
int main(){
…}
void foo(){

…
bar()..}
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Programmers spent 50% of their effort in finding and fixing software
bugs[1]. Software bug detection becomes more challenging due to
prevalence of diverse platforms (e.g., multicores, many cores, data
centers, accelerators etc.).

Cassandra uses neuromorphic hardware for invariant based software
bug detection. Current schemes extract correct invariants of a program
by analyzing many execution traces. The invariants are stored along
with the program. At runtime, as each invariant occurs, it is checked
against the stored invariants to determine if it is incorrect (and hence,
buggy). Cassandra uses hardware based neural networks to perform
online testing and training of invariants alternatively during a program
execution. As a result, Cassandra can adapt to new inputs, execution
environments, and even code with less execution overhead.
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ifd = 0;
while( .. )

if( name==“-”)
get_method(ifd)
/*Process stdin*/

else
ifd = open_input_file(..)
get_method(ifd);
/*Process normal file*/
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 Semantic Bugs & Memory related 

bugs:
- specific set of inputs
- specific sequence of executions

and control flow
Heisenbug:

- depends on execution environ-
ment, compilation technique

- appears in one in millons of 
possible thread interleavings

SOFTWARE BUG FACTS

• Data communication(RAW dependences) patterns are different 
in correct and buggy executions 

• Neural Networks are efficient in learning patterns.
• Neural Networks are becoming popular as an alternative 

accelerator for different purposes.
• Can detect some unseen bugs after learning  communication 

pattern. 

Offline Training
• Profiling RAW(Read After Write) dependences from some correct 

executions
• Extracted RAW dependences are program invariants
• Train  Neural Network with seq. of RAW as input in a sliding window
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• A fully configurable neural network time multiplexes an arbitrary 
network topology to a fixed number of neurons and incurs 
scheduling overhead

• We propose a partially configurable neural network with only one 
hidden layer. We limit the maximum number of inputs to a neuron 
to M (N1 to Nm)

• Requires only one output(Nout)from the neural network
• Use three stage pipeline without time multiplexing – S1(input), 

S2(hidden layer) and S3(output)
• Each of S2 and S3 takes T cycles where T is the number of cycles it 

takes for a neuron to calculate the output. 
• If the FIFO is full, this pipeline takes an input(S1) after every T 

cycles. If the FIFO is not full, it can take an input in every cycle

• The Debug Buffer contains last few (e.g., 600) invalid RAW 
dependence sequences. 

• Process the contents of the buffer in two steps - Pruning and 
Ranking. The post processing is done offline after a failure.

• Pruning: Remove all the entries in the Debug Buffer that matches 
with Correct Set( inputs used for offline training or from input 
generator using any correct exections)

• Ranking:  Ranking algorithm produces higher rank for a sequence if 
it has more matched dependences(comparing with Correct Set)

• More RAW dependences to match indicates that the mismatched 
dependence is closer to the root cause of the bug.
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Online Testing
• The neural network calculates its output for the RAW dependence 

sequence formed with last N RAW (S,L)
• (S,L) : each load(L) instruction of shared data and last store 

instruction(S) of the shared data forms (S,L).
• If the output is positive, the sequence is valid. Otherwise, the 

sequence is invalid.
• Invalid sequences (i.e., instruction addresses) along with the 

neural network output is recorded into Debug Buffer

Online Training
• If misprediction rate is above certain threshold, Cassandra enters 

into Online Training mode

• Low false negative rate of 0.18%
• Accuracy of  93.84%(6.16% incorrect) for new code, 

whereas state of the art [2]is 0%(100% incorrect for 
code not seen) 

Program No. of Bugs & Type

MySQL 3 atomicity violation bug

Apache 1 atomicity violation bug

Memcached 1 atomicity violation bug

Pbzip2 1 ordering violation bug

gzip 1 semantic bug

GNU 
coreutils

1 semantic bug & 
2 buffer overflow bug

• Overhead  - 8.5%
Neural Network Parameters:

• Input FIFO– 8 entries
• 2 Multiplier-add unit for Neuron 
• Sigmoid unit for neuron

Detects bugs in real-world applications

Introduction

Motivation

How It Works? Neural Network in Hardware

Offline Pruning and Ranking
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Fig: How one load instruction is processed 

Fig: Feedback based Learning Design 

Fig: Partially Configurable Low Overhead Neural Network

Fig: Misprediction rate with invalid RAW dependences

Evaluation

Fig: Misprediction rate with new code

/*Bug in gzip with an input “f1 - f2”*/


