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In these notes, I will mainly just be providing formal definitions and theorems, so that

I don’t have to write them in their entirety on the blackboard in class. Most of these are

in the Tadelis textbook (some of which I have modified slightly), but some are not. I have

indicated where in the text (or alternative texts, e.g. Osborne) these can be found. In some

places I have provided some explanation and details, but this is much less than what I go

over in class—so these should supplement your lecture notes, not replace them. But all

formal definitions and theorems will be provided in these notes, so in class you don’t need

to worry about writing these down fully and accurately.

1 Rational Choice Theory

Rational Choice Theory can be thought of as the rigorous study of rational decision-making.

It can be said to have 3 main branches: (a) decision theory (the study of single-player

decision-making), (b) game theory (the study of interdependent or “strategic” decision-

making, i.e., when at least 2 decision-makers are involved), and (3) social choice theory (how

individual preferences are aggregated into group preferences or group choice, also called

collective choice).
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2 Decision Theory

2.1 Complete Information (No Uncertainty)

(Tadelis, p.4)

Definition 1 A decision theory model under complete information consists of:

• A decision maker (also called a player or actor)

• A set A (finite or infinite) of actions available to the decision-maker

• A set X (finite or infinite) of outcomes that can result from those actions

• An outcome function g : A → X mapping actions to outcomes, where for any a ∈ A,

g(a) ∈ X is the outcome resulting from a1

• The decision maker’s preference ordering of the elements of X

Important: preferences are over outcomes, not actions. Actions are just means to out-

comes, which are what the decision-maker ultimately cares about.

Definition 2 The weak preference relation is denoted by ≽. For any x, y ∈ X, x ≽ y

means “x is at least as good as y”. (Sometimes this is instead denoted by xRy.)

Definition 3 The strict preference relation is denoted by ≻. For any x, y ∈ X, x ≻ y

means “x is strictly better than y”. (Sometimes this is instead denoted by xPy.)

Definition 4 The indifference preference relation is denoted by ∼. For any x, y ∈ X,

x ∼ y means “x and y are equally good”. (Sometimes this is instead denoted by xIy.)

1Tadelis does not include this in his formal definition. But he refers to this function on p.10, using the
notation x(a). But because he also uses x to refer to a generic element of X, this is confusing. Hence we use
g(a) instead of x(a).
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Usually ≽ is considered the fundamental or primitive of the decision-maker’s preference

ordering, because ≻ and ∼ can be defined in terms of it as follows.

Definition 5 For any x, y ∈ X, x ≻ y ⇐⇒ x ≽ y and ¬(y ≽ x).

Definition 6 For any x, y ∈ X, x ∼ y ⇐⇒ x ≽ y and y ≽ x.

Thus, if we have the entire ≽ relation, this allows us to deduce the entire ≻ and ∼

relations. (Preference relations are more rigorously defined in terms of binary relations on

X, which are covered in the optional appendix.)

(Tadelis, p.5)

Definition 7 The preference relation ≽ is complete if for any x, y ∈ X, either x ≽ y or

y ≽ x (or both).

(Tadelis, p.6)

Definition 8 The preference relation ≽ is transitive if for any x, y, z ∈ X, if x ≽ y and

y ≽ z, then x ≽ z.

(Tadelis, p.6)

Definition 9 The preference relation ≽ is rational if it is complete and transitive.

Henceforth, we will assume that each decision-maker has a rational preference relation.

For a decision-maker that does not, we cannot systematically study which action it will

choose, which is our goal in rational choice theory.
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The Condorcet Paradox: transitive individual preferences need not imply a transitive

“group preference”, where by group preference we mean the preference ordering given by

majority rule voting over pairs of outcomes.

(Tadelis, p.7)

Definition 10 A payoff function or utility function representing the preference relation

≽ is a function u : X → R with the property that for any x, y ∈ X, u(x) ≥ u(y) if and only

if x ≽ y.

Utilities and utility functions are convenient ways of representing preferences, rather than

dealing with the cumbersome ≽. But the preference ordering is what is fundamental, not

the utility function used to conveniently represent it.

This is because with decision-making under certainty, preferences are just ordinal (i.e.,

just the order matters for what the decision-maker ends up choosing, not the intensity

of preferences), and hence many different (in fact, an infinite number of) utility functions

represent a given preference relation. No specific utility function (i.e., any specific assignment

of utilities to the outcomes) is special.

(Osborne, p.6)

Proposition 1 If u : X → R is a utility function representing ≽, then so is any function

f : X → R with the property that for any x, y ∈ X, f(x) > f(y) ⇐⇒ u(x) > u(y).

[Sidenote to ambitious students: For any given proposition in these notes, think about

how you would go about proving it. Thinking about this will guide you to seeing whether

this is a “do-able” proof for students at this level, or if it is instead extremely challenging.

If you think it is “do-able”, try proving it. Also think about whether some statements in
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the proposition are crucial, or whether the proposition can be stated more generally. For

example in the above proposition, is > crucial, or is it also true for ≥? This is all optional,

however, and the required homework will be enough for most students.]

For example, if u(·) reflects the decision-maker’s preferences, then so does f(·) = u(·)+1.

So do many other functions.

Proposition 2 If u : X → R is a utility function representing ≽, then so is the composite

function f ◦ u : X → R, for any f : R → R that is a strictly increasing function.

(Tadelis, p.8)

Proposition 3 If the set of outcomes X is finite, then any rational preference relation over

X can be represented by a payoff function.

A decision theory model is often conveniently represented by a decision tree, with a

decision node, terminal nodes (outcomes), and payoffs or utilities assigned to those

terminal nodes. This is much more convenient than specifying all of the components of the

formal definition given above.

Although preferences and hence payoffs are defined over outcomes, it is sometimes more

convenient to talk about the payoff for an action, which is of course the payoff for the outcome

that that action leads to. Formally:

(Tadelis, p.10)

Definition 11 Let g : A → X be the outcome function (see Definition 1), and let u : X → R

be a payoff function that represents ≽. Then the corresponding payoff function over

actions is the composite function v = u◦g : A → R. That is, for any a ∈ A, v(a) = u(g(a))

is the payoff (utility) for action a.
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The following definition embodies the principle of rational choice for decision-making

under certainty.

(Tadelis, p.10)

Definition 12 A player facing a decision problem with a payoff function v(·) over actions

is rational if he chooses an action a ∈ A that maximizes his payoff. That is, he chooses an

a∗ ∈ A with the property that v(a∗) ≥ v(a) for all a ∈ A.

Equivalently:

Definition 13 A player facing a decision problem with a payoff function u(·) is rational

if he chooses an a∗ ∈ A with the property that u(g(a∗)) ≥ u(g(a)) for all a ∈ A.

Equivalently:

Definition 14 A player facing a decision problem with a payoff function u(·) is rational

if he chooses an a ∈ A that solves the problem maxa∈A u(g(a)).

Equivalently:

Definition 15 A player facing a decision problem with a payoff function u(·) is rational

if he chooses an element of the set argmaxa∈A u(g(a)).2

Equivalently (and getting rid of utility functions altogether):

Definition 16 A player facing a decision problem is rational if he chooses an a∗ ∈ A with

the property that g(a∗) ≽ g(a) for all a ∈ A.

2For any real-valued function f : X → R, argmaxx∈X f(x) is the set of maximizers of f (on X).
Formally, argmaxx∈X f(x) = {x∗ ∈ X | f(x∗) ≥ f(x)∀x ∈ X}. The notation maxx∈X f(x) refers to the
maximum value of f (on X), also called simply the maximum of f (on X). Formally: maxx∈X f(x) = f(x∗)
such that there exists an x∗ ∈ X such that f(x∗) ≥ f(x) for all x ∈ X. Alternatively, maxx∈X f(x) is the
unique element, if any, of the set {f(x∗) | ∃x∗ ∈ X s.t. f(x∗) ≥ f(x)∀x ∈ X}.
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Going back to the original definition, how do we know that such an a∗ ∈ A exists? That

is, how do we know that an optimal action exists? The following two results give sufficient

conditions.

Proposition 4 If A is finite, then v : A → R has a maximum (and, incidentally, a min-

imum) on A. That is, there exists an a∗ ∈ A with the property that v(a∗) ≥ v(a) for all

a ∈ A. (Such an a∗ is called a maximizer of v.)

Proposition 5 (A is infinite) If A is a closed interval and v : A → R is continuous on A,

then v(·) has a maximum (and, incidentally, a minimum) on A.

The latter is just the Extreme Value Theorem (Proposition 23 in the summer math camp

notes that I provided you) applied to A and v(·).

In rational choice theory, we assume that each decision maker has a rational preference

relation and is rational. Both of these notions have now been formally defined. If we do not

assume both of these, we cannot systematically study the action that a decision-maker will

choose, which is our goal.

2.1.1 Appendix (Optional): More Advanced Topics and Exercises

These are things that I would not typically include in a first graduate course on game theory

and hence are optional, but that you might want to think about and solve if you are so

inclined.

Preference relations are more rigorously defined using binary relations. To define a binary

relation, first note that for any two sets A1 and A2, the Cartesian product of A1 and A2

is denoted by A1 × A2 and is defined as the set of all ordered pairs (a1, a2) of elements of

A1 and A2, where the first element in the pair is a member of A1 and the second element is
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a member of A2.
3 Formally, A1 × A2 = {(a1, a2) | a1 ∈ A1 and a2 ∈ A2}. More generally,

for any finite collection of sets A1, A2, . . . , An, we define A1 × A2 × . . . × An to be the

set of all ordered “n-tuples” of elements from these sets. Formally, A1 × A2 × . . . × An =

{(a1, a2, . . . , an) | a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An}.

Definition 17 For any finite collection of sets A1, A2, . . . , An, the Cartesian product

A1×A2× . . .×An is the set of all ordered “n-tuples” of elements from these sets. Formally,

A1 × A2 × . . .× An = {(a1, a2, . . . , an) | a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An}. (Sometimes we use

the notation
∏n

i=1Ai for the Cartesian product, i.e.,
∏n

i=1Ai = A1 × A2 × . . . × An. The

notation ×n
i=1Ai is also used.)

Definition 18 Let X be a set. A binary relation B on X is a subset of X × X, i.e.,

B ⊆ X ×X.

Let X be the set of outcomes. Then X ×X = {(x, y) | x ∈ X and y ∈ X}. We say that

the binary relation BR on X represents the weak preference relation ≽ if for any x, y ∈ X,

(x, y) ∈ BR ⇐⇒ x ≽ y.

Notice then that if we have the entire set BR for a decision-maker, this gives us the

entire weak preference relation for that decision-maker. It also gives us the entire strong

and indifference preference relations, as follows. Suppose (x, y) ∈ BR, meaning that x ≽ y.

If (y, x) ∈ BR as well, then obviously x ∼ y because y ≽ x as well. On the other hand, if

(y, x) /∈ BR, then x ≻ y. So BR gives us the decision-maker’s entire preference ordering over

the set of outcomes.

More formally, we have the following definitions.

3Unfortunately, we use the same notation for an ordered pair as we do for an open interval on the real
line, even though they are completely different things. In any given context, you should be able to recognize
which one we mean when we use that notation.
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Definition 19 A weak preference relation is a binary relation on X, denoted by BR,

defined as follows: BR = {(x, y) ∈ X ×X | x is at least as good as y}. (If (x, y) ∈ BR, we

interpret that to mean that “x is at least as good as y”.)

Definition 20 A strict preference relation is a binary relation on X, denoted by BP ,

defined as follows: BP = {(x, y) ∈ X ×X | x is strictly better than y}. (If (x, y) ∈ BP , we

interpret that to mean that “x is strictly better than y”.)

Definition 21 An indifference preference relation is a binary relation on X, denoted

by BI , defined as follows: BI = {(x, y) ∈ X×X | x and y are equally good}. (If (x, y) ∈ BI ,

we interpret that to mean that “x and y are equally good”.)

————————————————————

Optional Exercises:

(A1) Define what it means for ≻ to be complete, and to be transitive.

(A2) Define what it means for ∼ to be complete, and to be transitive.

(A3) Is it reasonable to impose the assumption that a rational preference ordering should

require ≻ to be complete? Explain why or why not. What about transitive?

(A4) Answer the same questions for ∼.

(A5) Are any of the following statements true? If so, prove it. If not, but the statement

is at least coherent, provide a counterexample (a specific preference ordering) to show that

it is not true in general. If it is not even coherent, explain why.

(a) “If ≽ is transitive, then ≻ is transitive.”

(b) “If ≽ is complete, then ≻ is complete.”

(c) “If ≽ is transitive, then ∼ is transitive.”
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(d) “If ≽ is complete, then ∼ is complete.”

(A6) Let A1 = {a, b, c} and A2 = {3, 10}. List A1 × A2. List A2 × A1.

(A7) If ≽ is complete, what does that imply for BR?

(A8) If ≽ is transitive, what does that imply for BR?

(A9) If BR = X×X, what does that imply for the decision-maker’s preference ordering?

(A10) Suppose that the set of actions is infinite, and is the union of two disjoint closed

intervals A1 and A2. That is, A = A1∪A2 and A1∩A2 = ∅. Suppose that v(·) is continuous on

A1 and A2. Does v(·) have a maximum on A? If so, prove it. If not, provide a counterexample

to show that it is not true in general.
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2.2 Incomplete Information (Uncertainty)

Note in Definition 1 that the outcome function g : A → X is a function from actions to

outcomes, and hence assigns exactly one outcome to each action. In other words, there is a

deterministic and known mapping from actions to outcomes, and hence a rational decision-

maker simply chooses an action that leads to a most-preferred outcome. Defining rational

choice with decision-making under certainty is easy.

Oftentimes, however, the decision-maker is not certain what outcome will result from one

or more of its actions, but can at least assign probabilities to the different outcomes. To

capture this, we now replace g with h, where h(a) is a (possibility degenerate, i.e., assigning

probability 1 to a certain outcome) probability distribution, also called a simple lottery, over

X, where h(a) is the probability distribution over outcomes induced by the action a ∈ A.

(Tadelis, p.16)

Definition 22 A simple lottery over a finite set of outcomes X = {x1, x2, . . . , xn} is

defined as a probability distribution p = (p(x1), p(x2), . . . , p(xn)), where 0 ≤ p(xk) ≤ 1

is the probability that xk occurs and
∑n

k=1 p(xk) = 1.

(Tadelis, p.18)

Definition 23 A simple lottery over an interval set of outcomes X = [x, x] is given by

a cumulative distribution function F : X → [0, 1], where F (x̂) = Pr(x ≤ x̂) is the

probability that the outcome is less than or equal to x̂.

If F is differentiable, then the function f = F ′ is the density function for the simple

lottery F . We usually visualize continuous probability distributions by their density functions
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rather than their CDF’s. For example, we are familiar with the density function of the

uniform distribution and the normal distribution.

(Tadelis, p.102)

Definition 24 Let X be a set. We use the notation ∆X to denote the set of all simple

lotteries (probability distributions) over X. (When X is finite, we sometimes call ∆X the

simplex of X.) Formally, we have the following formidable definitions involving sets of

functions. If X is finite, then ∆X = {p : X → [0, 1] |
∑n

k=1 p(xk) = 1}. If X is an interval,

then ∆X = {F : X → [0, 1] | F is a cumulative distribution function}.

Definition 25 A decision theory model under uncertainty consists of:

• A decision maker (also called a player or actor)

• A set A (finite or infinite) of actions available to the decision-maker

• A set X (finite or infinite) of outcomes that can result from those actions

• A function h : A → ∆X mapping actions to simple lotteries over X, where for any

a ∈ A, h(a) ∈ ∆X is the simple lottery over outcomes induced by a

• The decision maker’s preference ordering of the elements of X

With decision-making under uncertainty, the problem is that the decision-maker’s prefer-

ences are over outcomes, but actions are associated with lotteries over outcomes rather than

with outcomes. The natural extension of the principle of rational choice to decision-making

under uncertainty is that the decision-maker should choose an action that maximizes its

payoff function over actions (i.e., choose a maximizer of this function), but now it is no
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longer clear what this payoff function should be, unlike in the previous section where it was

simply v(a) = u(g(a)), i.e., simply determined by a payoff function over outcomes (and of

course by the outcome function).

It is clear that the decision-maker’s preference over actions should be determined by its

preference over lotteries (over outcomes), because there is a one-to-one link between

actions and lotteries. So to predict what a rational decision-maker will do, what we really

need to know is its preferences over lotteries (over outcomes). But this is not in general

indicated by its preferences over outcomes (which are the fundamentals or primitives of the

decision theory model). von Neumann and Morgenstern (1944) showed that if the decision-

maker’s preferences over lotteries satisfy certain conditions (henceforth called the vN-M

conditions), then the decision-maker’s preferences over lotteries are given by the expected

value of a (certain) payoff function u(x) (over outcomes) under those lotteries, and hence

a rational decision-maker should be defined as one who chooses an action associated with a

highest expected value of its payoff function over outcomes.

(Tadelis, p.19)

Definition 26 Let u(x) be the player’s payoff function over outcomes in the finite set X =

{x1, x2, . . . , xn}, and let p = (p1, p2, . . . , pn) be a lottery over X such that pk = Pr(x = xk).

Then we define the player’s expected payoff from the lottery p as

E[u(x) | p] =
∑n

k=1 pku(xk) = p1u(x1) + p2u(x2) + . . .+ pnu(xn).

The expected payoff is a weighted average of payoffs, where the weight given to each

payoff is the probability that the player receives that payoff.

(Tadelis, p.20)
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Definition 27 Let u(x) be the player’s payoff function over outcomes in the interval X =

[x, x], and consider a lottery given by the cumulative distribution function F (x), with density

function f(x) = F ′(x). Then we define the player’s expected payoff from the lottery F

as

E[u(x) | F ] =
∫ x

x
u(x)f(x)dx.

(If F is not differentiable, then E[u(x) | F ] =
∫
x∈X u(x)dF (x). The intuition behind this

is that f(x) = dF (x)
dx

, and hence f(x)dx = dF (x).)

von Neumann and Morgenstern showed the following.

(McCarty and Meirowitz, p.36)

Proposition 6 If the player’s preferences over lotteries satisfy the vN-M conditions (we

call such preferences vN-M preferences), then there exists a utility function u : X → R

representing ≽ such that for any two lotteries p, p′ ∈ ∆X (alternatively, F, F ′ ∈ ∆X if

X is an interval), the player weakly prefers p to p′ (alternatively, F to F ′) if and only if

E[u(x) | p] ≥ E[u(x) | p′] (alternatively, E[u(x) | F ] ≥ E[u(x) | F ′]). The utility function u

is called a Bernoulli utility function.

In other words, to compare two lotteries, we simply compare the expected value of u(x)

under those two lotteries.

We can now give the principle of rational choice for decision-making under uncertainty

as follows.

Definition 28 Suppose a player facing a decision problem under uncertainty has prefer-

ences over lotteries that satisfy the vN-M conditions, and that these preferences are therefore

represented by the expected value of a Bernoulli payoff function u : X → R that represents
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≽. Let pa ∈ ∆X denote the simple lottery over X induced by action a ∈ A if X is finite,

and denote this by Fa ∈ ∆X if X is an interval. Let v(a) = E[u(x) | pa] if X is finite,

and v(a) = E[u(x) | Fa] if X is an interval, be the corresponding payoff function over

actions (clearly, v : A → R). Then the player is rational if he chooses an a∗ ∈ A such

that v(a∗) ≥ v(a) for all a ∈ A, i.e., if he chooses an action that maximizes v(a). Sometimes

we call v(a) the vN-M expected utility function.

Henceforth, whenever we are dealing with decision-making (whether single-player or

multi-player) where uncertainty (and hence probabilities and lotteries) is involved, we will

assumed that the decision-maker’s preferences over lotteries satisfy the vN-M conditions,

and hence will simply use expected utilities to evaluate the player’s options. Clearly, vN-M’s

expected utility theory makes decision-making under uncertainty much more tractable

than it would otherwise be. We don’t have to list the decision-maker’s entire preference

ordering over the (always infinite) set of lotteries ∆X, but can instead just work with the

expected value of a utility function over outcomes.

With decision-making under certainty, there were an infinity of utility functions that

represent any given preference ordering ≽, and any one of them was acceptable to use,

because the predicted action that the decision-maker will choose is the same regardless. Is

the same true with decision-making under uncertainty? Note that Proposition 6 simply

states that there is a utility function whose expected value represents the decision-maker’s

preferences over lotteries. Is this u unique? The answer is given in the following result.

(Osborne, p.148)

Proposition 7 Suppose that there are at least three possible outcomes. The expected values

of the Bernoulli payoff functions u : X → R and w : X → R represent the same preferences
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over lotteries if and only if there exist numbers a and b with b > 0 such that w(x) = a+bu(x)

for all x ∈ X.

That is, the u specified in Proposition 6 is not unique; for any given preference ordering

over lotteries, there are an infinite number of Bernoulli payoff functions whose expected

value represents that preference ordering, but they are related to each other in an exact way.

Namely, for any two, each can be written as a strictly increasing linear function of the other.

The same is not true of the ordinal utility functions that are sufficient for decision-making

under certainty (e.g., Proposition 2 above). Let X = [0, 1]. Then u(x) = x and w(x) =
√
x

represent the same ordinal preferences over outcomes, but different preferences over lotteries,

because one cannot be written as a strictly increasing linear function of the other. On the

other hand, u(x) = x and z(x) = 5x − 2 not only represent the same ordinal preferences

over outcomes, but the same preferences over lotteries as well. (This does not mean that

Bernoulli payoff functions have to be linear functions of x. w(x) =
√
x and k(x) = 10

√
x− 3

represent the same preferences over lotteries.)

With decision-making under certainty, we said that we are assuming no more than ordi-

nal preferences, because that is all we need to postulate what a rational decision-maker will

choose. If I strictly prefer outcome x1 over all others, I will choose an action that leads to

x1 no matter how much I prefer x1 to other outcomes: it doesn’t matter whether we specify

the utility function b(x1) = 100 or c(x1) = 1000, as long as these are the highest numbers.

Thus, we say that there is no meaningful difference between b(x) and c(x), as they represent

the same ordinal preferences.

But with decision-making under uncertainty, intensity of preferences matter, because this

influences the preference between lotteries: expected utilities, and hence preferences between
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lotteries, depend on the specific Bernoulli payoff function being used, and hence so too

does the specific action chosen (up to the non-uniqueness allowed by Proposition 7). Thus,

Bernoulli payoff functions also incorporate the intensity of preferences over outcomes, and

these are referred to as cardinal utility functions. With decision-making under uncertainty,

saying that the player’s Bernoulli payoff function is c(x1) = 1000 rather than b(x1) = 100

is saying something meaningful, as this implies a different preference ordering over lotteries

(and hence potentially the action that the player chooses).4

Assuming that the vN-M conditions hold does not impose restrictions on the player’s

attitudes to risk: depending on the shape of his Bernoulli payoff function, he may be risk-

averse (concave payoff function), risk-neutral (linear utility function), or risk-loving (con-

vex utility function). Regardless of the shape of the utility function, he chooses an action

that maximizes the expected value of the utility function.

2.2.1 Appendix (Optional)

Optional Exercises:

(B1) Osborne 149.2

(B2) Let w(x) =
√
x and k(x) = 10

√
x − 3 be Bernoulli payoff functions. Applying

Proposition 7, determine the value of a and b when each is written as a strictly increasing

linear function of the other.

4This is of course assuming that c(x) cannot be written as a strictly increasing linear function of b(x).
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2.3 Homework Assignment #1, Due to TA Thiago Silva onWednes-
day October 5

(1) Tadelis 1.4

(2) Tadelis 2.1

(3) Tadelis 2.2

(4) Tadelis 2.3

(5) Tadelis 2.4
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3 Static Games of Complete Information

3.1 Defining Normal-Form Games

Static games are also called normal-form games, normal games, strategic-form games, strate-

gic games, and simultaneous-move games. I prefer the latter term because it is the most

informative.

The Cartesian product of a collection of sets is an important concept in giving a formal

definition of a normal-form game.

Definition 29 For any finite collection of sets A1, A2, . . . , An, the Cartesian product

A1×A2× . . .×An is the set of all ordered “n-tuples” of elements from these sets. Formally,

A1 × A2 × . . .× An = {(a1, a2, . . . , an) | a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An}. (Sometimes we use

the notation
∏n

i=1Ai for the Cartesian product, i.e.,
∏n

i=1Ai = A1 × A2 × . . . × An. The

notation ×n
i=1Ai is also used.)

(Tadelis p.47; the following definition is more general, because it allows an infinite number

of players; notice how)

Definition 30 A normal-form game consists of the following:

• A set of players, N , where | N |≥ 2

• For each player i ∈ N , a set of actions (also called pure strategies) Si

• For each player i ∈ N , a preference relation ≽i over the set of action (or strategy)

profiles S = ×i∈NSi. Assuming that each preference relation is complete and transi-

tive, it is represented by a payoff function vi : S → R. For any action profile s ∈ S,

vi(s) is player i’s payoff for s. Action profiles are also sometimes called outcomes.
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(Tadelis p.51)

Definition 31 If N is finite and each Si is finite, then we say that the normal-form game

is finite.

Sometimes we use the notation < N, (Si), (ui) > to denote a game (or a minor variant,

as in Tadelis p.48): the set of players, the collection of the sets of actions, and the collection

of the utility functions.

When we are talking about some player i ∈ N , it is common to use −i to refer to the set

of players other than i, i.e., −i = N \ {i}.5 That is, −i is the complement of {i}. Similarly,

S−i = ×j∈N\{i}Sj is the set of action profiles of all players other than i. If s−i ∈ S−i and

si ∈ Si, then (si, s−i) or (s−i, si) is the action profile in which player i chooses action si and

the players in −i choose their actions in s−i.

Finally, if s is an action profile, then si is the action that player i chooses in the profile

s, and s−i is the action profile of the players other than i in the profile s. The usefulness of

this notation will become clear in the definitions of solution concepts given later.

Some common, simple normal-form games are:

(1) Prisoner’s Dilemma (PD). N = {1, 2}. Si = {C,D} for all i ∈ N , where C is

interpreted as “cooperate” with the other player, and D is interpreted as “defect” against the

other player. Note that S = S1 × S2 = {CC,CD,DC,DD}. Finally, any utility functions

v1 and v2 such that v1(DC) > v1(CC) > v1(DD) > v1(CD) and v2(CD) > v2(CC) >

v2(DD) > v2(DC) represent the players’ preferences.

(2) Stag Hunt (SH) (also called Assurance). Same as PD, but v1(CC) > v1(DC) >

v1(DD) > v1(CD) and v2(CC) > v2(CD) > v2(DD) > v2(DC). For each player’s preference

5Recall that \ denotes “set subtraction”: A \B = {x ∈ A | x /∈ B}.
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ordering, the top two outcomes are flipped relative to PD.

(3) Battle of the Sexes (BoS) (also called a mixed coordination game). N = {1, 2}.

Si = {B, S} for all i ∈ N , where B is interpreted as “Bach”, and S is interpreted as

“Stravinsky” (Osborne’s notation). Note that S = S1 × S2 = {BB,BS, SB, SS}. Finally,

v1(BB) > v1(SS) > v1(BS) = v1(SB) and v2(SS) > v2(BB) > v2(BS) = v2(SB).

Simple games like these in which there are no more than 3 players and each player has

a finite number of actions can be conveniently represented using a payoff matrix, which

fully represents the game (N , each Si, and each vi).

As in single player decision theory, our goal is to predict what a rational (not yet defined

in a game-theoretic context) player will do in a normal-form game. Of course, there are

multiple players in such games, so our goal is to predict what each player will do, assuming

that each player is rational. That is, our goal is to predict which action profile (outcome)

will occur.

There are a number of different ways of thinking about (or predicting) what rational

players will do in normal-form games, each requiring different assumptions about knowledge

of each other’s rationality and of each other’s chosen action. Each way of predicting what

rational players will do is called a solution concept (a formal definition is given in the

appendix). Before getting into these, we need to define rationality in a game-theoretic

setting.

3.2 Decision-Theoretic Rationality in a Game-Theoretic Setting

(Tadelis, p.72)

Definition 32 (pure beliefs over pure strategies) A belief of player i is a possible profile of
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his opponents’ strategies, s−i ∈ S−i.

(Tadelis, p.70)

Definition 33 (Best response in pure strategies) For player i, strategy si ∈ Si is a best

response to his opponents’ strategy profile s−i ∈ S−i if vi(si, s−i) ≥ vi(s
′
i, s−i) ∀s′i ∈ Si.

(Tadelis, p.70, p.54)

Definition 34 (Decision-theoretic rationality in a game-theoretic setting, in pure strategies

and pure beliefs) Player i is rational if, given belief s−i ∈ S−i, he chooses a best response

to s−i.

This is very similar to the definition of rationality in decision theory, but here given some

belief about how the opponents will behave. But the basic idea is, given its beliefs, the

decision-maker will choose an action that leads to a preferred outcome (action profile).

3.3 Solution Concept #1: Strict Dominance

(Tadelis p.60)

Definition 35 (Strict dominance in pure strategies) Player i’s action s′i is strictly domi-

nated by its action si if vi(si, s−i) > vi(s
′
i, s−i) for all s−i ∈ S−i. We also say that si strictly

dominates s′i.

That is, si strictly dominates s′i if player i is strictly better off choosing si than s′i for

every combination of actions of the other players.

(Tadelis, p.60)
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Proposition 8 A rational player never chooses a strictly dominated action.

(Tadelis p.61)

Definition 36 (Strict dominance in pure strategies) Player i’s action si is strictly dom-

inant if it strictly dominates every s′i ∈ Si such that s′i ̸= si. That is, if for every s′i ∈ Si

such that s′i ̸= si, vi(si, s−i) > vi(s
′
i, s−i) for all s−i ∈ S−i.

Proposition 9 A player can have at most one strictly dominant action.

Proposition 10 If player i ∈ N has a strictly dominant action si, he will choose it.

Note that “strictly dominates” and “strictly dominated” are pairwise comparisons, i.e.,

are concepts that apply to any pair of actions of a player. “Strictly dominant” is a player-

specific concept, in that we ask the question of whether a player has a strictly dominant

action. Of course, in a game in which each player has just 2 actions, these concepts are

identical: if si strictly dominates s′i, si is strictly dominant. (Also note that we can ask the

question of whether a player has a strictly dominated action without being explicit about

which action strictly dominates it, and in this sense can be thought of as a player-specific

concept.)

In PD, each player has a strictly dominant action, namely D. Thus, if both players are

rational, both will choose D. The dilemma is that each player strictly prefers the action

profile CC to DD, i.e., CC strictly Pareto dominates DD.

(Tadelis p.57)

Definition 37 An action profile s ∈ S Pareto dominates action profile s′ ∈ S if vi(s) ≥

vi(s
′) ∀i ∈ N , and vi(s) > vi(s

′) for at least one i ∈ N . We also say that s′ is Pareto
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dominated by s. (We sometimes use the terms strictly Pareto dominates and strictly

Pareto dominated if all of the inequalities hold strictly, i.e., vi(s) > vi(s
′) ∀i ∈ N .) An

action profile is Pareto optimal if it is not Pareto dominated by any other action profile.

Pareto-optimality is an efficiency concept, not a solution concept (i.e., a prediction con-

cept). If a predicted outcome is not Pareto optimal, we lament this because there are

unrealized gains that wouldn’t make anyone worse off, but we don’t therefore just naively

change our prediction.

If a player has a strictly dominant action, then from that player’s perspective the decision

setting is virtually a single player decision theory setting rather than a game-theoretic setting,

because the player doesn’t really have to think about how the other players are likely to

behave. That player will choose its strictly dominant action regardless of how it expects the

other players to behave. Indeed, it doesn’t even need to have an expectation of how the

other players will behave.

If all players have strictly dominant actions, as in PD, then we have a unique prediction

of what will happen in the game, i.e., the action profile that will occur if all players are

rational.

(Tadelis p.61)

Definition 38 The strategy profile sD ∈ S is a strictly dominant strategy equilibrium

(SDSE) if, for each player i ∈ N , sDi ∈ Si is a strictly dominant strategy for player i.

Proposition 11 A game can have at most one SDSE.

(Tadelis, p.70)
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Proposition 12 If the strategy profile s∗ ∈ S is an SDSE, then for all i ∈ N , s∗i is a best

response to s∗−i.

In most interesting games, no player has a strictly dominant strategy, and hence there

is no SDSE. PD is a rare exception. It is the most basic solution concept, because all it

requires is that all players are rational, but is rarely applicable.

3.4 Solution Concept #2: Iterated Elimination of Strictly Domi-
nated Strategies (IESDS)

If each player has a strictly dominant strategy, wonderful. We have a clear prediction that

just assumes that each player is rational. But this is rare. In fact, other than PD, any such

game will be a contrived game.

Consider a more frequent situation, where at least 1 player has at least 1 strictly dom-

inated action. We know that if each player is rational, none will play a strictly dominated

action, and hence we can eliminate these from consideration. This might eliminate a signif-

icant number of actions, and hence allow us to focus on a reduced set of strategy profiles as

being possible outcomes of the game among rational players.

Can we go any further? Suppose we assume not only that each player is rational, but that

each player knows that everyone is rational. Then each player considers a “reduced game”

in which all strictly dominated strategies, for all players, are eliminated. If I know that all of

my opponents are rational, I know that they won’t consider playing their strictly dominated

actions. But so far this doesn’t get us any further; it just gets us to the point where all

players are considering the “reduced game” where not only their own strictly dominated

actions are eliminated, but those of every other player as well.

But suppose we assume not only that every player knows that every player is rational,
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but also that every player knows that every player knows that every player is rational. Then

I know that all of my opponents are also considering this “reduced game.” And because we

are all rational and know that we are all rational, I know that we will all eliminate any

strictly dominated actions within this “reduced game.” That is, it is possible that within the

reduced game some actions are strictly dominated, even though they were not in the original

game. This may result in a “second reduced game” that is smaller than the “reduced game.”

If we assume common knowledge of rationality (CKR), then the players will conduct

this process until they arrive at a game that cannot be reduced any further, i.e., in which

no one has a strictly dominated action. This process is known as iterated elimination

of strictly dominated strategies (IESDS), and is well-described by the algorithm in

Tadelis, p.65.

(Tadelis p.45)

Definition 39 An event E is common knowledge if (1) everyone knows E, (2) everyone

knows that everyone knows E, and so on ad infinitum.

Definition 40 CKR means that (1) every player knows that every player is rational, (2)

every player knows that every player knows that every player is rational, and so on ad

infinitum.

(Tadelis, p.65)

Definition 41 The strategy profile sES ∈ S is an iterated-elimination equilibrium

(IEE) if, for each player i ∈ N , sES
i ∈ Si survives the process of IESDS.

At least one IEE exists for every game, unlike with SDSE. However, in games with no

strictly dominated actions, every strategy profile is an IEE, and hence it doesn’t predict
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much, because it doesn’t rule out anything from happening. And unfortunately, in most

interesting games there are no strictly dominated actions, and hence IEE doesn’t have any

bite in most games.

Also note that the “epistemic conditions” for IEE are much higher than for SDSE: not

only that every player is rational, but also CKR.6

(Tadelis, p.68)

Proposition 13 If s∗ is an SDSE, then s∗ is the unique IEE.

(Tadelis, p.70)

Proposition 14 If the strategy profile s∗ ∈ S is the unique IEE, then for all i ∈ N , s∗i is a

best response to s∗−i.
7

3.5 Solution Concept #3: Rationalizability

The notion of a correspondence generalizes the notion of a function.

Definition 42 A correspondence C from a set X into a set Y (i.e., C : X →→ Y ) is a

rule that assigns to each x ∈ X a set C(x), where C(x) ⊆ Y . We call X the domain set

(or preimage set) and Y the range set (or image set).

A function is a special type of correspondence in which, for every x ∈ X, C(x) has exactly

one element.

(Tadelis, p.72)

6The branch of game theory that deals with the rationality and knowledge requirements for each solution
concept is called epistemic game theory, and an important paper here is Aumann and Brandenburger (1995).

7Later on, we will have the following equivalent statement: “If the strategy profile s∗ ∈ S is the unique
IEE, then s∗ is a Nash equilibrium.”
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Definition 43 (Best response correspondence in pure strategies) For player i ∈ N , the best

response correspondence BRi : S−i →→ Si is defined as follows: for any s−i ∈ S−i,

BRi(s−i) = {si ∈ Si | vi(si, s−i) ≥ vi(s
′
i, s−i) ∀s′i ∈ Si}. That is, BRi(s−i) is the set of all

best responses of player i to s−i.

(Tadelis, p.70)

Definition 44 (Alternative definition of decision-theoretic rationality in a game-theoretic

setting, in pure strategies and pure beliefs) Player i is rational if, given belief s−i ∈ S−i, he

chooses some si ∈ BRi(s−i).

(Tadelis, p.73)

Definition 45 (Never-best response in pure strategies) For player i, strategy si ∈ Si is a

never-best response if, for every belief s−i ∈ S−i, si /∈ BRi(s−i).

Proposition 15 A rational player never chooses a never-best response.

Rationalizability (Tadelis, p.73): We can engage in the process of iterated elimina-

tion of never-best responses. (Question to ponder: is the following statement true? “A

strategy si ∈ Si is a never-best response if and only if it is strictly dominated.”) Whatever

strategies remain can be called rationalizable. Like IESDS, this relies on assuming not only

that every player is rational, but also that this is common knowledge. A formal definition

requires mixed strategies, which we will encounter later.

Another way of thinking about rationalizability in 2-player games: player 1’s strategy

s1 ∈ S1 is rationalizable if and only if it is a best response to some s2 ∈ S2, which is a best
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response to some s′1 ∈ S1 (it is possible that s′1 = s1), which is a best response to some

s′2 ∈ S2 (it is possible that s′2 = s2), and so on ad infinitum.

Player 1 can rationalize playing such a strategy, when it is common knowledge that both

players are rational. Player 1 might not be choosing a best response to what player 2 is

actually choosing, but without knowing for sure what player 2 is choosing, player 1 can

rationalize choosing s1 under CKR. It is a best response to something that player 2 might

be doing, that is a best response to something that player 1 might be doing, that is a best

response to something that player 2 might be doing, and so on ad infinitum.

(Tadelis, p.70)

Proposition 16 If si ∈ Si is a strictly dominated strategy for player i, then it is a never-best

response.

3.6 Solution Concept #4: Weak Dominance and Iterated Elimi-
nation of Weakly Dominated Strategies (IEWDS)

We have the following weaker notion of dominance.

(Tadelis p.63; this is slightly different from Tadelis’s definition; think about why it is

more commonly defined this way rather than the way Tadelis defines it)

Definition 46 (Weak dominance in pure strategies) Player i’s action s′i is weakly domi-

nated by its action si if vi(si, s−i) ≥ vi(s
′
i, s−i) for all s−i ∈ S−i, and vi(si, s−i) > vi(s

′
i, s−i)

for at least one specific s−i ∈ S−i. We also say that si weakly dominates s′i.

That is, si does at least as well as s′i no matter what the other players do, and for at

least one specific action profile of the other players, si does strictly better than s′i.
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Unlike with strictly dominated actions, we can’t conclusively say that a rational player i

will not choose a weakly dominated action, because it can be a best response to some belief

s−i ∈ S−i. However, we have the following.

Proposition 17 If s′i ∈ Si is weakly dominated, then there exists no s−i ∈ S−i for which

BRi(s−i) = {s′i}.

That is, a weakly dominated action can never be the unique best response to some belief

s−i ∈ S−i.

Although we can’t conclusively rule out a rational player choosing a weakly dominated

action s′i, it is not clear why a rational player would choose s′i, unless he is absolutely certain of

the belief (if any) to which s′i is a best response. Choosing the action that weakly dominates

it is a safer bet, especially when there is uncertainty as to what the other players are going

to do.

Definition 47 (Weak dominance in pure strategies) Player i’s action si ∈ Si is weakly

dominant if it weakly dominates every s′i ∈ Si such that s′i ̸= si.

Proposition 18 A player can have at most one weakly dominant action. (Note that this is

not true under Tadelis’s definition of “weakly dominates”.)

If a rational player has a weakly dominant action, we can’t conclusively say that it will

choose it, although it is not clear why it would not choose it, as it will be a safer bet than

any other action, especially when there is uncertainty as to what the other players are going

to do.

(Tadelis, p.76)
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Definition 48 The strategy profile sW ∈ S is a weakly dominant strategy equilibrium

(WDSE) if, for each player i ∈ N , sWi ∈ Si is a weakly dominant strategy for player i.

Proposition 19 A game can have at most one WDSE. (Again, this is not true under

Tadelis’s definition of “weakly dominates”.)

Just like with SDSE, a game can have no WDSE. Even if a game has a WDSE, we cannot

conclusively say that it will be the outcome if every player is rational. But again, it is hard

to see why it would not be the outcome, as each player’s best bet is its weakly dominant

action.

We can conduct the process of iterated elimination of weakly dominated strate-

gies (IEWDS) (and define a corresponding equilibrium, analogous to IEE). However, this

is less compelling than IESDS because we cannot conclusively say that a rational player

will eliminate its weakly dominated actions from consideration. Therefore, CKR does not

imply that a strategy profile consisting of strategies that survive IEWDS will occur; players

can’t assume that their rational opponents will eliminate weakly dominated actions from

consideration.

3.7 Assessing the Solution Concepts So Far

SDSE is a very attractive solution concept, because it just relies on each player being rational

(i.e., has minimal “epistemic conditions”). However, it is rare to find an interesting game

in which even a single player has a strictly dominant action, much less every player. PD is

really the only interesting game for which an SDSE exists.

IESDS (and IEE) has stronger epistemic conditions than SDSE, namely CKR. On the

plus side, at least one IEE exists for every game. On the downside, for most interesting
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games, the set of IEE consists of the set of all strategy profiles, because no player has any

strictly dominated action. So this type of equilibrium always exists, but usually does not

predict anything because it does not rule out anything.

Rationalizability, or iterated elimination of never-best responses, suffers the same prob-

lems as IESDS, because it also usually does not rule out much. In most interesting games,

players have no never-best responses.

We will see that many interesting games do have weakly dominated actions, but not

weakly dominant actions. Hence, WDSE rarely exist. IEWDS can sometimes eliminate

some strategies from consideration, but usually not many. Moreover, IEWDS does not have

firm epistemic justification: we cannot conclusively say that rational players will eliminate

weakly dominated actions from consideration, and CKR does not imply IEWDS.

The limitations of all of these solution concepts suggest a need for an alternative solu-

tion concept that (a) always exists (i.e., at least one equilibrium always exists), (b) usually

eliminates at least a significant number of strategy profiles from consideration as predictions

of what will happen, and (c) has epistemic conditions that clearly justify it. These consid-

erations will lead us to Nash equilibrium as the preferred solution concept for normal-form

games.

3.8 Appendix (Optional)

Definition 49 Let G be the set of all normal-form games, and for any normal-form game

g ∈ G, let Sg be the set of strategy profiles of g. Let S =
∪

g∈G 2Sg be the set containing

every subset of Sg, for every g ∈ G.8 A solution concept is a function E : G → S, where

8Let A be a set. The power set of A, denoted by 2A, is the set of all subsets of A. That is, 2A = {X |
X ⊆ A}. For example, if A = {1, 2}, then 2A = {∅, {1}, {2}, {1, 2}}.
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for any normal-form game g ∈ G, E(g) ⊆ Sg is the set of all strategy profiles of g that are

equilibria of the game (under that solution concept).9

That is, a solution concept is a function E that assigns to any normal-form game g a

subset of the set of strategy profiles of the game, where the strategy profiles in this subset

are the equilibria of the game (under that solution concept).

Desirable qualities of solution concepts are that: (a) for each g ∈ G, E(g) ̸= ∅ (i.e.,

an equilibrium always exists), (b) for most g ∈ G, E(g) ⊂ Sg (i.e., the set of equilibria is

usually smaller than the set of strategy profiles, i.e., the solution concept usually rules out

at least some strategy profiles as predictions), and (c) there are clear epistemic conditions

that justify the solution concept, i.e., if these conditions hold, we can reasonably expect the

players to play according to one of the equilibria (although we may not be able to clearly

determine which one, if there are multiple equilibria).

——————————————

Optional Exercises:

(C1) For each of the following, is the statement true? If so, prove it. If not, provide a

counter-example to show that it is not true in general.

(a) If the strategy profile s∗ is an SDSE, then it is a Pareto-optimal strategy profile.

(b) If the strategy profile s∗ is the unique IEE, then s∗ is an SDSE. (This is the converse

of Tadelis’s Proposition 4.2 on p.68)

(c) Consider a finite game in which there is a strategy profile s∗ that strictly Pareto-

dominates every other strategy profile. Then s∗ is the unique IEE.

9The reason this is a function instead of a correspondence is that the range is the set of all subsets of
the set of strategy profiles for all normal-form games, and E assigns exactly one such subset (the set of
equilibria) to every game g ∈ G. That is, E(g) is a set, but is a specific set from a range of possible sets,
and hence E is a function rather than a correspondence. Admittedly, this can be confusing.
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(d) Consider a finite game in which there is a strategy profile s∗ that strictly Pareto-

dominates every other strategy profile. Then s∗ is an IEE.

(e) If strategy si ∈ Si is a never-best response, then si is strictly dominated.

(f) If si strictly dominates s′i, then it weakly dominates it.

(g) If si weakly dominates s′i, then it strictly dominates it.

(h) If si is strictly dominant, then it is weakly dominant.

(i) If si is weakly dominant, then it is strictly dominant.
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3.9 Homework Assignment #2, Due to TA Thiago Silva onWednes-
day October 12

(1) Tadelis 3.3

(2) Tadelis 3.7

(3) Tadelis 4.1

(4) Tadelis 4.3

(5) Tadelis 4.5
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3.10 The Main Solution Concept: Nash Equilibrium (NE)

(Tadelis, p.80)

Definition 50 (Nash equilibrium in pure strategies) A strategy profile s∗ ∈ S is a Nash

equilibrium (NE) if, for each player i ∈ N , vi(s
∗
i , s

∗
−i) ≥ vi(si, s

∗
−i) for all si ∈ Si.

That is, a NE is strategy profile in which each player is choosing a best response to what

the other players are doing. In fact:

(Osborne, p.36)

Proposition 20 A strategy profile s∗ ∈ S is a NE if and only if for each i ∈ N , s∗i ∈

BRi(s
∗
−i).

[Note: “if and only if” results give an alternative way of defining a concept. That is, we

could have defined a NE using the above proposition, and then turned the above definition

into an “if and only if” proposition.]

Informal definition: “A NE is a strategy profile in which no player can increase its payoff

by unilaterally changing its action (strategy).”

NE is intuitively thought of as a “stability concept.” That is, if the players get to a NE,

no one has an incentive to change their behavior, and hence they will remain there. This is

not true of strategy profiles that are not NE.

Similarly, if I as an outside analyst predict to the players that a strategy profile will

occur that happens to be a NE, I have good reason to expect that this strategy profile will

in fact occur, because no one has an incentive to choose differently. Again, this is not true

of strategy profiles that are not NE; at least one player can benefit by choosing differently,

and hence I won’t expect that strategy profile to actually occur.
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The “epistemic conditions” for NE are: (1) each player is rational, i.e., chooses a best

response to its belief about the opponents’ strategies, and (2) each player’s belief about its

opponents’ strategies is correct. Note that common knowledge of rationality (CKR), which

is a strong condition, is not needed. However, condition (2) is fairly strong. Experimental

evidence tends to suggest that experienced players play according to Nash equilibria but

inexperienced players often do not, and one explanation of this data is that experienced

players know how their opponents will choose and hence (2) is satisfied for them, but not

necessarily for inexperienced players.

Finding NE in payoff matrices: (i) directly, and (ii) more efficiently, marking best re-

sponses using dots. [best-response dots also allow us to efficiently determine issues like strict

dominance; see the optional exercises in the appendix]

[Do some examples]

[Pareto-dominance as an equilibrium selection criterion when multiple NE exist]

[Schelling’s notion of focal points as another selection criterion in coordination games]

[Matching pennies as a game that has no NE in pure strategies]

Two types of NE:

(Osborne, p.33)

Definition 51 (Strict and non-strict NE in pure strategies) A strategy profile s∗ ∈ S is a

strict NE if, for each player i ∈ N , vi(s
∗
i , s

∗
−i) > vi(si, s

∗
−i) for all si ∈ Si such that si ̸= s∗i .

A NE that is not a strict NE is called a non-strict NE.

[Tips for finding the NE of games that can’t be shown using payoff matrices and hence the

cook-book, algorithmic best-response-dots method can’t be applied. (1) Begin by considering
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simple strategy profiles and check whether they are NE, and this will guide you towards other,

more complicated strategy profiles that you need to check. (2) Often useful to introduce a

new variable to help you conveniently list strategy profiles. For example, in an n-player

game in which each player has 2 actions, C (“contribute”) or NC (“not contribute”), “Let x

be the number of players choosing C. Consider the simple strategy profile x = 0. . . Consider

the simple strategy profile x = n . . .”]

[Examples: in the optional exercises in the appendix]

[Finding NE of games with a continuum of actions: Cournot Duopoly, auctions, Hotelling-

Downs Model of Electoral Competition] [some require calculus (FOC and SOC) to find the

NE, some don’t]

The following are some results linking some earlier solution concepts with NE. [Optional

exercise: Each of the following is a P ⇒ Q result. Think about whether the converse holds,

i.e., P ⇐ Q.]

(McCarty and Meirowitz, p.99)

Proposition 21 If a strategy profile s∗ ∈ S is a NE, then it is also an IEE (i.e., no s∗i is

eliminated through IESDS).

(Tadelis, p.80)

Proposition 22 If a strategy profile s∗ ∈ S is either (a) a strictly dominant strategy equi-

librium (SDSE), (b) the unique IEE (i.e., the unique survivor of IESDS), or (c) the unique

rationalizable strategy profile, then s∗ is the unique NE.

(Osborne, p.45)
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Proposition 23 If s′i ∈ Si is a strictly dominated action of player i, then there exists no

NE containing s′i.

(Osborne, p.47)

Proposition 24 If s′i ∈ Si is a weakly dominated action of player i, then there exists no

strict NE containing s′i.

3.11 Appendix (Optional)

Optional Exercises:

(D1) Give an elegant, self-contained formal definition of a non-strict NE, i.e., a definition

that makes no reference to strict NE.

(D2) Give a simple payoff matrix in which a weakly dominated action is part of a NE.

(D3) Give a simple payoff matrix of a finite 2-player game that has a unique NE, in which

each player’s action is weakly dominated.

(D4) Is the following result true? If so, prove it. If not, provide a counter-example to

show that it is not true in general.

(a) “In a finite 2-player game in which some player i has a weakly dominant action si ∈ Si,

there exists at least 1 NE containing si.”

(b) “An action si ∈ Si is a strictly dominant action of player i if and only if for every

s−i ∈ S−i, BRi(s−i) = {si}.”

(c) “An action si ∈ Si is a weakly dominant action of player i if and only if for every

s−i ∈ S−i, si ∈ BRi(s−i).” [Using the definition of weak dominance in these notes rather

than Tadelis’s definition.]

(d) The converse of Proposition 21
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(e) The converse of Proposition 22

(f) The converse of Proposition 23

(g) The converse of Proposition 24

(D5) Two candidates, A and B, compete in an election. There are n citizens, where n ≥ 3

is an odd integer. Each citizen can vote for A or vote for B (no abstentions are allowed). The

candidate who obtains the most votes wins. Each citizen either strictly prefers A winning

to B winning, or strictly prefers B to A. A majority of citizens strictly prefer A to B.

(a) Formulate this as a normal-form game.

(b) Are there are any strictly or weakly dominated actions?

(c) Find all of the NE in pure strategies. For each one, determine whether it is a strict

or non-strict NE.

(d) If there are multiple NE, is there a reasonable basis for selecting one of the them as

the most likely to occur? Explain.

(D6) Two candidates, A and B, compete in an election. Of the n ≥ 2 citizens, k support

candidate A and m (= n − k) support candidate B. Each citizen decides whether to vote,

at a cost, for the candidate she supports, or to abstain. A citizen’s payoff for her preferred

candidate winning is 2, is 1 for a tie, and is 0 if her preferred candidate loses. A citizen who

votes also pays a cost c, where 0 < c < 1.

(a) For k = m = 1, draw the payoff matrix and find all of the NE in pure strategies. For

each one, determine whether it is a strict or non-strict NE. Are there any strictly or weakly

dominated actions?

(b) For k = m, find all of NE in pure strategies. For each one, determine whether it is a

strict or non-strict NE. Are there any strictly or weakly dominated actions?
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(c) For k < m, find all of the NE in pure strategies. For each one, determine whether it

is a strict or non-strict NE. Are there any strictly or weakly dominated actions?

(D7) Each of n ≥ 2 people chooses whether to contribute a fixed amount toward the

provision of a public good. The good is provided if and only if at least k people contribute,

where 2 ≤ k ≤ n; if it is not provided, contributions are not refunded. Each person assigns

payoffs as follows: 4 if the good is provided and I don’t contribute, 3 if the good is provided

and I contribute, 2 if the good is not provided and I do not contribute, and 1 if the good is

not provided and I contribute.

(a) Formulate this as a normal-form game.

(b) Are there are any strictly or weakly dominated actions?

(c) Find all of the NE in pure strategies. For each one, determine whether it is a strict

or non-strict NE.

(d) If there are multiple NE, is there a reasonable basis for selecting one of the them as

the most likely to occur? Explain.

(D8) Consider an n−player Stag Hunt game, where each player can choose C (cooperate;

pursue the stag) or D (defect; catch a rabbit instead), and n ≥ 3. The stag is only caught if

at least m hunters, where 2 ≤ m < n, pursue it; if fewer pursue it, the pursuers don’t catch

anything and go hungry. A captured stag is only shared by the hunters who catch it. Find

all of the pure-strategy NE of the game in the following two scenarios:

(a) Each hunter prefers the fraction 1
n
of the stag to a rabbit.

(b) Each hunter prefers the fraction 1
k
of the stag to a rabbit, but prefers a rabbit to any

smaller fraction of the stag, where k is an integer with m ≤ k ≤ n.

(D9) Find the pure-strategy NE of the following game: N = {1, 2}, S1 = S2 = [0,∞),
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v1(s1, s2) = s1(s2 − s1), and v2(s1, s2) = s2(1− s1 − s2).

(D10) Two people are engaged in a joint project. If person i (for i = 1, 2) puts in the

effort si ∈ [0, 1], which costs her c(si), the outcome of the project is worth f(s1, s2). The

worth of the project is split equally between the two people, regardless of their effort levels.

In each of the following scenarios, (i) formulate this as a normal-form game; (ii) find all of

the pure-strategy NE; (iii) is there a pair of effort levels that yields higher payoffs for both

players than do the NE effort levels?

(a) f(s1, s2) = 3s1s2 and c(si) = s2i for i = 1, 2.

(b) f(s1, s2) = 4s1s2 and c(si) = si for i = 1, 2.
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3.12 Homework Assignment #3, Due to TA Thiago Silva onWednes-
day October 19

(1) Tadelis 5.5 (note that this is the same game as an earlier HW problem, Tadelis 3.7).

Also:

(c) For each NE, state whether it is a strict or non-strict NE.

(d) Does any player have a strictly dominated or weakly dominated action? If so, what?

(e) Which, if any, strategy profiles are Pareto optimal?

(2) (a) Find the pure-strategy NE for the game in Tadelis 4.3 (which was a previous HW

problem). For each NE, state whether it is a strict or non-strict NE.

(b) Discuss how your answer to part (a), and your answer to Tadelis 4.3, illustrates

Propositions 21 and 22 in the notes.

(c) Which, if any, strategy profiles are Pareto optimal?

(3) (a) Find the pure-strategy NE for the game in Tadelis 4.5 (which was a previous HW

problem). For each NE, state whether it is a strict or non-strict NE.

(b) Discuss how your answer to part (a), and your answer to Tadelis 4.5, illustrates

Propositions 21 and 22 in the notes.

(c) Which, if any, strategy profiles are Pareto optimal?

(4) Optional exercise (D6) above—this is no longer optional.

(5) Optional exercise (D9) above—this is no longer optional.
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3.13 Mixed Strategies and Mixed Strategy Nash Equilibrium (MSNE)

Now we want to allow players to probabilistically choose among their actions.

(Tadelis, p.102)10

Definition 52 (Mixed strategies with a finite set of actions) Suppose player i has a finite set

of actions Si = {si1, si2, . . . , sim}. The set ∆Si = {σi : Si → [0, 1] |
∑

si∈Si
σi(si) = 1} is the

set of probability distributions over Si, and is called player i’s set of mixed strategies. Any

σi ∈ ∆Si is a mixed strategy of player i. We can write σi = (σi(si1), σi(si2), . . . , σi(sim)),

where σi(si) is the probability that player i chooses action si ∈ Si.

Even with just 2 actions, an infinite set of mixed strategies.

Now distinction between actions and strategies becomes important.

Now we have in mind that the utility function vi : S → R over action profiles is a

Bernoulli utility function whose expected value captures the actor’s preferences over lotteries

over action profiles (since probabilities are now involved).

Definition 53 A mixed strategy σi is called a pure strategy if it assigns probability 1 to

some action si ∈ Si, and probability 0 to all other elements of Si. This pure strategy is

usually just denoted si.

Therefore, pure strategies are special cases of mixed strategies.

(Tadelis, p.104)

Definition 54 Let σi ∈ ∆Si be a mixed strategy of player i. We say that action si ∈ Si is

in the support of σi if σi assigns positive probability to si, i.e., if σi(si) > 0.

10In the following definition, it may be useful to refer to Definition 24 above.
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Obviously, if only a single action is in the support of σi, then σi is a pure strategy.

Definition 55 Let ×i∈N∆Si be the Cartesian product of each player’s set of mixed strategies.

Then any σ ∈ ×i∈N∆Si is a profile of mixed strategies. If N = {1, 2, . . . , n}, then we

typically denote a profile of mixed strategies by σ = (σ1, σ2, . . . , σn), where σi is the mixed

strategy of player i.

We use notation that is analogous to the notation introduced on p.21 for pure strategies

(actions). Note that ×j∈N\{i}∆Sj is the set of mixed strategy profiles of all players other

than i (with pure strategies, we denoted this by S−i).
11 If σ−i ∈ ×j∈N\{i}∆Sj and si ∈ Si,

then (si, σ−i) or (σ−i, si) is the mixed strategy profile in which player i chooses action si and

the players in −i choose their mixed strategies in σ−i.

If σ−i ∈ ×j∈N\{i}∆Sj and σi ∈ ∆Si, then (σi, σ−i) or (σ−i, σi) is the mixed strategy

profile in which player i chooses mixed strategy σi and the players in −i choose their mixed

strategies in σ−i.

Finally, if σ is a mixed strategy profile, then σi is the mixed strategy that player i chooses

in the profile σ, and σ−i is the mixed strategy profile of the players other than i in the profile

σ.

Now we can talk about a player’s expected payoff for a profile of mixed strategies.

(Tadelis, p.105; note that Tadelis confusingly uses vi for both the utility function as well

as the expected utility function, and we will instead use EUi for the latter.)

11Note that Tadelis sometimes uses the notation ∆S−i for ×j∈N\{i}∆Sj , e.g., in his Definition 6.5 on
p.105. But this is confusing, since S−i is the set of action profiles of the other players, and hence ∆S−i is
the set of probability distributions over the action profiles of the other players, which is not the same as the
set of mixed strategy profiles of the other players. Any specific mixed strategy profile of the other players
implies a specific probability distribution over the action profiles of the other players, but these are different
objects. So we will use the more tedious ×j∈N\{i}∆Sj rather than the more succinct but misleading ∆S−i.
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Definition 56 Let vi : S → R be player i’s Bernoulli payoff function over action profiles

s ∈ S. Then the expected payoff of player i when he chooses the pure strategy si ∈ Si and

the other players choose the mixed strategy profile σ−i ∈ ×j∈N\{i}∆Sj is

EUi(si, σ−i) =
∑

s−i∈S−i
σ−i(s−i)vi(si, s−i), where σ−i(s−i) is the probability of s−i occur-

ring given σ−i.

Similarly, player i’s expected payoff when he chooses σi ∈ ∆Si and the others choose

σ−i ∈ ×j∈N\{i}∆Sj is

EUi(σi, σ−i) =
∑

si∈Si
σi(si)EUi(si, σ−i).

This looks complicated, but is just the regular notion of expected utility: given a mixed

strategy profile σ, player i’s expected payoff is calculated by multiplying the probability of

each action profile with the payoff for that action profile, doing this for each action profile,

and then adding them all up.

We are now in a position to define a mixed strategy Nash equilibrium.

(Tadelis, p.107)

Definition 57 (Nash equilibrium in mixed strategies) A profile of mixed strategies σ∗ ∈

×i∈N∆Si is a mixed strategy Nash equilibrium (MSNE) if, for each player i ∈ N ,

EUi(σ
∗
i , σ

∗
−i) ≥ EUi(σ

′
i, σ

∗
−i) for all σ

′
i ∈ ∆Si, where EUi(σ) is the expected value of vi under

σ.

Definition 58 (Best response correspondence in mixed strategies) For player i ∈ N , the

best response correspondence BRi : ×j∈N\{i}∆Sj →→ ∆Si is defined as BRi(σ−i) =

{σi ∈ ∆Si | EUi(σi, σ−i) ≥ EUi(σ
′
i, σ−i) ∀σ′

i ∈ ∆Si} for any σ−i ∈ ×j∈N\{i}∆Sj. Any

σi ∈ BRi(σ−i) is a best response of player i to σ−i.
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Proposition 25 A mixed strategy profile σ is a MSNE if and only if, for each i ∈ N ,

σi ∈ BRi(σ−i).

Plot the best response correspondences to find all of the MSNE of 2 by 2 games.

(Osborne p.116; this subsumes Tadelis’s Proposition 6.1 on p.108 and also includes more)

Proposition 26 Suppose Si is finite for each i ∈ N . Then a mixed strategy profile σ is a

MSNE if and only if, for each i ∈ N , the following 2 conditions hold: (1) the expected payoff,

given σ−i, to every action to which σi assigns positive probability is the same, and (2) the

expected payoff, given σ−i, to every action to which σi assigns probability 0 is at most the

expected payoff to any action to which σi assigns positive probability. (Also, each player’s

expected payoff in a MSNE σ is her expected payoff, given σ−i, to any of her actions that σi

assigns positive probability to.)

This result gives a method for finding all of the MSNE of games in which each player

has a finite number of actions.

Note that this result implies that a MSNE in which at least one player is genuinely mixing

(i.e., at least 2 actions lie in the support of her mixed strategy) is never a strict NE; she

has an infinity of alternative best responses to what the others are doing. In particular,

any probability distribution over the actions in the support of her mixed strategy is a best

response to what the others are doing.

(Osborne p.122)

Proposition 27 Suppose that the action profile s ∈ S is a NE of a normal-form game when

mixing is not allowed. Then the mixed strategy profile in which each player i ∈ N chooses si

with probability 1 is a MSNE of the same normal-form game when mixing is allowed.
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This result tells us that finding pure-strategy NE is not a useless exercise now that we

recognize that players may mix; these are still NE even when mixing is allowed. The change

is simply that there may be additional NE that we previously didn’t recognize.

(Tadelis, p.117)

Proposition 28 Every normal-form game in which each player has a finite number of ac-

tions has at least one Nash equilibrium (in pure or mixed strategies).

This result, known as an existence result, doesn’t provide any guidance as to how to find

the NE of a normal form game in which each player has a finite number of actions, but does

tell us that at least 1 NE exists.

3.13.1 Optional Exercise

(E1) Recall optional exercise (D6) on p.41. (Each citizen votes for her preferred candidate

or abstains, and voting is costly.) Suppose that k ≤ m. Show that there is a value of p

between 0 and 1 such that there is a MSNE in which every supporter of candidate A votes

with probability p, k supporters of candidate B vote with certainty, and the remaining m−k

supporters of candidate B abstain. How do the probability p that a supporter of candidate

A votes and the expected number of voters (“turnout”) depend upon c? (HINT: if every

supporter of candidate A votes with probability p, then the probability that exactly k − 1

of them vote is kpk−1(1− p).)

49



3.14 Homework Assignment #4, Due to TA Thiago Silva onWednes-
day October 26

(1) Optional exercise (D9) above—this is no longer optional.

(2) Tadelis 6.5

(3) Tadelis 6.7

(4) Tadelis 6.9
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3.15 UPDATED Homework Assignment #4, Due to TA Thiago
Silva on Wednesday October 26

[Note: If you already started the previous version of HW#4, your work isn’t wasted as those

problems will be included on HW#5.]

(1) Optional exercise (D9) above.

(2) Optional exercise (D8).

(3) Optional exercise (D10), just part (b). Note that in answering part (iii), it may help to

find the (s1, s2) that maximizes the sum of their payoff functions, just like we did in class

with the Tragedy of the Commons Game.
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3.16 Additional Topics Regarding Mixing and MSNE

3.16.1 A Generalized Notion of Beliefs

Recall that when we wanted to define what it means for an actor to be rational in a game-

theoretic setting, we said that the actor is rational if he chooses a best response to his belief

about what the other actors are going to do. We defined a belief to be one specific strategy

profile of the other players, i.e., one specific s−i ∈ S−i.

Now that we have expanded our thinking to allow the players to mix, it seems natural

that we should define a belief of a player in a more general way, namely a belief should

be a probability distribution over the strategy profiles of the other players. This is because

a player’s belief need not assign probability 1 to one specific strategy profile of the other

players; the player may be uncertain about how the others are going to choose, but can

at least assign probabilities to the different possibilities. This uncertainty may be due to

the player believing that the others are going to choose mixed strategies, or it may just be

uncertainty in general.

(Tadelis, p.105; Osborne, p.379)

Definition 59 A belief for player i is given by a probability distribution πi ∈ ∆S−i over

the strategy profiles of the other players. For any s−i ∈ S−i, πi(s−i) is the probability player

i assigns to strategy profile s−i occurring.

Note something interesting here. Any specific σ−i ∈ ×j∈N\{i}∆Sj leads to a specific

πi ∈ ∆S−i, i.e., any specific mixed strategy profile of the other players leads to a specific

probability distribution over the strategy profiles of the other players. However, the opposite

is not true for games with 3 or more players, i.e., for such games there exist πi ∈ ∆S−i that

cannot be generated by any σ−i ∈ ×j∈N\{i}∆Sj.
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For example, suppose N = {1, 2, 3} and Si = {C,NC} ∀i ∈ N (think of C as “con-

tribute”, and NC as “not contribute”). Consider π1 where π1(C,C) = 1
2
and π1(NC,NC) =

1
2
. That is, player 1 believes that the other players will both contribute with probability

1
2
, and will both not contribute with probability 1

2
. A moment’s reflection should convince

you that no possible mixed strategy profile of the other players can generate this probability

distribution over strategy profiles of the other players (try to come up with one; you can also

demonstrate this formally). But player 1 may believe that players 2 and 3 are correlating

their strategies; they toss a coin, and if “heads” comes up they both choose C, and if “tails”

comes up they both choose NC. Or, player 1 is simply uncertain about what the others are

going to do, and for whatever reason assigns probability 1
2
to (C,C) occurring and probabil-

ity 1
2
to (NC,NC) occurring. (Another solution concept, correlated equilibrium, allows

for correlated strategies, while still maintaining the “each player is choosing a best response

to what the others are doing” feature at the heart of noncooperative game theory.) Thus,

beliefs are more encompassing than mixed strategy profiles; every mixed strategy profile of

the other players generates a belief, but there exist (in games with 3 or more players) beliefs

that cannot be generated by any mixed strategy profile of the other players.

(Osborne, p.379)

Definition 60 Player i is rational if he chooses a best response (pure or mixed) to his

belief πi ∈ ∆S−i.

3.16.2 Strict and Weak Dominance

(Osborne, p.120; Tadelis, p.114)

Definition 61 (Strict dominance in mixed strategies) Player i’s action s′i ∈ Si is strictly
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dominated by its mixed strategy σi ∈ ∆Si if EUi(σi, s−i) > vi(s
′
i, s−i) for all s−i ∈ S−i. We

also say that σi strictly dominates s′i.

An action that is not strictly dominated by any pure strategy may be strictly dominated

by a mixed strategy, and hence this is a more general notion of strict dominance. (This

means that when we allow for mixing, we may be able to rule out actions from being possible

choices by a rational player that we were not able to rule out when restricting ourselves to

pure strategies. It also means that IESDS may get us further than when we were restricting

ourselves to pure strategies, as in Tadelis’s example on p.115.)

Think about why, in the above definition, we say for every s−i ∈ S−i rather than for

every σ−i ∈ ×j∈N\{i}∆Sj.

We can modify the definition to allow for the notion of a mixed strategy to be strictly

dominated:

Definition 62 (Strict dominance in mixed strategies) Player i’s mixed strategy σ′
i is strictly

dominated by its mixed strategy σi if EUi(σi, s−i) > EUi(σ
′
i, s−i) for all s−i ∈ S−i. We also

say that σi strictly dominates σ′
i.

(Osborne, p.121)

Proposition 29 A strictly dominated action is not used with positive probability in any

mixed strategy Nash equilibrium.

This means that when looking for MSNE, we can eliminate possibilities where a strictly

dominated action is being chosen with positive probability.

(Osborne, p.121)
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Definition 63 (Weak dominance in mixed strategies) Player i’s action s′i is weakly domi-

nated by its mixed strategy σi if EUi(σi, s−i) ≥ vi(s
′
i, s−i) for all s−i ∈ S−i, and EUi(σi, s−i) >

vi(s
′
i, s−i) for at least one specific s−i ∈ S−i. We also say that σi weakly dominates s′i.

Since weakly dominated actions (using our old definition, in pure strategies; but if an

action is weakly dominated by another action, it is weakly dominated by the mixed strategy

assigning probability 1 to that action) can be part of a pure-strategy NE (which is a special

case of a MSNE), this means that weakly-dominated actions may be used with positive prob-

ability in a MSNE. Hence, when finding MSNE, we cannot summarily eliminate possibilities

where a weakly dominated action is being chosen with positive probability.

(Osborne, p.122)

Proposition 30 Every normal-form game in which each player has a finite number of ac-

tions has at least one Nash equilibrium (in pure or mixed strategies) in which no player’s

strategy is weakly dominated.

3.16.3 Rationalizability, IESDS, and IEWDS Revisited

(Osborne, p.385; Tadelis, p.114)

Definition 64 Player i’s action s′i ∈ Si is a never-best response if for every belief πi ∈

∆S−i of player i, there exists a mixed strategy σi of player i that provides player i with a

strictly higher expected utility (under πi) than s′i. That is,
∑

s−i∈S−i
πi(s−i)EUi(σi, s−i) >∑

s−i∈S−i
πi(s−i)vi(s

′
i, s−i).

This is a richer definition than under pure strategies, both because we are using a richer

notion of beliefs, and are allowing the better response to be a mixed strategy. Note that the
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σi in the definition can be different for each belief πi. If there is a specific σi that satisfies

the condition for every belief πi, then obviously σi strictly dominates s′i.

Recall that when we restrict ourselves to pure strategies, then a strictly dominated action

is a never-best response, but a never-best response need not be strictly dominated. When

we allow for mixing, the two notions are completely equivalent.

(Osborne, p.385; Tadelis, p.116)

Proposition 31 If each player has a finite number of actions, then an action is a never-best

response if and only if it is strictly dominated.

Mixed strategies allow us to give a precise definition of rationalizability.

(Osborne, p.383)

Definition 65 Player i’s action s∗i ∈ Si is rationalizable if for each player j ∈ N there

exists a subset Zj ⊆ Sj such that

(i) Zi contains s
∗
i , and

(ii) for each player j ∈ N , every action aj ∈ Zj is a best response to a belief πj ∈ ∆Z−j

of player j (i.e., a belief that assigns positive probability only to action profiles in Z−j).

This is a formidable definition, but the intuition was provided when we discussed ratio-

nalizability in the context of pure strategies. In 2-player games, player 1’s strategy s1 ∈ S1

is rationalizable if it is a best response to some s2 ∈ S2, which is a best response to some

s′1 ∈ S1 (it is possible that s′1 = s1), which is a best response to some s′2 ∈ S2 (it is possible

that s′2 = s2), and so on ad infinitum. All of these elements lie in the Zj sets mentioned in

the definition, and no other elements do.

(Osborne, p.383)
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Proposition 32 Every action used with positive probability in some MSNE is rationalizable.

We have been specifying the process of IESDS to mean that, at any given stage of the

process, we eliminate all of the strictly dominated actions in the game that remains at that

stage. But sometimes the process is instead specified as eliminating just 1 strictly dominated

action at each stage (if there are any at that stage), and we can even imagine for some reason

eliminating 2 but not all of them (if more) at that stage. Or 3. And so on. This raises the

question of whether the actions that remain at the end of the process depend on these

differences in how the process is conducted. The following result reassuringly says no. It

also tells us that, because never-best responses and strictly dominated actions are equivalent,

we can find the set of rationalizable actions by the relatively simple process of IESDS.

(Osborne, p.386)

Proposition 33 If each player has a finite number of actions, then a unique set of action

profiles survives IESDS, and this set is equal to the set of profiles of rationalizable actions.

With IEWDS, the set of action profiles that survives the process can depend on the order

in which the process is conducted (e.g., see the game on p.389 of Osborne), which is another

reason why it is less compelling than IESDS.

Also note the following. With pure strategies, we said that we can’t rule out a rational

player choosing a weakly dominated action (that is not also strictly dominated), because it

may be a best response to some strategy profile of the other players (but never the unique

best response), i.e., to some belief. With mixing, we can conclude from Proposition 31 that

a weakly dominated action that is not also strictly dominated is a best response to some

belief; if it was a never-best response, it would be strictly dominated. This further supports
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the notion that we cannot rule out a rational player choosing a weakly dominated action,

although again it is not clear why he would do so.

Osborne p.389-391 discusses additional things along these lines, as well as the notion of

dominance solvability. (A game is dominance solvable if, when conducting IEWDS by

eliminating all of the weakly dominated actions at each stage of the process, each player is

indifferent among all action profiles that survive the process. Which means that the process

“effectively” produces a unique action profile.)

3.16.4 Mixed Strategies With An Interval Set of Actions

(Tadelis, p.104)

Definition 66 (Mixed strategies with an interval set of actions) Suppose player i has an

interval set of actions Si = [si, si] with si < si. The set ∆Si = {Fi : Si → [0, 1] | Fi is

a cumulative distribution function}12 is the set of probability distributions over Si, and is

called player i’s set of mixed strategies. Any Fi ∈ ∆Si is a mixed strategy of player i,

where Fi(x) = Pr(si ≤ x). If Fi is differentiable, then fi = F ′
i is the density function, and

we say that si ∈ Si is in the support of Fi if fi(si) > 0.

For example, in the Tragedy of the Commons Game on p.84 of Tadelis that we went over

in class, a player could adopt a mixed strategy given by, say, a uniform distribution over

[0, K
2
].

(Tadelis, p.106)

Definition 67 (Expected payoff with interval action sets) Suppose N = {1, 2}, Si = [si, si]

∀i ∈ N , and let vi : S → R be player i’s Bernoulli payoff function over action profiles s ∈ S.

12Fi is a cumulative distribution function if (i) Fi(si) = 0, (ii) Fi(si) = 1, and (iii) Fi is a weakly increasing
function.
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Then the expected payoff of player i when he chooses the action si ∈ Si and player j

chooses a mixed strategy given by the density functions fj is

EUi(si, fj) =
∫ sj
sj

vi(si, sj)fj(sj)dsj

The following is the interval action set equivalent of Proposition 26.

(Osborne, p.142)

Proposition 34 A mixed strategy profile σ∗ is a MSNE if and only if, for each player i ∈ N ,

(i) σ∗
i assigns probability 0 to the set of actions si for which the strategy profile (si, σ

∗
−i) yields

player i an expected payoff less than her expected payoff to σ∗, and (ii) for no action si does

the strategy profile (si, σ
∗
−i) yield player i an expected payoff greater than her expected payoff

to σ∗.

3.16.5 Optional Exercises

(F1) Are the following statements true? If so, prove it. If not, provide a counter-example.

(a) A mixed strategy that assigns positive probability to a strictly dominated action is

strictly dominated.

(b) A mixed strategy that assigns positive probability only to actions that are not strictly

dominated is not strictly dominated.
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3.17 Homework Assignment #5, Due to TA Thiago Silva onWednes-
day November 2

[NOTE: Henceforth, when a problem says to find all of the NE, that means in pure as well

as mixed strategies. When a problem says to find the MSNE, that also includes the pure-

strategy NE, as these are special cases of MSNE. Hence, unless it specifically says to find

just the pure-strategy NE, assume that it means you are to find all of the NE.]

(1) Tadelis 6.5

(2) Tadelis 6.7

(3) Tadelis 6.9

(4) Consider a 2-player public goods game in which each player can choose C (“contribute”)

or NC (“not contribute”). The public good is only produced if both choose C, and has a

value of 1 for both sides. The cost of contributing for each player is 0 < c < 1.

(a) Draw the payoff matrix. Be sure to use C as action 1 for both players, and NC as

action 2.

(b) Find all of the NE in pure and mixed strategies.

(c) How do the equilibria change as c increases?
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4 Dynamic Games of Complete Information

4.1 Perfect Information

Common terminology: dynamic games, sequential-move games, extensive-form games, ex-

tensive games

Game trees, decision nodes

(Osborne’s and Osborne/Rubinstein’s terms: terminal histories, non-terminal histories

(essentially, decision nodes), empty history)

(Tadelis’s and Fudenberg/Tirole’s terms: nodes, terminal nodes, non-terminal nodes

(essentially, decision nodes), precedence relation over the set of nodes, root (same as empty

history))

Backwards induction as an intuitive way of predicting the players’ choices (common

knowledge of rationality implies BI)

Backwards induction leads to subgame-perfect (Nash) equilibrium (SPE)

A (pure-strategy) SPE is a profile s∗ of pure strategies, can also talk about the SPE

outcome and SPE payoffs

Player i has a set of pure strategies Si, each si ∈ Si specifies an action for each decision

node at which player i moves, can be thought of as a “complete plan of action” for the

game (note that in extensive-form games, the distinction between actions and strategies is

significant even without allowing for mixing, unlike in normal-form games where actions and

pure strategies are equivalent)

BI when there are some indifferences in the payoffs

A finite horizon game is one in which the length of the longest terminal history is finite
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(i.e., the game can’t go on forever)

A finite game is one that is finite horizon and has finitely many terminal histories (i.e.,

each player has a finite number of actions at each decision node)

BI can be applied to every finite game, and hence every finite game has at least 1 SPE

NE in extensive-form games: the same definition as for normal-form games (a strat-

egy profile with the property that no player can increase its payoff by adopting a different

strategy, given the strategies of the other players)

A convenient method for finding the NE of extensive-form games: constructing the

strategic form or normal form of the extensive-form

Problem with NE in dynamic games: each player is choosing a best response to what

the others are doing, but may not be choosing optimally at decision nodes that are off the

equilibrium path (i.e., not reached when the players follow their equilibrium strategies)

So NE behavior can be sustained by “threats” that are not credible under common

knowledge of rationality, i.e. “non-credible threats”

BI rules out the possibility of such non-credible threats, so SPE never rely on non-credible

threats, but NE may

You’ll notice that every SPE is also a NE, but there may exist NE that are not SPE

So SPE is a “refinement” of NE

To formally define SPE (“a strategy profile that results from backwards induction” is not

a formal definition), we need the concept of a subgame of a dynamic game

Let Γ be an extensive-form game. A strategy profile s∗ is a SPE if for every subgame G

of Γ, the restriction of s∗ to G is a NE of G.

From this definition it clearly follows that an SPE is also a NE.
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This is the formal definition of an SPE, and it is something to be proven that a strategy

profile that results from BI is an SPE (intuitively it is fairly clear)

We want to allow the possibility of mixing, and there are two ways of thinking about this

in extensive-form games

A mixed strategy for player i is a probability distribution over player i’s set of pure

strategies Si

A behavioral strategy for player i specifies, for each of player i’s decision nodes, an

independent probability distribution over player i’s set of actions at that decision node

Behavioral strategies better capture our intuitive notion of mixing in extensive-form

games (mixed strategies in extensive-form games, as defined above, are kind of weird when

you think about them), and it turns out that in games of perfect recall, which includes

every game we will ever consider, they are essentially equivalent anyway, so we’ll work with

behavioral strategies

BI also allows us to determine SPE in mixed strategies (the usual principles with mixing

apply, namely at a decision node, a player can only rationally be mixing between two or

more actions if (i) it is indifferent among them, and (ii) can’t strictly prefer over them an

action that it is choosing with probability 0)

SPE of tic-tac-toe, chess, removing rocks game

Games with first-mover advantage (BoS or Chicken), second-mover advantage (MP), no

advantage either way (PD), both players prefer a certain player to move first (1 PD, 2 SH),

sequential play in SH guarantees they both go after Stag

Games involving sequential and simultaneous moves (Osborne, p.208), SPE and NE, BI

Extensive-form games with chance moves (exogenous uncertainty), Osborne p.226, SPE
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and NE, BI

Extensive-form games with continuum action sets, simple bargaining games
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4.2 Homework Assignment #6, Due to TA Thiago Silva onWednes-
day November 9

(1) Two people select a policy that affects them both by alternately vetoing policies until

only one remains. First person 1 vetoes a policy. If more than one policy remains, person

2 then vetoes a policy. If more than one policy still remains, person 1 then vetoes another

policy. The process continues until a single policy remains un-vetoed. Suppose there are 3

possible policies, X, Y , and Z, person 1 prefers X to Y to Z, and person 2 prefers Z to Y

to X. Use the payoffs 2, 1, and 0 for each player.

(a) Draw the game-tree, and find all of the SPE in pure strategies.

(b) Draw the strategic form, and use it to find all of the NE in pure strategies.

(c) Are there any NE that are not SPE? For each one, indicate why it is not an SPE.

(2) The political figures Rosa and Ernesto have to choose either Berlin (B) or Havana (H) as

the location for a party congress. They choose sequentially. A third person, Karl, determines

who chooses first. Both Rosa and Ernesto care only about the actions they choose, not about

who chooses first. Rosa prefers the outcome in which both she and Ernesto choose B to that

in which they both choose H, and prefers this outcome to either of the ones in which she

and Ernesto choose different actions; she is indifferent between these last two outcomes.

Ernesto’s preferences differ from Rosa’s in that the roles of B and H are reversed. Karl’s

preferences are the same as Ernesto’s. Use the payoffs 2, 1, and 0 for each player.

(a) Draw the game-tree, and find all of the SPE in pure strategies.

(b) Draw the strategic form, and use it to find all of the NE in pure strategies.

(c) Are there any NE that are not SPE? For each one, indicate why it is not an SPE.
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4.3 Allowing for Imperfect Information, and Formal Definitions
and Results Regarding Extensive-Form Games

(Tadelis, p.133; Fudenberg and Tirole, p.78)

Definition 68 A game tree is a finite set of nodes X, with a precedence relation on X

denoted by >: for any x, x′ ∈ X, x > x′ means that “x precedes x′.” The precedence relation

is transitive (x > x′, x′ > x′′ ⇒ x > x′′), asymmetric (x > x′ ⇒ not x′ > x), and

incomplete (not every pair of nodes x, x′ can be ordered). There is a special node called the

root of the tree, denoted by x0, that precedes every other node. Every node x (other than x0)

has exactly one immediate predecessor (i.e., one node x′ > x such that x′′ > x, x′′ ̸= x′ ⇒

x′′ > x′). Nodes that do not precede other nodes are called terminal nodes, denoted by the

set Z ⊂ X. Terminal nodes denote the final outcomes of the game with which payoffs are

associated. Every node x that is not a terminal node is assigned either to Nature, or to a

player using the player function i : X \ Z → N . At non-terminal node x, player i(x) has

the action set Ai(x)(x).

The game-tree captures the physical aspects of a sequential interaction, but not what the

players know when they move.

(Tadelis, p.135)

Definition 69 Every player i has a set of information sets Hi. Each hi ∈ Hi is an

information set of player i. Hi partitions the nodes of the game at which player i moves with

the following properties:

(1) If hi is a singleton that includes only x, then player i who moves at x knows that he

is at x.
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(2) If x ̸= x′ and if both x ∈ hi and x′ ∈ hi, then player i who moves at x (and x′) does

not know whether he is at x or x′.

(3) If x ̸= x′ and if both x ∈ hi and x′ ∈ hi, then Ai(x) = Ai(x
′). Therefore, sometimes

we refer to the action set as Ai(hi).

(Tadelis, p.136)

Definition 70 A game of complete information in which every information set is a singleton

and there are no moves by Nature is called a game of perfect information. A game in

which some information sets contain several nodes or in which there are moves by Nature is

called a game of imperfect information.

(Tadelis, p.139)

Definition 71 A pure strategy for player i is a function si : Hi → Ai that assigns an

action si(hi) ∈ Ai(hi) for every information set hi ∈ Hi. We denoted by Si the set of all

pure strategies for player i. (Note that Ai =
∪

hi∈Hi
Ai(hi) is the set of all actions for player

i, i.e., the set of all actions at all of that player’s information sets.)

Proposition 35 The number of pure strategies for player i is given by |Si| =
∏

hi∈Hi
|Ai(hi)|.

Definition 72 A mixed strategy for player i is a probability distribution over his set of

pure strategies Si.

(Tadelis, p.140)

Definition 73 A behavioral strategy for player i specifies for each information set hi ∈

Hi an independent probability distribution over Ai(hi). Formally, it is a function σi : Hi →

∆Ai(hi),
13 where σi(ai(hi)) is the probability that player i chooses action ai(hi) ∈ Ai(hi) at

13Technically, this should actually be σi : Hi →
∪

hi∈Hi
∆Ai(hi).
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information set hi.

(Tadelis, p.142)

Definition 74 A game of perfect recall is one in which no player ever forgets information

that he previously knew.

(Tadelis, p.146)

Definition 75 Let σ∗ = {σ∗
1, . . . , σ

∗
n} be a Nash equilibrium profile of behavioral strategies

in an extensive-form game. We say that an information set is on the equilibrium path

if given σ∗ it is reached with positive probability. We say that an information set is off the

equilibrium path if given σ∗ it is never reached.

(Tadelis, p.152)

Definition 76 Given a profile of behavioral strategies σ−i of the other players, we say that

player i’s behavioral strategy σi is sequentially rational if it has player i choosing a best

response to σ−i at each of his information sets.

(Tadelis, p.153)

Proposition 36 Any finite game of perfect information has a backwards induction solution

that is sequentially rational for each player. If no two terminal nodes prescribe the same

payoffs to any player then the backward induction solution is unique.

Proposition 37 Any finite game of perfect information has at least one sequentially rational

Nash equilibrium in pure strategies. If no two terminal nodes prescribe the same payoffs to

any player then the game has a unique sequentially rational Nash equilibrium.
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(Tadelis, p.154)

Definition 77 A subgame G of an extensive-form game Γ consists of a single node and all

its successors in Γ with the property that if x ∈ G and x′ ∈ h(x), then x′ ∈ G. The subgame

G is itself a game tree with its information sets and payoffs inherited from Γ. A subgame G

that does not contain the root x0 of Γ is called a proper subgame of Γ.

(Tadelis, p.157)

Definition 78 Let Γ be an extensive-form game. A behavioral strategy profile σ∗ = {σ∗
1, . . . , σ

∗
n}

is a subgame-perfect (Nash) equilibrium (SPE) if for every subgame G of Γ the re-

striction of σ∗ to G is a Nash equilibrium in G.

Although backwards induction, when applicable, leads to an SPE (this can formally be

stated as a proposition), SPE is more general because it can even be applied to games of

imperfect information, which BI cannot.

————————————————–

OSBORNE’S ALTERNATIVE DEFINITIONS

(Osborne, p.155)

Definition 79 An extensive-form game with perfect information consists of:

(1) a set of players

(2) a set of sequences (terminal histories) with the property that no sequence is a

proper subhistory of any other sequence (by sequence, we mean sequence of actions)

(3) a function (the player function) that assigns a player to every sequence that is a

proper subhistory of some terminal history
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(4) for each player, preferences over the set of terminal histories.

(Osborne, p.157)

Definition 80 If the length of the longest terminal history is finite, then we say that the

game has a finite horizon. If the game has a finite horizon and a finite number of terminal

histories, then we say that the game is finite.

(Osborne, p.159)

Definition 81 A strategy of player i in an extensive-form game with perfect information

is a function that assigns to each history h after which it is player i’s turn to move an action

in A(h) (the set of actions available after h).
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4.4 Homework Assignment #7, Due to TA Thiago Silva onWednes-
day November 16

(1) Consider the game-tree in Figure 7.14 on p.150 of Tadelis. Change the labels of the

players so that it is player 1 moving first (choosing between a and b), then player 2 moves,

and then player 1. (That is, just reverse all player labels; everything else remains the same.)

(a) Draw the normal form of this game, and find all of the NE in pure strategies.

(b) Find all of the SPE in pure strategies. (Hint: Tadelis p.158 provides an example.)

(2) There is a kid K who has to decide how large a cake to bake. The largest possible cake

is of size A, where A > 0. Let the size of the cake that K chooses to bake be x, where

0 ≤ x ≤ A. Suppose that the cost to K of baking a cake of size x is ax, where a > 0 is a

positive constant that is the marginal cost of baking more cake. K’s payoff for building a

cake of size x is the size of the cake minus the cost.

(a) How large a cake will K bake, i.e., what x will it choose? (Hint: There will be a

critical threshold for a that will be relevant for your answer.)

Now suppose that there is an additional actor, the parent P . There is an additional kid

K2, who is not an actor in this strategic interaction. Once K has chosen x, P chooses some y

where 0 ≤ y ≤ x, which is the share of the cake that goes to K2. K’s payoff is the remaining

share minus the cost of producing the cake. Because a parent is only as happy as its least

happy child, P ’s payoff is the smaller of the two shares that go to the kids, y and x − y.

That is, P ’s payoff is min {y, x − y}. (The parent does not worry about the cost to K of

baking the cake.)

(b) Draw the game-tree, and find the subgame-perfect equilibria (SPE). Be sure to clearly

indicate the size of the cake that will be baked in the SPE.
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5 Dynamic Games of Incomplete Information

Dynamic games of imperfect information are those in which there is at least one information

set that contains more than 1 decision node

That is, at least 1 player does not perfectly observe at least one move in the game

We can construct the strategic form (or normal form) and use it to find all of the NE

We can also find all of the SPE, either using backwards induction or the direct method

(find all of the NE, and then for each of these, determine whether its restriction to each

subgame is a NE in that subgame)

SPE is a very nice solution concept for sequential-move games of perfect information

Give an example of a sequential-move game of imperfect information in which SPE leads

to non-reasonable equilibria (Gibbons, p.176)

So we will develop a new solution concept, called perfect Bayesian equilbrium (PBE),

that is well-suited for sequential-move games of imperfect information, and that has 3 re-

quirements

(Gibbons, p.177)

Requirement 1 At each information set, the player who moves has a belief about which

node in the information set has been reached by the play of the game. For a non-singleton

(non-degenerate) information set, a belief is a probability distribution over the nodes in the

information set; for a singleton (degenerate) information set, the player’s belief puts proba-

bility 1 on the single decision node.

Requirement 2 Given their beliefs, the players’ strategies must be sequentially rational.

That is, at each information set the action taken by the player with the move (and the player’s
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subsequent strategy) must be optimal given the player’s belief at that information set and the

other players’ subsequent strategies (where a “subsequent strategy” is a complete plan of

action covering every contingency that might arise after the given information set has been

reached).

Definition 82 For a given equilibrium in a given extensive-form game, an information set

is on the equilibrium path if it will be reached with positive probability if the game is

played according to the equilibrium strategies, and is off the equilibrium path if it is

certain not to be reached if the game is played according to the equilibrium strategies (where

“equilibrium” can mean NE, SPE, BNE, or PBE).

Requirement 3 At information sets on the equilibrium path, beliefs are determined by

Bayes’ rule and the players’ equilibrium strategies.

Definition 83 A perfect Bayesian equilibrium (PBE) consists of strategies and beliefs

satisfying Requirements 1 through 3.

Methods for finding PBE.

My backwards induction-type method, that can be applied to any finite extensive-form

game. Label each information set, assign belief labels to each non-degenerate information

set, then start doing BI, at non-degenerate information sets this will involve expected utility

calculations using the belief labels

Give examples, along with how to apply Bayes’ rule.

For information sets that are on the equilibrium path, we refer to the beliefs as on-the-

equilibrium-path beliefs, and these are the ones to which Requirement 3 applies.
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For information sets that are off the equilibrium path, we refer to the beliefs as off-

the-equilibrium-path beliefs, and Requirement 3 does not apply to these beliefs. PBE

does not impose restrictions on what these beliefs must be. Refinements of PBE do impose

restrictions on these beliefs.

An alternative, less-preferred method is based on the following result:

(Osborne, p.329; Osborne calls PBE weak sequential equilibrium)

Proposition 38 The strategy profile in any PBE is a Nash equilibrium.

(It need not be an SPE; for an example, see the game in Gibbons, p.181.)

Thus, an alternative method is to find all of the NE, and then for each one determine what

the beliefs must be at information sets that are on the equilibrium path (by Requirement

3). Then determine whether sequential rationality is satisfied at each information set. This

is a tedious method (especially when moves by “nature” are involved) that is less preferred

than the BI-type method, which is very systematic.

Games of incomplete information: at least one player is uncertain about the other player’s

payoffs, and the game begins with nature or chance probabilistically choosing the latter

player’s (the informed player’s) type (each type is associated with one set of possible

payoffs for that player), a move that the former player (the uninformed player) does

not observe (but knows the probabilities), and hence a game of incomplete information is

analyzed as a game of imperfect information

Signaling game: a game of incomplete information transformed into a game of imperfect

information as above, and in which the informed player moves before the uninformed player

and the informed player’s actions are interpreted as messages, which may or may not affect

payoffs (costly messages versus costless messages)
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Sometimes the informed player is called the sender (of the message), and the uninformed

player is called the receiver, and sometimes these are called sender-receiver games

Pooling equilibria: all types of the informed actor choose the same message (hence, no

information is conveyed by the message)

Separating equilibria: all types of the informed actor choose different messages (hence,

full information is conveyed by the message)

Semi-separating equilibria: the types are not fully pooling, but are also not fully

separating, so that partial information is conveyed by the message (some updating occurs

upon a message being received; usually these equilibria are in mixed strategies)

With costly messages, the general result is that separating equilibria only exist if there

exists a message that is not too costly for the “strong” type to send, but is sufficiently costly

to the “weak” type as to deter it from mimicking the strong type

With costless messages (sometimes called cheap talk games), the general result is that

separating equilibria only exist if the sender and received have sufficiently aligned preferences

Some PBE have (and are sustained by) off-the-equilibrium-path beliefs that are not

reasonable, and hence additional requirements have been developed to refine the set of PBE.

Requirement 4 (PBE Refinement #1) At information sets off the equilibrium path, beliefs

are determined by Bayes’ rule and the players’ equilibrium strategies where possible.

See the game on Gibbons, p.181. In fact, Gibbons includes Requirement 4 in the definition

of PBE, but most authors don’t.

Requirement 5 (PBE Refinement #2) If possible, each player’s beliefs off the equilibrium

path should place zero probability on nodes that are reached only if another player plays a
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strategy that is strictly dominated beginning at some information set.

See the game on Gibbons, p.233.

Other, more complicated refinements exist as well, such as the blandly-named “intuitive

criterion” or the more exotic “universal divinity”, and that apply primarily to signaling

games. The two simple refinements above give a sense of what refinements involve: narrowing

down the set of off-the-equilibrium-path beliefs that are acceptable, by asking the question:

“if an off-the-equilibrium-path information set is reached, what is it reasonable to suppose

that the player there will believe about what decision node I may or may not be at?”
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5.1 Homework Assignment #8, Due to TA Thiago Silva onWednes-
day November 30

(1) For the following 2 extensive-form games, draw the normal form and find all of the

pure-strategy NE and pure-strategy SPE. Then find all of the pure-strategy PBE (using the

backwards-induction-type method).
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(2) Find all of the pure-strategy PBE of the following game (using the backwards-induction-

type method).
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5.2 Problems We Will Solve in Class on 12/2

(1) Consider the following extensive-form games of imperfect information. There are two

possible states of the world, L and R. Nature chooses the state of the world to be L with

probability 2
3
< p < 1, and R with probability 1− p.

Congress can pass bill l, which is optimal policy if the state of the world is L, or bill

r, which is optimal policy if the state of the world is R. Following Congress’s choice, the

President decides whether to Sign or Veto the bill. If he vetoes it, the status-quo remains in

place.

Payoffs are as follows. The President is a public servant of great moral rectitude, and

only cares about the optimality of the policy that is passed. Hence, he gets a payoff of 3 if

the policy passed matches the state of the world, a payoff of 1 if the status quo remains in

place, and a payoff of 0 if the policy passed is the opposite of the state of the world.

Congress is biased towards policy r, but also cares somewhat that appropriate policy be

passed. If the state of the world is R, then Congress gets a payoff of 3 if policy r is passed,

1 if the status quo remains in place, and 0 if policy l is passed. If the state of the world is

L, then Congress gets a payoff of 3 if the status quo remains in place, 1 if policy r is passed,

and 0 if policy l is passed.

(a) First suppose that neither actor observes the state of the world, but knows the above

probabilities. Draw the game-tree, and find all of the perfect Bayesian equilibria (PBE) in

pure strategies.

(b) Now suppose that the President observes (knows) the state of the world. Draw the

game-tree, and find all of the PBE in pure strategies.

(c) Now suppose that the President observes the state of the world and sends a costless
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message (L′ or R′) to Congress, and then Congress decides which bill to pass, followed by

the President deciding whether to Sign or Veto the bill. Draw the game-tree, and find all of

the PBE in pure strategies. For each PBE, state whether it is pooling or separating.

(d) Are the PBE outcomes different in parts (a), (b), and (c) in terms of the likelihood

of the status quo remaining in place? Explain. Does the President knowing the state of the

world help or hurt Congress?

(2) Consider the following static game of incomplete information. There are 2

players, who simultaneously choose whether to Cooperate (C) or Defect (D). Player 1 has

Stag Hunt (SH) preferences, and there are two “types” of player 2. One type has SH

preferences, and the other has Prisoner’s Dilemma (PD) preferences. Nature chooses player

2 to have SH preferences with probability 0 < p < 1, and PD preferences with probability

1−p. Player 2 knows its own type (i.e., observes nature’s move), whereas player 1 only knows

the probabilities with which nature chose. Draw this game, and find all of the Bayesian

Nash equilibria (BNE) in pure strategies.
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