic operation and the
two key aspects that affect the ability to tolerate data races: caches
and stalls.

3.2. Pacman’s Basic Operation
The SigTable is a hardware table that stores the addresses ac-

cessed by each in-progress critical section, and prevents accesses
by other processors to these addresses. In this discussion, we de-
scribe a centralized SigTable, as it would be used in a bus-based
system; later, in Section 5.4, we outline a distributed one to be used
in a directory-based system. Figure 3(a) shows the SigTable, which
has one entry (a row) for each in-progress critical section. In each
entry, the two main fields are PID and Signature. PID is the ID of
the processor currently executing the critical section that owns the
entry. In Section 5, we virtualize the SigTable. The Signature field
contains (in an encoded form) the addresses of the lines accessed by
the thread in the critical section so far and observed by the SigTable.
A controller at the SigTable input takes the addresses of protocol
transactions, hash-encodes them with a hardware Bloom filter [2],
and may accumulate them into signatures and/or check them for
membership in signatures [4].

The SigTable operates as follows. When a lock acquire success-
fully grabs a lock, the SigTable allocates a new entry for the critical
section, sets PID to the requesting processor ID and, after clearing

Signature, it inserts the hashed physical address of the lock in it.
After this, at every load and store issued by the thread that is not
intercepted by the cache, the SigTable hash-encodes the address
of the line accessed and accumulates it in Signature. During this
time, network accesses by other threads are hashed and checked for
membership in Signature. If there is a match, the request is Nacked
(negative-acknowledged) to the requester, which will retry. Finally,
when the thread releases the lock, the SigTable deallocates the en-
try.

Pacman flattens nested critical sections, accumulating all the ad-
dresses accessed in the nest in the Signature. To support this fea-
ture, SigTable entries have a NestingLevel field. On a successful
lock acquire, if the processor does not own a SigTable entry yet,
the SigTable proceeds as above and sets NestingLevel to 1; other-
wise it increments NestingLevel. On a lock release, the SigTable
decrements NestingLevel and, if it is zero, deallocates the entry.
Figure 3(b) lists the overall SigTable operation.

With this approach, Pacman isolates the critical section from
unsafe threads. Note that Pacman needs no compiler support, no OS
support, and no source code changes. Moreover, it has negligible
execution overhead for the safe thread.

Nacks are often used in cache coherence protocols, to avoid hav-
ing to buffer messages that cannot be processed immediately [9].
While they can cause traffic hot spots in pathological cases, the
probability of an asymmetric race is low enough that there is no
need to provide any contention management mechanism.

Finally, while Pacman has a transactional memory (TM) [10]
flavor, it needs none of TM’s key mechanisms such as specula-
tion, rollback, timestamp support or contention management (Sec-
tion 7.2).

3.3. Cache Effects
Since the SigTable is placed in the network, it does not see the

accesses intercepted by the caches. To capture the required infor-
mation to guarantee the atomicity of the critical sections, it relies
only on the transactions induced by the cache coherence protocol
— plus some small extensions that we will explain. We now show
why this is the case. In the following discussion, we assume a ba-
sic MESI cache coherence protocol. Other protocols may require
slightly different considerations.



Figure 4 shows two simple patterns. In Figure 4(a), thread T1
writes to line x and misses in the cache. SigTable records the ad-
dress. Any subsequent read or write to x by T2 requires a coherence
transaction, which is observed and Nacked by the SigTable. In Fig-
ure 4(b), T1 reads x and misses in the cache. SigTable records the
address. If T2 reads x, there may or may not be a coherence trans-
action. If there is, the access will be Nacked; otherwise, it will not.
Either situation is fine because two reads do not conflict. However,
if T2 writes x, there is a coherence transaction that will be Nacked
by the SigTable.

wr x Miss
rd x Miss 

T1

    (a)

Acquire

Release

rd x / wr x

rd x / wr x

T2

Nack

Done

T1 T2

Acquire

    (b)

Release

rd x

wr x Nack

wr x Done

Figure 4. Examples to help understand Pacman’s operation.

The more involved cases involve three issues: cache state before
entering the critical section, cache displacements during the critical
section, and synchronization operations. We consider each in turn.

3.3.1. Cache State Prior to Entering the Critical Section
Before the safe thread enters the critical section, some of the

lines in its cache may be in a state that enables the processor to
access them silently during the critical section. There are two cases:
when x was Dirty (or Exclusive) in T1’s cache in Figures 4(a) and
(b), and when x was Shared in T1’s cache in Figure 4(b). In these
cases, SigTable will not observe T1’s access to x.

None of the two cases prevents SigTable from ensuring the
atomicity of the critical section. Consider the case when x was
Dirty (or Exclusive) in T1. When T2 attempts to access the line
and misses, the coherence protocol forces T1 to write back the
line. When the SigTable sees that a processor with a SigTable entry
writes back a line, it assumes that the processor had accessed the
line. Consequently, while allowing the line to be written to mem-
ory, it inserts the line’s address in the entry’s Signature and Nacks
the requesting (unsafe) processor — hence ensuring critical section
atomicity. No functional change to the caches or coherence proto-
col is needed. If T1 had not accessed the data in the critical section,
Pacman acts conservatively but not incorrectly.

Consider now the case when x is Shared in T1. When T2 at-
tempts to write the line, the hardware issues a coherence transac-
tion that invalidates T1’s copy. For this case, Pacman requires a
simple hardware extension. Specifically, it requires that T1’s cache
informs, in its response to the invalidation, that indeed, it has in-
validated a line. When the SigTable sees that a processor with a
SigTable entry has invalidated a line, it assumes that the processor
had accessed the line. Consequently, it inserts the line’s address in
the Signature for the entry and Nacks the requesting (unsafe) pro-
cessor. Again, if T1 had not read the line in the critical section,
Pacman acts conservatively but correctly.1

1In all of these cases, a Nacked write has already invalidated the line
from all the caches. This can hurt performance slightly if caches have to
re-access the data. However, this occurs only once.

Supporting this change is simple. In a directory-based protocol,
when a cache invalidates a line, it must set a bit in the invalidation
acknowledgment returned to the directory. In a snoopy-based proto-
col, the cache must set a bit in the bus that is visible to the SigTable.
This hardware change and all the other processor/cache modifica-
tions required by Pacman will be summarized in Section 3.3.4.

3.3.2. Cache Displacements During the Critical Section
Consider the case when, as a processor executes a critical sec-

tion, its cache displaces a line that was in the cache before the pro-
cessor entered the critical section. Such line is not in the Signature,
but must be conservatively put there as the processor may have ac-
cessed it silently during the critical section.

There are two cases, namely that the displaced line is Dirty or
not. If it is, the case is easy: as the line is automatically written
back to memory, the SigTable sees that the source processor owns
an existing SigTable entry and inserts the address in the Signature.

If the line is not Dirty, the coherence protocol would not trig-
ger a line writeback. Therefore, we propose to modify the cache
controller to send a notification to the network when the cache dis-
places a clean line inside a (monitored) critical section. The notifi-
cation carries the address of the line. When the SigTable sees such
a notification from a processor that owns a SigTable entry, it conser-
vatively accumulates the address in the Signature. The extra traffic
created is small, since critical sections are typically short. Overall,
this extension is like the Replacement Hint transaction sometimes
used in directory protocols [5], except that it only needs to occur
while the processor is inside a critical section.

This is the most significant hardware modification required by
Pacman, as summarized in Section 3.3.4. However, it can be im-
plemented easily. Specifically, the controller for the last level of
private cache has a counter register called Mode. When Mode is
not zero, the cache is in Notification mode, and it sends a notifi-
cation message at every displacement of a non-Dirty line. Every
successful lock acquire operation for a monitored critical section
increments the Mode register, while every release for it decrements
it. This ensures that, in nested critical sections, the cache remains
in Notification mode throughout the outermost critical section. In-
crements and decrements can be supported with a write to a register
in the cache controller. Such writes can be performed inside ac-
quire and release macros or libraries, such as those of M4 [13] or
OpenMP [6].

3.3.3. Synchronization Operations
The SigTable must see all of the successful acquires and all

of the releases. This is because they may allocate/deallocate a
SigTable entry and update the Signature and NestingLevel fields.
The coherence protocol ensures that the SigTable sees these syn-
chronization operations except in the cases when they hit a cache
line in state Dirty or Exclusive. So, we must ensure that, in these
cases, a notification access is also issued to the network that the
SigTable sees.

To accomplish it, we propose to augment the implementation
of the acquire and release instructions. If a successful acquire or
a release operation proceeds without needing a network access, the
hardware issues a notification message to the network. An alter-
native design would involve not changing the acquire or release
instructions and adding an explicit uncached write inside the syn-
chronization macros or libraries. While this design is simpler, it
would add more overhead to the synchronization operation. Still,



overheads may be tolerable, especially if one is willing to identify
the potentially problematic critical sections and only monitor those.

Unsuccessful acquires do not need to be observed by the
SigTable.

Pacman is compatible with modern processors that speculatively
read past an acquire before the acquire completes. The SigTable
may be unallocated and, therefore, unable to capture the loaded ad-
dress. The effect is the same as if the load had hit in the cache
(Section 3.3.1).

3.3.4. Summary of Cache Hierarchy Modifications
Table 2 summarizes the functional modifications that Pacman

requires in the cache hierarchy and coherence protocol. We believe
that these modifications are modest. All of the other modifications
are unintrusive because they are part of the SigTable module.

When a cache invalidates a clean line, it sets a bit that is visible
to SigTable.
In Notification mode, the last-level private cache sends a notification
message when it displaces a clean line.
A successful acquire or a release that are fully intercepted by the cache
issue a notification message to the network.

Table 2. Pacman functional modifications in the cache hierarchy
and coherence protocol.

3.4. Multiple Stalls and Deadlock
Pacman temporarily stalls unsafe threads by Nacking their con-

flicting requests. We now consider the case when multiple threads
are Nacked and show how deadlock can occur and is handled.

3.4.1. Multiple Thread Stalls
It is possible that two (or more) threads send Nacks to each other

and end up all stalling. This situation can occur due to three reasons:
some race bugs where all of the threads synchronize, false sharing
and false positives. Figure 5 shows two examples of the first case.
In Figure 5(a), two threads T0 and T1 acquire two different locks
L0 and L1, respectively. Inside the critical sections, both threads
access the same two variables g0 and g1 in different order. The
timing is so unfortunate that each thread accesses one variable and
then receives a Nack on attempting to access the second variable.
We have formed a cross-thread stall cycle and no thread can make
progress.

(a)

T0 T1

Acquire L0 Acquire L1

g0= g1=

g0=g1=

Nacked

Acquire L0 Acquire L1
T1T0

g0=

(b)

Acquire L1
g0=

Nacked

Figure 5. Examples of data race bugs where all the threads
synchronize and lead to deadlock.
In Figure 5(b), the two threads T0 and T1 acquire two different

locks L0 and L1, respectively, and then access the same variable g0.
T0 succeeds and T1 gets Nacked. Then, the thread that succeeds
(T0) attempts to acquire the lock of the other, stalled thread (T1).
We have a cross-thread stall cycle as before, except that one of the
two dependences in the cycle is for a lock variable.

The second source of cross-thread cycles leading to deadlock is
pathological cases of false sharing of lines. For example, it occurs
in a pattern similar to Figure 5(b) except that T1, rather than access-
ing variable g0, accesses a variable that shares a line with g0. Recall
that the SigTable is in the network and can only see line addresses.

The third source of cross-thread cycles leading to deadlock is
pathological cases of false-positive dependences between threads,
due aliasing in the signatures or due to the cache state prior to en-
tering the critical section (Sections 3.3.1 and 3.3.2). However, since
critical sections tend to be small, false positives are typically not
very significant.

We will see in Section 7.1 that one of the existing software pro-
posals for tolerating asymmetric races called ISOLATOR [22] also
suffers from the first two sources of deadlock. In fact, since ISO-
LATOR’s protection granularity is a page (rather than a cache line
as in Pacman), it is very vulnerable to false sharing. In ISOLA-
TOR, when such cycles occur, threads keep retrying, until the soft-
ware detects that a certain time has elapsed without making for-
ward progress. Execution is then interrupted. Unfortunately, such a
timeout-based approach to detect deadlocks is very slow.

3.4.2. Making Forward Progress in Pacman
Pacman uses hardware to detect a deadlock cycle as soon as

the memory access that closes the cycle occurs. This approach is
much faster than the software-based timeout approach of ISOLA-
TOR. Moreover, at that point, Pacman’s hardware breaks the cycle
by allowing one the stalled threads to perform one memory access.
Such access enables forward progress.

To support the algorithm, we add two fields to each row of the
SigTable (Figure 3(a)). First, Stall index tells if the thread that owns
the entry is being Nacked. Specifically, Stall index stores the index
of the SigTable entry that sends Nacks to the owner thread. If the
owner thread is not being Nacked, this field is null. Second, when
Stall index is not null, the Lock acquire? bit is set if the owner
thread is being Nacked while trying to acquire a lock. This bit will
detect the case of Thread T0 in Figure 5(b).

When an access by processor Pi is Nacked by entry j of the
SigTable, the SigTable hardware checks if Pi also has an entry in
the SigTable. If so, it sets that entry’s Stall index to j and, if ap-
propriate, sets the Lock acquire? bit. Then, the SigTable hardware
follows the Stall index pointer by checking entry j in the SigTable
and reading its own Stall index. If, by following the Stall index
pointers in this way, the hardware ends up in entry i, it has detected
a cycle. At that point, the hardware needs to decide which thread
among those in the cycle is allowed to perform one access without
being Nacked. A simple approach is to pick one of the threads that
holds locks requested by other threads (such as T1 in Figure 5(b)).
Such threads are detected from the Lock acquire? bit of other en-
tries, and they need to make progress to break the cycle. If there is
no such thread, the hardware picks one thread at random. The next
time that the SigTable sees a request from the picked thread, it does
not Nack it.

3.4.3. Breaking the Atomicity of Critical Sections
With the algorithm described, Pacman immediately finds and

breaks any deadlock — unless it was already present in the original
application. However, by letting one stalled thread complete one
access, it can conceivably break the atomicity of a critical section.
To understand the problem, we consider each of the three sources
of deadlock listed in Section 3.4.1.



In the first case (some race bugs where all of the threads syn-
chronize), Pacman can potentially break the atomicity of one of the
critical sections. While Pacman could be designed to break only
the atomicity of unsafe threads, such an approach would not work
for all the race bugs. An example is when T1 in Figure 5(b) is the
unsafe thread. Overall, given the very low probability of breaking
atomicity in this way, we do not attempt to avoid it.

In the third case (false positives), letting one thread proceed does
not break the atomicity of any critical section.

In the second case (false sharing), atomicity can potentially be
broken unless special care is taken. To see why, consider Figure 6,
which is slightly modified over Figure 5(a). In this example, vari-
ables g0 and g0’ share the same cache line, while g1 and g1’ share
another line. Because of false sharing, threads T0 and T1 deadlock.
By breaking the deadlock through letting T1 read g0’, Pacman is al-
lowing the line to go to T1’s cache. Right after the critical section,
T1 could attempt to silently access g0 from its cache, which could
break T0’s atomicity.

T0 T1

Acquire L0 Acquire L1

g0=
g1=

g1’=
=g0’

Nacked Release L1
=g0

Figure 6. Atomicity could be broken due to false sharing.

To prevent this case from occurring, we could augment Pacman
so that, when the SigTable lets one access break a deadlock, it marks
it as non-cacheable. The requesting processor would be allowed to
use (read or write) the word, but its cache would not be allowed to
keep the line. As a result, accesses to other words would miss in the
cache. This extension would avoid breaking atomicity when false
sharing occurs between words. However, a more elaborate solution
would be needed when false sharing occurs between bytes of the
same word. Given the very low probability of breaking atomicity
due to false sharing, Pacman does not include this support.

4. Discussion
Pacman’s unique goal makes it very different from hardware-

based race detectors [14, 16, 19, 20, 34]. In these schemes, the goal
is to characterize and debug races. Moreover, false positives are
highly undesirable. Hence, these schemes tend to use more expen-
sive hardware, such as per-word access information, epoch IDs in
coherence messages, and even rollback. Pacman’s goal is to tolerate
asymmetric races in production runs. Since we are not debugging,
it is fine to have some false positives (e.g., due to aliasing in signa-
tures) if they are handled fast. A false positive in Pacman simply
slows down a thread a little bit. The result is cheaper, less intru-
sive hardware. Still, Pacman could be used as a detection tool for
asymmetric races. Indeed, the number of false positives we found
is very low (as we show in the evaluation) and the number of false
negatives is likely negligible (as we summarize in Section 7.1.1).

Pacman provides a powerful primitive: dynamically and selec-
tively prevent accesses to a set of addresses by certain processors.
It can be used in security and performance/correctness debugging.
For example, it can enforce atomic regions and detect atomicity vi-
olations, or provide watchpoint capability.

Pacman is fastest when critical sections are small, which is the
norm in many codes. However, we believe that it is also very useful
for beginner programmers, who tend to write long critical sections.
The long critical sections will be protected and the program will run
safely, although slower.

It is possible that a malicious thread could attempt to use Pac-
man to deny access to other threads, by remaining inside a critical
section and filling up a signature. This problem can be detected with
a watchdog timer, or by counting the number of Nacks triggered by
a critical section.

Pacman has a few limitations. One is that it needs to be able to
identify (monitored) critical section entry and exit points. To do so,
we have assumed synchronization macros or libraries, but certain
types of code are not written in this way. Second, the fact that all
of the successful acquires and releases need to access the SigTable
can slow down codes where the same thread repeatedly executes
the same, short critical section. We have not seen this case but it is
possible.

A final limitation is that Pacman is not designed for some un-
usual types of critical sections. They include million-instruction
critical sections. They also include patterns where a thread spins on
a flag inside a critical section, waiting for a racy thread to set the
flag (Figure 7). We feel that this pattern is bad programming style.
In any case, for these types of critical sections, the compiler or pro-
grammer can disable Pacman or use plain synchronization. Alter-
natively, Pacman can have a watchdog timer or a Nack-counting
mechanism that detects the problem and allows the write(s).

T0

Acquire L0

Release L0

while (flag==0){}

T1

flag=1;

...

Figure 7. Unusual pattern that Pacman does not handle.

5. Implementation Issues
5.1. Pacman Module

The Pacman module is a hardware module connected to the on-
chip network (Figure 8(a)). It comprises the SigTable and its con-
troller. The controller is composed of two simple hash blocks (H-
Blocks) and the Cycle Detection & Breakup module. The latter
chases the Stall index links as described in Section 3.4.2 to detect
and break deadlocks.

Figure 8(b) shows H-Block1 and the SigTable. H-Block1 takes
the address of an incoming request transaction and encodes it into
a signature using a parallel Bloom filter [2] (Signaturein in Fig-
ure 8(b)). The signature is then tested for membership in valid
SigTable entries from other processors (∈ in Figure 8(b)). This
operation involves a bit-wise AND operation to get the intersec-
tion and then a check for zero [4] (Figure 8(c)). If any membership
test is positive, the Nack1 signal is raised. Otherwise, if the re-
questing processor owns a SigTable entry (or a new one needs to be
allocated), the signature is bit-wise ORed with the correct SigTable
entry (∪ in Figure 8(b) and expanded in Figure 8(d)). Overall, H-
Block1’s operations can be performed in 2-3 cycles and are hidden
under the first half of the bus transaction.

In the second half of the bus transaction, when the caches have
finished snooping, the bus may receive a write back or invalidation
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Figure 8. Implementation of the Pacman module.

response (Section 3.3.1). H-Block2 (not shown in detail) checks if
the processor ID that writes back or is invalidated has a SigTable
entry. If so, it bit-wise ORs the hashed address with the correct
signature and raises Nack2. H-Block2’s operation takes 1-2 cycles.
If Nack1 or Nack2 is raised and the Cycle Detection and Breakup
module does not prevent it, a Nack signal is returned on the bus.

All of the operations of the Pacman module except for cycle
detection are simple enough to be overlapped with the bus trans-
action. In a directory protocol, they overlap with directory module
accesses. The cycle detection may take over 10 cycles, which is
acceptable since it is done in the background.

Figure 8(b) also shows the sizes of the SigTable’s fields. The
size of PID and Stall index depend on how many threads we may
need to monitor at a time. For Signature, we found that, with 1,024
bits, false positives are typically less than 1%. For NestingLevel,
we allocate 5 bits, which is enough for our programs.

Finally, the Pacman module is enabled and disabled by the Pac-
man on and Pacman off commands, respectively. They can be
implemented as writes to memory-mapped registers. These com-
mands can be used to exclude the program regions that are serial or
otherwise uninteresting.

5.2. Virtualization: Thread Pre-emption and Mi-
gration during Critical Section Execution

While executing a critical section, a thread can be pre-empted
and even migrated to another processor. In an advanced design that
requires OS support, we would like that (i) while a thread is pre-

empted in a critical section, we keep protecting its critical section,
and (ii) when it resumes in a potentially different processor, we
keep accumulating its accesses in the same signature. To support
this, when the OS pre-empts a thread from processor i, it checks the
SigTable for an entry with PID equal to i. If it finds one, it changes
its PID field. Specifically, if the thread will not run anywhere, it
sets the PID field to a special code (e.g., OUT); if it will run on
processor j, it sets the PID field to j.

With this algorithm, if a thread gets pre-empted and is not run-
ning, it still has its critical section protected from asymmetric races.
Indeed, its SigTable entry is still valid and coherence messages are
checked against its signature. The checks may result in sending
Nacks. Then, when the thread is scheduled on a different processor,
its accesses are still accumulated into the same old signature.

This approach is efficient, since there is no copying or sav-
ing/restoring of SigTable entries. Moreover, the hardware is kept
simple, since it always does the same thing: accumulate ac-
cesses from processor i into the SigTable entry tagged with PID
i. Stall index does not get stale, since it contains a table index.

If the program has more threads than processors, there may be
several SigTable entries with a PID equal to OUT. In addition, at a
given time, the SigTable entries may belong to threads from several
different programs. Pacman works correctly because it uses physi-
cal addresses.

There is an issue with the cache state left behind by a thread
that migrates while executing a critical section. Recall from Sec-
tion 3.3.1 that the thread may have entered the critical section with



Architecture CMP with 4 or 8 processors Coherence protocol Snoopy basic-MESI on 64byte bus
Processor type 2-issue, in-order, 1GHz SigTable parameters From Figure 8. Max: 8 rows
Private L1 cache 32Kbytes, 4-way asso., 64byte lines Signature size 1,024 bits
Private L2 cache 512Kbytes, 8-way assoc., 64byte lines Signature structure 8 128-bit Bloom filters with H3
L1 hit latency 2 cycles round trip Cycle detection latency 4-14 cycles
L2 hit latency 8 cycles round trip H-Block1 latency 2 cycles
L2 miss latency 30 cycles round trip to other L2s H-Block2 latency 2 cycles
L2 miss latency 250 cycles round trip to memory

Table 3. Default architectural parameters.

cache state that it later accessed while in the critical section with-
out notifying the SigTable. We showed that Pacman (conserva-
tively) captures this information at cache displacements or at write-
backs/invalidations triggered by other processors. However, if we
now migrate the thread, we cannot capture such events.

To keep the design simple, we accept this limitation. This means
that Pacman misses the few cases listed in Sections 3.3.1 and 3.3.2
for threads that migrate while in a critical section. A more aggres-
sive approach would be to write back to memory all the dirty cache
lines at the time the thread migrates while in a critical section. The
addresses of these writebacks would be put in the signature. A more
drastic approach would be not to allow migration during critical sec-
tion execution. Overall, since critical sections are typically small,
migration during their execution is rare and does not justify addi-
tional actions. Like all data-race handling techniques, Pacman is a
best-effort approach.

5.3. Extensions for Multithreaded Processors
Multithreaded processors have multiple hardware contexts and

run multiple threads at a time. It is possible that different threads
executing on different contexts of the same processor concurrently
execute different critical sections. In this environment, Pacman re-
quires an extension where the messages sent by processors to the
SigTable include both the processor ID and the hardware context
ID within the processor. Similarly, SigTable entries have both a
PID and a ContextID field.

The cache-state issues of Sections 3.3.1 and 3.3.2 are handled
conservatively. If multiple contexts in a processor are concurrently
executing critical sections, any writeback, invalidation, or displace-
ment that needs to insert an address in a signature, does insert it in
all the SigTable entries owned by that processor.

Since the SigTable is connected to the network, it can only ob-
serve data sharing across processors, not across contexts in a pro-
cessor. Consequently, for Pacman to tolerate races as advertised, a
program can only use one context per processor — although multi-
ple programs can use the multiple contexts of a processor. To allow
a program to use multiple contexts in a processor, bigger changes
would be needed, such as stalling all the other threads in the pro-
cessor when one thread is executing a critical section.

5.4. Extensions for a Distributed SigTable
The discussion so far assumed a centralized SigTable, which is

reasonable for a snoopy protocol. To use Pacman in a system with a
directory-based protocol, we need to distribute the SigTable across
the different directory modules. Since such a design is outside our
scope, we only outline it.

Like the directory, the SigTable naturally lends itself to a dis-
tributed environment, with partitions based on address ranges. Con-
sequently, each directory module has an associated SigTable mod-
ule, which is in charge of the range of physical addresses assigned to
the local directory module. When a thread enters a critical section,

the hardware allocates an entry for the processor in all the SigTable
modules; when it exits it, all the entries are deallocated. When a
thread misses on an address, the request naturally reaches the home
directory of that address. There, the address is checked against the
entries in the local SigTable module using the usual algorithm. The
SigTable modules in the other directory modules are not checked.

6. Evaluation
6.1. Experimental Setup

To evaluate Pacman, we instrument parallel application binaries
with Intel’s Pin framework connected to a cycle-by-cycle execution-
driven architecture simulator based on SESC [24]. The simulator
models a chip multiprocessor (CMP) with 4 or 8 processors. The
default parameters of the architecture are shown in Table 3. The
processors are two-issue, in-order, and overlap memory accesses
with instruction execution. Each processor has a private cache hi-
erarchy kept coherent by a basic MESI coherence protocol on an
on-chip bus. The bus is connected to the SigTable and to off-chip
main memory. Unless otherwise indicated, the sizes of the fields in
a SigTable entry are those shown in Figure 8. To generate a signa-
ture, Pacman uses 8 128-bit Bloom filters in parallel using the H3
hash function from [25], for a total of 1,024 bits per signature.

For sensitivity analysis, we consider two cache hierarchy mod-
els, namely one where each processor only has an L1 cache, and
one where it has both a private L1 and a private L2. The first model
puts more pressure on Pacman.

We evaluate Pacman with all the 14 SPLASH-2 applications,
the 12 PARSEC applications that support pthreads, the Sphinx3
speech recognition software [26], and Apache-2.2.3. The SPLASH-
2 codes use their default inputs, while the PARSEC ones use the
simmedium inputs. For Sphinx3, we use the test input provided,
which executes over 500 million instructions, while for Apache, we
set up clients that keep sending requests to the server, so that the
server executes around 40 million instructions.

In our evaluation, we slightly modify the Canneal and Ferret
applications. At the beginning of Canneal, a thread uses a critical
section to initialize a large memory space — even though there is
no other active thread at that time. Consequently, we turn off Pac-
man during that time. In Ferret, each thread initializes a random
number generator within a critical section. Since only the seed is a
shared variable, we move the local-variable accesses in the random
number generator initialization routine outside of the critical sec-
tion. If we did not do these changes, the statistics on critical section
sizes (Section 6.2) would be biased. In addition, for Ferret, if we
inserted all the local-variable addresses into the signature, we could
potentially induce, through address aliasing in the signatures, false
positive conflicts with other threads, and unnecessarily stall them.

In the rest of this section, we characterize the critical sections,
evaluate the overheads of Pacman, and examine the asymmetric
data races discovered by Pacman.



CS Max #Clean #Sig Max # Max CS
# Dynamic Insts #Insts #Insts #Rd #Wr disps addrs sig addrs nesting

Category Application CS (%) per CS in CS per CS per CS per CS per CS in CS level
SPLASH-2 cholesky 6,957 0.0 30.3 161 10.7 4.7 0.0 6.4 11 1
Kernels fft 32 0.3 33.9 47 11.9 10.5 0.1 5.8 7 1

lu/contiguous 272 0.0 36.1 47 12.6 10.7 0.0 6.0 7 1
lu/non cont. 80 0.0 35.2 47 12.4 10.5 0.1 5.8 8 1
radix 78 0.0 26.1 47 9.4 8.4 0.0 5.9 7 1

SPLASH-2 barnes 68,938 0.4 118.1 1,898 40.1 29.3 0.0 11.9 56 1
Apps fmm 44,622 0.2 142.1 252 54.7 27.9 0.0 13.4 21 1

ocean/cont. 4,432 0.0 31.5 45 11.8 9.6 0.0 6.8 9 1
ocean/non cont. 4,312 0.0 30.9 45 11.8 9.5 0.0 5.9 7 1
radiosity 273,087 0.9 18.2 1,226 8.7 5.9 0.0 5.6 89 5
raytrace 95,475 0.3 29.3 6,661 7.5 5.8 0.0 6.0 343 1
volrend 72,524 0.0 12.1 50 5.0 3.0 0.0 4.9 8 1
water-nsquared 6,292 0.0 50.3 51 34.4 12.4 0.0 17.0 18 1
water-spatial 157 0.0 23.8 47 9.6 7.0 0.0 6.0 9 1

PARSEC canneal 4 0.0 7.0 10 2.5 3.5 0.0 3.3 4 1
Kernels dedup 17,932 0.1 315.9 802 121.2 67.9 0.1 14.4 33 1

streamcluster 52,128 0.0 21.0 32 7.1 4.8 0.0 3.2 5 1
PARSEC blackscholes 0 – – – – – – – – –
Apps bodytrack 8,273 0.0 37.0 1,228 15.6 11.1 0.0 6.9 34 1

facesim 7,921 0.0 37.0 154 18.0 9.9 0.0 5.4 11 2
ferret 733 0.0 19.2 44 5.4 7.2 0.0 5.0 9 2
fluidanimate 2,113,870 0.7 15.9 32 10.2 4.1 0.0 8.0 10 1
raytrace 73 0.0 7.8 31 2.6 2.3 0.0 2.2 6 1
swaptions 0 – – – – – – – – –
vips 14,056 0.0 49.0 6,723 18.6 11.8 0.0 8.0 106 23
x264 4,071 0.0 10.6 39 5.9 1.7 0.0 4.0 6 1

Other Apache 8,301 0.4 24.4 40 9.7 5.3 0.0 5.6 8 1
Apps Sphinx3 94,382 3.5 208.5 2,946 86.7 29.1 0.1 6.0 243 2

Table 4. Characteristics of the critical sections (CS) in the applications.

6.2. Characterization of the Critical Sections
Table 4 characterizes the critical sections in all 28 applications

on the 4-processor CMP. Column 3 lists the number of dynamic crit-
ical sections in each program. Column 4 shows the percentage of
the dynamic instructions in the programs that are inside the critical
sections. We see that all programs but Sphinx3 execute less than 1%
of their instructions in critical sections. The percentage in Sphinx3
is 3.5%. Columns 5 and 6 show the average and maximum num-
ber, respectively, of instructions executed per critical section. We
see that the applications tend to have modest-sized critical sections.
Most applications execute less than 100 instructions per critical sec-
tion on average. The maximum number of instructions in a critical
section reaches nearly 7,000 in Vips. Columns 7-8 list the average
number of reads and writes per critical section.

Columns 9-11 correspond to the architecture with only the L1
caches. They show, per critical section, the average number of clean
line displacements, and the average and maximum number of line
addresses included in the signature. We can see that the average
number of clean displacements per critical section is close to zero.
This means that this effect is minor. The average number of line
addresses included in a signature per critical section is typically
less than 10 and, except for a few cases, the maximum number is
not much higher. These numbers suggest that the probability of
false positives in the signatures is low. Note that for the machine
with both L1 and L2 caches, these numbers will be smaller. This is
because caches keep more state.

The last column shows the maximum nesting level of critical
sections. A value more than one means that the application has
nested locks. We can see that most applications have a value of
one. Only Radiosity and Vips, which have a recursive structure,
have significantly deeper levels.

Overall, given the typical sizes and properties of the critical sec-
tions observed, we believe that a simple solution for asymmetric
race detection is enough. Pacman provides such a simple solution.

6.3. Overheads of Pacman
There are two sources of execution overhead in Pacman. The

first one is that some processors receive Nacks and have to retry.
The second one is additional network traffic created by three event
types: a notification message in a clean displacement inside a criti-
cal section, a retry after a Nack, and the extra message in a success-
ful lock acquire or release that hits on a cache line that is in Dirty
or Exclusive state.

Table 5 quantifies these effects for each application. Columns 3-
8 show the total number of Nacks observed during the execution of
the application. For each application, we performed 3-5 runs, and
show the maximum number of Nacks seen in any individual run.
The data corresponds to the architecture with L1 caches only, which
is the worst case. Columns 3-5 correspond to 4-processor runs,
while Columns 6-8 correspond to 8-processor runs. For Apache,
since the server automatically sets the number of threads to a num-
ber larger than 8, we put the data under the 8-thread columns. In
each group of three columns, the first one shows the Nacks observed
due to true conflicts (i.e., two threads access the same variable), the
second one the Nacks due to true conflicts or false sharing, and the
last one the Nacks due to true conflicts, false sharing, or false posi-
tives.

The number of Nacks is very small. Only FMM and Bodytrack
exhibit Nacks due to true conflicts. Each of them has one Nack.
False sharing and false positives increase the number of Nacks. The
highest number is 32 for Radiosity. This is negligible compared to
the 454M dynamic instructions executed by Radiosity. Overall, the
impact of any processor stall due to Nacks is negligible.

Columns 9-10 show the percentage increase in the network traf-
fic due to the three effects listed above. Column 9 applies to the
architecture with L1 caches only, while Column 10 applies to the
one with L1 and L2. The data shows that the increase in traffic
is very small. In the worst application, the increase is 1.5% for the
case of L1 caches and 2.4% for the case of L1 and L2 caches. These



Number of Nacks Number of Nacks Increase in Increase in Sync hits
(L1 only, 4 threads) (L1 only, 8 threads) traffic with traffic with per dyn

Category Application True True+FS True+FS+FP True True+FS True+FS+FP L1 only (%) L1+L2 (%) inst (%)
SPLASH-2 cholesky 0 0 0 0 0 0 0.0 0.0 0.00
Kernels fft 0 0 0 0 0 0 0.0 0.0 0.00

lu/contiguous 0 0 0 0 0 0 0.0 0.0 0.00
lu/non cont. 0 0 0 0 0 0 0.0 0.0 0.00
radix 0 0 0 0 0 0 0.0 0.0 0.00

SPLASH-2 barnes 0 2 4 0 2 4 0.0 0.3 0.01
Apps fmm 1 1 1 1 1 1 0.0 0.1 0.00

ocean/contiguous 0 0 0 0 0 0 0.0 0.0 0.00
ocean/non cont. 0 0 0 0 0 0 0.0 0.0 0.00
radiosity 0 13 15 0 28 32 1.0 1.4 0.04
raytrace 0 0 4 0 0 6 0.0 0.1 0.01
volrend 0 0 0 0 0 0 0.0 0.1 0.00
water-nsquared 0 0 0 0 0 0 0.0 0.1 0.00
water-spatial 0 0 0 0 0 0 0.0 0.0 0.00

PARSEC canneal 0 0 0 0 0 0 0.0 0.0 0.00
Kernels dedup 0 0 0 0 2 2 0.1 0.2 0.00

streamcluster 0 0 0 0 0 0 0.0 0.0 0.00
PARSEC blackscholes 0 0 0 0 0 0 0.0 0.0 -
Apps bodytrack 1 1 2 1 1 2 0.0 0.0 0.00

facesim 0 0 0 0 0 0 0.0 0.0 0.00
ferret 0 0 0 0 0 0 0.0 0.0 0.00
fluidanimate 0 0 0 0 0 0 1.5 2.4 0.05
raytrace 0 0 0 0 0 0 0.0 0.0 0.00
swaptions 0 0 0 0 0 0 0.0 0.0 -
vips 0 0 2 0 0 3 0.0 0.0 0.00
x264 0 0 0 0 0 0 0.0 0.0 0.00

Other Apache - - - 0 3 8 0.3 0.5 0.02
Apps Sphinx3 0 4 6 0 10 14 0.8 1.1 0.02

Table 5. Quantifying the sources of overhead in Pacman.

low numbers result from the fact that critical sections have a modest
size and account for a small fraction of the execution time. Overall,
the impact of this extra traffic is negligible.

Column 11 shows the number of successful lock acquires and
releases that hit on a cache line that is in Dirty or Exclusive state
and, therefore, introduce an additional bus access. The data corre-
sponds to the architecture with both L1 and L2 caches. The column
gives the number of such events as a percentage of dynamic instruc-
tions. We can see that, typically, such number is negligible. In the
worst application, we have 0.05 such events per 100 instructions.
Therefore, the impact of such events is negligible.

Finally, Figure 9 shows the increase in the execution time of the
applications due to all of the Pacman overheads combined. The
data is shown as a percentage of the original execution time of the
applications and is plotted for 1, 4 and 8 threads. There is a data
point for each program, and a line for the average of them all. The
figure shows that, even for 8 threads, the maximum overhead in
any application is only 0.4%, while the average is only 0.07%. The
figure also shows that, for most applications, the overhead increases
slowly with the number of threads. The overhead for 1 thread is due
to the extra bus accesses in synchronizations. Overall, the execution
time overhead of Pacman is negligible.

6.4. Unreported Asymmetric Data Race Bugs

Although the SPLASH-2 and PARSEC codes are widely used,
Column 3 of Table 5 shows that Pacman discovered two true asym-
metric data races: one in FMM and one in Bodytrack.

The asymmetric race in FMM is shown in Figure 10. It hap-
pens in subroutine ComputeSubTreeCosts, where multiple threads
are accessing a tree structure. When two threads T1 and T2 are
concurrently executing the subroutine, it may be that the two point
to the same node from two different places (pb in T1 is the same as
b in T2), and an asymmetric data race can happen.

The asymmetric race in Bodytrack happens between subroutine
Condition::Wait, where variable nWakeupTickets is read and writ-
ten inside a critical section, and subroutine Condition::NotifyOne,
where it is written outside any critical section.

7. Related Work
7.1. Software Proposals for Asymmetric Races

To put our work in perspective, we describe in detail the two
existing proposals to tolerate asymmetric data races, namely, Tol-
eRace [23] and ISOLATOR [22]. Both schemes are software-only
(i.e., they do not add any additional hardware). We then summarize
Pacman’s advantages over them.

In ToleRace, when a safe thread Ts enters a critical section, it
makes two copies in software of all the shared variables in the crit-
ical section. Let us call the original variables V and the two copies
V’ and V”. The safe thread then executes the critical section reading
and writing V’. In the meantime, any unsafe thread Tu can access
the original variables V. When Ts completes the critical section, it
compares V and V”. Based on whether V and V” are the same and
on a knowledge of the access pattern interleaving of Ts and Tu, the
safe thread makes one of three choices: (i) when Tu’s execution can
be serialized before Ts’s, it copies in software V’ to V, (ii) when Ts’s
execution can be serialized before Tu’s, it leaves V as is, and (iii)
when the execution of Tu and Ts cannot be serialized in any way,
it interrupts the program. In cases (i) and (ii), the race has been
tolerated; in case (iii) the race induces a sequentially inconsistent
execution and, therefore, ToleRace is unable to handle it.

ToleRace has several shortcomings. First, a race type of case
(iii) cannot be handled adequately: leaving version V or V’ pro-
duces an inconsistent execution (a detailed example is described in
[22]). Second, when the critical section contains multiple variables
and accesses, the analysis of what race case it is can become com-
plicated. Third, analysis of access patterns is either conservative (if



Figure 9. Execution time overhead of Pacman.

Unlock

void ComputeSubTreeCosts(...) {

T1

...

...

Lock

pb=b−>parent;

pb−>interaction_synch +=1;

T2

...

void ComputeSubTreeCosts(...) {

...

...

...

b−>interaction_synch = 0;

pb−>subtree_cost+=b−>subtree_cost;

b−>subtree_cost += b−>cost;

}

Figure 10. Race discovered in FMM.

static) or slow (if dynamic). Finally, comparisons and copies are
slow and race-prone.

ISOLATOR [22] takes a different approach. When a safe thread
Ts enters a critical section, it makes a copy in software of the pages
that contain the shared variables that will be accessed in the criti-
cal section (Shadow Pages). Then, it changes the protection bits of
the original pages to make them inaccessible. Ts operates on the
shadow pages. If an unsafe thread Tu accesses the original pages, it
gets an exception and gets de-scheduled. When Ts leaves the crit-
ical section, it copies the shadow pages back to the original pages
and unprotects the latter.

ISOLATOR has the advantage of always producing consistent
executions. In addition, thanks to an optimization, the number of
page copies can be reduced. However, it has several shortcomings.
The first one is the substantial compiler and operating system (OS)
support (or code re-writing by the user) required to place variables
in the correct pages and adapt to changing access patterns in the pro-
gram. To apply ISOLATOR to PARSEC, we would have to rewrite
the code and change the variable allocation significantly.

A second shortcoming is that, if such rewriting is not provided,
ISOLATOR will often need to copy large amounts of data at criti-
cal section entries and exits. For example, such data copying is the
main reason why ISOLATOR reports up to 8x overhead for the mi-
crobenchmarks in [22]. Finally, ISOLATOR is prone to deadlocks
and livelocks due to false sharing at page level — e.g., assume that
unsafe thread Tu gets de-scheduled and then Ts attempts to access
a variable in a page that Tu has protected. Moreover, the timeout-
based mechanism that is used to detect such deadlocks is very slow.

Overall, neither ToleRace nor ISOLATOR provides the desired
solution to handle asymmetric races.

7.1.1. Summary of Pacman’s Advantages
Pacman addresses limitations of these schemes. First, Pacman

has negligible execution overhead and can be used in production
runs because it (1) does not perform any data copying (unlike ISO-
LATOR and ToleRace) and (2) minimizes the stall time of unsafe
threads by accurately identifying the addresses where safe and un-
safe threads conflict. This last property results from detecting con-
flicts dynamically in hardware, while the other schemes use conser-
vative, static software analysis to predict conflicts (or slow, dynamic
software analysis). Second, Pacman does not need any support from
compiler or (in the baseline design without virtualization) OS, or
source code modifications (although it may change the code inside
synchronization macros). This is in contrast to the other schemes,
which rely on the compiler (to identify shared accesses inside crit-
ical sections, perform code transformations, or associate variables
with locks), OS (to store variables protected by a given lock in the
same page), and source code modifications. Finally, Pacman is not

prone to wasting time on deadlocks like ISOLATOR (due to the
latter’s page-level false sharing and slow timeout mechanism) and
cannot create inconsistent executions like ToleRace.

Pacman can potentially break the atomicity of a critical section
in some rare cases. These cases may occur when Pacman breaks
a deadlock (Section 3.4.3) and when a thread migrates while it is
executing a critical section (Section 5.2). The cases in the second
group are Pacman’s false negatives.

7.2. Other Related Work
Pacman is related to Transactional Memory (TM) [10] in that

it presents a concept analogous to strong atomicity [3] between a
transaction and a non-transactional access. However, Pacman op-
erates on lock-based code. Moreover, compared to HTM, Pacman
does not need speculation, rollback, timestamp support, or version
management. Even to detect inter-thread conflicts, Pacman can-
not leverage HTM’s tagging of cache lines: since Pacman is non-
speculative, data can overflow into memory. Hence, Pacman needs
to keep a SigTable in memory. Compared to STM, Pacman does
not need to analyze the code.

Pacman is also related to hardware-based mechanisms for fine-
grain memory protection, such as UFO [1] and iWatcher [33]. In
UFO, each memory line has some bits that specify protection in-
formation. Such bits travel with the line to caches. It is possible
to support Pacman-like functionality with UFO. However, UFO is
substantially more intrusive, as it requires maintaining these dis-
tributed bits and building exception handlers for them. iWatcher is
similar although it targets uniprocessors.

Pacman is also related to the many software or hardware
schemes that detect and avoid atomicity violations, such as
AVIO [11], AtomAid [12], AtomTracker [15], or LifeTx [31].
While Pacman focuses on avoiding races rather than atomicity vi-
olations, its hardware is effectively being used to keep atomicity,
albeit for only user-defined critical sections. As a result of the
latter, Pacman needs no training runs. Finally, there are some
software-only schemes to tolerate races and bugs, such as Rx [21]
or Frost [28]. Such techniques, while effective, have substantially
higher overheads. We find Pacman to have negligible overhead.

8. Conclusions
This paper proposed Pacman, the first scheme designed to tol-

erate asymmetric data races in production runs with negligible ex-
ecution overhead. Pacman leverages cache coherence hardware to
temporarily protect the variables that a thread accesses in a criti-
cal section. Unlike the previous, software-based schemes, Pacman
induces negligible slowdown, needs no compiler or (in the base-
line design) OS support, and requires no application source code



changes — although small changes are needed in some libraries.
Moreover, its hardware is unintrusive since it is concentrated in a
module in the network, rather than in the cores. We evaluated Pac-
man for SPLASH-2, PARSEC, Sphinx3, and Apache and showed
that it has negligible overhead. Moreover, we uncovered two unre-
ported asymmetric data races.

Pacman provides a hardware primitive for dynamically and se-
lectively preventing accesses by certain processors to a set of ad-
dresses. This primitive can have several uses in performance and
correctness debugging. We are now exploring such uses.
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