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orevalence of diverse platforms (e.g., multicores, many cores, data executions scheduling overhead 5 0.7
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execution. As a result, Cassandra can adapt to new inputs, execution ? * If the FIFO is full, t.hIS plpellng takes an |nprJt(Sl).after every T * Low false negative rate of 0.18%
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S4- get method(ifd); * (S,L) : each load(L) instruction of shared data and last store . Overhead - 8.5%
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