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Abstract
Past work has focused on detecting data races as proxies for Se-

quential Consistency (SC) violations. However, most data races do
not violate SC. In addition, lock-free data structures and synchro-
nization libraries sometimes explicitly employ data races but rely
on SC semantics for correctness. Consequently, to uncover SC vio-
lations, we need to develop a more precise technique.

This paper presents Vulcan, the first hardware scheme to pre-
cisely detect SC violations at runtime, in programs running on a
relaxed-consistency machine. The scheme leverages cache coher-
ence protocol transactions to dynamically detect cycles in memory-
access orders across threads. When one such cycle is about to occur,
an exception is triggered. For the conditions considered in this pa-
per and with enough hardware, Vulcan suffers neither false positives
nor false negatives. In addition, Vulcan induces negligible execu-
tion overhead, requires no help from the software, and only takes as
input the program executable. Experimental results show that Vul-
can detects three new SC violation bugs in the Pthread and Crypt
libraries, and in the fmm code from SPLASH-2. Moreover, Vul-
can’s negligible execution overhead makes it suitable for on-the-fly
use.

1. Introduction
The model that programmers have in mind when they program

and debug shared-memory threads is Sequential Consistency (SC).
SC requires the memory operations of a program to appear to ex-
ecute in some global sequence as if the threads where multiplexed
on a uniprocessor [18]. In practice, however, current hardware over-
laps, pipelines, and reorders the memory accesses of threads. As a
result, a program’s execution can be unintuitive.

As an example, consider Figure 1(a). Processor PA allocates a
variable and then sets a flag; later, PB tests the flag and, if set, it
uses the variable. While the particular interleaving in Figure 1(a)
produces expected results, the interleaving in Figure 1(b) does not.
In here, the hardware reorders the completion of the stores in the
two statements in PA. In this unlucky interleaving, PB ends up
using an unallocated variable. This order is an SC Violation (SCV).

From the hardware point of view, several conditions must be met
for an SCV to occur. First, we need to have at least two data races —
i.e., races on variables buff and init in the example. Secondly, these
races must be of a very special type: they must be overlapping in
time and intertwined in a manner that can form a cycle [30]. For
two threads, it requires a pattern like that in Figure 2(a) where, if
we follow program order, the two threads reference the same two
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A1: init=TRUE

A0: buff=malloc()

A1: init=TRUE

B0: if (init)

B1: ...=buff
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B0: if (init)

B1: ...=buff
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A0: buff=malloc()

Figure 1. Example of an SC violation.

variables in opposite orders, and each variable is written at least
once. Finally, the order of the references in these two racing pairs
has to form a cycle at runtime. This is shown in Figure 2(b), where
we have arbitrarily picked reads and writes: A1 must occur before
B0 and B1 must occur before A0. This is exactly what happened in
Figure 1(b), where y was init and x was buff.
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Figure 2. SC violations are possible.

Note, however, that if the timing at runtime is such that at least
one of the two dependence arrows occurs in the opposite direction,
there is no SCV. For example, Figure 2(c) shows the case when A1
executed before B0 but A0 executed before B1. Since there is no
cycle, SC is not violated. This case corresponds to the timing in
Figure 1(a).

Data race patterns that cause SCVs are sometimes found in
double-checked locking constructs [29], some synchronization li-
braries, and code for lock-free data structures.

Detecting SCVs is important because, in practically all cases,
they are harmful, clear-cut bugs. The reason is that, as the exam-
ple in Figure 1(b) shows, they require memory access orders that
contradict a programmer’s intuition. In addition, the programmer
cannot reproduce them using a single-stepping debugger.

Past work has attempted to find SCVs by focusing on detecting
data races (e.g., [4, 9, 15, 16, 23, 24, 32]). However, as we just saw,
using data races as proxies for SCVs is very imprecise. The specific
race pattern and interleaving required for an SCV is not necessarily



common. In large commercial codes, conventional race-detection
tools typically flag many data races, often causing the programmer
to spend time examining races that are much less likely to cause
code malfunctioning than SCVs [13, 26].

A second reason for not using data races as proxies is that we
may want to find SCVs in codes that have intentional data races,
such as in lock-free data structures. We may want to debug the
code for SCVs, while being less concerned about non-SC-violating
races. Here, a race-detection tool would not be a good instrument
to use. If we want to detect SCVs, we need to precisely zero-in on
the types of data races and interleavings that cause them.

Given the importance of these bugs and the difficulty in iso-
lating them, this paper contributes with Vulcan, the first hardware
scheme to precisely detect SCVs at runtime, in programs running
on a relaxed-consistency machine. Vulcan leverages cache coher-
ence protocol transactions to dynamically detect cycles in memory
access orders across threads. When a cycle is about to occur, an
exception is triggered, providing information to debug the SCV.

The Vulcan design in this paper focuses on finding cycles of
overlapping races between only two processors — since cycles in-
volving three and more processors are much rarer. In addition, it
does not consider speculative loads from mispredicted branch paths.
Moreover, it is not concerned with SCVs due to compiler transfor-
mations — Vulcan only reports SCVs due to hardware-initiated ref-
erence reordering. Within these constraints, and with large-enough
hardware structures, Vulcan suffers neither false positives nor false
negatives.

Vulcan’s approach has several advantages: it induces negligible
execution overhead, requires no help from the software, and only
takes as input the program executable. Experimental results show
that Vulcan detects three new bugs in popular codes. Specifically,
it finds SCVs in the Pthread and Crypt libraries, and in the fmm
program from SPLASH-2. We have reported the bugs to the devel-
opers. In addition, Vulcan’s negligible execution overhead makes it
suitable for on-the-fly use.

We also contribute with a new taxonomy of data races.
This paper is organized as follows: Section 2 gives a back-

ground; Section 3 introduces a taxonomy of data races; Sections 4
and 5 present Vulcan; Section 6 outlines its limitations; Section 7
evaluates Vulcan; and Section 8 discusses related work.

2. Background
A Sequential Consistency Violation (SCV) occurs when the

memory operations of a program have executed in an order that
does not conform to any SC interleaving. It is virtually always a
harmful bug, since it is the outcome of an unintuitive execution.
Moreover, it is difficult to debug because single-stepping debuggers
cannot reproduce it.

Shasha and Snir [30] show what causes an SCV: overlapping
data races where the dependences end up ordered in a cycle. Recall
that a data race occurs when two threads access the same memory
location without an intervening synchronization and at least one is
writing. Figure 2(a) showed the required program pattern for two
threads (where each variable is written at least once) and Figure 2(b)
showed the required order of the dependences at runtime (where we
assigned reads and writes to the references arbitrarily).

If at least one of the dependences occurs in the opposite direc-
tion (e.g., Figure 2(c)), no SCV occurs. In addition, if the code
of the two threads references the two variables in the same order
(Figure 3(a)), no SCV is possible — no matter how the hardware

reorders these references at runtime. For example, in Figure 3(b),
no SCV can occur, no matter the direction of the inter-thread de-
pendences.

A0: wr x B0: rd x

A1: wr y B1: rd y

A0: ref(x) B0: ref(x)

B1: ref(y)A1: ref(y)

(a)

(b)
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Figure 3. SC violations are not possible.

Given the pattern in Figure 2(a), Shasha and Snir [30] prevent
the SCV by placing one fence between references A0 and A1, and
another between B0 and B1. Their algorithm to find where to put
the fences is called the Delay Set.

The commonly used Double-Checked Locking (DCL) [29] is a
major source of SCVs. This is a programming technique to reduce
the overhead of acquiring a lock by first testing the locking criterion
without actually acquiring the lock. Only if the test indicates that
locking is required does the actual locking logic proceed. The code
takes a structure like in Figure 1(a). Because the code is typically
involved, programmers often miss putting the two fences needed.

Data races and SCVs are very different, and programs have more
data races than SCVs. However, past work has focused on detecting
data races as proxies for SCVs. Specifically, one line of work de-
tects incoming coherence messages on data that has local outstand-
ing loads or stores. This work started with Gharachorloo and Gib-
bons [15] and now includes many aggressive speculative designs
(e.g., [4, 9, 16, 32]). Another line of work detects a conflict be-
tween two concurrent synchronization-free regions. This includes
DRFx [24] and Conflict Exceptions [23]. In general, all of these
works look for a data race with two accesses that occur within a
short time — but still, only a single race. Overall, while focusing
on these races may be a good way to discard many irrelevant ones, it
is still a very different problem than focusing on uncovering SCVs.

Other researchers have used the compiler to identify race pairs
that could cause SCVs, typically using the Delay Set algorithm, and
then insert fences to prevent cycles [12, 14, 17, 19, 31]. Since the
compiler has limited information, these approaches tend to be very
conservative and result in substantial slowdowns. Lin et al. [20]
hide much of the resulting fence delay with architectural support.

Lin et al. [21] have recently proposed a design to support SC
in a relaxed-consistency machine. While its goal is different than
Vulcan’s, it also involves the analysis of race cycles. We discuss
it in Section 8. Finally, in the program testing and verification do-
mains, there are proposals to detect SCVs by checking the seman-
tic correctness of programs, or by collecting traces and then, off-
line, applying reordering rules [6, 7, 8]. While such techniques are
promising, they are typically limited to small-sized codes and are
performed statically or as an off-line pass. Vulcan’s goal is to de-
tect SCVs in large codes on-the-fly and with negligible overhead.
More details on related work are presented in Section 8.

3. A Taxonomy of Data Races
To assess the relationship between data races and SCVs, we de-

velop a taxonomy of data races. We examined the bug databases of



popular programs such as Apache, MySQL, and Mozilla, and col-
lected all the data-race bugs we could find. Since these are races
reported by users, we know that they caused the program to mal-
function. Table 1 lists the applications and the number of reported
data races.

Application # Reported # Multi- # SCV # DCL
Data Races Races Races SCVs

Apache 24 5 5 5
MySQL 13 1 1 1
Mozilla 11 2 1 1
Redhat (glibc) 2 2 2 1
Java SDK 2 1 1 1
PostgreSQL 1 0 0 0
Pbzip2 1 from [33] 0 0 0
Windows kernel 1 from [13] 0 0 0
Isolator bench. 1 from Isolator [27] 0 0 0

Total 56 11 10 9

Table 1. Reported data races that we studied.

Overall, we found 56 reported race-based bugs. For each of
these bugs, if they contain more than one race, we call them Multi-
races; otherwise, we call them Single-races. In addition, if a multi-
race bug can create an SCV, we call it an SCV Race; otherwise it is
a Non-SCV Race. Finally, SCV races are classified into those that
are DCLs [29] and those that are not.

Table 1 shows the breakdown of the bugs per application. We
see that, of the total 56 reported race bugs, 11 are multi-races (20%).
Of these, 10 can cause SCVs (91%). The only one that, due to its
reference pattern cannot ever create an SCV is in Mozilla [2]. Of
the 10 SCV races, 9 are DCLs (90%).

It is well known from practical experience and from the litera-
ture [13, 26] that real programs contain many data races that users
and developers do not consider important enough to report or to fix.
Consequently, to put the previous numbers in context, we have to
assume that there is a potentially sizable number of additional, un-
reported data races. Therefore, we can build the tree of Figure 4(a),
which shows the frequency of each type of data race relative to
its parent’s. To visualize the frequency relative to all the race in-
stances, Figure 4(b) shows a diagram where the area is proportional
to the frequency of occurrence. Even if we do not know the actual
number of unreported data races, the figure suggests that previous
approaches that focus on data races as proxies for SCVs are insuf-
ficient.
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   Race
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Figure 4. Relative frequency of data-race types.

The figure also shows why a special technique for SCV races is
warranted: they comprise a substantial fraction of the reported data

races, namely 18%. Importantly, they are very hard to debug, since
current debuggers cannot reproduce them.

4. Vulcan: Detecting SC Violations
Our goal is to develop an approach to detect SCVs in relaxed-

consistency machines that is highly precise. In addition, we want
a solution that can deliver information to debug the SCV, uses no
other input than the executable, and has a negligible execution over-
head. Hence, we focus on a hardware-only solution to detect cycles
of inter-thread data dependences at runtime.

The idea behind our approach, called Vulcan, is to rely on the
cache coherence protocol to dynamically record the observed inter-
thread data dependences, while checking whether they form cycles.
These dependences are kept around only for as long as they can
participate in a cycle, and are discarded soon after. Both the record-
ing and the checking of these dependences is done in hardware to
minimize execution overhead.

4.1. Basic Algorithm to Detect Cycles
Figure 5(a) repeats the pattern that can lead to an SCV with two

threads. An SCV occurs when, due to the out-of-order execution of
ref(x) and ref(y) in one thread or in both threads, A1 executes before
B0, and B1 executes before A0 — creating a dependence cycle.

To understand how Vulcan works, consider the dependence ar-
row of Figure 5(b), which represents that reference A1 executed
before reference B0. This arrow creates two regions, R1 and R2,
such that any future dependence whose source is in R1 and destina-
tion is in R2 will cause an SCV. Consequently, after Vulcan records
A1→B0, it monitors that no new dependence is created from an ac-
cess in PB at or after B0 to an access in PA at or before A1. We put
this requirement as the two restrictions of Figure 5(c):

• For any dependence whose source reference is in PB at or after
B0, the Allowed Destination (AD) in PA is after A1.

• For any dependence whose destination reference is in PA at or
before A1, the Allowed Source (AS) in PB is before B0.

If there are multiple dependences between two threads, then the
AD of a dependence from a reference is the latest (i.e., maximum) of
the contributing ADs, while the AS of a dependence to a reference is
the earliest (i.e., minimum) of the contributing ASs. This is shown
in Figure 5(d). In the figure, for each of the two dependences, we
use the algorithm of Figure 5(c) to set the ADs of their R1 Regions
and the ASs of their R2 regions. In the areas where the two R1
regions overlap (B0 and later in PB), Vulcan sets the AD to the
maximum of the two values; in the areas where the two R2 regions
overlap (A1 and earlier in PA), Vulcan sets the AS to the minimum
of the two values.

Based on this discussion, Vulcan tags each monitored reference
with three labels. They are shown in Figure 5(e). The first one is
the Sequence Number (SN), which is the local dynamic reference
count, assigned when the load or store enters the pipeline (e.g., at
issue). The second one is the Allowed Destination (AD), which is
the SN of the reference in the other processor after which the local
reference can send data to. The last one is the Allowed Source (AS),
which is the SN of the reference in the other processor before which
the local reference can receive data from. Since a processor can
have dependences with every other processor, AD and AS are arrays
of N-1 entries, where N is the processor count. In each processor,
SN starts up as 0 and increases monotonically. AD starts up as 0 and
AS as∞.
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Figure 5. Basic algorithm to detect cycles.

These structures are updated in hardware when a new cross-
processor dependence is created. The algorithm is shown in Fig-
ure 5(g), which refers to the example in Figure 5(f). Assume that
we already have the solid arrow A1→B0; now PA issues a request
from reference Ai that prompts reference Bj in PB to respond, cre-
ating the dotted arrow Bj→Ai. Figure 5(g) shows that there are
three steps in the creation of the Bj→Ai arrow. Step 1 is the request
from PA, which carries the SN of the requesting access (SNAi). In
Step 2, PB operates on its Vulcan metadata, sends the response, and
possibly raises an exception. Specifically, PB checks that a cycle
is not about to form by confirming that Ai is an allowed destination
of Bj. If it is not (SNAi ≤ ADBj [PA]), a cycle is about to form
and, hence an SCV is detected. In this case, PB sends the response
with the SN of the producer access (SNBj) and raises an excep-
tion. Otherwise, as in the example, the metadata is updated: the
AS[PA] of Bj and earlier accesses in PB are set to the minimum of
their current values and SNAi. Also, PB sends the response with
SNBj .

Finally, in Step 3, when the data reaches PA, PA operates on its
metadata and possibly raises an exception. Specifically, PA checks
that a cycle is not formed by confirming that Bj is an allowed source
of Ai. If it is not (SNBj ≥ ASAi[PB ]), a cycle is formed and an
SCV has occurred. Consequently, an exception is raised. Other-
wise, as in the example, the AD[PB ] of Ai and later accesses in PA

are set to the maximum of their current values and SNBj .
With this algorithm, Vulcan raises exceptions immediately when

a dependence closes a cycle and causes an SCV. This provides valu-
able information for debugging the SCV. The exception at the pro-
cessor that receives the response always occurs. The exception at
the producer processor may not occur since, at send time, there may
not be enough dependences for a cycle yet. In Section 5.5, we con-
sider all the information that is available to debug the SCV.

4.2. Safe Accesses
As a processor issues references, the Vulcan hardware monitors

them. To understand for how long they need to be monitored, we

define the concept of a Safe (and Unsafe) access:

• An access is Safe when no data dependence involving this access
can cause an SCV any more. Otherwise, it is Unsafe. Vulcan can
stop monitoring an access when it becomes Safe.

To find out when an access becomes Safe, let us define the Per-
formed Point (PP) of a thread in an out-of-order processor. The PP
is the latest memory access (in program order) such that it and all
the accesses preceding it in the thread in program order have been
performed. A load is performed when it has retired; a store is per-
formed when it has retired and the cache has received the line and
all the invalidation acknowledgments.

As a thread executes, its PP keeps advancing. When the PP
reaches an access, it is clear that the access is completed. However,
the access may still participate in an SCV and, therefore, be Unsafe.
To see why, consider Figure 6(a). The creation of the A1→B1 de-
pendence makes the B1 and subsequent accesses in PB vulnerable.
Indeed, even if they complete and PB’s PP goes past them, they
can still participate in cycles. Specifically, if any access in PA prior
to A1 requests data from them (or generally becomes dependent on
them), a cycle is created. In precise terms: B1 and subsequent ac-
cesses in PB remain Unsafe for as long as PA’s PP has not reached
the reference in their AD (A1 in the example).

SN
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Figure 6. Understanding when an access is Safe.



The condition for an access Ci in processor PC to be Safe is:

• Suppose that we have an array PP[] with the current value of the
PPs for each processor (given as SN numbers). Ci is Safe when
(SNCi ≤ PP [PC ]) and (ADCi[PK ] ≤ PP [PK ]), for all proces-
sors K 6= C. [Proof in Theorem 1 of Appendix 1].

As an example, consider Figure 6(b). The accesses in PA be-
come Safe as soon as PP [PA] reaches them (since their AD has
not been changed from 0). The accesses in PB remain Unsafe even
as PP [PB ] reaches them. After that, as soon as A1 becomes Safe,
all the accesses in PB up to (but not including) B2 become Safe.

We also say that an access Ci in processor PC is Safe with re-
spect to another processor PM :

• Ci is Safe with respect to PM when (SNCi ≤ PP [PC ]) and
(ADCi[PM ] ≤ PP [PM ]).

Vulcan uses these insights as follows. First, each processor has
a PP[] array (Figure 6(c)). In this array, the entries corresponding
to the other processors are kept largely up-to-date thanks to the fact
that each processor includes its PP in every response message.

Second, a processor only keeps the SN, AD, and AS information
for its references that are Unsafe. Such information is kept in a
per-processor FIFO hardware queue associated with the cache con-
troller called SC Violation Queue (SCVQ) (Figure 6(d)). When the
processor issues a load or store, Vulcan allocates an SCVQ entry
and sets its SN field. Later, as the access executes and coherence
actions are received, the AD and AS fields are updated. Finally,
when the access becomes Safe, Vulcan deallocates the entry.

An SCVQ entry does not contain the data loaded or stored.
Moreover, the entry can remain allocated long after the access has
completed — for as long as it remains Unsafe.

4.3. Detecting Dependences

When an SCV occurs, the following must be true:

• The two inter-processor dependence arrows that form the cycle
must share a property: their source reference is Unsafe with respect
to the destination processor. If one of the arrows fails this condition,
there is no SCV. [Proof in Theorem 2 of Appendix 1].

For example, in Figure 7(a), arrow 1 could participate in an SCV,
while arrow 2 cannot. Consequently, we conclude:

• Vulcan only needs to watch for inter-processor data dependences
where the source reference is Unsafe with respect to the destination
processor. We call such dependences Unsafe dependences.
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Figure 7. Inter-processor data dependences.

To find the Unsafe dependences, we will see that Vulcan uses
the cache coherence protocol transactions (to a large extent). When
one is found, the hardware performs the basic algorithm described
in Section 4.1: the source and destination references exchange SNs,
the source checks its AD and potentially updates its AS (and those of
earlier accesses), and the destination checks its AS and potentially
updates its AD (and those of later accesses).

Figures 7(b)-(e) show the three types of dependences possible:
WAR, RAW, and WAW. Figure 7(b) shows a WAR. The write trig-
gers Vulcan to search the other processors’ SCVQs for accesses to
the address. Multiple reader processors may be identified. Each
reader processor has to take-in the write’s SN, provide its read’s SN
and run the Vulcan algorithm; the writer has to take-in all the reads’
SNs and run the Vulcan algorithm using the correct entries in its AD
and AS arrays. In addition, since the write will be the source of all
the future dependence(s) on this address, the write also triggers the
removal (i.e., invalidation) of the SCVQ entries for this address in
all the other processors.

Figure 7(c) shows a RAW. The read triggers Vulcan to search the
other processors’ SCVQs for a write to the address, ignoring SCVQ
entries for reads. The usual algorithm is then run. Figure 7(d) shows
a special case of a RAW, where the reader thread performs two reads
to the same address out of order: first a later read (rd1) and then a
read that is earlier in program order (rd2). In this case, both reads
must communicate with the writer’s SCVQ entry. In the process,
rd1 will first set the AS of the write (and of PA’s prior accesses) to
rd1’s SN; later, rd2 will set them to rd2’s SN, which is lower.

Figure 7(e) shows a WAW. As usual, the consumer write invali-
dates the SCVQ entry of the producer write. Note that other proces-
sors may have read the address in between the two writes. In this
case, the consumer writer forms WAR dependences with the readers
and a WAW dependence with the producer writer, and invalidates
all the SCVQ entries for this address but its own.

We next show how we detect all the Unsafe dependences. The
Appendix shows that:

• If Vulcan records all the Unsafe dependences, then it detects all
the SCVs between processors. [Proof in Theorem 3 of Appendix 1].

4.4. Leveraging the Coherence Protocol
To detect all the Unsafe dependences, Vulcan partially relies on

piggybacking on the cache coherence protocol transactions. In this
paper, we describe the operation assuming a snoopy-based MSI pro-
tocol; other protocols may require slightly different arrangements.
Moreover, we assume a single-level private cache hierarchy per pro-
cessor, where the SCVQ is associated with the cache controller, and
multi-word cache lines. Without loss of generality, we describe our
system using words (i.e., 32 bits) as the grain of processor accesses.
We later consider finer-grained accesses such as bytes.

To understand how Vulcan uses the coherence protocol, this sec-
tion starts by assuming single-word cache lines; Section 5 shows
the final Vulcan design, which uses multi-word lines. With single-
word lines, the destination access of the WAR, RAW, and WAW
dependences of Figure 7 induces a coherence transaction in the net-
work. Vulcan leverages such a transaction. The only exception is
the second read (rd2) in the RAW with out-of-order reads to the
same address (Figure 7(d)). We describe this special case later.

As part of the coherence transaction, if the source reference is
Unsafe (i.e., it is in an SCVQ), the Vulcan metadata is exchanged
and operated upon. Specifically, on a processor read transaction in
the network, the hardware searches the SCVQs that may contain



the referenced address (we will see how we know this). In a given
SCVQ, it tries to find the latest write to the address in program or-
der. From the above discussion, at most one SCVQ can have writes.
If a write is found, we have detected a RAW. The Vulcan metadata
is exchanged (as part of the transaction) and operated upon.

On a processor write transaction in the network, the hardware
searches the SCVQs that may contain the referenced address. In
each SCVQ, the search tries to find the latest access to the address
in program order and, if that is a read, also any preceding write.
Vulcan looks for the latest accesses because they form the most con-
servative dependences. If we find any, we have detected a WAR or
a WAW. The metadata is exchanged and operated upon. As part of
the transaction, all the entries for the address in all SCVQs (except
in the requesting processor) are invalidated.

The second read (rd2) in the RAW with out-of-order reads of
Figure 7(d) presents a difficulty. On the one hand, the read hits in
the cache and would not cause a coherence transaction. On the other
hand, it needs to exchange SNs with the write and update the meta-
data (importantly, the AS of the write and prior accesses in PA must
become smaller). Vulcan solves the problem by forcing a Metadata
Network Access, namely one exactly like a regular one (the SCVQs
are searched and, if there is a hit, the Vulcan metadata is exchanged
and operated on) except that no data is returned. Hence, when a load
executes and finds that a later load to the same address has accessed
the network, the hardware forces a metadata network access.

Vulcan’s operation requires that, on a network transaction, the
hardware looks-up the SCVQs that may have the referenced ad-
dress. Vulcan cannot rely on the cache snoopers to flag which
SCVQs may have the address — since the corresponding cache line
may have been evicted from the cache. Consequently, Vulcan adds
a per-processor bloom filter that encodes the addresses currently in
the local SCVQ. If the address on the network hits in the filter, the
SCVQ is searched. Section 5.3 presents a detailed design.

5. Vulcan Hardware Design
We present Vulcan’s hardware structures: the coherence proto-

col and the SCVQs. We use a bus for the network. Section 7.2
summarizes the hardware needs for the configurations evaluated.

5.1. Supporting Multiple Words per Line
Detecting all the Unsafe dependences was easy with single-word

cache lines because, conveniently, in all cross-thread dependences
(Unsafe or otherwise, and except for RAWs with out-of-order read-
read) the destination reference induces a coherence action in an
MSI protocol (Figure 7). During the resulting bus access, if the
dependence is Unsafe, processors exchange Vulcan metadata. Un-
fortunately, this is not the case with multi-word cache lines. As
a processor misses on a word, other words are also brought into
the cache. Consequently, some Unsafe dependences do not trigger
coherence actions. Further, some coherence actions are caused by
false sharing rather than by data dependences.

To solve this problem, Vulcan decouples, to some extent, the
coherence actions from the Vulcan metadata operations. It ensures
that every time that an Unsafe dependence occurs, either (1) the
coherence protocol triggers a coherence action, or (2) Vulcan forces
a Metadata bus access.

Let us use a plain line-based MSI coherence protocol using word
accesses (for now). We assume that a bus transaction includes the
address of the word accessed within the line. Vulcan adds two State

bits per word in each line currently in the cache. These bits rep-
resent the word’s Vulcan-State (or V-State). A word in the cache
can be in one of three V-states: CanWrite, CanRead, and Need-
Check. Irrespective of the cache line state, a processor can write
and read a CanWrite word in its cache without trying to exchange
Vulcan metadata; it can only read a CanRead word without trying
to exchange metadata; and it must try to exchange metadata at ev-
ery access to a NeedCheck word. When needed, Vulcan metadata
is piggybacked on the coherence bus transaction if the access in-
duces one; otherwise, a Metadata bus accesses is initiated. These
V-states are largely independent of the cache coherence state of the
line. They follow rules when multiple caches have coherent copies
of the word. Specifically, if one cache keeps the word in CanWrite
state, then any other cache with the word must keep it in NeedCheck
state. Also, if one cache keeps it in CanRead state, then any other
cache can keep it in CanRead or NeedCheck state. Finally, the word
may be in NeedCheck state in all of the cached copies.

Before describing how a word reaches each state, consider the
(word) addresses of the accesses in an SCVQ. Typically, their cor-
responding line addresses are present in the local cache. However,
there is one exception: when, after the access, the line was invali-
dated or displaced from the cache. In this case, the corresponding
entries in the SCVQ have no V-state. In addition, when an invalida-
tion is received, the SCVQ entry for the written word is cleared.

A word w in a line cached by a processor reaches the three V-
states as follows:

• CanWrite: Either (i) the local processor was the last writer of w
or, (ii) when the processor loaded w into its cache on a write miss
to another word of the line, w was not in any other SCVQ (if the
line was in another cache, it got invalidated). In addition, since any
of these two events occurred, no other processor has (i) accessed
w, or (ii) read-missed on another word in w’s line and loaded w as
CanRead, or (iii) written w’s line. A CanWrite word may be in the
local processor’s SCVQ but not in other processors’ SCVQs.

• CanRead: Either (i) the local processor has been involved in a
dependence where the destination was a read of w (i.e., either the
local processor wrote and then a remote one read, or a remote one
wrote and then the local one read), or (ii) when the processor loaded
w into its cache on a read miss to another word of the line, w was
not in any other SCVQ. In addition, since any of these two events
occurred, the local processor has not written w and no other proces-
sor has written to w’s line. A CanRead word may be in the SCVQs
of the local and other processors.

• NeedCheck: When the local processor loaded w on a miss to an-
other word of the line, w was in another processor’s SCVQ. Since
then, the local processor has not accessed w and no other processor
has written to w’s line. A NeedCheck word may be in the SCVQs
of the local and other processors.

We handle out-of-order read-read accesses to the same word like
in Section 4.4: when a read executes and finds that a later read to
the same address has already been sent to the bus, the hardware will
eventually force a second bus access.

5.2. V-State Transitions for a Word
Figure 8 shows how the V-state of a word changes. For sim-

plicity, we break the transitions into two figures. Figure 8(a) shows
the transitions of the word as its line moves in and out of the cache,
possibly due to accesses to other words in the same line; Figure 8(b)
shows the transitions as the word is accessed inside the cache.
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Figure 8. V-state transitions for a word. In (b), the underlined transitions may require metadata exchange (only needed if the source of
the dependence is Unsafe) and, therefore, need a bus access. Such access can reuse a coherence bus transaction.

Starting with Figure 8(a), as a processor brings-in a line on a
read miss, the hardware operates on the Vulcan metadata of the
referenced word as indicated before, recording any Unsafe depen-
dence. Hence, the word is loaded into the cache as CanRead. The
other words in the line (i.e., not-referenced words) are loaded as
either CanRead — if their address is not in any of the other proces-
sor’s SCVQs — or as NeedCheck otherwise. This functionality is
supported by adding one control line in the bus for each word in a
line. During the bus transaction, all the other processors also check
the addresses of the not-referenced words in the line against their
bloom filter. If any processor finds a match for a given word, it sets
the control line for that word. If the control line for a particular
word is not set by the end of the bus transaction, it means that no
processor has the word in its SCVQ, and the word is loaded as Can-
Read. As a word is loaded as CanRead, any other cached copies of
the word that were CanWrite transition to CanRead.

Hardware-prefetched lines work seamlessly. We apply the algo-
rithm for not-referenced words to all the words in the line.

If the line is brought-in on a write miss, the state becomes Can-
Write for the referenced word. For the other words, the bloom filters
are checked as above and the state is set as CanWrite if no SCVQ
has the address or NeedCheck otherwise. Other cached copies of
the line are invalidated.

When a line is evicted from the cache or invalidated by an exter-
nal write to any of its words, the V-states of all its words are lost.

In Figure 8(b), the word is being accessed. The transitions cor-
respond to accesses to the word. The transitions underlined may
require metadata exchange (only needed if the source of the depen-
dence is Unsafe) and, therefore, need a bus access — which can
reuse a coherence transaction. Consider a CanWrite word. The
local processor can read and write it silently. An external read re-
quires a transition to CanRead and attempts metadata exchange.
Consider a CanRead word. A local read is silent. A local write
brings the local state to CanWrite and induces a bus access to try
to exchange metadata. All other copies of the line are invalidated.
An external read keeps the local state as CanRead and may involve
metadata exchange. Finally, in an NeedCheck word, a local read
and write bring the word to CanRead and CanWrite, respectively,
and induce a bus access to try to exchange metadata. An external
read keeps the word in NeedCheck. In all states, an external write
invalidates the line (and the corresponding SCVQ entry). It may
involve metadata exchange if the state was CanRead or CanWrite.

Figure 9 shows two examples of processors P1 and P2 access-
ing a line with words A and B. The figures show the transitions in
V-states and line states. For each access (e.g., rd A by P2), the figure
shows the resulting local V-state of each of the two words (CW, CR,
and NC mean CanWrite, CanRead, and NeedCheck, respectively),
the resulting local line state (D and S mean Dirty and Shared Clean,
respectively), and the type of bus request (CO and ME mean co-
herence and metadata request, respectively). For example, the first
read in Figure 9(a) brings the line to P2 in state S with both words as
CanRead. This is a coherence request without metadata exchange.
As we go down the access stream, some accesses cause bus requests
with only metadata exchange. We assume all SCVQ entries stay un-
less they are invalidated. Figure 9(b) shows an access stream with
false sharing. All accesses cause coherence-only bus requests.
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Figure 9. V-state transitions for two access streams.
Using V-state bits is an effective way to minimize metadata bus

accesses when a processor references variables with temporal and
spatial locality. Indeed, without V-state bits, all the words in the
cache would effectively be in NeedCheck state, and every single ac-
cess would require a metadata bus access. Unfortunately, V-state
bits take space. Hence, a compromise that we employ is to keep



V-state bits only for lines that currently have at least one word in
the local SCVQ. Since processor references have spatial and tem-
poral locality, we are still likely to avoid many metadata bus ac-
cesses. When all the addresses of the words in the line leave the
SCVQ (in addition to when the line is invalidated or evicted from
the cache), the line’s V-state information is discarded. A subsequent
cache hit on the line initializes the V-state bits as NeedCheck for all
the words (before the access). With this optimization, the V-state
bits are stored in a hardware structure whose size is proportional to
the maximum number of SCVQ entries rather than the number of
lines in the L1 cache.

5.3. SCVQ Implementation
The SC Violation Queue (SCVQ) is a FIFO queue that contains

the Vulcan metadata for Unsafe local loads and stores. Each en-
try contains the address loaded or stored, and the access’ SN, AS,
and AD. As a load or store enters the pipeline, an SCVQ entry is
allocated, setting SN to the current value plus one, AS to ∞, and
AD to the preceding access’ AD. The AS and AD are updated later,
when (1) the load or store executes, or (2) external accesses create
dependences with the load or store, or other entries in the SCVQ.

Figure 10 shows the SCVQ. It stores the information in a FIFO
circular queue. On a bus transaction, we need to look-up the SCVQ
for an address match. Hence, we route the word addresses from the
bus through a hash table and into the queue. With this design, it is
easy to allocate and deallocate entries, and to find the entries that
match bus transaction addresses. Finally, a write bus transaction
that invalidates an SCVQ entry simply marks it as “empty”.

Tail Hash table

Counting
bloom filter

Head

Figure 10. Implementation of the SC Violation Queue (SCVQ).

We want to minimize the number of useless SCVQ look-ups.
However, we cannot rely on the cache snooper to filter them. This is
because an SCVQ match may occur even if the corresponding line
has been evicted from the cache. Hence, Vulcan uses a counting
bloom filter [5] that hashes all the word addresses currently in the
SCVQ. This structure uses counters to allow the removal of an in-
dividual hashed address. As entries are inserted and removed from
the SCVQ, the addresses are added and removed from the filter. Bus
transactions check the filter for a match before initiating a hash-
table access. Any resulting false positives do not affect correctness;
false negatives do not occur.

Inserting or removing addresses from the filter is not in a critical
path. Insertion can occur any time from when the address of the
reference is known until when the load or store completes and can
be the source of an inter-thread dependence — in the meantime,
the SCVQ entry is effectively not full. Removal can be done lazily,
since at most it can induce false positive filter matches, which cause
unnecessary SCVQ searches.

5.4. Granularity of V-State Bits
For most accurate SCV detection, the finest granularity of a pro-

gram’s accesses and the granularity of Vulcan’s V-state bits have to

be the same. Specifically, if a program loads or stores bytes, then
Vulcan needs per-byte V-state bits — with per-word V-state bits,
Vulcan may incur SCV false positives and false negatives.

To support byte accesses, Vulcan adds per-byte V-state bits to
each line with at least one entry in the SCVQ. Individual entries
in the SCVQ may refer to a byte or to a coarser access. Since the
SCVQ bloom filter is looked-up by bus transactions accessing bytes
or coarser data elements, Vulcan conservatively hashes word (rather
than byte) addresses in the filter — at worst, it results in unneces-
sary SCVQ lookups. The transitions of Figure 8 operate on bytes or
words depending on the granularity of the access. Specifically, on
a byte access, when a line is brought into the cache (Figure 8(a)),
the requested byte is searched in all of the SCVQs and loaded in the
correct state; the other bytes of the line are loaded as NeedCheck or
CanRead/CanWrite depending on whether their word address hits
in the bloom filters. There are no additional filter lookups over a
word transaction. Note that the design is such that, if the program
only has word accesses, the per-byte V-state bits create no addi-
tional traffic over having only per-word V-state bits.

5.5. Information Available to Debug an SCV
Consider the cycle shown in Figure 2(b). There are two possi-

ble cases for when the SCV is detected. The first case is when one
dependence arrow (e.g., A1→B0) is fully recorded when the source
of the second dependence (B1) sends the response; the second case
is when it is not, because both responders (A1 and B1) respond con-
currently. In the first case, the SCV is detected at both the source
(B1) and destination (A0) of the second dependence; in the second
case, it is detected at the destinations of the two dependences (A0
and B0). In either case, when each processor detects the SCV, it
raises an exception.

The information that is available to the debugger in the inter-
rupted processor at the destination of the dependence is the address
being accessed, the instruction’s PC and, depending on the protocol
implementation, the ID of the sender processor. If the destination
reference is a read, the exception gets the precise processor state; if
it is write, it is not generally possible to get the precise state at the
reference — the reason is that the write is in the write buffer and
later operations may have already retired and completed. The infor-
mation available to the debugger in the interrupted processor at the
source of the dependence is the address accessed and the ID of the
requesting processor. The instruction’s PC is unavailable — unless
we augment the SCVQ with PCs. The exception in the source pro-
cessor is not precise because newer instructions may have finished.
Finally, the debugger can also inspect the Vulcan metadata of all the
Unsafe requests in the two processors, to provide more information.

6. Limitations of the Current Vulcan Design
The current Vulcan design has some limitations. The first one is

that it focuses on cycles involving only two processors. In practice,
this is not a major limitation because cycles involving more proces-
sors are much rarer — they need the overlapping of three or more
data races. Much of the related work also focuses on two-processor
interactions only (e.g., [6, 8, 10]). We could extend Vulcan to han-
dle several-processor cycles by propagating the AS/AD information
along the dependence arrows, instead of just sending SN.

A second limitation is that the current design does not consider
speculative loads from mispredicted branch paths. In a real system,
these loads cannot generate SCVs. However, to be able to take them



into account, we would need to change Vulcan. For example, the
hardware may have to delay performing metadata updates until the
load becomes non-speculative. However, Vulcan supports hardware
prefetches and within-processor load forwarding.

Vulcan is not concerned with the impact of compiler transforma-
tions on SCVs. It simply takes the executable that the compiler pro-
vides to the hardware and reports SCVs due to hardware-initiated
reference reordering. Similarly, since Vulcan is a dynamic scheme,
it only provides information for the actual performed runs.

We discussed in Section 5.4 that the finest granularity of pro-
gram accesses and of Vulcan’s V-state bits have to be the same —
otherwise, both SCV false positives and false negatives may occur.
Finally, the SCVQs need to be large enough to hold all the Unsafe
accesses. If they are not and they have to drop some of these ac-
cesses, then SCV false negatives may occur.

Overall, within these constraints (two-processor cycles only, no
misspeculated loads, and no compiler effects) and with appropriate
hardware structures (correct grain of V-state bits and large-enough
SCVQs), Vulcan has neither false positives nor false negatives.

Finally, our Vulcan design in a snoopy protocol with all-to-all
hardware structures may not scale well to large numbers of proces-
sors. However, this is not a major limitation. First, our evaluation
shows that Vulcan scales well until at least 8 processors (and we
did not explore beyond). Also, it is well known that runs with few
processors are typically enough to find concurrency bugs [22].

7. Evaluation
Our goal is to (1) validate Vulcan’s effectiveness in detecting

SCVs, (2) determine the size of its hardware structures, and (3)
assess its overhead in terms of network traffic and execution time.

7.1. Experimental Setup
We model Vulcan’s architecture using cycle-level execution-

driven simulations. We use the SESC simulator [28] to model a
multicore with a variety of configurations: four or eight out-of-
order cores with 2- or 4-issue wide pipelines and supporting the
Release Consistency (RC) or Processor Consistency (PC) memory
models. They have a simple cache hierarchy composed of a private
L1 cache and a shared L2 cache. Table 2 shows the architecture pa-
rameters. When there is a choice, the values in bold are the default
ones. In most of the evaluation, we use per-word V-state bits; in the
last part, we use per-byte V-state bits.

Architecture Chip multiprocessor with 4 or 8 cores.
Core pipeline Out-of-order; 2.0GHz; 2-issue or 4-issue.
ROB size 32, 64, 128, or 256 entries.
Consistency Release (RC) or Processor (PC) consistency.
Private L1 cache 32KB WB, 4-way asso., 2-cycle round trip.
Shared L2 cache 1MB WB, 8-way asso., 20-cycle round trip.
Cache line size 32B or 4B.
Coherence Snoopy MSI protocol; 1.0GHz 16B-wide bus.
Round-trip lat. L1-L1: 38 cyc; processor-memory: 500 cyc.
Vulcan SCVQ: 256 entries; SN, AD[i], AS[i]: 4B each.
parameters Bloom filter: 128B with 2-bit counts, H3 hash.

Word or byte V-state bits for lines in SCVQ.

Table 2. Multicore architectures evaluated.
We use three sets of applications for the evaluation (Table 3).

The first set has implementations of concurrent data structures
and mutual exclusion algorithms that have SCVs. They are taken
from [6, 8]. The second set has some reported SCV bugs from open
source libraries. The last set has 8 codes from SPLASH-2. The first

two sets have known SCVs and are used to evaluate Vulcan’s effec-
tiveness. The last set has lengthy applications, supposedly free of
SCVs, and is used to estimate Vulcan’s overheads.

Set Program Description

Dekker Algorithm for mutual exclusion.
Conc. Lazylist List-based concurrent set.
Algo. Snark Nonblocking double-ended queue.

Harris Nonblocking set.
Pthread cancel Unwind code after canceling

Bug from glibc thread needs a fence [3].
Kernels Crypt util Small table initialization code

from glibc needs a fence [1].
DCL Kernel using double checked
bug locking without fences.

Full Apps SPLASH-2 8 programs form SPLASH-2.

Table 3. Applications analyzed.

7.2. Hardware Requirements
Vulcan adds to each core the following hardware: (1) SCVQ

circular queue with its hash table, (2) SCVQ bloom filter, (3) V-
state bits in the lines with at least one entry in the SCVQ, and (4)
Performed Point array. For the default parameters in Table 2, in a 4-
core chip, the storage requirements are about 8448B, 128B, 512B,
and 16B, respectively, or a total of 9KB per core. For a machine
with N cores, the overhead per core can be shown to be (2052*N
+ 896) bytes. This means that, in an 8-core chip, the overhead is
17KB per core.

If we want to support byte-level accesses, we need per-byte V-
state bits for each line with at least one entry in the SCVQ. More-
over, each SCVQ entry needs a 2-bit longer address and 2 bits to
denote whether the reference was to a byte, half-word, or word.
The SCVQ bloom filter still conservatively hashes word addresses.
All this support only adds 1.7KB more Vulcan storage overhead per
core, irrespective of the number of cores in the machine.

7.3. SC Violation Detection Ability
To test Vulcan’s SCV detection ability, we run each application

multiple times — 100 times for the concurrent algorithms and bug
kernels, and 5 times for the SPLASH-2 codes. In each run, we gen-
erate different interleavings by forcing the processors to miss some
random number of fetch cycles. For each application, we report,
over all the runs, the number of unique and total SCVs observed.
This information is shown in Table 4, for cache lines of 4 and 32
bytes, and for RC and PC memory models. For SPLASH-2, the
table only shows fmm because Vulcan finds no SCV in the other
SPLASH-2 codes.

Under RC (Columns 4 and 5), Vulcan detects SCVs in all
of these codes (except in two codes with 4B lines). Under PC
(Columns 6 and 7), Vulcan finds slightly fewer unique SCVs, and
none in Lazylist or Snark. This is because PC is stricter than RC,
and some SCVs may be impossible or less likely to occur. Also, the
number of SCVs found changes with the line size. This shows that
this bug is highly dependent on the timing of events.

Overall, we find that Vulcan is very effective at finding SCVs
in these two different memory models. With more runs, new inter-
leavings may occur and Vulcan may find more SCVs.

Finally and most importantly, Vulcan finds three new, previously
unreported SC violation bugs in the codes in bold in Table 4: one in
Pthread cancel, one in Crypt util, and one in fmm (which appears
as three unique SCVs). We discuss them next.



Appl. Line # of # of SC Violations Found
Size Runs Under RC Under PC
(B) Uniq. Total Uniq. Total

Dekker 4 100 1 1982 1 1784
32 100 1 224 1 518

Lazylist 4 100 0 0 0 0
32 100 1 150 0 0

Snark 4 100 1 745 0 0
32 100 1 1467 0 0

Harris 4 100 0 0 1 2
32 100 1 18 1 2

Pthread 4 100 2 298 1 104
cancel 32 100 2 142 1 400

Crypt 4 100 2 564 1 228
util 32 100 2 130 1 800

DCL 4 100 2 648 1 600
32 100 1 2 1 491

fmm 4 5 1 2 3 14
32 5 3 18 0 0

Table 4. SC violations found in various applications. Vulcan
found three new SC violations in the codes in bold.

7.4. Three New SC Violation Bugs Found
• New SC Violation in the Pthread Library

One of the SCVs in the Pthread cancel kernel of Table 4 is Bug
ID 2644 in the Redhat bug database [3], which has been fixed by
the developers. After running Vulcan, we found a new SC violation
even in the bug fix. We reported the new bug and its fix to the
developers, who have recently implemented the fix.

Figure 11 shows the bug in the original bug fix. Figure 11(a)
shows the pthread cancel init and Unwind Resume functions,
together with the fence (write barrier) that the developers in-
serted in an attempt to fix the bug. Assume that thread T1 is
in pthread cancel init, and about to initialize function pointers
libgcc s resume (in A0) and libgcc s gtecfa (in A1). Before it does
so, thread T2 is in Unwind Resume and calls pthread cancel init.
There, it finds libgcc s gtecfa already non-null (in B0), returns from
pthread cancel init and uses libgcc s resume (in B1). However,
due to an SCV, libgcc s resume is still uninitialized and the pro-
gram crashes.

The references involved and the fence are shown in Figure 11(b).
This code is the same as Figure 1(a) except for the fence. Unfor-
tunately, the fence only prevents the A0-A1 reorder. In an RC (or
PowerPC) memory model, B0 and B1 can effectively get reordered
as in Figure 11(c), causing a cycle. Specifically, the condition in
B0 is predicted true by the branch predictor (although it is currently
false) and B1 is executed before A0. After A0 and A1 execute, the
B0 branch resolves, confirming that B1 is in the correct path. How-
ever, B1 used the old value and the code crashes. To fix this, we
also add a fence between B0 and B1.

• New SC Violation in the Crypt Library
A similar situation occurs for Crypt util. One of its SCVs in

Table 4 is Bug ID 11449 in the database [1], which had also been
incorrectly fixed by the developers. After running Vulcan, we found
a new SCV in the bug fix. We reported the new bug and its fix to
the developers. They declined to fix it because the bug also only
happens in memory models more relaxed than Intel’s x86 and the
cryptography library is used little.

Figure 12(a) shows the buggy code of function init des r,
which uses DCL to initialize shared tables, and the fence that the
developers added to fix the bug. Assume that thread T1 enters the

B0: if(libgcc_s_getcfa != NULL)

B1: libgcc_s_resume(...);

T1 T2

_Unwind_Resume(...) {
    if(libgcc_s_resume == NULL)
       pthread_cancel_init(...);
    libgcc_s_resume(...);

T1 T2

(a):  Code from unwind−forcedunwind.c

B1:
}

}
A1:

A0:

if(libgcc_s_getcfa != NULL)
   return;

pthread_cancel_init(...) {
B0:

libgcc_s_getcfa = ...;
atomic_write_barrier();
libgcc_s_resume = ...;

libgcc_s_resume = ...;

libgcc_s_getcfa = ...;

(b): Accesses that participate in the SC violation

     atomic_write_barrier();
A0:

A1:

B0:
B1: libgcc_s_resume(...);

(c): Interleaving with an SC violation

libgcc_s_resume = ...;

libgcc_s_getcfa = ...;

A0:

A1:
     atomic_write_barrier();

if(libgcc_s_getcfa != NULL)

Figure 11. New SC violation found in the glibc pthread library.

function, grabs the lock and is about to initialize table eperm32tab
(in A0) and then set small tables- initialized (in A1). Thread T2
enters the function, finds small tables initialized set (in B0) and
uses eperm32tab (in B1). Unfortunately, eperm32tab is still unini-
tialized due to the SCV.

small_tables_initialized=1;
     atomic_write_barrier();  

eperm32tab[...]= ...;A0:

A1: B1: ... =eperm32tab[...];
B0: if(small_tables_initialized==0){

T1 T2

      ...

}

      }

... =eperm32tab[...];

Done:
small_tables_initialized=1;         

         if(small_tables_initialized)
            goto Done;

_init_des_r(...){
if(small_tables_initialized==0){

         atomic_write_barrier();

B0:

B1:

A0:

A1:

eperm32tab[...]= ...;

         lock;

         unlock;

(a): Code from crypt_util.c

(b): Accesses that participate in the SC violation

Figure 12. New SC violation found in the glibc crypt library.

The references involved and the fence are shown in Figure 12(b).
The code is similar to the one in Figure 11(b). We need another
fence between B0 and B1.

• New SC Violation in fmm from SPLASH-2

Vulcan finds three new SCVs in fmm, caused by a single flag
dependence racing against three pairs of references. The code for
one of the racing pairs is shown in Figure 13. Inside the SetCol-
leagues function, a thread (T2) sets structure colleagues (in A0)
and then flag construct synch (in A1); another one spins on the flag
(in B0) and then uses the structure (in B1). This is the pattern of
Figure 1, and an SCV occurs. In the fmm code, the flag was de-



clared as volatile. However, in C, while volatile prevents compiler
optimizations, it does not prevent reordering by the hardware.

T2T1

}
... = parent_b−>colleagues[...];B1: child_b−>construct_synch=1;

b−>colleagues[...] =...;A0:
A1:

}

SetColleagues(...) {
while(b−>construct_synch==0);B0:

SetColleagues(...) {

Code from construct_grid.c

Figure 13. New SC violation found in fmm from SPLASH-2.
This SCV affects the precision of the program’s output because

thread T1 uses “old data”. However, since fmm is an N-body prob-
lem, the output might still be acceptable. Still, this is a serious bug
because the programmer can hardly reason about the bug’s impact
on the code. This bug can be fixed by either placing a fence between
the two references in each thread, or by using a synchronization in-
struction to access the flag.

7.5. SCVQ Size and Sensitivity
To size the SCVQ, we need to know the number of Unsafe ac-

cesses that individual processors maintain. Consequently, we count
the average and maximum number of Unsafe accesses per processor
over time. We use only SPLASH-2 applications because the others
are too small to provide useful information. For our measurements,
we take a sample every time a memory operation is issued. We
additionally count the average and maximum number of pending
accesses. These are loads and stores that have been issued but not
yet completed, and are a strict subset of Unsafe accesses — an ac-
cess remains Unsafe at least while pending and often beyond that.
Figure 14 shows the results for each application.
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Figure 14. Number of pending and Unsafe accesses.

The average number of Unsafe accesses ranges from 6 to 17
(Figure 14(a)). This is a small number, and is about double of the
average number of pending accesses. However, accesses are typi-
cally bursty and the maximum number of Unsafe accesses is higher.
Across applications, it ranges from 40 to 270 (Figure 14(b)). If we
average out all the codes, the number is about 140, which is also
about double of the maximum number of pending accesses.

Overall, to be conservative, we size the SCVQ with 256 entries.
Most of the time, only about 10 or so entries are in use. In one
application, namely cholesky, there are 170 times in the execution
of the 147-million memory-access program when we need more
than 256 entries. Hence, we have rerun the program with a 270-
entry SCVQ, which is large enough, and found no SCVs either.

We now measure how the number of Unsafe and pending ac-
cesses changes with the ROB size and processor issue width. This
is shown in Figure 15, which plots the average across all SPLASH-2
codes. For each ROB size and issue width, we show the average and
maximum number of pending and Unsafe accesses. The number on
top of the maximum Unsafe bars is the number of SCVQ overflows,

as a percentage of total instructions. We see that, for our default is-
sue width (Figure 15(a)), changes in the ROB size have negligible
impact. For 4-issue cores (Figure 15(b)), if the ROB reaches 128
entries or more, the SCVQ starts to overflow.

32 64 128 256

ROB Size

0.0

100.0

200.0

Avg Pending
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(a) 2-issue wide
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(b) 4-issue wide

Figure 15. Pending and Unsafe accesses for different ROB sizes
and issue widths.

7.6. Network Traffic & Execution Overhead

Vulcan’s execution overhead comes from the additional bus traf-
fic that it induces. This traffic has two sources: (i) the information
that Vulcan piggybacks on some of the ordinary coherence transac-
tions on the bus and (ii) the Metadata bus accesses that it induces
(Section 4.4). In both cases, Vulcan sends a Sequence Number in
the request (4 bytes), and both a Sequence Number and a Performed
Point in the response (8 bytes).

To see the magnitude of this traffic, Figure 16 breaks down the
total bytes of traffic in the bus for each application. We run the ex-
periments for both 4-core and 8-core systems. The categories are:
traffic in a Vulcan-free execution (No Vulcan), traffic piggybacked
by Vulcan on the normal coherence (Piggybacked), and traffic in
Metadata bus accesses (Extra). We see that Vulcan’s effect is mod-
est: on average for 4 cores, Piggybacked accounts for 9% of the
traffic and Extra for 12%. For 8 cores, the result is similar.
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Figure 16. Breakdown of total bus traffic in bytes.

Given the bus parameters of Table 2, we assume that the addi-
tional bytes piggybacked by Vulcan on a coherence transaction do
not increase the bus occupancy cycles of the transaction. However,
for Metadata bus accesses, we assume bus occupancies of 2 bus cy-
cles for request and 2 for reply. The contention induced by these
accesses causes Vulcan’s execution overhead.

Tables 5 and 6 show Vulcan’s execution overhead for 4 and 8
core systems, respectively. Each table shows the execution over-
head with word and byte granularity for V-state bits. For each core
count and V-state granularity, the tables show the number of bus



accesses, the fraction of those that are Metadata bus accesses, and
the increase in the program’s execution time due to Vulcan.

Word Granularity Byte Granularity
Appl. Tot. Meta. Exec. Tot. Meta. Exec.

Bus Bus Time Bus Bus Time
Acc. Acc. Over. Acc. Acc. Over.

(Mil.) (%) (%) (Mil.) (%) (%)

fft 0.4 32.4 4.9 0.4 32.6 4.9
lu 1.2 34.4 3.8 1.2 34.4 3.8
radix 2.0 32.5 0.7 2.0 32.6 0.7
chole. 34.4 38.9 8.1 34.4 38.9 8.1
ocean 21.5 26.7 5.5 21.5 26.7 5.5
raytr. 3.1 8.8 4.2 3.6 19.8 6.7
barnes 30.7 6.9 2.7 30.9 6.9 2.7
fmm 19.2 25.8 2.6 19.2 25.8 2.6

Avg. 14.1 25.8 4.1 14.2 27.2 4.4

Table 5. Vulcan’s execution overhead for 4 cores.

Word Granularity Byte Granularity
Appl. Tot. Meta. Exec. Tot. Meta. Exec.

Bus Bus Time Bus Bus Time
Acc. Acc. Over. Acc. Acc. Over.

(Mil.) (%) (%) (Mil.) (%) (%)

fft 0.4 31.8 9.5 0.4 31.9 9.5
lu 1.2 35.3 3.6 1.2 35.3 3.6
radix 2.1 33.0 1.4 2.1 33.0 1.4
chole. 35.6 38.4 9.0 35.7 38.5 9.0
ocean 21.6 27.7 12.3 21.7 27.6 12.3
raytr. 3.6 9.6 4.4 4.0 19.0 6.9
barnes 35.0 6.5 2.8 35.1 6.3 2.7
fmm 19.4 26.0 2.8 19.4 26.0 2.8

Avg. 14.9 26.0 5.7 14.9 27.2 6.0

Table 6. Vulcan’s execution overhead for 8 cores.

The tables show that Metadata bus accesses account for an aver-
age of 26-27% of the bus accesses, and that such fraction does not
change much with the core count. Importantly, Vulcan’s execution
time overhead is small. On average for word granularity, it is 4.1%
for 4-core systems and 5.7% for 8-core systems.

When Vulcan supports V-state byte granularity, the overhead in-
creases in the applications with a non-negligible fraction of byte
accesses. For the applications considered, only Raytrace is in this
class. As a result, in Raytrace, the number of Metadata bus ac-
cesses increases and the execution time overhead increases a mod-
est 2.5 percentage points, as we go from word to byte granularity
for both processor counts. For the other codes, since they reference
mostly words rather than bytes, Vulcan’s execution behaves as if it
had word- rather than byte-granularity V-state bits. On average for
all the applications, the execution overhead with byte-granularity V-
state bits is 4.4% for 4-core systems and 6.0% for 8-core systems.

Overall, we conclude that Vulcan’s execution overhead is small
enough to allow on-the-fly use — both with word- and byte-
granularity V-state bits. In addition, the overhead scales nicely from
4- to 8-core systems.

8. Other Related Work
There is related work in architecture, compilation, testing, and

hardware verification. In architecture, the most related work is Con-
flict Ordering (CO) by Lin et al. [21], which is a technique to sup-
port SC in a relaxed-consistency machine. CO is also based on
identifying Shasha’s delay sets [30] in hardware. At a high level,

CO and Vulcan differ in that their goals are different: Vulcan fo-
cuses on identifying SCVs, while CO focuses on supporting SC.
However, Vulcan could be extended to support SC when an upcom-
ing SCV is suspected, and CO could stop execution when an SCV
is possible. Hence, at a deeper level, CO and Vulcan are similar in
that they both attempt to identify race cycles.

CO’s key contribution is to use information about pending ac-
cesses in the directory module to avert cycles. Unfortunately, CO
requires introducing stalls in processor requests. Specifically, there
are two stall types: write- and read-induced. Write-induced stalls
occur when the write W that is about to retire misses in the cache.
At that point, the next read or write cannot retire until W goes to
the directory, leaves its address there, and brings back the list of
pending writes (write-list). This stall cannot be eliminated with ex-
clusive prefetching. Read-induced stalls occur when a speculative
read R misses in the cache. When R reaches the ROB head, R has
to perform a directory access again, to obtain the write-list. Only
when the write-list returns can R retire and allow subsequent reads
and writes to retire. Again, this cannot be fixed by prefetching.

CO also differs from Vulcan in that, to detect cycles, it compares
line addresses rather than word or byte addresses. This causes false
positives. Luckily, false positives simply cause stalls — although
this approach would not work to debug SCVs like Vulcan. If, in-
stead, CO compared word addresses, then a processor accessing
multiple words of the same line in sequence would have to make
multiple directory accesses to deposit the addresses of all the words.

There are compiler techniques to identify race cycles and put
fences (e.g., [14, 17, 19, 31]). They are conservative because they
only use static information, and typically cause large slowdowns.
Lin et al. [20] can hide some of the resulting fence delay with ar-
chitectural support. Duan et al. [12] use a race detector to construct
a graph of races dynamically. Then, off-line, they traverse the graph
to find potential SCVs. Vulcan differs in that: (1) it is an on-the-
fly scheme, while Duan’s SCV detection is off-line; (2) it needs no
software support; and (3) it has no false positives, while Duan’s
scheme may point to SCVs that never occur.

The software testing community has proposed static and off-line
techniques to check for SCVs (e.g., [6, 7, 8]). While promising,
these techniques are not designed for on-the-fly SCV detection in
large codes with negligible overhead. The hardware verification
community has designed techniques to verify if a memory system
hardware is correctly implemented (e.g., [10, 11, 25]). While re-
lated, these works have a different goal: we focus on debugging
software as it runs on a relaxed-consistent machine; they focus on
verifying that the hardware correctly implements a memory model.

9. Conclusion
This paper proposed Vulcan, the first hardware scheme to pre-

cisely detect SCVs at runtime, in programs running on a relaxed-
consistency machine. Vulcan uses cache coherence protocol trans-
actions to dynamically detect cycles in memory access orders across
threads. When a cycle is about to occur, an exception is triggered,
providing information to debug the SCV. For the conditions consid-
ered in this paper and with enough hardware, Vulcan suffers nei-
ther false positives nor false negatives. It induces negligible exe-
cution overhead, requires no software help, and only takes as input
the program executable. Our results showed that Vulcan detected
three new SCV bugs in popular codes: Pthread and Crypt libraries,
and fmm from SPLASH-2. Vulcan’s negligible execution overhead
makes it suitable for on-the-fly use.
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Appendix 1: Correctness Proofs
Theorem 1: An access Ci of processor PC is Safe when (SNCi ≤
PP [PC ]) and (ADCi [PK ] ≤ PP [PK ]), for all processors K 6= C.
Proof: Recall that Ci becomes Safe as soon as it cannot participate
in an SCV anymore. Assume that Ci can participate in an SCV with

another access of PC : either an earlier one Ci−m (Case 1) or a later
one Ci+m (Case 2) in program order (Figure 17).

Case 2

C PK PKPC

Ci
Kj

Kj−nCi−m

Ci+m

Ci Kj

Kj+n

El El

ErEr

Case 1

P

Figure 17. Possible cases for SCV.
Case 1: Consider two situations. In the first one, edge Er occurs

first. Although Ci has executed, it can still participate in an SCV
for as long as PC ’s previous accesses (Ci−m where 1 ≤ m ≤ i)
are not performed — since such accesses can still be the destination
of an El edge. Hence, when PP [PC ] ≥ SNCi , then Ci is Safe.
The second situation is when edge El occurs first. Ci is not Safe
until all of the PK accesses up to Kj (Kj−n where 0 ≤ n ≤ j)
are performed, without consuming an edge from Ci. Note that the
allowed destinations of Ci are the accesses after the El source Kj

(ADCi [PK ] = Kj). The El edge can point to any PC access
preceding Ci. Hence, Ci is only Safe when it and all the previous
accesses in PC are performed, and all the accesses in PK up to and
including ADCi [PK ] are performed. Hence, the Safe condition in
Case 1 is (SNCi ≤ PP [PC ]) and (ADCi [PK ] ≤ PP [PK ]).

Case 2: There are two situations. In the first one, edge El occurs
first. Although Ci has executed, it can still participate in an SCV
for as long as its disallowed destinations in PK (Kj+n and earlier)
have not performed — since such accesses can be the destination of
an Er edge. Hence, when ADCi [PK ] ≤ PP [PK ], then Ci is Safe.
The second situation is when Er occurs first. In this case, when
Ci performs, we know whether it creates a cycle with Er . Hence,
Ci is Safe when SNCi ≤ PP [PC ]. Overall, the Safe condition
in Case 2 is the same as Case 1, namely (SNCi ≤ PP [PC ]) and
(ADCi [PK ] ≤ PP [PK ]).

Generalizing to all the processors, Ci is safe when (SNCi ≤
PP [PC ]) and (ADCi [PK ] ≤ PP [PK ]), for all processors K 6= C.
Theorem 2: In order to form an SCV cycle with two dependences,
their source references have to be Unsafe with respect to their des-
tination processors.
Proof: This is proved by contradiction. Assume that one of the
dependences has a source that is Safe (with respect to the destina-
tion processor) and it forms an SCV cycle with another dependence
whose source is Unsafe (with respect to the destination processor).
According to the definition of a Safe access, once an access be-
comes Safe (with respect to a processor), no dependence from this
access to an access of that other processor can cause an SCV. This
contradicts our previous assumption and proves the theorem.
Theorem 3: If Vulcan records all the Unsafe dependences, then it
detects all the SCVs between processors.
Proof: Referring to Figure 17, an access Ci can participate in an
SCV with one of PC ’s earlier accesses (Case 1) or one of the later
accesses (Case 2). Without loss of generality, assume that, of the
two dependence edges in the cycle, the edge at Ci is formed the
latest. We now show that, when that edge is formed, Ci has all the
information that it needs to detect the SCV.

In Case 1, the information that Ci needs to keep is the sources
of the dependences pointing to any of the PC accesses before
Ci. More specifically, it needs to keep the maximum SN of such
sources. With this information, it cannot miss a cycle when the
edge at Ci occurs. But this is precisely the information in ADCi .

In Case 2, the information that Ci needs to keep is the destina-
tions of the dependences pointing from any of the PC accesses after
Ci. More specifically, it needs to keep the minimum SN of such
destinations. With it, Ci will not miss a cycle when the edge at Ci

occurs. But this is precisely the information in ASCi .
Overall, if Vulcan records all the sources and destinations of the

dependences (with AD and AS), it can find all the SCVs. More-
over, Theorem 2 proves that SCVs occur only among Unsafe de-
pendences. Hence, if Vulcan records all the Unsafe dependences,
then it detects all the SCVs.


