
int main(){
…}
void foo(){

…
bar()..}

Cassandra: A Neural Network based Software Bug Detection Scheme
Mohammad M. Alam, Abdullah Muzahid
{mohammad.alam, abdullah.muzahid}@utsa.edu

Programmers spent 50% of their effort in finding and fixing software
bugs[1]. Software bug detection becomes more challenging due to
prevalence of diverse platforms (e.g., multicores, many cores, data
centers, accelerators etc.).

Cassandra uses neuromorphic hardware for invariant based software
bug detection. Current schemes extract correct invariants of a program
by analyzing many execution traces. The invariants are stored along
with the program. At runtime, as each invariant occurs, it is checked
against the stored invariants to determine if it is incorrect (and hence,
buggy). Cassandra uses hardware based neural networks to perform
online testing and training of invariants alternatively during a program
execution. As a result, Cassandra can adapt to new inputs, execution
environments, and even code with less execution overhead.

S1:

S2:

S3:
S4:

ifd = 0;
while(..)

if(name==“-”)
get_method(ifd)
/*Process stdin*/

else
ifd = open_input_file(..)
get_method(ifd);
/*Process normal file*/

S1S2
S3S4
S3S4
S3S4
...
...

S3S4
S3S2
S3S4
...
...

Se
q

. o
f

R
A

W
 Semantic Bugs & Memory related

bugs:
- specific set of inputs
- specific sequence of executions

and control flow
Heisenbug:

- depends on execution environ-
ment, compilation technique

- appears in one in millons of
possible thread interleavings

SOFTWARE BUG FACTS

• Data communication(RAW dependences) patterns are different
in correct and buggy executions

• Neural Networks are efficient in learning patterns.
• Neural Networks are becoming popular as an alternative

accelerator for different purposes.
• Can detect some unseen bugs after learning communication

pattern.

Offline Training
• Profiling RAW(Read After Write) dependences from some correct

executions
• Extracted RAW dependences are program invariants
• Train Neural Network with seq. of RAW as input in a sliding window

Offline
Training

Online Testing

AAbove
Thresold

?

Misprediction
RateNo

Online
Training

Below
Thresold

?

Misprediction
Rate

Yes

No
Yes

RAW in input
generator buff

Load Inst. Last Writer Inst.

Input
for NNLast N-1 RAW

Mode
?

NN

Valid
?

No

Apply
BackProp.

Tr
ai

n
in

g

Invalid++
Testing

Record
RAW

• A fully configurable neural network time multiplexes an arbitrary
network topology to a fixed number of neurons and incurs
scheduling overhead

• We propose a partially configurable neural network with only one
hidden layer. We limit the maximum number of inputs to a neuron
to M (N1 to Nm)

• Requires only one output(Nout)from the neural network
• Use three stage pipeline without time multiplexing – S1(input),

S2(hidden layer) and S3(output)
• Each of S2 and S3 takes T cycles where T is the number of cycles it

takes for a neuron to calculate the output.
• If the FIFO is full, this pipeline takes an input(S1) after every T

cycles. If the FIFO is not full, it can take an input in every cycle

• The Debug Buffer contains last few (e.g., 600) invalid RAW
dependence sequences.

• Process the contents of the buffer in two steps - Pruning and
Ranking. The post processing is done offline after a failure.

• Pruning: Remove all the entries in the Debug Buffer that matches
with Correct Set(inputs used for offline training or from input
generator using any correct exections)

• Ranking: Ranking algorithm produces higher rank for a sequence if
it has more matched dependences(comparing with Correct Set)

• More RAW dependences to match indicates that the mismatched
dependence is closer to the root cause of the bug.

[1] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer Katzenellenbogen.
Reversible debugging software
[2] Jie Yu and Satish Narayanasamy. A Case for an Interleaving Constrained Shared Memory
Multi-processor. In ISCA, June 2009.
[3] Brandon Lucia and Luis Ceze. Cooperative Empirical Failure Avoidance for Multithreaded
Programs. In ASPLOS, 2013

N1

N2

Nm

Nout

S1 S2 S3

Pipeline
Register

Pipeline
Register

Online Testing
• The neural network calculates its output for the RAW dependence

sequence formed with last N RAW (S,L)
• (S,L) : each load(L) instruction of shared data and last store

instruction(S) of the shared data forms (S,L).
• If the output is positive, the sequence is valid. Otherwise, the

sequence is invalid.
• Invalid sequences (i.e., instruction addresses) along with the

neural network output is recorded into Debug Buffer

Online Training
• If misprediction rate is above certain threshold, Cassandra enters

into Online Training mode

• Low false negative rate of 0.18%
• Accuracy of 93.84%(6.16% incorrect) for new code,

whereas state of the art [2]is 0%(100% incorrect for
code not seen)

Program No. of Bugs & Type

MySQL 3 atomicity violation bug

Apache 1 atomicity violation bug

Memcached 1 atomicity violation bug

Pbzip2 1 ordering violation bug

gzip 1 semantic bug

GNU
coreutils

1 semantic bug &
2 buffer overflow bug

• Overhead - 8.5%
Neural Network Parameters:

• Input FIFO– 8 entries
• 2 Multiplier-add unit for Neuron
• Sigmoid unit for neuron

Detects bugs in real-world applications

Introduction

Motivation

How It Works? Neural Network in Hardware

Offline Pruning and Ranking

References

Fig: How one load instruction is processed

Fig: Feedback based Learning Design

Fig: Partially Configurable Low Overhead Neural Network

Fig: Misprediction rate with invalid RAW dependences

Evaluation

Fig: Misprediction rate with new code

/*Bug in gzip with an input “f1 - f2”*/

