

Forecaster: A Continuous Learning Approach to Improve Hardware Efficiency

Phat Nguyen, Abhishek Taur, Abdullah Muzahid Texas A&M University

Arnav Kansal, Mohamed Zahran New York University

Introduction

- · Power is a critical issue in multicore architectures.
- However, aggressively reducing power consumption could deteriorate an application's performance to an unacceptable level.
- Forecaster uses a hardware neural network that periodically collects hardware events to predict how much of different hardware structures should be used and reconfigures them accordingly.
- . A prediction is accurate if the efficiency is improved, Otherwise, it is considered inaccurate, and the neural network is retrained.

Motivation

- . Hardware resources are not always fully utilized (Fig. 1).
- Programs tend to change their behavior during the execution (Fig. 2).

Figure 1: Average shared cache usage among 7 PARSEC Benchmarks

■ In Use ■ Free space

Main Idea:

If we can learn the program pattern and dynamically turn off some unnecessary components, then we will get better energy efficiency.

[1] T. Sherwood, S. Sair and B. Calder, "Phase tracking and prediction," 30th Annual International Symposium on Computer Architecture, 2003. Proceedings., San Diego, CA, USA, 2003, pp. 336-347. doi: 10.1109/ISCA.2003.1207012

How It Works

Goal:

. Improve the performance per Watt: IPC3/W

Reconfigurable Components:

Components	Value Range	Unit
L2 (Private) Cache	30, 40, 50, 60, 70, 80, 90, 100	Percent
L3 (Shared) Cache	20, 30, 40, 50, 60, 70, 80, 90, 100	Percent

Forecaster Workflow

Figure 3: The workflow

(*) N = interval size (0.2M)

How big should the interval size be?

- Too big: hardware tuning opportunities missed.
- Too small: too many reconfigurations, more overhead

Initial Training

- The first i (i=80) intervals of the execution. No prediction.
- . The purpose is to collect unbiased preliminary training data.
- . Prevent the untrained network to make uneducated guesses and damage the system performance.
- . The hardware is reconfigured following the exact rules that we use to train the neural network.

How to turn off the cache?

- Always leave at least one block per set (to avoid any complication with the cache controller).
- . Disabled blocks are skipped in the cache replacement list.

The Neural Network Predictor

- Fully connected neural network.
- One model for each component.

Input:

- Normalized # of floating-point instructions
- Normalized # of integer instructions
- Normalized # of memory instructions
- Normalized # of control instructions
- Normalized # of logic instructions
- . Amount of free space of the cache (%).

Output:

- . Increase (+10%)
- Decrease (- 10%)
- \cdot Maintain (=)

Experimental Results

Experimental Setup:

Parameter	4-core 2MB L3	i7-4930MX ^[2]	i9-9980HK ^[3]
CPU	4-core @ 3.0Ghz	4-core @ 3.0Ghz	8-core @ 2.4Ghz
Private L1	32KB, 64B line,	32KB, 64B line,	32KB, 64B line,
Cache (I/D)	8-way	8-way	8-way
Private L2	256KB, 64B line,	256KB, 64B line,	512KB, 64B line,
Cache	8-way	8-way	4-way
Shared L3	2MB, 64B line,	8MB, 64B line,	16MB, 64B line,
Cache	16-way	16-way	16-way

[2] Based on the cache configuration of the Intel Core® i7-4930MX [3] Based on the cache configuration of the Intel Core® i9-9980HK

Average Power Savings:

- Combination of static and dynamic power.
- . i7-4930MX: 4.16%

Figure 5: Power savings across 7 PARSEC Benchmarks (%)

Average Efficiency Gains:

- · i7-4930MX: 2.92%
- · i9-9980HK: 4.82%

Figure 6: Efficiency gains across 7 PARSEC Benchmarks (%)

Prediction Accuracy:

- $L2 \mod el = 97.31\%$
- L3 model = 95.40%

System IPC Overheads:

- · i7-4930MX: -0.46%
- · i9-9980HK: -0.32%

Future Work

- . Adding more components:
- ⇒ Data Prefetcher
- **Branch Predictor**
- Determining the hardware implementation of Forecaster.
- Computing realistic power consumption of Forecaster based on the hardware implementation.
- . Implementing continuous learning with Deep Reinforcement Learning.
- . Investigating the efficiency of Forecaster in multitasking environment.