
Concurrency Bug Detection and Avoidance Through
Continuous Learning of Invariants Using Neural Networks

in Hardware

Mejbah Ul Alam, Rehana Begam, Sabidur Rahman, Abdullah Muzahid
{malam, rbegam, krahman, muzahid}@cs.utsa.edu

University of Texas at San Antonio

ABSTRACT
As parallel architectures become mainstream, the issue of
writing and debugging parallel programs becomes a ma-
jor concern for today’s computing world. Researchers have
shown that different types of concurrency bugs can be effec-
tively detected by checking the validity of various invariants
(e.g. inter-thread communication invariants). Existing in-
variant based proposals collect a large number of execution
traces by using various test inputs available from the de-
velopers. Then, they analyze those traces and extract the
required invariants. As a result, these proposals suffer from
a number of limitations arising from this invariant extraction
process. First, they cannot test all possible thread interleav-
ings and hence, miss many invariants. Second, often times
these proposals cannot replicate the production run envi-
ronments and inputs during the extraction process. This re-
sults in missing and sometimes incorrect invariants. Third,
as a program is extended and fixed over its lifetime, many
invariants might become invalid and new invariants might
arise. These proposals cannot cope up with this situation
properly. Finally, existing invariant based proposals cannot
check the correctness of an invariant if it is not found dur-
ing the extraction process. Therefore, these proposals allow
(or disallow) any new invariant blindly. These limitations
severely hampers the applicability of any invariant based
approach. In order to remedy this situation, we propose a
novel scheme that uses hardware based neural networks to
continuously learn and verify invariants dynamically during
production runs. This alleviates all of the above mentioned
limitations, thereby making any invariant based approach
more applicable and effective. In this paper, we present our
initial design and some preliminary results of our proposed
scheme.

1. INTRODUCTION
As parallel architectures become mainstream, program-

mers get burdened with the responsibility to write correct
parallel programs. However, writing a correct parallel pro-
gram is not easy. In fact, various concurrency bugs make
it a daunting task. One of the reasons why concurrency
bugs become so notorious, is their highly non-deterministic
nature. They might manifest in the most unfortunate mo-
ment and cause catastrophes. Therefore, it is imperative to
keep innovating novel techniques to detect as well as avoid
concurrency bugs.

A concurrency bug can be informally defined as a bug
related to the interactions among different threads of a par-

allel program. There are many categories of concurrency
bugs. The main categories found in literature are data
races, deadlocks, atomicity violations, ordering violations,
and sequential consistency violations. There has been sig-
nificant research effort to debug these bugs. Data races are
the most commonly studied [18, 2, 16, 1] concurrency bugs.
Researchers have started to focus on other concurrency bugs
too. Proposals like AVIO [10], AtomTracker [14], MUVI [9],
LifeTx [22], etc. detect atomicity violation bugs where a
group of accesses that are supposed to be processed atomi-
cally get interleaved with conflicting accesses from the other
threads. Recently, works like Vulcan [15], DRFx [13], Ghara-
chorloo et al. [5], etc. focus on detecting sequential consis-
tency violations where memory operations get reordered un-
intuitively. Most of these proposals share a common short-
coming — they target only one type of bugs. To remedy
this, researchers have proposed schemes like PSet [21], Buga-
boo [11], DefUse [19] etc. that do not rely on the symptoms
of any particular bug. Instead, these proposals focus on
identifying correct data communications among threads and
provide a general solution to handle any type of concurrency
bugs.

In general, we can divide the research in concurrency bug
detection into two broad categories — invariant based and
symptom based. Proposals like AVIO, AtomTracker, LifeTx,
MUVI, PSet, Bugaboo, DefUse, etc. can be considered as
invariant based approaches. All of them extract some invari-
ants from the program. On the contrary, other proposals [18,
2, 16, 15, 13, 5] focus on identifying various symptoms of
concurrency bugs. As an example, Eraser [18] detects data
races by determining whether a shared variable is consis-
tently protected by at least one lock, whereas AVIO detects
data races and atomicity violations by first inferring which
pair of instructions accessing the same variable in the same
thread should not be interleaved by conflicting accesses from
a remote thread and then checking whether this invariant is
maintained at runtime. Invariant based approaches can ex-
tract invariants that closely match with the programmer’s
actual intention in the code. Therefore, these approaches of-
ten detect more than one type of concurrency bugs and have
a higher detection ability than symptom based approaches.

The invariant based proposals usually work in two phases
— invariant extraction phase and invariant verification phase.
During the extraction phase, these proposals collect a large
number of execution traces of a program. This is usually
done by applying different test inputs to the program. The
proposals analyze these traces to find out potential invari-
ants. Once we reach a situation where no more new in-

1

variants are found by analyzing more traces, the extrac-
tion phase is assumed to be over. The whole process is
done offline. The invariants found this way are stored along
with the program binary. During the verification phase, as
the program executes, these approaches dynamically check
whether an invariant is violated or not. If an invariant is
violated, then a concurrency bug is reported.

All the existing invariant based proposals suffer from sev-
eral limitations arising from the current invariant extraction
process. First, since the number of possible thread inter-
leavings increases exponentially with the number of instruc-
tions, number of variables, and number of threads, it is quite
difficult to test all possible interleavings with all possible
inputs. Therefore, existing proposals miss many valid in-
variants during the offline extraction phase. Second, the
production environment can be substantially different from
the extraction environment. With the arrival of data centers
and many different types of parallel architectures, it is very
difficult to replicate a scaled down version of different pro-
duction environments during the extraction process. This
implies that the existing proposals are not able to collect
execution traces that would arise during the production en-
vironments. On top of this, the inputs may also vary among
different environments. All of these factors can lead to un-
der training. Third, as a program evolves, it is continuously
modified and extended with new features and fixes. This
can invalidate some of the prior invariants and create new
invariants. The current approaches cannot cope up with this
continuous modification process. Finally, during the invari-
ant verification phase, if a new invariant arises, the existing
proposals cannot decide its correctness. Therefore, they ap-
ply some default strategy (e.g allow any new invariant or
disallow them all). This limitation, coupled with the fact
that the existing proposals cannot uncover all invariants,
severely limits their practical applicability.

In order to remedy this situation, we propose to have con-
tinuous learning and verification. This is made possible due
to a novel approach based on a neural network (a type of
machine learning algorithm) implemented in hardware. The
high level idea is that as a program starts execution, the
neural network initially spends some time learning the in-
variants. We choose Read-After-Write (RAW) dependences
among a write and the following read operations as our pre-
ferred invariant. However, we can easily extend this ap-
proach to other invariants. After the neural network learns
the RAW dependences reasonably well, it enters into the
verification phase where it verifies whether a RAW depen-
dence is correct or not. If a RAW dependence is declared as
an incorrect one, then the processor re-executes the relevant
read operation and attempts to avoid the concurrency bug.
This is likely to avoid most of the concurrency bugs. A log
of recent dependences is also kept along. In case, the bug
cannot be avoided and the program behaves incorrectly, this
log provides valuable debugging information to the program-
mer. During the verification phase, the neural network keeps
track of its accuracy. If it drops below a certain threshold,
the network starts to learn again for a period of time. Thus,
the neural network goes through a continuous learning and
verification phase. The main contributions of our proposed
scheme are as follows.

• This is the first proposal to use a neural network to
detect and in many cases avoid concurrency bugs that
occur during a program execution.

• This is the first invariant based proposal where learn-
ing and verification process is done continuously. As
a result, the proposed scheme avoids the previously
mentioned limitations of the existing invariant based
proposals.

• Our proposed scheme avoids most of the concurrency
bugs without expensive checkpointing and rollback sup-
port.

The rest of the paper is organized as follows: Section 2
discusses some related work and background materials, Sec-
tion 3 describes the main idea of our proposed scheme, Sec-
tion 4 shows some preliminary results and finally, Section 5
concludes our work.

2. BACKGROUND AND RELATED WORK
AVIO [10] is one of the earliest works on invariant based

concurrency bug detection. AVIO detects single variable
atomicity violation bug. Later, AtomTracker [14] and LifeTx
[22] generalize this work by incorporating more instructions
and more variables. In order to handle different types of
concurrency bugs uniformly, PSet [21] proposes to use an
invariant based on inter thread communication. It is called
Predecessor Set. Predecessor set of a memory access instruc-
tion includes all the other remote memory access instruc-
tions upon which this one immediately depends. It considers
all three types of dependences (i.e. read-after-write, write-
after-write, and write-after-read). The proposal then stores
the predecessor set information along with the binary. At
run time, if a memory access instruction is found to depend
on an instruction other than the predecessor set instruc-
tions, then PSet finds a concurrency bug. In that case, it
either stalls or rolls back the offending thread to avoid the
concurrency bug. However, it shares all the limitations of
an offline invariant extract process. Bugaboo [11] extends
PSet by incorporating a limited form of context informa-
tion with the communication invariants. DefUse [19] uses
slightly different invariants where it finds out all the defini-
tions upon which a read depends. We propose to use both
inter thread and intra thread RAW dependences as our pre-
ferred invariant. This invariant is similar to the invariants
used in PSet, Bugaboo, and DefUse proposals. We choose
this invariant to show that our proposed scheme can be ap-
plied in conjunction with any of the existing invariant based
approaches.

A neural network is a machine learning algorithm to learn
a target function. It consists of a number of artificial neurons
connected by links. Figure 1(a) shows an artificial neuron i
with inputs a0 to an. W0, to Wn are the weights of the links.
The neuron calculates its output as o = g(

Pn
j=0 Wjaj) where

g is an activation function. g can be a simple threshold func-
tion or a more complex sigmoid function [17]. The output
of one neuron can act as an input to another neuron like in
Figure 1(b). Here, we have a neural network with two in-
puts, one hidden layer of two neurons and one output neu-
ron. Each hidden layer neuron first calculates its output
and then the output neuron provides the final output. The
learning process of a neural network consists of adjusting the
weight of each link to approximate the function that it tries
to learn. After the learning process is over, neural network
simply calculates the final output based on the inputs and
weights.

2

Neuron

a0

an

W0

Wn

O

(a)
Hidden
Layer

Output
NeuronInput

(b)

Figure 1: Artificial neural network

There are many proposals that use some machine learn-
ing algorithm in hardware to accomplish different tasks.
One of the earliest effort is Perceptron Branch Predictor [8]
that uses a neural network to predict the branch outcome.
Ipek et. al [7] uses some reinforcement learning algorithm
to design an optimizing memory controller. Recently, Es-
maeilzadeh et. al [4] uses a multilayer neural network in
hardware to approximate the computations of some code
regions.

3. MAIN IDEA
The high level idea of our scheme is to design a framework

that uses a neural network to learn and verify the correct-
ness of an invariant a program runs. We choose RAW de-
pendences as our preferred invariant to show the generality
of the framework.

3.1 Using RAW Dependences as Invariants
For each memory read instruction, there is usually a fixed

set of memory write instructions upon which the read de-
pends. A concurrency bug occurs when a memory read in-
struction gets the value from a memory write instruction
outside the set of valid writers. This intuition leads us to
choose the set of correct Read-After-Write(RAW) depen-
dences as our invariant. We consider RAW dependences
between local as well as remote instructions.

If a program runs correctly, all the RAW dependences that
occur during the execution are assumed to be correct. On
the other hand, if a program behaves incorrectly because
of a concurrency bug, we are likely to observe at least one
RAW dependence that we have not seen during the correct
executions. This can be explained with the example shown
in Figure 2(a)-(c). Here, p is a pointer allocated and freed
by thread T1. T2 is another thread that uses p if it is not
NULL. Note that none of the threads uses any synchroniza-
tion. Hence, the program has data races.

Figure 2(a) & (b) show two scenarios that produce correct
results. Therefore, the correct RAW dependences are I1→
J1, I1→ J2, and I2→ J1. The interleaving in Figure 2(c)
causes a crash of the program. The RAW dependences, in
this case, are I1 → J1 and I2 → J2. Although the first
one is a correct one, the second one does not match with
any correct dependences found before. Hence, I2 → J2 is
an incorrect RAW dependence that leads to this bug.

It should be noted that whether a RAW dependence is
correct or not, may depend on the state of the system. This
can be explained with the help of the Figure 2(d)-(f). Here,
a point object p has x and y members to denote x and y
co-ordinate. So, intuitively, we can assume that both of
them should be accessed together atomically. However, the
programmer mistakenly accesses them in different critical
sections. Figure 2(d) & (e) show the scenarios where atom-
icity is not violated and hence, correct results are produced.

So, the correct RAW dependences are I1 → J1, I2 → J2,
K1 → J1, and K2 → J2. In Figure 2(f), thread T1 ends
up using updated value of x from T2 and y from T1. As
a result, atomicity is violated and the program becomes in-
correct. Here, both of the RAW dependences (i.e. K1→ J1
and I2 → J2) match with the correct RAW dependences
found before. Still, this is a buggy execution. It should be
noted that thread T1, at the point of instruction J1 and
J2, should consume both updated values either from T1 or
T2 entirely. This implies that when the T1 is at J2, the
state of the system is such that I2 → J2 is not the correct
RAW dependence anymore. During that state, K2→ J2 is
the correct dependence. For this reason, we should consider
the state of the system to determine the correctness of a
RAW dependence. The state usually constitutes of some at-
tributes of the system. Some example attributes can be last
Ni RAW dependences of the local processor, last Nj RAW
dependences of the remote processors, last Nk shared mem-
ory accesses, last Nl function calls, last Nm synchronization
variables used etc. We choose last Ni RAW dependences of
the local processor to represent the current state.

3.2 Continuous Learning and Verification of
RAW Invariants

We envision an architecture where each processor has a
Learning Module (LM). The LM contains a neural network.
We choose neural network algorithm because of its wide ap-
plicability. More specifically, we use multilayer perceptron
algorithm.

When a program starts execution, the LM of every proces-
sor is provided with the RAW dependences related to that
processor Initially, the LM spends some time learning the
dependences. We optimistically assume that all the RAW
dependences during the learning phase are correct. If, how-
ever, some of them are not correct and cause incorrect pro-
gram behavior (e.g. program crash), we fail to detect the
bug and start over the learning process from scratch during
the next execution. However, we can still provide the log of a
number of recent dependences to the programmer to detect
the bug. During the learning process, we also provide nega-
tive examples to the neural network. Negative examples are
formed by looking at the writes (e.g. the write before the
last write) upon which the read does not depend. Once the
learning phase is over (as indicated by the neural network
algorithm), the LM starts verifying the RAW dependences.
One of the advantages of using neural network is that even if
a dependence never appears during the learning phase, the
network can declare whether it is likely to be correct or not.
The processor allows the dependences that are declared to
be correct. If a RAW dependence is declared to be incorrect,
then the processor re-executes the memory read operation
to avoid it. This prevents the concurrency bugs most of the
time. However, if the incorrect RAW dependence cannot be
avoided this way, the bug eventually happens and causes the
program to behave incorrectly. When this happens, the LM
provides a log of recent dependences to the programmer to
pin point the bug

3.2.1 Detailed Architecture
There are many possible implementations [23, 4, 3, 20,

8] of neural networks in hardware. We focus on an ASIC
design.

At the high level, each processor has an LM connected

3

T1 T2

I1: p = malloc();

I2: free(p);

J1: if (p != NULL)
J2: …= p->…;

RAW Dependences:
I1 J1 I1 J2,

(a)

T1 T2

I1: p = malloc();
I2: free(p);

J1: if (p != NULL)
J2: …= p->…;

RAW Dependences:
I2 J1

(b)

T1 T2

I1: p = malloc();

I2: free(p);
J1: if (p != NULL)

J2: …= p->…;

RAW Dependences:
I1 J1 I2 J2,

(c)

T1 T2

lock();
I1: p.x = …;

unlock();
lock();

I2: p.y = …;
unlock();

lock();
J1: … = p.x;

unlock();
lock();

J2: … = p.y;
unlock();

lock();
K1: p.x = …;

unlock();
lock();

K2: p.y = …;
unlock();

RAW Dependences:
I1 J1 I2 J2,

(d)

T1 T2

lock();
I1: p.x = …;

unlock();
lock();

I2: p.y = …;
unlock();

lock();
J1: … = p.x;

unlock();
lock();

J2: … = p.y;
unlock();

lock();
K1: p.x = …;

unlock();
lock();

K2: p.y = …;
unlock();

RAW Dependences:
K1 J1 K2 J2,

(e)

T1 T2

lock();
I1: p.x = …;

unlock();

lock();
I2: p.y = …;

unlock();

lock();
J1: … = p.x;

unlock();
lock();

J2: … = p.y;
unlock();

lock();
K1: p.x = …;

unlock();
lock();

K2: p.y = …;
unlock();

RAW Dependences:
K1 J1 I2 J2,

(f)

Figure 2: How RAW dependences can be used as invariants

with load buffer, reorder buffer, and cache controller. This
is shown in Figure 3(a) and (d). In addition to this, we need
to augment each cache line to store the instruction address of
the last write operation on different words of the line. This
is needed to form the RAW dependences. This information
is piggybacked with cache coherence messages.

The design of the LM is shown in Figure 3(b). Whenever
the processor issues a read operation, the LM collects the
memory address and the corresponding instruction address
from load buffer and reorder buffer. When the relevant cache
line is accessed, the cache controller returns the last writer
instruction address of the requested word. This allows the
LM to form the RAW dependence which is then provided to
the neural network.

We assume a highly pipelined design for the neural net-
work. Therefore, we need an Input FIFO and an Output
FIFO inside the LM. In addition to these, we have a Scal-
ing Register and a Configuration Register as shown in Fig-
ure 3(b). The scaling register contains any scaling factor
necessary for the input and the output. The configuration
register contains the initial weights for the links of the neural
network.

Figure 3(c) shows the inside of an individual artificial neu-
ron. It consists of a Weight Register, an Input Buffer, an
Output Buffer, a Sigmoid unit, a Multiplication-Addition
unit, and a Controller. Each neuron takes its input from

the Input FIFO of the LM or the Output Buffer of another
neuron. It then copies the input to its own Input Buffer.
After the output is produced, it is placed in the Output
Buffer.

3.2.2 How It Works?
The LM has two modes of operation — learning mode

and verification mode. It should be noted that both of them
are done as a program runs. When a program starts execu-
tion, the LM of each processor starts working in the learning
mode. During this mode, the LM trains its neural network
with the RAW dependences. During this mode, the LM
treats every RAW dependence as a correct one. The LM
trains its neural network with these dependences. The LM
needs to calculate its accuracy in order to determine when
the learning process is over. Every time, a RAW dependence
is provided to the neural network, it first calculates the out-
put. The output either declares the newly found RAW de-
pendence as a correct one or an incorrect one. If the neural
network declares the dependence as a correct one, then it
is right. Otherwise the declaration is wrong. When the ac-
curacy, calculated this way, rises above a certain threshold,
the learning process is assumed to be over.

Once the learning phase is complete, the LM enters into
verification mode. Here, every time the processor executes
a memory read operation, the RAW dependence is formed

4

P1

Cache 1

Learning
Module 1

Pn

Cache n

Learning
Module n

...

Interconnection Network

(a)

Learning
Module

Reorder Buffer

Load Buffer

Cache
Controller

Word

Last Writer
Inst. Addr. Cache Line

Cache

(d)

Procesoor

Neuron

Network

Configuration
Register

Input
Generator

Scaling
Register

Input FIFO

Output FIFO

Learning Module (LM)

(b)

Sigmoid

Controller

Weight
Register

Input
Buffer

Output
Buffer

Neuron

(c)

Multiply-Add

Figure 3: Architecture of the Learning Module.

and sent to the LM. This is done before the read opera-
tion commits from the ROB. The LM, based on its training,
categorizes the dependence as a correct one or an incorrect
one. If the dependence is categorized as an incorrect one,
the LM signals the pipeline to flush the read operation and
re-execute it. When the read operation is executed again,
chances are the processor will read from another writer in-
struction, thereby avoiding the incorrect RAW dependence.
There can be several re-execution attempts to avoid the in-
correct RAW dependence. Most of the concurrency bugs
can be prevented this way. Even after several re-execution
attempts, if the incorrect RAW dependence still occurs, the
LM allows the dependence to happen. This is to ensure for-
ward progress of the program. The LM logs a number of
recent dependences in some memory mapped file. In case,
a crash occurs later because of one of the incorrect depen-
dences, this log provides valuable debugging information to
the programmer. Whenever the network declares a depen-
dence as an incorrect one and lets it happen and the program
does not crash within the next few hundred instructions, it is
considered as a wrong declaration. The neural network cal-
culates its accuracy in this way. If the accuracy drops below
some threshold, then the network starts its learning process
all over again. Thus, the neural network goes through a con-
tinuous learning and verification process during a program
run.

It should be noted that the neural network can have both
false positives (labeling a correct RAW dependence as an
incorrect one) and false negatives (vice versa). In case of
a false positive, there can be several re-execution attempts

to avoid the RAW dependence. Eventually, the dependence
is allowed to happen. This can at most slows down the
program a little bit. On the other hand, in case of a false
negative, the incorrect RAW dependence happens and the
program eventually starts to behave incorrectly. Then, the
log of dependences provides debugging information to the
programmer to pin point the bug.

This paper presents the initial design of our idea. There-
fore, we ignore cache eviction, effect of cache modification,
and other implementation issues. These issues will be con-
sidered in a more advanced version of the design.

4. PRELIMINARY RESULTS
Before implementing the whole system in an architectural

simulator, we did some small scale experiments to show the
feasibility of neural network usage. We used WEKA [6], an
open source machine learning toolset to implement a multi
layer perceptron algorithm. The parameters are shown in
Table 1.

Input Last 5 RAW dependences
Hidden Layer 1
Number Input layer 10,
of Nodes Hidden layer 7,

Output layer 1
Activation Function Sigmoid
Learning Rate 0.3
Number of Epoch 500
Momentum 0.2

Table 1: Parameters of the neural network.

5

We used FFT program from SPLASH2 with default pa-
rameters for 4 processors. We used a PIN [12] based tool to
collect traces of 10 executions for WEKA. We split all the
data into training data and testing data. After the neural
network was trained with our training data, we used it to
determine the correctness of the RAW dependences of the
testing data. Table 2 shows the obtained results.

training accuracy false pos. false neg.
data (%) (%) (%)

1000 66.12 11.69 22.19
5000 66.25 2.66 31.09
10000 99.67 0.12 0.21
15000 92.07 0.09 7.84
25000 99.74 0.18 0.08
35000 99.77 0.14 0.09
50000 99.78 0.12 0.09
60000 99.82 0.03 0.15
75000 99.78 0.12 0.10
90000 99.76 0.18 0.06
100000 99.81 0.03 0.16

Table 2: Results from FFT.

The neural network quickly obtains 99% accuracy. There
is a slight decrease of accuracy from 10000 to 15000 training
data points. This is due to inclusion of data from more than
one thread. This is an early report of this ongoing project.
Through experiments using more benchmarks and full sys-
tem simulator to show on-the-fly learning and verification of
invariants will be included in the advanced version of this
paper.

5. CONCLUSION
As parallel architectures become mainstream, program-

mers get burdened to write correct parallel programs. This
paper proposes a novel approach for concurrency bug detec-
tion and avoidance using neural networks in hardware. This
is the first work that proposes to learn and verify RAW
dependences continuously during program executions. The
proposed scheme has a unique advantage over existing in-
variant based approaches — it can handle new invariants
resulting from new environments and inputs. If the neu-
ral network declares a RAW dependence to be incorrect,
then the corresponding load instruction is re-executed after
a while. The proposed scheme avoids most of the concur-
rency bugs in this way. However, if the bug does happen,
then a log of recent dependences provides valuable informa-
tion to the programmer to pin point the concurrency bug.
We present our initial design of the idea and perform some
small scale feasibility study. Our preliminary results show
that the neural network can quickly train itself to achieve
99% accuracy in categorizing the correctness of any RAW
dependences.

6. REFERENCES
[1] C. Artho, K. Havelund, and A. Biere. High-level data races.

Journal on Software Testing, Verification & Reliability,
December 2003.

[2] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. In PLDI, June 2002.

[3] H. Esmaeilzadeh, P. Saeedi, B. Araabi, C. Lucas, and
S. Fakhraie. Neural Network Stream Processing Core (NnSP)
for Embedded Systems. In ISCS, May 2006.

[4] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural
Acceleration for General-Purpose Approximate Programs. In
MICRO, December 2012.

[5] K. Gharachorloo and P. B. Gibbons. Detecting Violations of
Sequential Consistency. In SPAA, July 1991.

[6] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. Witten. The WEKA Data Mining Software: An Update.
SIGKDD Explorations, 11(1), 2009.

[7] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana.
Self-optimizing memory controllers: A reinforcement learning
approach. In ISCA, June 2008.

[8] D. A. Jiménez and C. Lin. Dynamic Branch Prediction with
Perceptrons. In ISCA, January 2001.

[9] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and
Y. Zhou. MUVI: Automatically Inferring Multi-variable Access
Correlations and Detecting Related Semantic and Concurrency
Bugs. In SOSP, October 2007.

[10] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
Atomicity Violations via Access Interleaving Invariants. In
ASPLOS, October 2006.

[11] B. Lucia and L. Ceze. Finding Concurrency Bugs with
Context-aware Communication Graphs. In MICRO, December
2009.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building
customized program analysis tools with dynamic
instrumentation. In PLDI, June 2005.

[13] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. DRFx: A Simple and Efficient Memory
Model for Concurrent Programming Languages. In PLDI, June
2010.

[14] A. Muzahid, N. Otsuki, and J. Torrellas. AtomTracker: A
Comprehensive Approach to Atomic Region Inference and
Violation Detection. In MICRO, December 2010.

[15] A. Muzahid, S. Qi, and J. Torrellas. Vulcan: Hardware Support
for Detecting Sequential Consistency Violations in Programs
Dynamically. In MICRO, December 2012.

[16] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas. Sigrace:
signature-based data race detection. In ISCA, 2009.

[17] S. Russell and P. Norvig. Artificial Intelligence A Modern
Approach. Prentice Hall, 2003.

[18] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst., 1997.

[19] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and
W. Zheng. Do I use the wrong definition? DeFuse:
definition-use invariants for detecting concurrency and
sequential bugs. In OOPSLA, October 2010.

[20] K. Wojtek Przytula. Parallel Digital Implementations of Neural
Networks. In ASAP, September 1991.

[21] J. Yu and S. Narayanasamy. A Case for an Interleaving
Constrained Shared Memory Multi-processor. In ISCA, June
2009.

[22] J. Yu and S. Narayanasamy. Tolerating concurrency bugs using
transactions as lifeguards. In MICRO, December 2010.

[23] J. Zhu and P. Sutton. Fpga implementations of neural networks
- a survey of a decade of progress. In FPLA, September 2003.

6

