Cassandra: A Neural Network based Software Bug Detection Scheme :@@
Mohammad M. Alam, Abdullah Muzahid .

{mohammad.alam, abdullah.muzahid!@utsa.edu

Introduction How It Works? Neural Network in Hardware

Programmers spent 50% of their effort in f|nd|ng and f|X|ng software Offline Training c A fuIIy conﬁgurable neural network time multiplexes dan arbitrary 1.0
bugs[1]. Software bug detection becomes more challenging due to |* Profiling RAW(Read After Write) dependences from some correct network topology to a fixed number of neurons and incurs ggzgi
orevalence of diverse platforms (e.g., multicores, many cores, data executions scheduling overhead 5 0.7
centers, accelerators etc.). * Extracted RAW dependences are program invariants * We propose a partially configurable neural network with only one s g'g_
Cassandra uses neuromorphic hardware for invariant based software | | ° Train Neural Network with seq. of RAW as input in a sliding window hidden layer. We limit the maximum number of inputs to a neuron § 0.4-
5 0.3
bug detection. Current schemes extract correct invariants of a program to M .(Nl to Nm) 202
by analyzing many execution traces. The invariants are stored along Offline * Requires only one output(Nout)from the neural network g';_ . - . .
. . . . “ . . ° i i l ' ' l — l . |
with the program. At runtime, as each invariant occurs, it is checked Training Use three stage pipeline without time multiplexing — S1{input), % oy Vo, o%? 0 ’%ﬁ‘“’ffe Ny, 92 %f bo»q,,e
against the stored invariants to determine if it is incorrect (and hence, S2(hidden layer) and S3(output) | | k4 Car Pacy. o™ long i, Mte e
buggy). Cassandra uses hardware based neural networks to perform SIS Ealfh (])cf 52 and S3 takes IT clyclesr\:vhere T is the number of cycles it Fig: Misprediction rate with invalid RAW dependences
online testing and training of invariants alternatively during a program 1 Online Testing Yes Thresold No takes for a .neuron tf) C? cu.ate the OUtPUt'
execution. As a result, Cassandra can adapt to new inputs, execution ? * If the FIFO is full, t.hIS plpellng takes an |nprJt(Sl).after every T * Low false negative rate of 0.18%
environments, and even code with less execution overhead. Misprediction “Mispredicticm cycles. If the FIFO is not full, it can take an input in every cycle * Accuracy of 93.84%(6.16% incorrect) for new code,
No Rate Rate whereas state of the art [2]is 0%(100% incorrect for
Abous oo Online <1 - <3 code not seen)
Thresold > - « | | | S 100 _ _ _ _ _ _ _ _
? Tralnlng % I_I. Casgandral_l
s1: ifd = @; /*Bug in gzip with an input “f1 - f2”*/ i , T 807 | O PSet
. i I 5 %0
Whil@() ; ; | | ke
if(name==-") Fig: Feedback based Learning Design § 407
i i 5 207
S2: get method(ifd) %. g) - . I .
/*Process stdin*/ Online Testing T B T oy, g Vop, N Cay by My, Swg g
else * The neural network calculates its output for the RAW dependence T oy 05 g i, e Ploy, Ve
: : : | : o
53! ifd = open_input_file(..) sequence formed wlth Iast.N RAW (S, L) Fig: Misprediction rate with new code
S4- get method(ifd); * (S,L) : each load(L) instruction of shared data and last store . Overhead - 8.5%
/*¥Process normal file*/ instruction(S) of the shared data forms (S,L). ; Neural Network p : tere.
* |f the output is positive, the sequence is valid. Otherwise, the Pineli cural Network Farameters. ,
sequence is invalid Pipeline e * Input FIFO- 8 entries
. L . . Register Register e 2 Multiplier-add unit for Neuron
SOFTWARE BUG FACTS * Invalid sequences (i.e., instruction addresses) along with the . ciamoid unit for neuron
Semantic Bugs & Memory related S1->S2 S3—>54 neural network output is recorded into Debug Buffer Fig: Partially Configurable Low Overhead Neural Network igmotd unit for nedro
=
bugs: < S3—>S4 S3->S2 5 _ o
: . . etects bugs in real-world applications
- specific set of inputs cl| S3>S4 S3>54 Online Training — . -
£ : o * If misprediction rate is above certain threshold, Cassandra enters . . .
and control flow o oo o o o into Online Training mode e R e Yy city ug
He(;senbljjg: - _ Aooly e The Debug Buffer contains last few (e.g., 600) invalid RAW Apache 1 atomicity violation bug
- depends on execution environ- " :
ment, compilation technique Load Inst. Last Writer Inst é BackProp. dependence sequences. . . Memcached 1 atomicity violation bug
’ _ o ‘ 0ad Inst. Last WHEerinst. £ * Process the contents of the buffer in two steps - Pruning and
- appears in one in millons of |) Ranking. Th ; ois d prs £ el | -
sossible thread interleavings RAW in input an .mg. e pos processmg |s. one offline after a failure. Pbzip2 1 ordering violation bug
generator buff * Pruning: Remove all the entries in the Debug Buffer that matches azip 1 semantic bug
with Correct Set(inputs used for offline training or from input GNU | SETEG BUE @
L. , | Input J NN " Invalid++ generator using any correct exections) coreutils 2 buffer overflow bug
* Data communication(RAW dependences) patterns are different Last N-LRAW | for NN Testing + Ranking: Ranking algorithm produces higher rank for a sequence if
in correct and buggy executions it has more matched dependences(comparing with Correct Set) References
* Neural Networks are efficient In learning patterns. R " d * More RAW dependences to match indicates that the mismatched [1] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer Katzenellenbogen
* Neural Networks are becoming popular as an alternative sx’/\r/ dependence is closer to the root cause of the bug. Reversible debugging sofrware ' ’ |
accelerator for different purposes. [2] Jie Yu and Satish Narayanasamy. A Case for an Interleaving Constrained Shared Memory
* (Can detect some unseen bugs after learning communication Multi-processor. In ISCA, June 2009.
attern Fig' How one load instruction is processed [3] Brandon Lucia and Luis Ceze. Cooperative Empirical Failure Avoidance for Multithreaded
P ' ' Programs. In ASPLOS, 2013

