
SigRace: Signature-Based Data Race Detection

Abdullah Muzahid
University of Illinois at

Urbana-Champaign, USA
muzahid2@illinois.edu

Darío Suárez
Universidad de Zaragoza

Zaragoza, Spain
dario@unizar.es

Shanxiang Qi
University of Illinois at

Urbana-Champaign, USA
sqi2@illinois.edu

Josep Torrellas
University of Illinois at

Urbana-Champaign, USA
torrella@illinois.edu

ABSTRACT
Detecting data races in parallel programs is important for both soft-
ware development and production-run diagnosis. Recently, there
have been several proposals for hardware-assisted data race detec-
tion. Such proposals typically modify the L1 cache and cache co-
herence protocol messages, and largely lose their capability when
lines get displaced or invalidated from the cache. To avoid these
shortcomings, this paper proposes a novel approach to hardware-
assisted data race detection. The approach, called SigRace, relies
on hardware address signatures. As a processor runs, the addresses
of the data that it accesses are automatically encoded in signatures.
At certain times, the signatures are automatically passed to a hard-
ware module that intersects them with those of other processors. If
the intersection is not null, a data race may have occurred.

This paper presents the architecture of SigRace, an implemen-
tation, and its software interface. With SigRace, caches and co-
herence protocol messages are unmodied. Moreover, cache lines
can be displaced and invalidated with no effect. Our experiments
show that SigRace is signicantly more effective than a state-of-
the-art conventional hardware-assisted race detector. SigRace nds
on average 29% more static races and 107% more dynamic races.
Moreover, if we inject data races, SigRace nds 150% more static
races than the conventional scheme.

Categories and Subject Descriptors
B [Hardware]: B.3 Memory Structures,B.3.2 Design Styles. Sub-
jects: Shared memory; B.3.4 [Reliability, Testing, and Fault-
Tolerance]: Error checking.

General Terms
Design, Measurement, Reliability.

Keywords
SigRace, Signature, Timestamp, Data Race, Concurrency Defect,
Happened-Before.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for prot or commercial advantage and that copies
bear this notice and the full citation on the rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specic
permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$5.00.

1. INTRODUCTION
With the widespread use of multicore hardware, parallel pro-

gramming is likely to become more prevalent. At the same time,
concurrency bugs are likely to take on a higher prole and become
a very costly problem. Consequently, it is crucial to continue de-
veloping more effective techniques to detect and x them.

An important type of concurrency bug is a data race. A data
race occurs when two threads access the same variable without an
intervening synchronization and at least one of the accesses is a
write. The erroneous program behavior caused by the race may
only appear under certain access interleavings, making debugging
data races notoriously hard.

For this reason, data race detection has been the subject of much
work (e.g., [5, 8, 12, 14, 15, 16, 17, 18, 19, 22, 24, 26, 27, 29,
30]), including the development of commercial software tools for
race debugging (e.g., [8, 26]) and even the proposal of special hard-
ware structures in the machine (e.g., [12, 18, 19, 30]). In general,
there are two approaches to nding data races, namely the lock-
set approach, as in Eraser [24], and the happened-before one, as
in Thread Checker [8]. The lockset approach is based on the idea
that all accesses to a given shared variable should be protected by
a common set of locks. Consequently, it tracks the set of locks
held while accessing each variable. It reports a violation when the
currently-held set of locks (lockset) at two different accesses to the
same variable have a null intersection.

The happened-before approach relies on epochs. An epoch is
a thread’s execution between two consecutive synchronization op-
erations. Each processor has a logical clock, which identies the
epoch that the processor is currently executing. In addition, each
variable has a timestamp, which records at which epoch the pro-
cessor accessed it. When another processor accesses the variable,
it compares the variable’s timestamp to its own clock, to determine
the relationship between the two corresponding epochs: either one
logically happened before the other, or the two logically overlap.
In the latter case, we have a race.

Race detectors that use these algorithms in software typically in-
duce about 10–50x slowdowns on programs [8, 14, 22, 24]. Such
slowdowns can distort the timing of races identied in production
runs, and make them hard to nd. For this reason, there have
been several recent proposals for race detectors with hardware as-
sists [12, 18, 19, 30]. Such schemes should be effective at debug-
ging races in production runs. However, they detect races by aug-
menting the cache state and the coherence protocol. Specically,
they tag each cache line with a timestamp [12, 18, 19] or a lock-
set [30], perform additional operations on local/external access to

337

the cache, and piggyback information on cache coherence protocol
messages. L1 caches and coherence protocol units are key hard-
ware structures, either time-critical or complicated. In addition, if
a line is displaced or invalidated from the cache, these systems typ-
ically lose the ability to detect races involving the line.

This paper proposes a novel approach to hardware-assisted data
race detection that overcomes these limitations. Our approach,
called SigRace, relies on hardware address signatures. As a pro-
cessor runs, the addresses of the data that it accesses are automat-
ically encoded in signatures. At certain times, the signatures are
automatically passed to a hardware module that intersects them to
those of other processors. If the intersection is not null, a data race
may have occurred. With SigRace, there are no changes to the
cache or the cache coherence protocol messages, and there are no
critical-path operations performed on local/external access to the
cache. Moreover, lines can be displaced or invalidated from caches
without affecting SigRace’s ability to detect data races.

This paper presents the architecture of SigRace, an implemen-
tation, and its software interface. Application code is unmodied.
Our experiments show that SigRace is signicantly more effective
than a state-of-the-art conventional hardware-assisted race detector.
SigRace nds, on average, 29% more static races and 107% more
dynamic races. Moreover, if we inject data races, SigRace nds
150% more static races than the conventional scheme.

This paper is organized as follows: Section 2 gives a background;
Sections 3 and 4 describe the SigRace architecture and implemen-
tation; Section 5 evaluates SigRace; and Section 6 concludes.

2. BACKGROUND

2.1 Logical Timestamps for Happened-Before
Lamport’s happened-before relation [9] in a multithreaded en-

vironment states that an event α happened before another β if (i)
both are performed by the same thread and α precedes β in pro-
gram order, or (ii) α is a release and β is an acquire on the same
object, or (iii) for some other event γ, α happened before γ and γ
happened before β. If α happened before β or vice-versa, the two
events are ordered; otherwise, they are concurrent or unordered.
The happened-before algorithm for race detection nds out whether
two memory accesses to the same location that are performed by
different threads are unordered and at least one is a write. This
algorithm only detects races that actually occur during execution.

In a typical implementation, each thread maintains a logical vec-
tor clock, which has as many components as number of threads [7].
If thread t has a vector clock vct[.], then the element vct[t] con-
tains the time of the thread itself and, given another thread u, vct[u]
contains the latest time of u “known” to t. When t performs a syn-
chronization operation, it starts a new Epoch and increments vct[t].
Suppose that, after t performed a release on object S, u acquires S.
In this case, u increments vcu[u] and, in addition, updates the rest
of vcu[.] as follows: vcu[i] = max(vcu[i], vct[i]) for every i �= u.
Here, vct[.] is the vector clock of thread t after the release oper-
ation. We refer to the value of a thread’s vector clock during an
epoch as the epoch’s Timestamp. Figure 1(a) shows an example
execution with epoch timestamps.

We determine whether there is a happened-before relation be-
tween two epochs by comparing their timestamps. Specically,
if epoch f of thread t has timestamp vcf

t [.] and epoch g of thread
u has timestamp vcg

u[.], then f happened before g if and only if
vcf

t [t] < vcg
u[t] and vcf

t [u] < vcg
u[u]. For example, in Figure 1(a),

the epoch after the acquire in Thread 2 happened before the epoch
after the second acquire in Thread 0.

Committed
Instructions

(b)

Thread1Thread0 Thread2

Acquire

Release
Acquire

Release
Acquire

Release

[0,0,0]

[1,0,0]

[2,0,0]

[3,2,2]

[2,1,0]

[2,2,0]

[0,0,0][0,0,0]

[2,2,1]

[2,2,2]Acquire

(a)

Sync

Sync

Epoch Block

Block

Figure 1: Example of execution of three threads with epoch
timestamps in brackets (a), and definitions in a thread’s execu-
tion (b).

2.2 Hardware Schemes for Race Detection
There are at least four proposals for hardware-assisted data-race

detectors, namely Min and Choi’s [12], ReEnact [19], CORD [18]
and HARD [30]. They all detect races by tagging the state in the
caches as it is being accessed, and then piggybacking the tags on
cache coherence protocol messages between processors so that they
can be compared.

ReEnact and CORD use the happened-before approach. They
tag each cache line with timestamp information, and send and com-
pare timestamps at least at every coherence action (invalidation of
cached line or external read of a dirty cached line). In ReEnact, the
tag is an index into a table of vector-clock timestamps. In CORD,
the tag is four scalar timestamps (two for read and two for write),
and two sets of read-write bits per word. HARD uses the lockset
approach and, therefore, only handles locks properly. It tags each
cache line with two special state bits, and a bit vector that repre-
sents the lockset for the line. These bits are checked at every ac-
cess to the line, and are kept coherent by the coherence protocol as
if they were data. Finally, Min and Choi use the happened-before
approach for only nested doall loops. They tag each cache line with
a set of read and write bits for each doall nesting level, and perform
tag checking at every cache access.

In all these schemes, the hardware can easily detect an address
and an instruction involved in a race on the y. Then, to reveal the
other (or several other) instructions involved in the same race to the
programmer, it is necessary to roll back and re-execute the code
section. For example, ReEnact [19] executes under thread-level
speculation. If a race is detected, it rolls back execution to the most
recent checkpoint, places a watchpoint on the racing address, and
re-executes. The machine then captures all the accesses to the rac-
ing address. In addition, re-execution is also necessary to discard
false-positive races. They occur because some of these hardware
schemes tag the cache at line-size granularity. Consequently, ac-
cesses from different processors to different words of the same line
(false sharing) may appear as races. Re-execution disambiguates
this case.

Overall, these schemes have two shortcomings. First, they mod-
ify the L1 cache, the operations performed on some local/external
accesses to L1, and the cache coherence protocol messages. These
are key hardware structures, either time-critical or complicated to
design and debug. Second, when a line is displaced or invalidated
from the cache, the system loses its ability to detect a data race for
that line. An exception is CORD, which keeps some timestamp in-

338

formation in memory. We would like a design that decouples cache
and coherence protocol from race detection, and has a longer de-
tection window than that provided by cache residence.

2.3 Hardware Address Signatures
A hardware address signature is a long register (e.g., 2Kbits long)

where the memory addresses accessed by the processor are auto-
matically hash-encoded and accumulated using a Bloom lter [2].
Signatures have been used in the Bulk system [4] and several sub-
sequent multiprocessor designs (e.g., [3, 13, 28]) to detect data de-
pendences between threads in thread-level speculation and transac-
tional memory. Signatures are efciently operated on in hardware
using simple logic (e.g., bit-wise AND of signatures to nd com-
mon addresses). From a signature, it is only possible to obtain a
superset of the addresses that were originally encoded in the sig-
nature. Consequently, operations on signatures may produce false
positives, although not false negatives.

In this paper, we use signatures to detect data races. While
HARD [30] used a Bloom lter to encode locksets for efcient ma-
nipulation, this is the rst paper that uses address signatures for
happened-before race detection.

3. SIGNATURE-BASEDRACEDETECTION

3.1 Overview of the Idea
The idea of SigRace is to automatically record the set of ad-

dresses accessed by the processor in a code section in hardware
signatures. At appropriate intervals, the signatures and the epoch
timestamp are automatically passed to an on-chip hardware module
called Race Detection Module (RDM). The RDM keeps the signa-
tures and the timestamp in an in-order queue assigned to the initiat-
ing processor, and compares them to the entries of queues assigned
to other processors using very efcient signature operations. The
comparison quickly determines whether there has been a potential
data race.

SigRace addresses the two shortcomings of existing hardware-
assisted schemes. First, there are no L1 cache modications, no
critical-path operations performed on local/external accesses to L1,
and no cache coherence protocol message changes. Signature gen-
eration, storage, and comparison are decoupled from caches and
coherence protocol. Second, lines can be displaced or invalidated
from caches without SigRace losing the ability to detect data races.
In practice, the RDM necessarily has limited storage capacity, and
old signatures are discarded when room is needed, also limiting the
race detection window. We will see, however, that SigRace’s race
detection capability is higher than that of cache-based systems.

Like all of the currently-proposed hardware schemes (Section
2.2), SigRace needs to rely on rollback and re-execution to pro-
vide the full set of racing instructions to the programmer, and to
disambiguate false-positive races. However, using signatures in-
troduces two differences. First, since SigRace detects races lazily
when signatures are compared, SigRace without re-execution can-
not provide any of the racing instructions. In contrast, since the
currently-proposed schemes detect the race eagerly, they can plau-
sibly detect one of the racing instructions without re-execution.

The second difference is the source of false-positive races. Un-
like currently-proposed schemes, SigRace does not suffer false pos-
itives due to false sharing. This is because SigRace encodes fine-
grain (e.g., word) addresses in signatures. Accesses to different
words of the same line do not induce a data race report. How-
ever, address aliasing in signatures may induce false positives in
SigRace. This is because signatures represent a superset of the ad-
dresses that were encoded [4]. False negatives are not possible.

For simplicity, we want SigRace to support the rollback and re-
execution largely in software. Consequently, SigRace does not use
thread-level speculative execution. Reads and writes commit as
usual. We use the ReVive checkpointing/rollback mechanism pro-
posed by Prvulovic et al. [20]. After rollback and re-execution to
the race, an analysis phase takes place. We envision rollback, re-
execution, and analysis to be transparent to the user, who should
at worst notice a slight slowdown when many false data races are
detected.

Address collection into signatures is disabled and enabled in
software at kernel entries and exits, respectively, and, optionally,
at library entries and exits. This typically improves race detection.
Moreover, the programmer can disable address collection during
the execution of certain code sections. Finally, signatures are as-
signed to software threads rather than to hardware contexts.

In the following, we describe SigRace’s operation under three
stages: normal execution, re-execution, and race analysis. For sim-
plicity of presentation, this section assumes one thread per proces-
sor and no thread migration. The implementation of SigRace is left
for Section 4.

3.2 Normal Execution under SigRace
The execution of a thread is logically divided into epochs, which

are the dynamic instructions committed between synchronization
operations (Figure 1(b)). The latter include, e.g., acquiring a lock,
releasing it, waiting on a ag, setting a ag, or crossing a barrier.
Under SigRace, each processor keeps the timestamp of the current
epoch, which is encoded and updated as per Section 2.1. In addi-
tion, the processor has a Read (R) and a Write (W) Signature. When
a load or a store commits, a hardware Bloom lter as in [4] auto-
matically hash-encodes and accumulates the address loaded from
or stored to, respectively, into the correct signature.

Ideally, a processor can keep its timestamp and R and W signa-
tures to itself until the end of the epoch. At that point, they are
made visible to all other processors, to check for data races. In
practice, long epochs would cause the signatures to accumulate so
much state that any operation on them would likely induce many
false positives due to aliasing [4]. Consequently, when the proces-
sor has committed a certain number of dynamic instructions that
we call a Block without nding a synchronization operation, the
hardware automatically passes the timestamp and signatures to the
RDM. Figure 1(b) shows the resulting execution: a block nishes
when either a certain number of dynamic instructions have been
committed or a synchronization operation is found.

The exact actions taken when a block in processor i nishes for
either reason are as follows (Figure 2). First, the hardware automat-
ically dumps the timestamp and R and W signatures into a memory-
mapped FIFO queue of registers in the RDM called BlockHisto-
ryQueue[i] (Step 1 in the gure). To save network bandwidth, the
data is transferred in compressed format. The R and W signatures
are then cleared. Finally, if the block nished because of a synchro-
nization operation, library software updates the epoch timestamp
and then saves it in a log in memory to keep a trail of timestamp
changes — which is useful if we need to roll back execution.

At the RDM, simple hardware automatically compares the in-
coming data to entries in all the other BlockHistoryQueue[.] (Step
2 in the gure). Specically, for a given BlockHistoryQueue[j], the
incoming timestamp TSi0 gets compared to TSj0, TSj1, etc — in
sequence order starting from the latest one available. Such compar-
isons stop as soon as one of the j timestamps is found to precede the
incoming timestamp — in this case, due to transitivity, all earlier j
timestamps will also precede the incoming one. Then, for all times-
tamp pairs found to be unordered (e.g., TSi0 and TSjN), simple

339

O
ld

er
 B

lo
ck

s R i0 W i0TS i0

R i1 W i1TS i1

W i2TS i2 R i2

Proc i Proc jTS i0 R i0 W i0

2

1 3
R jN
W jN
W jN

 i0

 i0

 i0

 W

U

 R

U

 W

U

if (TS i0 unordered TS jN)

BlockHistoryQueue[i]

...

BlockHistoryQueue[0] BlockHistoryQueue[j] BlockHistoryQueue[n−1]

R WTS

R WTS

WTS R

 j0 j0 j0

 j1 j1 j1

 j2 j2 j2 O
ld

er
 B

lo
ck

s

Race Detection Module (RDM)

On−Chip Network
Dump

 W i0 i0 i0TS R

Figure 2: Operations when a block finishes. In the figure, TS, R, andW refer to timestamp and read and write signature, respectively.
In any BlockHistoryQueue[k], entries for older blocks have higher subscripts.

signature functional units compute Ri0 ∩ WjN , Wi0 ∩ RjN , and
Wi0∩WjN (Step 3 in the gure). If any of these is not null, the two
blocks have accessed the same location(s) without synchronization
and at least one wrote. We have detected a data race — or a false
positive. We call these two blocks and their corresponding threads
the Conflicting Blocks and Threads.

A BlockHistoryQueue[k] is a FIFO queue. When it overows,
information on the displaced blocks is lost. We have lost the ability
to detect data races in those blocks. We accept this limitation to
keep overheads to a minimum.

3.3 Re-Execution under SigRace
When a pair of Conicting Blocks is found, we want to identify

for the user the exact instructions and address(es) involved in the
race(s), and to weed out any false positive transparently to the user.
In our design, an exception forces all processors to roll back to
the previous checkpoint and enter the Re-execution mode. In this
section, we describe the checkpointing support and the re-execution
process.

3.3.1 Checkpointing Support
The SigRace design that we present needs a low-overhead check-

pointing scheme. Ideally, such a scheme would already be in place
for reliability purposes, and SigRace would reuse it. One possible
scheme is ReVive [20], which performs incremental memory-state
checkpointing. With ReVive, all processors are interrupted at in-
tervals of several milliseconds, at which point, a software handler
creates a global light-weight checkpoint. The checkpoint consists
of saving the register state of all processors and writing back all the
dirty cache lines to memory. Then, during execution, the memory
controller logs every rst update to a main memory location since
the previous checkpoint (i.e., the log saves the value in memory
before the rst write-back of a dirty line from caches to the loca-
tion). Rolling back to the previous checkpoint involves undoing the
trail of memory updates from this log until the checkpoint, and then
restoring the registers. The ReVive design in Prvulovic et al. [20]
adds a 6.3% execution time overhead.

In addition, the kernel collects and buffers the inputs to the pro-

gram during Normal execution — such as interrupts, system call
returns, and I/O input — and passes them to the re-execution at
appropriate times. Support similar to this is provided by Flash-
back [25] and Rx [21], which require no hardware modications.

With these two mechanisms, we will now see that SigRace re-
executes following the same paths until the rst data race is found.

3.3.2 Re-Execution Operation
Re-execution forces the application to follow the same order of

epochs as in the original execution, and leaves each thread at the
beginning of the epoch that the thread was executing when the race
was detected. This is shown in Figure 3, where a race was de-
tected at the points shown in Figure 3(a), and re-execution brings
the threads to points A, B, C, and D in Figure 3(b). Note that re-
execution does not bring each thread to the actual block that it was
executing when the race was detected. This is because we do not
rely on the ability to reproduce block boundaries exactly.

Checkpoint

A B

C

D

Checkpoint

Sync

Sync

Sync

Sync
Sync

Sync

Sync

Thread0 Thread1 Thread2 Thread3

(b)

Sync

Sync

Sync

Sync
Sync

Sync

Sync

Thread0 Thread1 Thread2 Thread3

(a)

Race
Data

Figure 3: Detection of a data race during Normal (a) and Re-
execution (b) modes.

To reproduce the order of epochs, SigRace uses the history of
logged timestamps (Section 3.2). They encode the history of syn-
chronization operation orders — i.e., which thread completed a
synchronization operation before which other thread. SigRace uses
these timestamps to follow the same synchronization orders.

340

Specically, each processor has a Thread Re-execution Times-
tamp (TRT) register into which, as it re-executes, it successively
loads the timestamps logged since the checkpoint. Recall that each
timestamp was saved after the processor went past a synchroniza-
tion operation. In addition, there is a shared software structure in
memory called Global Re-execution Timestamp (GRT) that con-
tains the most up-to-date logical time of each processor during the
re-execution. In other words, while the TRT is the “thread view”
of the current re-execution time, the GRT is the “true global view”.
Each processor compares its TRT to the GRT to see when the other
processors have executed all the earlier epochs and the processor
can proceed. Proceeding means for the processor to perform its
next synchronization operation, update its own component of the
GRT, execute its next epoch, and read its next logged timestamp
into its TRT.

The actual algorithm is as follows. Let us call grt[.] the GRT
and trtp[.] the TRT of processor p. Each i in grt[i] is the lat-
est epoch from processor i that has been executed. For example,
Figure 4 repeats the timeline of Figure 1(a) and shows with an ar-
row the current position of each replaying processor. As a result,
grt[.] = [2, 1, 0]. All processors are waiting at a synchronization
operation and we need to decide which one(s) to execute next. Each
processor has loaded into its trt the timestamp it had after the syn-
chronization (e.g., trt1[.] = [2, 2, 0]). When a given processor p
nds that grt[i] ≥ trtp[i] for all i �= p, then processor p executes
the synchronization operation, sets grt[p] = trtp[p], executes its
next epoch, and loads its next logged timestamp into trtp[.]. The
last two operations are not performed if there is no next logged
timestamp. In the gure, the only processor for which the inequal-
ity is true is Processor 1. Consequently, Processor 1 will execute
the release and set GRT to [2,2,0]. Since it has no further timestamp
logged, it will wait there.

3 2 2 2 2 0 2 2 1

2 1 0
Global Re−Execution
Timestamp (GRT)

Thread1Thread0

Acquire

Release
Acquire

Acquire

Release

[0,0,0]

[1,0,0]

[2,0,0]
[2,1,0]

[2,2,0]

[0,0,0][0,0,0]

[2,2,1]

[2,2,2]Acquire

Release

Thread2

= Current Replay
Position

[3,2,2]

Re−Execution
Thread

Timestamp (TRT)

Figure 4: Re-execution using the logged timestamps.

3.4 Race Analysis under SigRace
When all threads have reached their last logged timestamp, ex-

ecution enters the Analysis mode. In this mode, only the threads
involved in the data race execute, while the others stall. Specif-
ically, rst, the two processors executing the Conicting threads
load into a local register called the Conflict Signature the intersec-
tion of the two Conicting blocks’ signatures — namely the union
of Ri0 ∩ WjN , Wi0 ∩ RjN , and Wi0 ∩ WjN as per Section 3.2.
The Conict Signature holds the hashed address(es) involved in

the race. Then, the two Conicting threads execute normally up to
their next synchronization points, while the hardware automatically
intersects their loads and stores against the Conict Signature. Ev-
ery time a non-null intersection occurs, a trap is triggered, which
records the memory address and the PC. Finally, when both threads
have reached their next synchronization points, a software handler
compares the record of trapping addresses in both processors, to
see if there are common addresses. If so, SigRace has found a data
race, which it reports to the user. Otherwise, it was only a false
positive and is ignored.

As each Conicting thread reaches its next synchronization point,
it may have executed past its Conicting block. This is ne, since
it enables us to capture as many of the references involved in the
data race(s) as possible.

After the Analysis step, execution seamlessly returns to the Nor-
mal mode of execution. This is enabled by the fact that SigRace
continued to perform timestamp/signature logging and signature
intersection during Re-execution and Analysis modes — exactly
like it did during Normal mode. In this way, the trail of timestamps
and signatures is up to date at the point where Analysis completes
and all processors resume Normal execution.

Because the Analysis step may push program execution beyond
what was executed before the rollback, it is possible that the Anal-
ysis step discovers new data races. To address this case, SigRace
proceeds as follows. Every time two blocks are found to conict
during Analysis (Ri0 ∩ WjN , Wi0 ∩ RjN , or Wi0 ∩ WjN are not
null), a handler compares their intersection against the contents of
the Conict Signature. If the latter is a superset, no action is taken
because this race is already being processed (call it Race1). Oth-
erwise, the handler saves the signature intersection and records the
need to analyze the new data race (call it Race2) later. In this case,
after Race1 is fully analyzed, execution is rolled back, and we pro-
ceed to perform Re-execution and Analysis for Race2. Note that
we cannot analyze the two races concurrently because, by the time
we detect the presence of Race2, processors have already issued
some of the references associated with it.

Overall, to minimize the amount of re-execution, SigRace is de-
signed as follows. When a processor in Normal execution detects
a pair of Conicting blocks, it does not immediately request a roll-
back. Instead, it continues executing for several more blocks (e.g.,
5–10) or until it synchronizes, before interrupting all other proces-
sors and requesting rollback. The goal is to collect as many poten-
tial races as possible. During Analysis, the Conict Signature of
each processor contains the racing addresses of all the races that
the processor is involved in characterizing. In this way, multiple
races are analyzed concurrently. Finally, SigRace also saves the
Conict Signatures of the races that it has nished analyzing. In
this way, if SigRace has to re-execute the same code a second time,
it can ignore the race already analyzed.

4. SIGRACE IMPLEMENTATION
Our implementation of SigRace requires some hardware and soft-

ware changes to a chip multiprocessor. The hardware changes are
the Race Detection Module (RDM) and some additions to the per-
processor cache hierarchy. The cache tag and data arrays are un-
modified. Also, SigRace does not use speculative multithreading.
On the software side, SigRace needs an augmented synchroniza-
tion library. In this section, we describe the hardware and software
components, and then how SigRace is virtualized to make it usable.

4.1 Hardware Modifications
The RDM is a simple on-chip hardware module that is connected

to the on-chip network. As shown in Figure 5(a), it contains the

341

BlockHistoryQueue[.], which stores past timestamps (TS) and sig-
natures for all the processors (Section 3.2). It also includes func-
tional units that operate on signatures (like in Bulk [4]) and times-
tamps.

(b) Additions to the Private Cache Hierarchy

Committed
Instruction
Counter

...
... ...

Network

TS R Sig W Sig

BlockHistoryQueue[0] BlockHistoryQueue[n−1]

Signature and Timestamp
Functional Units

TS R Sig W Sig

Cache

Processor
Controller
SigRace

TS R Sig W Sig Timestamp (TRT)
Thread Re−Execution

Conflict
Signature

FlagsOM CT

Compress Network

Decompress

(a) Race Detection Module (RDM)

Figure 5: Hardware support needed by SigRace.

SigRace also requires some per-processor hardware that is placed
in the cache hierarchy in a module that interfaces with the proces-
sor, the cache and the network (Figure 5(b)). The module includes
storage for the current epoch timestamp and the current block’s R
and W signatures. The addresses hashed into signatures have a ner
granularity than cache line, so that false sharing of a line does not
trigger incorrect data race alarms. A good choice is to use word ad-
dresses. The module also includes the Thread Re-Execution Times-
tamp (TRT) for re-execution (Section 3.3) and the Conict Signa-
ture for analysis (Section 3.4). There are two ags, namely the
Operation Mode (OM) that denotes whether the hardware is in Nor-
mal, Re-execution, or Analysis mode, and the Conflicting Thread
(CT) that denotes whether the thread is a Conicting one (Sec-
tion 3.2). There is also a Committed Instruction Counter. When the
latter reaches the maximum value set for a block — or an approxi-
mate value, since there is no need to be exact — it sends a signal to
terminate the current block. The SigRace controller then initiates
the following actions: dump TS, R and W into the corresponding
BlockHistoryQueue[i], and clear R, W, and the Committed Instruc-
tion Counter.

The TS and R and W signatures are compressed before being
sent to the on-chip network, and decompressed as they get into
the RDM. We call these network messages the Summarymessages.
Their compressed size is ≈100 bytes — for 2 signatures of 2 Kbits
each and a 160-bit timestamp. This is less than the size of two
cache lines, and is sent out every time a block completes (≈2,000
committed instructions). Summary messages from the same pro-
cessor need to arrive at the RDM in order; messages from different
processors can arrive in any order. This centralized RDM design
is ne for the small numbers of processors considered in this paper
(8). In large, distributed machines, the RDM can be distributed as
well.

4.2 Software Interface
High-level synchronization constructs such as M4 macros [11]

and OpenMP directives [6] are commonly used by programmers
and parallelizing compilers. These constructs can enable SigRace
transparently. Specically, we rewrite such constructs to encapsu-
late the SigRace operations. As a result, the application code does
not need be modied at all, and all we need is to relink it with the
new M4 or OpenMP library.

To accomplish this, we start by adding three processor instruc-
tions that operate on local SigRace structures (Table 1). Two of
the instructions (collect_on and collect_off) enable and disable the
collection of addresses into signatures, and the counting of com-
mitted instructions. A variation of these instructions could per-
form these actions only on a range of addresses. These instruc-
tions are used to prevent the signatures from being polluted by un-
related accesses (such as those from the OS or the instrumentation
added to the macros) or by obviously-private accesses (e.g., those
to the stack). They can also be used to mark a benign data race
or an epoch that should skip the checking. The other instruction
(sync_reached) is invoked when execution reaches a synchroniza-
tion operation. Specically, it is invoked immediately before per-
forming a release-type operation and immediately after performing
a successful acquire-type operation. It tells the SigRace controller
to dump TS, R and W into the RDM, clear R, W, and the Com-
mitted Instruction Counter, and increment the counter in TS that
corresponds to the local thread.

Instruction Description
collect_on Collect addresses into R and W, and count

committed instructions.
collect_off Do not collect addresses into R or W, or

count committed instructions.
Dump TS, R, and W into the RDM. Clear R,

sync_reached W and the Committed Instruction Counter.
Increment the counter in TS that
corresponds to the local thread.

Table 1: Instructions to manage SigRace structures.

For simplicity, we assume that these instructions make their side
effects visible only when they commit — like the updates of sig-
natures by loads and stores. A design where these actions happen
earlier in the pipeline can also be conceived.

With these instructions, we can build new macros for all the
synchronization primitives. As an example, we consider the M4
macros for UNLOCK and LOCK. Table 2 shows the conventional
implementation and the one adapted for SigRace in Normal exe-
cution mode (SN_UNLOCK and SN_LOCK). In the SigRace ver-
sion, synchronization variables have a lock and a timestamp eld
— shown as $1.lock and $1.timestamp, respectively.

In SN_UNLOCK, before unlocking the lock eld of the variable,
the sync_reached instruction executes (Table 2). Then, the TS of
the processor — which has already been updated by sync_reached
— is saved in the timestamp eld of the variable (Line 3). Then,
the lock is released. Finally, the updated TS is explicitly saved in a
TS log in memory, in case it is needed for re-execution (Line 5). In
SN_LOCK, after the lock is acquired and sync_reached executed,
the new TS is generated. This is done by taking the current TS —
which is already updated by sync_reached — and the value stored
in timestamp, and applying the algorithm of Section 2.1 (shown as
GenerateTS). Finally, the TS is saved in the TS log.

Finally, we need to augment the macros to work for all exe-

342

Opera- Implemen- Code
tion tation

Unlock

Conven- 1: UNLOCK(‘{
tional 2: unlock($1);}’)

1: SN_UNLOCK(‘{
SigRace 2: sync_reached;
(Normal 3: $1.timestamp = TS;
Execution 4: unlock($1.lock);
Mode) 5: AppendtoTSLog(TS,TSLog);

6: }’)

Lock

Conven- 1: LOCK(‘{
tional 2: lock($1);}’)

1: SN_LOCK(‘{
SigRace 2: lock($1.lock);
(Normal 3: sync_reached;
Execution 4: TS = GenerateTS(TS,
Mode) 5: $1.timestamp);

6: AppendtoTSLog(TS,TSLog);
7: }’)

Table 2: UNLOCK and LOCK macros: conventional imple-
mentation and one for SigRace in Normal execution mode.

cution modes. As an example, Table 3 shows the resulting nal
S_UNLOCK macro, which builds on top of SN_UNLOCK. The
code is surrounded by collect_off and collect_on to prevent these
accesses from polluting the signatures. If the OM ag indicates
we are in Re-execution mode, we load the next timestamp from the
old timestamp log into the TRT (Line 4), and spin until the GRT
reaches the appropriate value (Line 5) (Section 3.3). If, instead,
we are in Analysis mode, we have completed the execution of an
epoch in this mode in one of the Conicting threads. It is now time
to analyze the record of traps observed (Line 8) (Section 3.4) and,
depending on the outcome, proceed in Normal mode.

Irrespective of the mode, we then need to perform the unlock
operation (Line 11) as was described in Table 2. Then, if we are
in Re-execution mode, we update the GRT with the corresponding
counter from the TRT (Line 13) and then check if the old timestamp
log is empty. If so, we set the mode to Analysis (Line 15) and
check the CT ag to see if this is a Conicting thread. If so, we
set up the Conict Signature and continue execution (Section 3.4).
Otherwise, the thread stalls until the Conicting threads complete
the analysis. After that, we return to Normal mode. Similar code is
generated for the other synchronization constructs.

4.3 SigRace Virtualization
Previous discussions have largely used thread and processor in-

terchangeably. In reality, SigRace has to function in an environ-
ment where threads migrate across processors and the number of
threads and processors may be different. In this section, we con-
sider this environment. We do it in three steps. First, we allow
threads to migrate across processors but the number of threads and
processors is the same (Migration environment). Second, we aug-
ment Migration to allow the number of threads to be different (and
typically larger) than the number of processors; some threads are
waiting for an available processor (Multiplex environment). Fi-
nally, we augment Multiplex to allow processors that support mul-
tiple hardware contexts (Multithreaded environment). We discuss
each environment under Normal execution, and then consider the
Re-execution and Analysis modes.

1: S_UNLOCK(‘{
2: collect_off
3: if (Flags.OM == Re-execution){ /* Re-exec. mode? */
4: LoadfromTSLog(TRT,OldTSLog);
5: WhileNotMyTurn(TRT,GRT) {};
6: }
7: else if (Flags.OM == Analysis){ /* Analysis mode? */
8: AnalyzeRecordOfAccesses(); /* Analyze data */
9: Flags.OM = Normal; /* End of Analysis mode */
10: }
11: SN_UNLOCK($1)
12: if (Flags.OM == Re-execution){ /* Re-exec. mode? */
13: UpdateGRT(TRT,GRT);
14: if (OldTSLogEmpty) {
15: Flags.OM = Analysis; /* Analysis mode */
16: if (Flags.CT) { /* One of the Conicting threads? */
17: LoadConictSignature();
18: /* Set up the Conict Signature. Continue */
19: }
20: else { /* Not Conicting thread */
21: StallUntilEndAnalysis(); /* Stall */
22: Flags.OM = Normal; /* End of Analysis */
23: }
24: }
25: }
26: collect_on
27: }’)

Table 3: Resulting UNLOCK macro for SigRace.

4.3.1 Enabling Thread Migration
Epoch timestamps and signatures belong to threads rather than

processors. Consequently, in the Migration environment, the times-
tamp is saved when a thread is pre-empted and restored on the pro-
cessor where the thread runs next. Signatures are not saved and re-
stored because, on thread pre-emption, the currently-running block
nishes. At that point, the signatures are sent to the RDM and then
cleared.

The threads of a program have a statically-assigned SigRaceID,
which goes from 0 to the number of threads in the program minus
one. They use their SigRaceID to index into vector clocks of pro-
cessors and array of BlockHistoryQueues in the RDM. Specically,
counter i in a vector clock belongs to the thread with SigRaceID =
i, irrespective of which processor the thread is currently running
on. Such thread always updates counter i in the vector clock of the
processor it is running on. Moreover, signatures from that thread
will always be dumped on BlockHistoryQueue[i] in the RDM.

In this environment, the hardware in Figure 5 is affected as fol-
lows. First, the components in Figure 5(b) belong to a thread. Con-
sequently, the operating system saves and restores them on context
switch — except for the signatures and the Committed Instruction
Counter, which are cleared. Second, the RDM in Figure 5(a) in-
cludes a new hardware structure. It is an indirection table called
the CoreToThread table. This table has as many entries as cores in
the chip. It contains the mapping between core number and SigRa-
ceID of the thread currently running on the core. The operating
system updates the table on context switches. During execution,
when the RDM receives a message from core j, the hardware reads
CoreToThread[j]. It then uses the value read, say i, to store signa-
tures and timestamp in BlockHistoryQueue[i].

343

4.3.2 Different Thread & Processor Numbers
The hardware for the Multiplex environment extends the one for

Migration by supporting a range of SigRaceID values larger than
the number of cores. Specically, each vector clock in processors
and each (software) timestamp eld in sychronization variables is
sized up to have as many counters as the maximum range of SigRa-
ceID (Figure 6(a)). Similarly, the RDM has as many BlockHisto-
ryQueues as the maximum range of SigRaceID, and the width of
the CoreToThread table is increased accordingly (Figure 6(b)).

Counter for Thread i

Maximum Range of SigRaceID

(a) Vector Clock

(b) Race Detection Module (RDM)

CoreToThread

BlockHistoryQueues

Num
Cores

...

Figure 6: Supporting more threads than cores.

Before a program runs, it declares the number of threads that it
will use, and the hardware and software structures mentioned are
sized accordingly. While the program runs, the RDM intersects
an incoming signature message against all BlockHistoryQueues —
even those that belong to threads that are currently not running.

4.3.3 Enabling Multiple Contexts per Processor
The Multithreaded environment extends the Multiplex one in

that each hardware context in a processor counts as an additional
virtual core. This requires increasing the number of counters in the
vector clocks and in the timestamp elds of synchronization vari-
ables, and the number of BlockHistoryQueues in the RDM.

Each hardware context has a copy of the hardware shown in Fig-
ure 5(b). Moreover, the messages that processors send to the RDM
have to include both the core ID and the hardware context ID within
the core. Only then can the RDM identify the appropriate Block-
HistoryQueue to update.

4.3.4 Re-Execution and Analysis Modes
In all three environments described, threads are re-executed with-

out any scheduling constraints. Specically, Re-execution does not
need to reproduce the thread schedule followed during the Normal
execution. All that is required is that the order of successful syn-
chronization operations be the same as in the Normal execution.
This is ensured by reading the timestamp log from memory (Sec-
tion 3.3.2) and enforcing it. At worst, in the Multiplex environment,
performance may suffer because a thread that owns a critical lock
may be temporarily not scheduled, preventing other thread from
making progress.

In addition, re-execution does not need to reproduce the same
block sizes as in the Normal execution. The reason is that Re-

execution brings the threads to the beginning of epochs, rather than
to specic blocks within epochs.

The checkpointing support described in Section 3.3.1 can still be
used. Such support is able to return the memory state of the whole
machine to a certain point in the past — without knowing about
the number of threads in the program or how they were scheduled.
If, however, it is desired to checkpoint only one of several applica-
tions that may be running, a different, application-level checkpoint
design is needed. Such a design is outside this paper’s scope.

As expected from the discussion on the Normal execution mode,
there are a few structures used during Re-execution that need to
change. First, the TRT (Figure 5(b)) is thread-private, and is saved
and restored on context switch. In addition, the TRT and GRT have
as many counters as the range of SigRaceIDs in the program. More-
over, threads use their SigRaceID to index into the TRT register,
irrespective of what core they are currently running on.

Finally, the Analysis mode requires no change, since only the
conicting threads are participating in the execution. Both the Con-
ict Signature and the Conict Thread structures (Figure 5(b)) are
thread-private variables and the hardware saves and restores them
on context switch.

5. EVALUATION
To evaluate SigRace, we consider four issues: (1) the signature

conguration, which determines the number of false positives, (2)
the block size and number of entries in each BlockHistoryQueue[i],
which determine the window of monitored execution, (3) the effec-
tiveness of SigRace in detecting data races, and (4) the overheads
of SigRace. In the following, we rst overview the experimental
setup and then consider each issue in turn.

5.1 Experimental Setup
Since we are interested in the high-level parameters of SigRace,

we use the PIN [10] binary instrumentation tool to design a sim-
ulator of the SigRace hardware, and run the applications on a real
8-processor shared-memory machine. This approach has the bene-
t of execution-driven simulation without incurring the slow speeds
of typical cycle-accurate simulators. Table 4 shows the default pa-
rameters used in the simulation.

Num. of processors: 8 Timestamp size: 8 x 20 = 160 bits
L1 size: 32 Kbytes Sig. size: 2 Kbits each R and W
L1 line size: 64 bytes Block size: 2,000 committed instr.
Coh. protocol: MESI BlockHistoryQueue[i] size:
Checkpt. interval: 1 M 16 entries

committed instr./proc.
Benchmarks:

SPLASH2 kernels: FFT, Cholesky, LU
SPLASH2 applications: Barnes, Volrend, Ocean, Radiosity,

Raytrace, Water-ns, Water-spatial
PARSEC kernels: Dedup, Streamcluster
PARSEC applic: Blackscholes, Fluidanimate, Swaptions

Table 4: Default parameters used in the evaluation.

We model an 8-core chip multiprocessor where 32-Kbyte L1
caches are connected in a multistage network and kept coherent
with a MESI cache coherence protocol. The timestamp size is very
conservatively set to 160 bits. The default values for the size of
signatures, block, and BlockHistoryQueue[i] are set according to
the sensitivity analyses presented later. We take periodic global
checkpoints. A checkpoint is created as soon as a processor has

344

committed 1 M instructions. We use the checkpointed information
as a starting point of our Re-execution and Analysis algorithms.

We evaluate SigRace with the SPLASH2 and PARSEC [1] bench-
marks. These benchmarks are representative of parallel workloads
and exhibit a variety of memory access patterns. For SPLASH2, we
use the default inputs, while for PARSEC, we use the simmedium
input size. We report data for 10 SPLASH2 and 5 PARSEC bench-
marks. As shown in Table 4, we separate them into SPLASH2
kernels, SPLASH2 applications, PARSEC kernels, and PARSEC
applications.

5.2 Signature Configuration
We test multiple signature congurations, denoted as Bi_Sj . We

rst partition the address into 2 portions. The possible congura-
tions are the Bi in Table 5. Then, we use multiple Bloom lters in
parallel using the H3 hash function as in [23] — half of them pro-
cess one portion while the other half the other. The congurations
are the Si in Table 6.

Conguration Address Partition
LSB USB

B1 8 24
B2 10 22
B3 16 16

Table 5: Address partitions. LSB and USB stand for Lower
and Upper Sliced Bits.

Conguration # of Bloom Bits per Bloom Sig Size
Filters (k) Filter (n) (k × n)

S1 16 256 4Kbit
S2 16 128 2Kbit
S3 16 64 1Kbit
S4 8 512 4Kbit
S5 8 256 2Kbit
S6 8 128 1Kbit

Table 6: Signature organizations.

We run the applications and count the number of signature in-
tersections that indicate a collision while there is none. The ratio
of this number over the total number of signature intersections is
the false-positive rate. Figure 7(a) shows the average false-positive
rate of the applications for our default parameters. In the rest of the
paper, we use B2_S2, where the false-positive rate is 1.57%.

B
1_S

1
B

1_S
2

B
1_S

3
B

1_S
4

B
1_S

5
B

1_S
6

B
2_S

1
B

2_S
2

B
2_S

3
B

2_S
4

B
2_S

5
B

2_S
6

B
3_S

1
B

3_S
2

B
3_S

3
B

3_S
4

B
3_S

5
B

3_S
6

(a) Signature Configuration

0

5

10

15

20

25

Fa
ls

e
P

os
iti

ve
s(

%
)

2,000

4,000

8,000

16,000

S
ync

(b) SigRace Block Size

0

5

10

15

20

Fa
ls

e
P

os
iti

ve
s(

%
)

Figure 7: False positive rate versus signature configuration (a)
and versus block size (b).

5.3 Block and BlockHistoryQueue[i] Size
If we choose a large SigRace block then, with the same Block-

HistoryQueue[i] (BHQ[i]) size, we can monitor a larger instruction
window for possible data races. However, as the block size in-
creases, the signature false-positive rate also increases. Figure 7(b)
shows the false-positive rate for different block sizes beyond our
default of 2,000 committed instructions. Sync means terminating
a block only at synchronizations. We see that larger blocks induce
more false positives.

For a given block size, if we increase the number of entries in
BHQ[i], we cover a larger instruction window. However, we have
to do more signature operations and the BHQ takes more area.

To evaluate these issues, we run the applications with different
numbers of entries in BHQ[i] and different block sizes. When the
RDM checks an incoming signature against a BHQ[i], the hardware
operates on each of the entries in the BHQ[i] until it nds a block
that is a predecessor of the incoming one. If there is such a prede-
cessor, then SigRace does not lose any race detection opportunity.
We call this event a Hit. Otherwise, SigRace loses race detection
opportunity beyond the oldest entry in BHQ[i]. We are interested
in the execution window that starts at the previous checkpoint and
ends at the block just before the oldest entry in BHQ[i]. We call it
the Lost Detection Window.

Figure 8(a) shows the lost detection window as a percentage of
the checkpoint interval, while Figure 8(b) shows the hit rate of a
signature against a BHQ[i], and Figure 8(c) shows the number of
timestamp comparisons in a BHQ[i] per signature until hitting in
the BHQ[i] or exhausting all full BHQ[i] entries. All gures have
the same X axis and share the same legend.

16 32 64

Number of BHQ[i] Entries

20.0
30.0
40.0
50.0
60.0
70.0
80.0

H
it

R
at

e
(%

)

(a)

16 32 64

Number of BHQ[i] Entries

0.0

10.0

20.0

Lo
st

 D
et

ec
-

tio
n

W
in

do
w

 (%
)

2,000 Inst/Block
4,000 Inst/Block

8,000 Inst/Block
16,000 Inst/Block

Sync/Block

(b)

16 32 64

Number of BHQ[i] Entries

0.0

10.0

20.0

30.0

40.0

50.0

A
ve

ra
ge

 N
um

 o
f

C
om

pa
ris

on
s

pe
r B

H
Q

[i]

(c)

Figure 8: Lost detection window (a), hit rate (b), and number
of timestamp comparisons (c) for different numbers of BHQ[i]
entries and block size. All figures share the same legend.

345

Finding Existing Races Finding Injected Races
Application Ideal SigRace SigRace W-ReEnact Racy Static Races Found Runs w/ Races Found

Stat Dyn Stat Dyn Stat Dyn Runs SigRace W-ReEnact SigRace W-ReEnact
FFT – – – – – – 25/25 600 150 25 25
Cholesky 16 19964 16 3539 16 388 3/25 2 2 1 1
LU – – – – – – 25/25 28 75 25 25
Barnes 11 4416 11 719 6 419 1/25 3 1 1 1
Volrend 27 26846 27 11607 18 6858 23/25 345 74 23 21
Ocean 1 29 1 29 1 6 7/25 8 8 7 7
Radiosity 15 59307 15 16951 12 14660 8/25 29 11 8 6
Raytrace 4 30 4 17 3 12 21/25 66 53 21 21
Water-ns – – – – – – 5/25 2 4 1 2
Water-spatial 8 82 4 27 2 3 3/25 6 6 3 3
Dedup – – – – – – 3/25 0 0 0 0
Streamcluster 13 68566 12 14307 12 436 6/25 7 2 5 2
Blackscholes – – – – – – 0/25 0 0 0 0
Fluidanimate – – – – – – 12/25 95 90 12 12
Swaptions – – – – – – – – – – –
Total 95 179240 90 47196 70 22782 142/350 1191 476 132 126

Table 7: Effectiveness of SigRace and ReEnact with per-word timestamps in finding existing races and injected races.

We see that, as the number of BHQ[i] entries increases, the lost
detection window decreases (Figure 8(a)) and the hit rate increases
(Figure 8(b)). However, we have to do more timestamp compar-
isons until a hit or BHQ[i] exhaustion (Figure 8(c)), and the BHQ
takes more area. On the other hand, for a xed number of BHQ[i]
entries, as the block size increases, we lose less window (Figure
8(a)), the hit rate increases (Figure 8(b)) and the number of com-
parisons decreases (Figure 8(c)) — however, we saw in Figure 7(b)
that false positives increase. Overall, we choose as default a block
size of 2,000 committed instructions and 16 entries in BHQ[i]. This
leads to an average of 20% loss in detection window.

5.4 SigRace Effectiveness

5.4.1 Data Race Detection
To assess SigRace’s effectiveness, we use it to nd (i) existing

data races in our applications and (ii) races that we inject in the
applications. We also simulate a cache-based race detector, namely
a version of ReEnact [19] with per-word timestamps (W-ReEnact).
Table 7 shows the results.

Columns 2-7 (Finding Existing Races) list the number of races
found by Ideal Sigrace, SigRace, and W-ReEnact. Ideal SigRace is
a SigRace where each BHQ[i] keeps information for all the blocks
between consecutive checkpoints — rather than for 16 blocks as in
SigRace. Races are identied by the two instructions involved in
the race and the address accessed. The table counts both static and
dynamic races. Dynamic races are the dynamic instances of static
races.

The table shows that 8 of the applications have data races. These
races include, for example, reads of shared structures outside a crit-
ical section before accessing them inside the critical section. They
are likely to be all benign races. However, we believe that it is
important for any race detector to detect even benign races. This
is because, often, benign races are a symptom that the code has a
bug or something that the programmer does not understand. In any
case, as described in Section 4.2, if the programmer wants SigRace
to skip checking for these races, he can mark the code with col-
lect_off.

The table shows that SigRace detects 90 static and 47,000 dy-
namic races. Compared to W-ReEnact, SigRace detects on average

29% more static races and 107% more dynamic races. SigRace’s
substantially higher effectiveness is due to its ability to monitor a
longer window of program at a time. Finally, compared to Ideal
SigRace, SigRace detects on average 95% of the static races and
26% of the dynamic ones.

We also inject races. For each application, we perform 25 runs.
In each run, we randomly eliminate one dynamic lock-unlock pair
or one dynamic barrier. Since the Swaptions code synchronizes
with fork/joins, we could not subject it to this experiment. While
these are contrived examples, they provide some insight.

Columns 8-12 (Finding Injected Races) show the detection ca-
pability of SigRace and W-ReEnact. Column 8 (Racy Runs) shows
the fraction of those 25 runs that actually created races. Then,
Columns 9-10 show the number of static races found by SigRace
and W-ReEnact, respectively. We see that, on average, SigRace
nds 150% more static races than W-ReEnact. This again shows
the higher effectiveness of SigRace. Interestingly, there are two ap-
plications where W-ReEnact nds more races (LU and Water-ns).
This is because, while SigRace typically monitors a longer program
window, there are cases when lines remain in the caches for a long
time. In this case, W-ReEnact can detect racing accesses that are
far apart in the code (over 50,000 instructions apart in these exam-
ples). In general, it can be argued that races where the accesses
are far apart are least dangerous, since the chances that these ac-
cesses appear in reverse order in a different run are lower. Finally,
Columns 11-12 show the number of runs in which SigRace and W-
ReEnact found at least one race. Again, the number for SigRace is
higher.

5.4.2 Opportunity to Detect Data Races
SigRace has an advantage when addresses are in BHQ[.] and not

in caches, while W-ReEnact has an edge in the opposite case. In
this section, we estimate the frequency of each case. For simplicity,
in this experiment only, signatures encode line addresses.

Of all the cache lines with shared data being displaced or inval-
idated from a cache, Figure 9(a) shows the fraction whose address
is strictly present (not just due to aliasing) in the corresponding
BHQ[i]. The gure shows the average for different cache sizes
and application sets. For the 32KB default cache, the weighted av-
erage fraction is ≈59%. Then, Figure 9(b) shows the number of

346

displacements or invalidations of lines with shared data per million
instructions executed. For the 32KB default cache, the weighted
average can be shown to be ≈2,800. Overall, roughly speaking,
compared to SigRace, W-ReEnact loses detection opportunity for
0.59×2,800=1,652 lines per million instructions.

32KB 64KB 128KB

Cache Size

0

20

40

C
ac

he
d

Li
ne

s
in

 D
is

p
B

lo
ck

 (%
)

Splash2-kernels
Splash2-apps

Parsec-kernels
Parsec-apps

(a)

S
plash2

kernels

S
plash2
apps

P
arsec

kernels

P
arsec
apps

A
verage

0

10

20

Li
ne

s
pe

r B
lo

ck

(b)

32KB 64KB 128KB

Cache Size

0
20
40
60
80

100

D
is

p
an

d
In

va
l

in
 B

H
Q

[i]
 (%

)

(c)

32KB 64KB 128KB

Cache Size

0k

2k

4k

6k

D
is

p
an

d
In

va
l

pe
r M

ill
In

s

(d)

Figure 9: Opportunities for SigRace and W-ReEnact to detect
races. Charts (a), (b), and (c) share the same legend.

Given a block being displaced from a BHQ[i], Figure 9(c) shows
the fraction of addresses in the block’s signatures that are not any-
where else in BHQ[i] and that are in the cache. For the 32KB
cache, the weighted average fraction is ≈13%. Figure 9(d) shows
the number of addresses of lines with shared data that are encoded
in the signatures of one block. This number is on average 14.
Overall, since SigRace executes ≈500 blocks per million instruc-
tions, compared to W-ReEnact, SigRace loses detection opportu-
nity for 0.13×14×500=910 lines per million instructions. While
these numbers give approximate information only, they show W-
ReEnact loses more opportunities.

5.5 SigRace Overheads
We estimate the instruction, SRAM memory, bandwidth, and

checkpointing overheads of SigRace. To estimate the instruction
overhead, we run each application until the rst true data race is
fully analyzed. In the process, some false positives may occur. We
count as instruction overhead all the instructions executed in Re-
execution and Analysis modes to characterize the true data race
and all the false positives found from the beginning of the program
until that point. We stop after analyzing the rst true race because
then the programmer would stop execution. If the application has
no true data race, we insert one in a random location.

Figure 10(a) shows the resulting instruction overhead as a per-
centage of committed instructions. The average bar is the mean of
all the applications. The overhead depends on several things, most
notably how far from the previous checkpoint is the conict de-
tected, and the rate of false positives. We see that, on average, the
instruction overhead due to re-execution is 22%. About two thirds
of it is caused by false positives.

S
plash2

kernels

S
plash2
apps

P
arsec

kernels

P
arsec
apps

A
verage

0
20
40
60
80

100

In
st

ru
ct

io
n

O
ve

rh
ea

d
(%

)

false true

(a)

S
plash2

kernels

S
plash2
apps

P
arsec

kernels

P
arsec
apps

A
verage

0
20
40
60
80

100
120

N
et

w
or

k
O

ve
rh

ea
d

(b
yt

es
/th

ou
sa

nd
 in

s)

(b)

S
plash2

kernels

S
plash2
apps

P
arsec

kernels

P
arsec
apps

A
verage

0
10
20
30
40
50

Lo
g

S
iz

e
(K

B
/P

ro
ce

ss
or

)

(c)

S
plash2

kernels

S
plash2
apps

P
arsec

kernels

P
arsec
apps

A
verage

0
2
4
6
8

10

D
irt

y
W

rit
e

B
ac

k
(K

B
/P

ro
ce

ss
or

)

(d)

Figure 10: Instruction (a), bandwidth (b), and checkpoint-
related (c and d) overheads.

From Figure 5, we see that the main SRAM memory overhead
of SigRace per processor includes: a 16-entry BHQ[i] in the RDM
(each entry containing a timestamp and a R and W signature), one
extra timestamp and R and W signatures, the TRT, and the Conict
signature. Since timestamps are 160 bits and signatures 2K bits,
this results in 8512 bytes in the RDM and 808 bytes in the cache
hierarchy — independently of the cache size.

To compute the bandwidth overhead of SigRace, we count how
many bytes of timestamp-signature messages (compressed) are de-
posited on the network. Figure 10(b) shows such number per 1,000
instructions committed. We see that, on average, the bandwidth
overhead is 63 bytes per thousand committed instructions.

Finally, we measure some overheads of checkpointing every 1M
instructions. As per Section 3.3.1, the memory controller saves
the value overwritten by every rst memory update. Figure 10(c)
shows that, on average, this amounts to 29KB of log per processor
between checkpoints. Also, at the point of checkpoint, the dirty
lines in the cache are written back. As shown in Figure 10(d), this
corresponds to, on average, 4.8KB of writebacks per processor.

6. CONCLUSIONS AND FUTUREWORK
This paper proposed SigRace, a novel approach to hardware-

assisted data race detection that overcomes shortcomings of pre-
vious hardware proposals. To detect races, SigRace does not rely
on cache state or coherence protocol messages. Instead, it relies on
hardware address signatures. With SigRace, there are no changes
to the cache or the cache coherence protocol messages, and there
are no critical-path operations performed on local/external access
to the cache. Moreover, lines can be displaced or invalidated from
caches without affecting SigRace’s ability to detect data races.

We presented the architecture of SigRace, an implementation,
and its software interface. Application code is unmodied. Our
experiments showed that SigRace is signicantly more effective
than a state-of-the-art conventional hardware-assisted race detector.
SigRace found on average 29% more static races and 107% more
dynamic races. Moreover, if we inject data races, SigRace found
150% more static races than the conventional scheme. Finally,

347

SigRace had an average instruction overhead due to re-execution
of 22%, a bandwidth overhead of 63 bytes per thousand committed
instructions, and an SRAM memory overhead of ≈9KB per pro-
cessor.

We are continuing our work in two main directions. The rst one
involves eliminating or minimizing the need to perform checkpoint-
ing — possibly at the cost of more re-execution. The second one
involves improving the scalability of the happened-before clocks
and RDM design.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers and the I-ACOMA group

members for their comments. This work was supported in part
by the National Science Foundation under grants CNS-0720593
and CCR-0325603; Intel and Microsoft under the Universal Par-
allel Computing Research Center; and gifts from IBM and Sun
Microsystems. Suárez was supported by the Gobierno de Aragón
under grant “gaZ: Grupo Consolidado de Investigación”; Spanish
Ministry of Education and Science under contracts TIN2007-66423
and Consolider CSD2007-00050; and European Union Network of
Excellence HiPEAC-2 (FP7/ICT 217068).

8. REFERENCES
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC

benchmark suite: Characterization and architectural
implications. In International Conference on Parallel
Architectures and Compilation Techniques, October 2008.

[2] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Comm. of the ACM, 13(7):422–426, 1970.

[3] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC:
Bulk enforcement of sequential consistency. In International
Symposium on Computer Architecture, June 2007.

[4] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk
disambiguation of speculative threads in multiprocessors. In
International Symposium on Computer Architecture, June
2006.

[5] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan. Efcient and precise datarace detection for
multithreaded object-oriented programs. In Programming
Language Design and Implementation, June 2002.

[6] L. Dagum and R. Menon. OpenMP: An industry-standard
API for shared-memory programming. IEEE Computational
Science & Engineering, 5(1):46–55, 1998.

[7] C. Fidge. Logical time in distributed computing systems.
IEEE Computer, 24(8):28–33, 1991.

[8] Intel Corporation. Intel Thread Checker.
http://www.intel.com, 2008.

[9] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Comm. of the ACM, 21(7):558–565,
1978.

[10] C.-K. Luk et al. Pin: Building customized program analysis
tools with dynamic instrumentation. In Programming
Language Design and Implementation, June 2005.

[11] E. Lusk, J. Boyle, R. Butler, T. Disz, B. Glickfeld,
R. Overbeek, J. Patterson, and R. Stevens. Portable programs
for parallel processors. Holt, Rinehart & Winston, 1988.

[12] S. L. Min and J.-D. Choi. An efcient cache-based access
anomaly detection scheme. In International Conference on
Architectural Support for Programming Languages and
Operating Systems, April 1991.

[13] C. C. Minh et al. An effective hybrid transactional memory
system with strong isolation guarantees. In International
Symposium on Computer Architecture, June 2007.

[14] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and
B. Calder. Automatically classifying benign and harmful
data races using replay analysis. In Programming Language
Design and Implementation, June 2007.

[15] R. H. B. Netzer and B. P. Miller. Detecting data races in
parallel program executions. In In Workshop on Advances in
Languages and Compilers for Parallel Computing, 1990.

[16] R. H. B. Netzer and B. P. Miller. Improving the accuracy of
data race detection. In Principles and Practice of Parallel
Programming, April 1991.

[17] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race
detection. In Principles and Practice of Parallel
Programming, June 2003.

[18] M. Prvulovic. CORD: Cost-effective (and nearly
overhead-free) order-recording and data race detection. In
International Symposium on High-Performance Computer
Architecture, February 2006.

[19] M. Prvulovic and J. Torrellas. ReEnact: Using thread-level
speculation mechanisms to debug data races in multithreaded
codes. In International Symposium on Computer
Architecture, June 2003.

[20] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive:
Cost-effective architectural support for rollback recovery in
shared-memory multiprocessors. In International Symposium
on Computer Architecture, May 2002.

[21] F. Qin, J. Tucek, Y. Zhou, and J. Sundaresan. Rx: Treating
bugs as allergies—a safe method to survive software failures.
ACM Transactions on Computer Systems, 25(3):7, 2007.

[22] M. Ronsse and K. De Bosschere. RecPlay: A fully integrated
practical record/replay system. ACM Transactions on
Computer Systems, 17(2):133–152, 1999.

[23] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam.
Implementing signatures for transactional memory. In
International Symposium on Microarchitecture, December
2007.

[24] S. Savage et al. Eraser: A dynamic data race detector for
multithreaded programs. ACM Transactions on Computer
Systems, 15(4):391–411, 1997.

[25] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou.
Flashback: A lightweight extension for rollback and
deterministic replay for software debugging. In USENIX
Annual Technical Conference, June 2004.

[26] Sun Microsystems. Sun Studio Thread Analyzer.
http://developers.sun.com/sunstudio, 2007.

[27] C. von Praun and T. R. Gross. Object race detection. In
Object-Oriented Programming, Systems, Languages, and
Applications, October 2001.

[28] L. Yen et al. LogTM-SE: Decoupling hardware transactional
memory from caches. In International Symposium on High
Performance Computer Architecture, February 2007.

[29] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efcient
detection of data race conditions via adaptive tracking. In
Symposium on Operating Systems Principles, October 2005.

[30] P. Zhou, R. Teodorescu, and Y. Zhou. HARD:
Hardware-assisted lockset-based race detection. In
International Symposium on High Performance Computer
Architecture, February 2007.

348

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
 /AachenBT-Bold
 /AachenBT-Roman
 /AdLibBT-Regular
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aldine401BT-BoldA
 /Aldine401BT-BoldItalicA
 /Aldine401BT-ItalicA
 /Aldine401BT-RomanA
 /Aldine721BT-Bold
 /Aldine721BT-BoldItalic
 /Aldine721BT-Italic
 /Aldine721BT-Light
 /Aldine721BT-LightItalic
 /Aldine721BT-Roman
 /Alefbet-Normal
 /AlexeiCopperplate
 /Algerian
 /AlgerianBasD
 /AlgerianD
 /AllegroBT-Regular
 /AlternateGothicNo2BT-Regular
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /Americana
 /Americana-Bold
 /AmericanaBT-Bold
 /AmericanaBT-ExtraBold
 /AmericanaBT-ExtraBoldCondensed
 /AmericanaBT-Italic
 /AmericanaBT-Roman
 /Americana-ExtraBold
 /Americana-Italic
 /AmericanGaramondBT-Bold
 /AmericanGaramondBT-BoldItalic
 /AmericanGaramondBT-Italic
 /AmericanGaramondBT-Roman
 /AmericanTextBT-Regular
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /AmericanUncD
 /AmerigoBT-BoldA
 /AmerigoBT-BoldItalicA
 /AmerigoBT-ItalicA
 /AmerigoBT-MediumA
 /AmerigoBT-MediumItalicA
 /AmerigoBT-RomanA
 /AmerTypewriterITCbyBT-Bold
 /AmerTypewriterITCbyBT-Medium
 /AmoebiaSans
 /Architecture-Normal
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArnoldBoeD
 /ArrusBT-Black
 /ArrusBT-BlackItalic
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /ArsisD-Regu
 /ArsisD-ReguItal
 /AtlanticInline
 /AuroraBT-BoldCondensed
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeGothicC-Book
 /AvantGardeGothicC-Demi
 /AvantGardeGothicC-DemiOblique
 /AvantGardeGothicC-Oblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BakerSignet
 /BakerSignetBT-Roman
 /BalloonBT-Bold
 /BalloonBT-ExtraBold
 /BalloonBT-Light
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Bard-Normal
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /BaskOldFace
 /BauerBodoniBT-Black
 /BauerBodoniBT-BlackCondensed
 /BauerBodoniBT-BlackItalic
 /BauerBodoniBT-Bold
 /BauerBodoniBT-BoldCondensed
 /BauerBodoniBT-BoldItalic
 /BauerBodoniBT-Italic
 /BauerBodoniBT-Roman
 /BauerBodoniBT-Titling
 /Bauhaus93
 /BauhausITCbyBT-Bold
 /BauhausITCbyBT-Heavy
 /BauhausITCbyBT-Light
 /BauhausITCbyBT-Medium
 /Bedrock-Normal
 /Beehive-Normal
 /Beesknees
 /BellGothic-Black
 /BellGothic-Bold
 /BellGothic-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BelweBT-Bold
 /BelweBT-Light
 /BelweBT-Medium
 /BelweBT-RomanCondensed
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BerlinSans-Bold
 /BerlinSans-Demi
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BerlinSans-Roman
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BernhardTangoBT-Regular
 /BibleScrT
 /BinnerD
 /Birch
 /BlackadderITC-Regular
 /BlacklightD
 /BlippoBT-Black
 /BodoniBE-Bold
 /BodoniBE-BoldExp
 /BodoniBE-BoldItalic
 /BodoniBE-BoldItalicExp
 /BodoniBE-BoldItalicOsF
 /BodoniBE-BoldOsF
 /BodoniBE-Italic
 /BodoniBE-ItalicExp
 /BodoniBE-ItalicOsF
 /BodoniBE-Light
 /BodoniBE-LightExp
 /BodoniBE-LightItalic
 /BodoniBE-LightItalicExp
 /BodoniBE-LightItalicOsF
 /BodoniBE-LightSC
 /BodoniBE-Medium
 /BodoniBE-MediumExp
 /BodoniBE-MediumItalic
 /BodoniBE-MediumItalicExp
 /BodoniBE-MediumItalicOsF
 /BodoniBE-MediumSC
 /BodoniBE-Regular
 /BodoniBE-RegularExp
 /BodoniBE-RegularSC
 /Bodoni-BoldCondensed
 /Bodoni-Book
 /Bodoni-BookItalic
 /BodoniBT-Bold
 /BodoniBT-BoldCondensed
 /BodoniBT-BoldItalic
 /BodoniBT-Book
 /BodoniBT-BookItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-PosterCompressed
 /Bodoni-PosterItalic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /BookmanITCbyBT-Demi
 /BookmanITCbyBT-DemiItalic
 /BookmanITCbyBT-Light
 /BookmanITCbyBT-LightItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Boulevard
 /BradleyHandITC
 /BremenBT-Black
 /BremenBT-Bold
 /Brisk-Normal
 /BritannicBold
 /Britannic-Bold-DTC
 /Britannic-Medium-DTC
 /Broadway
 /BroadwayBT-Regular
 /BroadwayEngravedBT-Regular
 /Brochure-Normal
 /BrodyD
 /Brush445BT-Regular
 /Brush738BT-RegularA
 /BrushScriptBT-Regular
 /BrushScriptMT
 /BusoramaITCbyBT-Medium
 /BusterD
 /BuxomD
 /CaflischScript-Bold
 /CaflischScript-Regular
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Calligraphic421BT-RomanB
 /Calligraphic810BT-Italic
 /Calligraphic810BT-Roman
 /CamelliaD
 /Cancun-Normal
 /Carleton-Normal
 /CarminaBT-Black
 /CarminaBT-BlackItalic
 /CarminaBT-Bold
 /CarminaBT-BoldItalic
 /CarminaBT-Light
 /CarminaBT-LightItalic
 /CarminaBT-Medium
 /CarminaBT-MediumItalic
 /CasablancaAntique-Italic
 /CasablancaAntique-Normal
 /Caslon224ITCbyBT-Bold
 /Caslon224ITCbyBT-BoldItalic
 /Caslon224ITCbyBT-Book
 /Caslon224ITCbyBT-BookItalic
 /Caslon540BT-Italic
 /Caslon540BT-Roman
 /CaslonBT-Bold
 /CaslonBT-BoldItalic
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastleT-Bold
 /CastleT-Book
 /CastleT-Ligh
 /CastleT-Ultr
 /Catalogfonts
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /CaxtonBT-Light
 /CaxtonBT-LightItalic
 /Centaur
 /CentaurMT
 /CentaurMT-Bold
 /CentaurMT-BoldExpert
 /CentaurMT-BoldItalic
 /CentaurMT-BoldItalicExpert
 /CentaurMT-BoldItalicOsF
 /CentaurMT-BoldOsF
 /CentaurMT-Expert
 /CentaurMT-Italic
 /CentaurMT-ItalicA
 /CentaurMT-ItalicAlternate
 /CentaurMT-ItalicExpert
 /CentaurMT-ItalicOsF
 /CentaurMT-SC
 /CentaurMT-SwashCapitals
 /Century
 /Century725BT-BoldCondensed
 /Century725BT-RomanCondensed
 /CenturyExpandedBT-Bold
 /CenturyExpandedBT-BoldItalic
 /CenturyExpandedBT-Italic
 /CenturyExpandedBT-Roman
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldstyleBT-Bold
 /CenturyOldstyleBT-Italic
 /CenturyOldstyleBT-Roman
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbookBT-Bold
 /CenturySchoolbookBT-BoldCond
 /CenturySchoolbookBT-BoldItalic
 /CenturySchoolbookBT-Italic
 /CenturySchoolbookBT-Roman
 /CenturySchoolbook-Italic
 /Charlesworth-Bold
 /Charlesworth-Normal
 /CharterBT-Black
 /CharterBT-BlackItalic
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondensed
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /ChiselD
 /CircleD
 /CityD-Bold
 /CityD-Ligh
 /CityD-Medi
 /ClarendonBT-Black
 /ClarendonBT-Bold
 /ClarendonBT-BoldCondensed
 /ClarendonBT-Heavy
 /ClarendonBT-Light
 /ClarendonBT-Roman
 /ClarendonBT-RomanCondensed
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /CloisterBlackBT-Regular
 /CMBX10
 /CMBXSL10
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI9
 /CMR10
 /CMR5
 /CMR6
 /CMR7
 /CMR9
 /CMSL10
 /CMSL8
 /CMSS10
 /CMSS12
 /CMSY10
 /CMSY6
 /CMSY7
 /CMSY9
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialScriptBT-Regular
 /CommonBullets
 /CompactaBT-Black
 /CompactaBT-Bold
 /CompactaBT-BoldItalic
 /CompactaBT-Italic
 /CompactaBT-Light
 /CompactaBT-Roman
 /CooperBlack
 /CooperBT-Black
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-BlackItalicHeadline
 /CooperBT-BlackOutline
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CopperplateGothic-Bold
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-BoldCond
 /CopperplateGothicBT-Heavy
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopperplateGothic-Light
 /Copperplate-ThirtyOneAB
 /Copperplate-TwentyNineAB
 /CorporateSansBQ-Bold
 /CorporateSansBQ-BoldItalic
 /CorporateSansBQExp-Bold
 /CorporateSansBQExp-BoldItalicOsF
 /CorporateSansBQExp-ExtBoldItalicOsF
 /CorporateSansBQExp-ExtraBold
 /CorporateSansBQExp-ItalicOsF
 /CorporateSansBQExp-Light
 /CorporateSansBQExp-LightItalicOsF
 /CorporateSansBQExp-Medium
 /CorporateSansBQExp-MediumItalicOsF
 /CorporateSansBQExp-Regular
 /CorporateSansBQ-ExtraBold
 /CorporateSansBQ-ExtraBoldItalic
 /CorporateSansBQ-Italic
 /CorporateSansBQ-Light
 /CorporateSansBQ-LightItalic
 /CorporateSansBQ-Medium
 /CorporateSansBQ-MediumItalic
 /CorporateSansBQ-Regular
 /Cosmic-Normal
 /CosmicTwo-Normal
 /Cottage-Normal
 /CountdownD
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /Critter
 /CroissantD
 /CurlzMT
 /Czar-Bold
 /Czar-BoldItalic
 /Czar-Italic
 /Czar-Normal
 /Dauphin-Normal
 /DavidaBoldBT-Regular
 /Decorated035BT-Regular
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /DeVinneBT-Italic
 /DeVinneBT-ItalicText
 /DeVinneBT-Roman
 /DeVinneBT-Text
 /DexGothicD
 /DextorD
 /DextorOutD
 /DiskusD-Medi
 /DomBoldBT-Regular
 /DomCasual
 /DomCasualBT-Regular
 /DomDiagonalBT-Bold
 /DomDiagonalBT-Regular
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-ExtraBoldItalic
 /Dutch801BT-Italic
 /Dutch801BT-ItalicHeadline
 /Dutch801BT-Roman
 /Dutch801BT-RomanHeadline
 /Dutch801BT-SemiBold
 /Dutch801BT-SemiBoldItalic
 /EckmannD
 /EdwardianScriptITC
 /Egyptian505BT-Bold
 /Egyptian505BT-Light
 /Egyptian505BT-Medium
 /Egyptian505BT-Roman
 /Eklektic-Normal
 /ElegantGaramondBT-Bold
 /ElegantGaramondBT-Italic
 /ElegantGaramondBT-Roman
 /Elephant-Italic
 /Elephant-Regular
 /EmbassyBT-Regular
 /Emboss
 /EmpireBT-Regular
 /EnglischeSchT-Bold
 /EnglischeSchT-DemiBold
 /EnglischeSchT-Regu
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasContour
 /ErasITC-Bold
 /ErasITCbyBT-Bold
 /ErasITCbyBT-Book
 /ErasITCbyBT-Demi
 /ErasITCbyBT-Light
 /ErasITCbyBT-Medium
 /ErasITCbyBT-Ultra
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Eurostile-BoldCondensed
 /Eurostile-BoldExtendedTwo
 /Eurostile-Condensed
 /Eurostile-ExtendedTwo
 /EwieD
 /Exotic350BT-Bold
 /Exotic350BT-DemiBold
 /Exotic350BT-Light
 /Expo-Normal
 /ExPonto-Regular
 /FelixTitlingMT
 /Fences
 /FeniceITCbyBT-Bold
 /FeniceITCbyBT-BoldItalic
 /FeniceITCbyBT-Regular
 /FeniceITCbyBT-RegularItalic
 /FetteFraD
 /Firenze
 /FlamencoD
 /FlamencoInlD
 /Flareserif821BT-Bold
 /Flareserif821BT-Light
 /Flareserif821BT-Roman
 /FlashD-Bold
 /FlashD-Ligh
 /FlemishScriptBT-Regular
 /FootlightMTLight
 /FormalScript421BT-Regular
 /ForteMT
 /FrakturBT-Regular
 /FrankfurterHigD
 /FrankfurtGothic-Bold
 /FrankfurtGothic-BoldItalic
 /FrankfurtGothicHeavy-Italic
 /FrankfurtGothicHeavy-Normal
 /FrankfurtGothic-Italic
 /FrankfurtGothic-Normal
 /FrankHighlight-Normal
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Condensed
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothicITCbyBT-Heavy
 /FranklinGothicITCbyBT-HeavyItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FranklinGothic-Roman
 /Freeform710BT-Regular
 /Freeform721BT-Black
 /Freeform721BT-BlackItalic
 /Freeform721BT-Bold
 /Freeform721BT-BoldItalic
 /Freeform721BT-Italic
 /Freeform721BT-Roman
 /Freehand471BT-Regular
 /Freehand521BT-RegularC
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScrD
 /FreestyleScript
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FrizQuadrataITCbyBT-Bold
 /FrizQuadrataITCbyBT-Roman
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /FrysBaskervilleBT-Roman
 /Futura
 /FuturaBlackBT-Regular
 /Futura-Bold
 /FuturaBoldOblique
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /Futura-Condensed
 /Futura-CondensedBold
 /Futura-CondensedBoldOblique
 /Futura-CondensedExtraBold
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-CondensedOblique
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /FuturaLtCnBTItalic
 /FuturaMdCnBTItalic
 /FuturaMedium
 /FuturaMediumOblique
 /Futura-Oblique
 /Galleria-Normal
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Galliard-Roman
 /GandoBT-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /GaramondICGHand
 /GaramondICGHandItalic
 /Garamond-Italic
 /GaramondITCbyBT-Bold
 /GaramondITCbyBT-BoldCondensed
 /GaramondITCbyBT-BoldCondItalic
 /GaramondITCbyBT-BoldItalic
 /GaramondITCbyBT-Book
 /GaramondITCbyBT-BookCondensed
 /GaramondITCbyBT-BookCondItalic
 /GaramondITCbyBT-BookItalic
 /GaramondLight
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /GaramondLightItalic
 /Garamond-LightItalic
 /GaramondNo4CyrTCY-Ligh
 /GaramondNo4CyrTCY-LighItal
 /GaramondNo4CyrTCY-Medi
 /GaramondThree
 /GaramondThree-Bold
 /GaramondThree-BoldItalic
 /GaramondThree-BoldItalicOsF
 /GaramondThree-BoldSC
 /GaramondThree-Italic
 /GaramondThree-ItalicOsF
 /GaramondThree-SC
 /Gautami
 /GeographicSymbols-Normal
 /Geometric231BT-BoldC
 /Geometric231BT-HeavyC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /Geometric415BT-BlackA
 /Geometric415BT-BlackItalicA
 /Geometric415BT-LiteA
 /Geometric415BT-LiteItalicA
 /Geometric415BT-MediumA
 /Geometric415BT-MediumItalicA
 /Geometric706BT-BlackB
 /Geometric706BT-BlackCondensedB
 /Geometric706BT-BoldCondensedB
 /Geometric706BT-MediumB
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeometricSlab703BT-XtraBoldCond
 /GeometricSlab703BT-XtraBoldItal
 /GeometricSlab712BT-BoldA
 /GeometricSlab712BT-ExtraBoldA
 /GeometricSlab712BT-LightA
 /GeometricSlab712BT-LightItalicA
 /GeometricSlab712BT-MediumA
 /GeometricSlab712BT-MediumItalA
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Glacier-Italic
 /Glacier-Normal
 /GlaserSteD
 /GloucesterMT-ExtraCondensed
 /GoldMine-Normal
 /GorillaITCbyBT-Regular
 /Gothic725BT-BlackA
 /Gothic725BT-BoldA
 /Gothic821CondensedBT-Regular
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /GoudyCatalogueBT-Regular
 /GoudyHandtooledBT-Regular
 /GoudyHeavyfaceBT-Regular
 /GoudyHeavyfaceBT-RegularCond
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-ExtraBold
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudyStout
 /Griffon-Normal
 /GriffonShadow-Normal
 /GrizzlyITCbyBT-Regular
 /Haettenschweiler
 /HandelGotD-Bold
 /HandelGotD-Ligh
 /HandelGothicBT-Regular
 /HarlowD
 /HarlowSolid
 /Harpoon-Normal
 /Harrington
 /HehenHebT-Bold
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Light
 /Helvetica-LightOblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightItalic
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoboBT-Regular
 /Honda
 /HoratioD-Bold
 /HoratioD-Ligh
 /HoratioD-Medi
 /HorndonD
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-ExtraBold
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /Humanist521BT-UltraBold
 /Humanist521BT-XtraBoldCondensed
 /Humanist777BT-BlackB
 /Humanist777BT-BlackItalicB
 /Humanist777BT-BoldB
 /Humanist777BT-BoldItalicB
 /Humanist777BT-ItalicB
 /Humanist777BT-LightB
 /Humanist777BT-LightItalicB
 /Humanist777BT-RomanB
 /Humanist970BT-BoldC
 /Humanist970BT-RomanC
 /HuxleyVerticalBT-Regular
 /IceAgeD
 /Imago-ExtraBold
 /Impact
 /ImpressBT-Regular
 /ImprintMT-Shadow
 /ImpulsBT-Regular
 /Incised901BT-Black
 /Incised901BT-Bold
 /Incised901BT-BoldCondensed
 /Incised901BT-Compact
 /Incised901BT-Italic
 /Incised901BT-Light
 /Incised901BT-Nord
 /Incised901BT-NordItalic
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Industrial736BT-Roman
 /Informal011BT-Black
 /Informal011BT-Roman
 /InformalRoman-Regular
 /IowanOldStyleBT-Black
 /IowanOldStyleBT-BlackItalic
 /IowanOldStyleBT-Bold
 /IowanOldStyleBT-BoldItalic
 /IowanOldStyleBT-Italic
 /IowanOldStyleBT-Roman
 /Ireland-Normal
 /ItcEras-Bold
 /ItcEras-Book
 /ItcEras-Medium
 /Jokerman-Regular
 /JuiceITC-Regular
 /Jupiter-Normal
 /KabarettD
 /KabelBd
 /KabelITCbyBT-Book
 /KabelITCbyBT-Demi
 /KabelITCbyBT-Medium
 /KabelITCbyBT-Ultra
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /Keypunch-Normal
 /Keystroke-Normal
 /Kids-Normal
 /KisBT-Italic
 /KisBT-Roman
 /Korinna-Bold
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /Korinna-KursivBold
 /Korinna-KursivRegular
 /Korinna-Regular
 /KristenITC-Regular
 /Kuenstler480BT-Black
 /Kuenstler480BT-Bold
 /Kuenstler480BT-BoldItalic
 /Kuenstler480BT-Italic
 /Kuenstler480BT-Roman
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /KunstlerScript
 /Lapidary333BT-Black
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LasVegasD
 /Latha
 /LatinExtraCondensedBT-Regular
 /LatinWidD
 /LatinWide
 /LcdD
 /LetterGothic
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LibertyBT-Regular
 /LibertyD
 /LibraBT-Regular
 /LithographBold
 /LithographLight-Normal
 /Lithograph-Normal
 /Lithos-Black
 /Lithos-Regular
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LuciaBT-Regular
 /LucianBT-Bold
 /LucianBT-Roman
 /Lucida
 /Lucida-Bold
 /Lucida-BoldItalic
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /Lucida-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Machine
 /Machine-Bold
 /MachineITCbyBT-Regular
 /Madrone
 /Magneto-Bold
 /MaiandraGD-Regular
 /MandarinD
 /Mangal-Regular
 /MariageD
 /MathematicalPi-Four
 /MathematicalPi-Three
 /MaturaMTScriptCapitals
 /MetropolitainesD
 /MICR10byBT-Regular
 /MICR12byBT-Regular
 /MICR13byBT-Regular
 /MicrogrammaD-BoldExte
 /MicrogrammaD-MediExte
 /MicrosoftSansSerif
 /Minion-Black
 /Minion-BlackOsF
 /Minion-Bold
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-BoldItalic
 /Minion-BoldItalicOsF
 /Minion-BoldOsF
 /Minion-Condensed
 /Minion-CondensedItalic
 /MinionCyr-Bold
 /MinionCyr-BoldItalic
 /MinionCyr-Italic
 /MinionCyr-Regular
 /MinionCyr-Semibold
 /MinionCyr-SemiboldItalic
 /Minion-DisplayItalic
 /Minion-DisplayItalicSC
 /Minion-DisplayRegular
 /Minion-DisplayRegularSC
 /MinionExp-Black
 /MinionExp-Bold
 /MinionExp-BoldItalic
 /MinionExp-DisplayItalic
 /MinionExp-DisplayRegular
 /MinionExp-Italic
 /MinionExp-Regular
 /MinionExp-Semibold
 /MinionExp-SemiboldItalic
 /Minion-Italic
 /Minion-ItalicSC
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Minion-Regular
 /Minion-RegularSC
 /Minion-Semibold
 /Minion-SemiboldItalic
 /Minion-SemiboldItalicSC
 /Minion-SemiboldSC
 /Minion-SwashDisplayItalic
 /Minion-SwashItalic
 /Minion-SwashSemiboldItalic
 /MiraraeBT-Bold
 /MiraraeBT-Roman
 /MisterEarlBT-Regular
 /Mistral
 /Modern20BT-ItalicB
 /Modern20BT-RomanB
 /Modern735BT-RomanA
 /Modern-Regular
 /MonaLisaRecut
 /MonaLisaSolid
 /MonotypeCorsiva
 /MotterFemD
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MT-Extra
 /MTMI
 /MTSY
 /MT-Symbol
 /MT-Symbol-Italic
 /MurrayHillBT-Bold
 /MusicalSymbols-Normal
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-CnBold
 /Myriad-CnBoldItalic
 /Myriad-CnItalic
 /Myriad-CnSemibold
 /Myriad-CnSemiboldItalic
 /Myriad-Condensed
 /Myriad-Italic
 /MyriadMM
 /MyriadMM-It
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /Myriad-Roman
 /Myriad-Sketch
 /Myriad-Tilt
 /NevisonCasD
 /NewBaskervilleITCbyBT-Bold
 /NewBaskervilleITCbyBT-BoldItal
 /NewBaskervilleITCbyBT-Italic
 /NewBaskervilleITCbyBT-Roman
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /News701BT-BoldA
 /News701BT-ItalicA
 /News701BT-RomanA
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NicolasCocT-Blac
 /NicolasCocT-Regu
 /NicolasCocT-ReguItal
 /NimbusRomDGR-Bold
 /NimbusRomDGR-BoldItal
 /NimbusRomDGR-Regu
 /NimbusRomDGR-ReguItal
 /NormandeBT-Italic
 /NormandeBT-Roman
 /Nueva-BoldExtended
 /Nueva-Roman
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OkayD
 /OldEnglishTextMT
 /OldTowneNo536D
 /Onyx
 /OnyxBT-Regular
 /Optima-BoldOblique
 /Optima-Oblique
 /Optimum-Bold-DTC
 /Optimum-BoldItalic-DTC
 /Optimum-Roman-DTC
 /Optimum-RomanItalic-DTC
 /OrandaBT-Bold
 /OrandaBT-BoldCondensed
 /OrandaBT-BoldItalic
 /OrandaBT-Italic
 /OrandaBT-Roman
 /OrandaBT-RomanCondensed
 /Orator
 /OratorBT-FifteenPitch
 /OratorBT-TenPitch
 /OrbitBbyBT-Regular
 /OriginalGaramondBT-Bold
 /OriginalGaramondBT-BoldItalic
 /OriginalGaramondBT-Italic
 /OriginalGaramondBT-Roman
 /Ottawa-Bold
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Palette-Normal
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParisianBT-Regular
 /ParkAvenue
 /ParkAvenueBT-Regular
 /Pepper-Normal
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhyllisD
 /PioneerITCbyBT-Regular
 /Pipeline-Normal
 /PiranesiItalicBT-Regular
 /Playbill
 /PlaybillBT-Regular
 /PlazaD-Regu
 /Poetica-ChanceryI
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /Poplar
 /Posse-Normal
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Postino
 /Postino-Italic
 /President-Normal
 /PrincetownD
 /PrincetownSolid
 /Pristina-Regular
 /ProseAntique-Bold
 /ProseAntique-Normal
 /PTBarnumBT-Regular
 /PumpTriD
 /Quicksilver
 /QuillScript
 /Raavi
 /RageItalic
 /RaleighBT-Bold
 /RaleighBT-DemiBold
 /RaleighBT-ExtraBold
 /RaleighBT-Light
 /RaleighBT-Medium
 /RaleighBT-Roman
 /Ravie
 /Revival565BT-Bold
 /Revival565BT-BoldItalic
 /Revival565BT-Italic
 /Revival565BT-Roman
 /RevueBT-Regular
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanaBT-Bold
 /RomanaBT-Roman
 /RunicMT-Condensed
 /SansExtended-Medium-DTC
 /SansExtended-Regular-DTC
 /SansExtended-RegularOblique-DTC
 /SansExtraBlackCondensed-DTC
 /Sanvito-Light
 /Sanvito-Roman
 /SchadowBT-BlackCondensed
 /SchneidlerBT-Black
 /SchneidlerBT-BlackItalic
 /SchneidlerBT-Bold
 /SchneidlerBT-BoldItalic
 /SchneidlerBT-Italic
 /SchneidlerBT-Light
 /SchneidlerBT-LightItalic
 /SchneidlerBT-Medium
 /SchneidlerBT-MediumItalic
 /SchneidlerBT-Roman
 /ScriptMTBold
 /SeagullBT-Bold
 /SeagullBT-Heavy
 /SeagullBT-Light
 /SeagullBT-Medium
 /SerpentineD-Bold
 /SerpentineD-BoldItal
 /ShelleyAllegroBT-Regular
 /ShelleyAndanteBT-Regular
 /ShelleyVolanteBT-Regular
 /ShotgunBlanksBT-Regular
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SkidoosD
 /SloganD
 /SnapITC-Regular
 /SnellBT-Black
 /SnellBT-Bold
 /SnellBT-Regular
 /Souvenir-Demi
 /Souvenir-DemiItalic
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Souvenir-Light
 /Souvenir-LightItalic
 /Spartan-BookClassified
 /Spartan-HeavyClassified
 /Square721
 /Square721Blk
 /Square721BT-Bold
 /Square721BT-BoldCondensed
 /Square721BT-BoldExtended
 /Square721BTItalic
 /Square721BT-Roman
 /Square721BT-RomanCondensed
 /Square721BT-RomanExtended
 /Square721DmItalic
 /Square721DmNormal
 /SquareSlabserif711BT-Bold
 /SquareSlabserif711BT-Light
 /SquareSlabserif711BT-Medium
 /SquireD-Bold
 /SquireD-Regu
 /Staccato222BT-Regular
 /Staccato555BT-RegularA
 /Stencil
 /StencilBT-Regular
 /StopD
 /StuyvesantBT-Regular
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-BlackRounded
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-BoldRounded
 /Swiss721BT-Heavy
 /Swiss721BT-HeavyItalic
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Medium
 /Swiss721BT-MediumItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721BT-ThinItalic
 /Swiss911BT-ExtraCompressed
 /Swiss911BT-UltraCompressed
 /Swiss921BT-RegularA
 /Swiss924BT-RegularB
 /SwitzerlandNarrow-Bold
 /SwitzerlandNarrow-BoldItalic
 /SwitzerlandNarrow-Italic
 /SwitzerlandNarrow-Normal
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolProportionalBT-Regular
 /Tahoma
 /Tahoma-Bold
 /TangoBT-Regular
 /Technical-Italic
 /Technical-Normal
 /TektonMM
 /TektonMM-Oblique
 /TempusSansITC
 /ThunderbirdBT-Regular
 /Tiepolo-Book
 /TiffanyITCbyBT-Demi
 /TiffanyITCbyBT-DemiItalic
 /TiffanyITCbyBT-Heavy
 /TiffanyITCbyBT-HeavyItalic
 /TiffanyITCbyBT-Light
 /TiffanyITCbyBT-LightItalic
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /TimeScrD-Bold
 /TimeScrD-Ligh
 /TimeScrD-Medi
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS
 /TimesNewRomanPS-Bold
 /TimesNewRomanPS-BoldItalic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-Italic
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Traffic
 /Trajan-Bold
 /Trajan-Regular
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /Transitional551BT-MediumB
 /Transitional551BT-MediumItalicB
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TriplexConBlackOldstyle
 /TrumpetLite
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UniversityRomanBT-Bold
 /UniversityRomanBT-Regular
 /UptightNeon
 /URWWoodTypD
 /Utopia-Italic
 /Utopia-Regular
 /Utopia-Semibold
 /Utopia-SemiboldItalic
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRoundedBT-Regular
 /VAGRounded-Light
 /VAGRoundedLt
 /VAGRounded-Thin
 /VanDijk
 /Veljovic-Black
 /Veljovic-MediumItalic
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VictorianD
 /Viking-Normal
 /VinerHandITC
 /VinetaBT-Regular
 /Viva-BoldExtraExtended
 /VivaldiD
 /Vivaldii
 /Viva-Regular
 /VladimirScrD
 /VladimirScript
 /VolutaScript
 /VolutaScript-Alternates
 /VolutaScript-Swash
 /Vrinda
 /Webdings
 /WeddingTextBT-Regular
 /Willow
 /WindsorBT-Elongated
 /WindsorBT-Light
 /WindsorBT-LightCondensed
 /WindsorBT-Outline
 /WindsorBT-Roman
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfCalligraphic801BT-Bold
 /ZapfCalligraphic801BT-BoldItal
 /ZapfCalligraphic801BT-Italic
 /ZapfCalligraphic801BT-Roman
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfDingbats
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZapfHumanist601BT-Ultra
 /ZapfHumanist601BT-UltraItalic
 /ZurichBT-BoldExtended
 /ZurichBT-LightCondensed
 /ZurichBT-LightCondensedItalic
 /ZurichBT-LightExtraCondensed
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
 /ZzTeX-Doodads
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

