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1 Readings

There is no required text for this section of math camp, which will mainly cover calculus.

Most of the definitions and theorems below come from Calculus with Analytic Geometry

(by Larson, Hostetler, and Edwards, 4th ed., Heath, 1993), which was my undergraduate

calculus text. (The pages numbers and theorem numbers are from that text and are for

my own reference, and shouldn’t mean anything to you.) If you would like to use a text,

any undergraduate calculus text would suffice, and I believe that a few are available for free

online. An advanced text that I recommend you acquire if you plan to pursue game theory

or statistical methods at an advanced level is Mathematics for Economists (by Simon and

Blume, Norton, 1994).

2 Some Uses of Math in Political Science

Statistics: Testing theories using large data sets, or just looking for patterns in data (POLS

602 and 603)

Theory Generation: For example, game theory, social choice theory (POLS 601 and 604)

3 Mathematical Notation

In concisely presenting mathematical definitions and results (theorems, propositions,

lemmas, etc.), the following is some standard notation.

The symbol ∀ means “for all” or “for every”.

The symbol ∃ means “there exists”.

The initials s.t. stand for “such that”.

The symbol ⇒ means “implies”. Thus, A ⇒ B should be read “A implies B”, or “If A,
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then B”, or “If A is true then B is true”. [Sometimes interpreted as A is sufficient for B.]

Similarly, A ⇐ B should be read “B implies A”. [B is sufficient for A.]

Finally, A ⇔ B means “A implies B and B implies A”. Sometimes this is instead read

as “A if and only if B”. The “if” part refers to A ⇐ B, and the “only if” part refers to

A ⇒ B.

The abbreviation “iff” stands for “if and only if”. Thus, “A iff B” should be read “A

if and only if B”, which could also be written as A ⇔ B. That is, “A iff B” and A ⇔ B

mean exactly the same thing. Journal copy-editors in political science will often assume that

“iff” is a typo and change it to “if” (in which case they’ve chopped off half of what you have

proven), so beware.

The abbreviation “WLOG” stands for “without loss of generality”. This term is some-

times used in proofs, when going through all of the cases is not necessary because the exact

same arguments used in a subset of the universe of cases also covers the remaining cases. This

term should be used with caution, as sometimes there is a loss of generality in restricting

yourself to a subset of cases, in which case you have not really proved the result.

The symbol ¬ means “not” or “not true”. Thus, ¬A should be read “not A” or “A is

not true”. Similarly, A ⇒ ¬B should be read “A implies not B” or “If A is true, then B is

not true”.

[Note the following simple but important logical result, called the contrapositive. If

A ⇒ B, then ¬B ⇒ ¬A (and vice-versa). That is, if A implies B, then if B is not true,

then A is not true (since if A was true, then B would also be true). If B are empirical

implications that necessarily follow from a theory A, then this is the basis of seeing whether

the evidence falsifies the theory. The philosopher of science Karl Popper famously argued
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that good theories are those which haven’t yet been falsified by the evidence, i.e., it is not

the case that ¬B. In empirically evaluating theory A, we try to show that ¬B, and if we

can’t, the theory survives. Supportive evidence can’t “prove” a theory to be true, because

for a number of reasons it is almost never the case that B ⇒ A. For instance, there may be

another theory A′ for which it is also the case that A′ ⇒ B.]

The symbol
∑

stands for addition. Let s1, s2, . . . , sn be a sequence of numbers. Then∑n
i=1 si = s1 + s2 + . . . + sn. The index variable i begins at 1 and then continues all the

way to n, in increments of 1. If the sequence is infinitely long, then we use the notation∑∞
i=1 si for the sum s1 + s2 + . . . Whenever you see a mathematical statement ending in . . .,

that means continue the preceding pattern forever.

The symbol
∏

is the analogous symbol for multiplication. That is,
∏n

i=1 si = s1 × s2 ×

. . .× sn. If the sequence is infinite, then
∏∞

i=1 si = s1 × s2 × . . .

4 Set Theory

Many mathematical concepts are defined using set theory, so it is foundational.

Definition 1 A set is a collection of distinct objects (of any kind).

The members of a set are called elements of the set.

Common notation involved in expressing sets: capital letters and curly braces. For

example, define the set A = { red, blue, yellow }.

The objects must be distinct: D = { red, red, blue, yellow } is not a set.

The symbol ∈ means “an element of”. For instance, for the set we have just defined, it

is the case that [ red ∈ A ], but [ pink /∈ A ].
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We can define a new set B as B = {x ∈ A | x ̸= red}, read as “B is the set consisting

of all elements x of A such that x is not red” (we use lower-case letters to denote a generic

element of a set, usually the letter x). In other words, B = { blue, yellow }. This is a very

convenient way of defining a new set, and we will use it repeatedly in POLS 601 and 604, so

get very familiar with it. (Sometimes, it is instead B = {x ∈ A : x ̸= red}.)

A subset of a set. Let A and B be sets. We say that B is a subset of A, denoted B ⊆ A,

if ∀x ∈ B, x ∈ A (alternatively, x ∈ B ⇒ x ∈ A).

We say that B is a proper subset of A, denoted B ⊂ A, if, in addition to the above

condition, it is also the case that ∃y ∈ A s.t. y /∈ B.

Given A and B as defined above, it is true both that B ⊆ A and B ⊂ A. On the other

hand, if C = { red, brown }, then C * A.

The union of two or more sets. Let A and B be sets. A ∪B = {x | x ∈ A or x ∈ B}.

The way we have defined A, B, and C above, A∪B = A and A∪C = { red, blue, yellow,

brown }.

The intersection of two or more sets. Let A and B be sets. A ∩ B = {x | x ∈ A and

x ∈ B}.

The way we have defined A, B, and C above, A ∩B = B and A ∩ C = { red }.

The null set: ∅ = {}. Also called the empty set. Note that for the above sets,

B ∩ C = ∅.

Set subtraction: the symbol is \. Let A and B be sets. A \B = {x ∈ A | x /∈ B}.

The way we have defined A, B, and C above, A \B = { red } and A \C = { blue, yellow

}.

The cardinality of a set: number of elements. A set can be finite (e.g., A, B, and
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C above) or infinite: either uncountably infinite (e.g., the set of all real numbers) or

countably infinite (e.g., the set of positive integers).

5 Some Important Pre-Calculus Topics

Real numbers: all numbers other than the complex numbers (also called imaginary

numbers, involving i =
√
−1), so all numbers that we actually deal with and are familiar

with

The set of real numbers is denoted by R, i.e., R = {x | x is a real number}. This is

graphically represented by the real line

We denote the set of non-negative real numbers as R+ = {x ∈ R | x ≥ 0}, and the set

of positive real numbers as R++ = {x ∈ R | x > 0} (sometimes we use the term strictly

positive to emphasize that we are not including 0). If we want to be fancy, note that we

can alternatively define R++ = R+ \ {0}

We define non-positive and negative analogously

The set of integers (also called whole numbers) is denoted Z = {. . . ,−2,−1, 0, 1, 2, . . .}

The set of rational numbers is defined and denoted as Q = {x
y
∈ R | x, y ∈ Z, y ̸= 0},

i.e., the set of real numbers that can be expressed as the ratio of two integers

We can talk about Z+, Z−−, Q−, Q++, etc.

Infinity (∞) and negative infinity (−∞): are concepts, not numbers

For any a, b ∈ R such that a < b, we define the closed interval [a, b] = {x ∈ R | a ≤

x ≤ b} and the open interval (a, b) = {x ∈ R | a < x < b}

We can also talk about half-closed (alternatively, half-open) intervals: [a, b) = {x ∈

R | a ≤ x < b} and (a, b] = {x ∈ R | a < x ≤ b}
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The following is a way of thinking about the real numbers: R = (−∞,∞)

Division by 0 is undefined

The absolute value of a real number: for any x ∈ R, | x |= x if x ≥ 0, | x |= −x if

x < 0 (i.e., is just the magnitude of the number)

The distance between two real numbers x, y ∈ R: d(x, y) =| x− y |

The Cartesian plane, or 2-dimensional space: R2 = {(x, y) | x, y ∈ R}. The set of

all ordered pairs of numbers: (2, 1) ̸= (1, 2). These are distinct points in the Cartesian

plane.

x-axis and y-axis

Points in the Cartesian plane: x = (x1, x2), y = (y1, y2). x-coordinate and y-coordinate.

The equation of a straight line in the Cartesian plane: y = mx+ c

m = slope, c = y-intercept, − c
m

= x-intercept (all fixed numbers, also called con-

stants; x and y are called variables)

Slope = ∆y
∆x

Plotting a straight line (just need two points)

The distance between two points x, y ∈ R2 (i.e., two points in the Cartesian plane) is

defined as d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2. This formula is a simple application of the

Pythagorean theorem

A real-valued function of a real number (a curve; generalizing a straight line) [DEFINI-

TION]

Definition 2 A function f from a set X into a set Y (i.e., f : X → Y ) is a correspondence

that assigns to each element x in X exactly one element y in Y . We call y the image of x
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under f and denote it by f(x). The domain of f is the set X, the codomain is the set Y ,

and the range consists of all images of elements in X.

When X,Y ⊆ R, then f is a real-valued function of a real variable, e.g., y = f(x) =

−2x+ 5 or y = f(x) = x2

For such a function y = f(x), we sometimes refer to y as the dependent variable and

x as the independent variable

Linear function: y = mx+ c, m ̸= 0 (if m = 0, y = c is a constant function)

Quadratic function: y = ax2 + bx + c, a ̸= 0. Also called a parabola. (Its curve is

shaped like a hill if a < 0, and an upside-down hill if a > 0)

The roots of a function: the value(s) of x where the function (i.e., y) is 0 (for a linear

function, the same as the x-intercept)

A quadratic function can have 0, 1, or 2 roots. If it has any roots, they are given by the

quadratic formula: −b±
√
b2−4ac
2a

. If b2 − 4ac < 0, it has no roots (doesn’t touch the x-axis).

If b2 − 4ac = 0, it has one root (touches the x-axis at one point), and if b2 − 4ac > 0, it has

two roots (touches the x-axis at two points)

More generally, polynomial functions: y = anx
n+an−1x

n−1+. . .+a1x
1+c, where n ≥ 1

is an integer (if we want to be concise, n ∈ Z++), c and the ai’s are constants, and at least one

of the ai’s is not 0 (i = 1, 2, . . . , n). If an ̸= 0, then y is called an n-th degree polynomial.

Linear functions are first-degree polynomials, quadratics are 2nd-degree polynomials, cubics

are 3rd-degree polynomials, and so on.

Most of the functions you will encounter in your methods courses are polynomials. This

is good, because we will see that polynomials have some nice properties (e.g., continuous

and differentiable) that make them easy to deal with. If you have to find the roots of a
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polynomial, anything higher-degree than a quadratic can be quite tricky.

domain and range of a function

one-to-one function

onto function

Definition 3 If to each value in its range there corresponds exactly one value in its domain,

the function is said to be one-to-one. Moreover, if the range of f consists of all Y , then

the function is said to be onto.

Correspondence: generalization of a function, assigns a subset of Y to every x ∈ X.

Composite function

Definition 4 Let g : X → Y and f : Y → Z be functions. Then the composition of g and

f, or composite function, is a function f ◦ g : X → Z defined by (f ◦ g)(x) = f(g(x)) for

all x ∈ X.

As an example, suppose that X = Y = Z = R, g(x) = x2, and f(x) = 1
x
. Then

(f ◦ g)(x) = 1
g(x)

= 1
x2 for all x ∈ R.

how to define and determine the slope of a function that is not a straight line: leads into

the notion of the derivative of a function

6 Limits, Their Properties, Continuity

intuitive notion of limit: what does the function y = f(x) = x2 approach as x approaches 1?

graphs showing that the limit of a function at a point need not correspond to the value

of the function at that point
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i.e., limits cannot always be found by direct substitution, although they usually can

graphs showing that limit from below and limit from above can differ (also see p.92)

graphs showing that the limit of a function at a point can exist even if the function is

not defined at that point

formal definition of the limit of a function (ϵ-δ definition) [DEFINITION]

Definition 5 (definition of limit) Let f be a function defined on an open interval containing

c (except possibly at c) and let L be a real number. The statement limx→c f(x) = L means

that for each ϵ > 0 there exists a δ > 0 such that | f(x)− L |< ϵ whenever 0 <| x− c |< δ.

THEOREM 2.11 on p.93

Theorem 1 (the existence of a limit) If f is a function and c and L are real numbers, then

the limit of f(x) as x approaches c is L if and only if limx→c− f(x) = L and limx→c+ f(x) = L.

THEOREM 2.2 on p.77

Theorem 2 (some basic limits) If b and c are real numbers and n is a positive integer, then

the following properties are true.

(1) limx→c b = b.

(2) limx→c x = c.

(3) limx→c x
n = cn.

THEOREM 2.3 on p.78

Theorem 3 (properties of limits) Let b and c be real numbers, and n a positive integer, and

let f and g be functions whose limits exist as x → c. Then the following properties are true.
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(1) Scalar multiple: limx→c[b(f(x))] = b[limx→c f(x)].

(2) Sum: limx→c[f(x) + g(x)] = limx→c f(x) + limx→c g(x).

(3) Difference: limx→c[f(x)− g(x)] = limx→c f(x)− limx→c g(x).

(4) Product: limx→c[f(x)g(x)] = [limx→c f(x)][limx→c g(x)].

(5) Quotient: limx→c
f(x)
g(x)

= limx→c f(x)
limx→c g(x)

(provided limx→c g(x) ̸= 0).

(6) Power: limx→c[f(x)]
n = [limx→c f(x)]

n.

THEOREMS 2.4 and 2.5 on p.79

Theorem 4 (limit of a polynomial function) If p is a polynomial function and c is a real

number, then limx→c p(x) = p(c).

Theorem 5 (limit of a rational function) If r is a rational function given by r(x) = p(x)
q(x)

and c is a real number such that q(c) ̸= 0, then limx→c r(x) = r(c) = p(c)
q(c)

.

THEOREMS 2.6 and 2.7 on p.80

Theorem 6 (limit of a function involving a radical) If c > 0 and n is any positive integer,

or if c ≤ 0 and n is an odd positive integer, then limx→c
n
√
x = n

√
c.

Theorem 7 (limit of a composite function) If f and g are functions such that limx→c g(x) =

L and limx→L f(x) = f(L), then limx→c f(g(x)) = f(L).

we can usually evaluate limits by direct substitution, but when we cannot, other tech-

niques exist

cancellation, example 1 on p.83

intuitive notion of what it means for a function to be continuous at a point
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continuous function [DEFINITION]

also definition on p.93

Definition 6 A function f is called continuous at c if the following 3 conditions are all

met.

(1) f(c) is defined.

(2) limx→c f(x) exists.

(3) limx→c f(x) = f(c).

Definition 7 A function is called continuous on an open interval (a,b) if it is con-

tinuous at each point in the interval. A function that is continuous on the entire real line

(−∞,∞) is called everywhere continuous.

Definition 8 A function is called continuous on a closed interval [a,b] if it is con-

tinuous on the open interval (a, b) and limx→a+ f(x) = f(a) and limx→b− f(x) = f(b). The

function f is called continuous from the right at a and continuous from the left at

b.

Theorem 2.12

Theorem 8 (properties of continuity) If b is a real number and f and g are continuous at

x = c, then the following functions are also continuous at c.

(1) scalar multiple: bf

(2) sum: f + g

(3) difference: f − g

(4) product: fg
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(5) quotient: f
g
(provided g(c) ̸= 0)

Theorem 2.13

Theorem 9 (continuity of a composite function) If g is continuous at c and f is continuous

at g(c), then the composite function given by (f ◦ g)(x) = f(g(x)) is continuous at c.

Theorem 2.14

Theorem 10 (Intermediate Value Theorem) If f is continuous on [a, b] and k is any number

between f(a) and f(b), then there is at least one number c in [a, b] such that f(c) = k.

Infinite limits (DEFINITION)

Definition 9 (definition of infinite limits) The statement limx→c f(x) = ∞ means that for

each M > 0 there exists a δ > 0 such that f(x) > M whenever 0 <| x − c |< δ. Similarly,

the statement limx→c f(x) = −∞ means that for each N < 0 there exists a δ > 0 such that

f(x) < N whenever 0 <| x− c |< δ.

Vertical asymptote (DEFINITION)

Definition 10 If f(x) approaches infinity (or negative infinity) as x approaches c from the

right or left, then we call the line x = c a vertical asymptote of the graph of f .

Theorem 2.16

Theorem 11 (properties of infinite limits) If c and L are real numbers and f and g are

functions such that limx→c f(x) = ∞ and limx→c g(x) = L, then the following properties are

true.

13



(1) Sum: limx→c[f(x) + g(x)] = ∞.

(2) Difference: limx→c[f(x)− g(x)] = ∞.

(3) Product: limx→c[f(x)g(x)] = ∞ if L > 0, and −∞ if L < 0.

(4) Quotient: limx→c
g(x)
f(x)

= 0.

(5) Similar properties hold for one-sided limits and for functions for which the limit of

f(x) as x approaches c is −∞.

p.206

Definition 11 (Limits at infinity) The statement limx→∞ f(x) = L means that for each

ϵ > 0 there exists an M > 0 such that | f(x) − L |< ϵ whenever x > M . Similarly, the

statement limx→−∞ f(x) = L means that for each ϵ > 0 there exists an N < 0 such that

| f(x)− L |< ϵ whenever x < N .

Definition 12 If limx→−∞ f(x) = L or limx→∞ f(x) = L then the line y = L is called a

horizontal asymptote of the graph of f .

THEOREM 4.10

Theorem 12 (Some properties of limits at infinity) If limx→∞ f(x) and limx→∞ g(x) both

exist, then:

(1) limx→∞[f(x) + g(x)] = limx→∞ f(x) + limx→∞ g(x)

(2) limx→∞[f(x)g(x)] = [limx→∞ f(x)][limx→∞ g(x)]

Theorem 13 If r is a positive rational number and c is any real number, then limx→∞
c
xr =

0.
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7 Differentiation

motivation: the slope of a curve, or the instantaneous rate of change of y with respect to x

Definition 13 The derivative of a function f at any point x (in its domain) is given by

lim∆x→0
f(x+∆x)−f(x)

∆x
, provided the limit exists.

ALTERNATIVE DEFINITION:

Definition 14 The derivative of a function f at any point x (in its domain) is given by

limh→0
f(x+h)−f(x)

h
, provided the limit exists.

Common notation for derivative: f ′(x), dy
dx
, d

dx
[f(x)]

terminology: the derivative of y with respect to x

Definition 15 A function is called differentiable at x if its derivative exists at x and

differentiable on an open interval (a, b) if it is differentiable at every point in the

interval.

THEOREM 3.2

Theorem 14 (differentiability implies continuity) If f is differentiable at x = c, then f is

continuous at x = c.

can use the definition of the derivative to find it, but more convenient to use differentiation

rules.

THEOREM 3.3
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Theorem 15 (constant rule) The derivative of a constant is 0. That is, if c is a real number,

then d
dx
[c] = 0.

THEOREM 3.4

Theorem 16 (power rule) If n is a rational number, then d
dx
[xn] = nxn−1.

THEOREM 3.5

Theorem 17 (constant multiple rule) If f is a differentiable function and c is a real number,

then d
dx
[cf(x)] = cf ′(x).

THEOREM 3.6

Theorem 18 (sum and difference rules) Let f and g be differentiable functions. Then

d
dx
[f(x) + g(x)] = f ′(x) + g′(x) and d

dx
[f(x)− g(x)] = f ′(x)− g′(x).

THEOREM 3.8

Theorem 19 (product rule) Let f and g be differentiable functions. Then d
dx
[f(x)g(x)] =

f(x)g′(x) + g(x)f ′(x).

THEOREM 3.9

Theorem 20 (quotient rule) The quotient of two differentiable functions, f and g, is itself

differentiable at all values of x for which g(x) ̸= 0. Moreover, d
dx
[f(x)
g(x)

] = g(x)f ′(x)−f(x)g′(x)
[g(x)]2

(provided g(x) ̸= 0).

The Chain Rule for composite functions

THEOREM 3.11
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Theorem 21 (Chain Rule) If y = f(u) is a differentiable function of u and u = g(x) is a

differentiable function of x, then y = f(g(x)) is a differentiable function of x and dy
dx

= dy
du
· du
dx

or, equivalently, d
dx
[f(g(x))] = f ′(g(x))g′(x).

THEOREM 3.12

Theorem 22 (General Power Rule) If y = [u(x)]n, where u is a differentiable function of

x and n is a rational number, then dy
dx

= n[u(x)]n−1 du
dx

or, equivalently, d
dx
[un] = nun−1u′.

IMPLICIT DIFFERENTIATION: useful method when we have an equation involving y

and x, but we cannot write y explicitly in terms of x.

EXAMPLE: Suppose y3 + y2 − 5y − x2 = −4. This equation implicitly defines y as a

function of x, but we cannot “isolate” y on one side of the equation and then calculate dy
dx
.

8 Applications of Differentiation

Application of derivatives: finding the instantaneous rate of change of y with respect to x

(slope of a curve at any given point)

Application of derivatives: finding the relative maxima and minima of a function (first

and second order conditions)

graphical representation of a quadratic function and relative maxima/minima

Definition 16 Let f be defined on an interval I containing c. We say that f(c) is the

minimum of f on I if f(c) ≤ f(x) for all x in I. We say that c is the minimizer of f

on I.

Definition 17 Let f be defined on an interval I containing c. We say that f(c) is the
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maximum of f on I if f(c) ≥ f(x) for all x in I. We say that c is the maximizer of

f on I.

THEOREM 4.1

Theorem 23 (Extreme Value Theorem) If f is continuous on a closed interval [a, b], then

f has both a minimum and a maximum on the interval.

Definition 18 If there is an open interval on which f(c) is a maximum, then f(c) is called

a relative maximum of f .

Definition 19 If there is an open interval on which f(c) is a minimum, then f(c) is called

a relative minimum of f .

Definition 20 If f is defined at c, then c is called a critical number of f if f ′(c) = 0 or

if f ′ is undefined at c.

THEOREM 4.2

Theorem 24 If f has a relative minimum or relative maximum at x = c, then c is a critical

number of f .

In practice, with the functions we will work with, relative maxima or minima occur at

critical numbers where f ′(c) = 0 rather than where f ′ is undefined.

THEOREM 4.3

Theorem 25 (Rolle’s Theorem) Let f be continuous on the closed interval [a, b] and differ-

entiable on the open interval (a, b). If f(a) = f(b) then there is at least one number c in

(a, b) such that f ′(c) = 0.
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THEOREM 4.4

Theorem 26 (Mean Value Theorem) If f is continuous on the closed interval [a, b] and

differentiable on the open interval (a, b), then there exists a number c in (a, b) such that

f ′(c) = f(b)−f(a)
b−a

.

Definition 21 A function f is said to be strictly increasing on an interval if for any two

numbers x1 and x2 in the interval, x1 < x2 implies f(x1) < f(x2).

A function f is said to be weakly increasing on an interval if for any two numbers x1

and x2 in the interval, x1 < x2 implies f(x1) ≤ f(x2).

Definition 22 A function f is said to be strictly decreasing on an interval if for any two

numbers x1 and x2 in the interval, x1 < x2 implies f(x1) > f(x2).

A function f is said to be weakly decreasing on an interval if for any two numbers x1

and x2 in the interval, x1 < x2 implies f(x1) ≥ f(x2).

Definition 23 A function is called strictly monotonic on an interval if it is either strictly

increasing on the entire interval (in which case we say the function is monotone increas-

ing on the interval), or strictly decreasing on the entire interval (in which case we say the

function is monotone decreasing on the interval).

THEOREM 4.5

Theorem 27 Let f be a function that is differentiable on the interval (a, b).

(1) If f ′(x) > 0 ∀x ∈ (a, b), then f is strictly increasing on (a, b).

(2) If f ′(x) < 0 ∀x ∈ (a, b), then f is strictly decreasing on (a, b).

(3) If f ′(x) = 0 ∀x ∈ (a, b), then f is constant on (a, b).
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THEOREM 4.6

Theorem 28 (First Derivative Test) Let c be a critical number of a function f that is

continuous on an open interval I containing c. If f is differentiable on the interval, except

possibly at c, then f(c) can be classified as follows.

(1) If f ′ changes from negative to positive at c, then f(c) is a relative minimum of f .

(2) If f ′ changes from positive to negative at c, then f(c) is a relative maximum of f .

(3) If f ′ does not change signs at c, then f(c) is neither a relative minimum nor a relative

maximum.

Definition 24 Let f be differentiable on an open interval. We say that the graph of f is

concave upward if f ′ is strictly increasing on the interval and concave downward if f ′

is strictly decreasing on the interval.

THEOREM 4.7

Theorem 29 (Test for concavity) Let f be a function whose second derivative exists on an

open interval I.

(1) If f ′′(x) > 0 for all x in I, then the graph of f is concave upward.

(2) If f ′′(x) < 0 for all x in I, then the graph of f is concave downward.

Definition 25 Let f be a function whose graph has a tangent line at (c, f(c)). The point

(c, f(c)) is called a point of inflection if the concavity of f changes from upward to down-

ward (or vice versa) at that point.

THEOREM 4.9
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Theorem 30 (Second derivative test) Let f be a function such that f ′(c) = 0 and the second

derivative of f exists on an open interval containing c.

(1) If f ′′(c) > 0, then f(c) is a relative minimum.

(2) If f ′′(c) < 0, then f(c) is a relative maximum.

(1) If f ′′(c) = 0, then the test fails.

9 L’Hopital’s Rule

Indeterminate forms: 0
0
and ∞

∞

what if we want to determine a limit, where direct substitution gives one of these forms

Theorem 31 Let f and g be functions that are differentiable on an open interval (a, b)

containing c, except possibly at c itself. If the limit of f(x)
g(x)

as x approaches c produces the

indeterminate form 0
0
or ∞

∞ , then limx→c
f(x)
g(x)

= limx→c
f ′(x)
g′(x)

provided the limit on the right

exists (or is infinite). This rule also applies if c is ∞ or −∞.

10 Functions of Several Variables

Definition 26 Let D be a set of ordered pairs of real numbers, i.e., D ⊆ R2. If to each

ordered pair (x, y) in D there corresponds a real number f(x, y), then f is called a function

of x and y. The set D is the domain of f , and the corresponding set of values for f(x, y)

is the range of f .

If z = f(x, y), x and y are called independent variables, and z is the dependent variable

2-dimensional analog of an open interval: an open disc

Definition 27 The open disc of radius δ > 0 centered at the point (x0, y0) is the set
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{(x, y) |
√
(x− x0)2 + (y − y0)2 < δ}.

Intuitively, the set of all points within distance δ of (x0, y0).

Definition 28 The closed disc of radius δ > 0 centered at the point (x0, y0) is the set

{(x, y) |
√
(x− x0)2 + (y − y0)2 ≤ δ}.

Sometimes the term “ball” is used instead of “disc”

Sometimes the disc is called the δ-neighborhood about (x0, y0), and we can talk about

a closed neighborhood and an open one.

Definition 29 A point (x0, y0) in a plane region R is an interior point of R if there exists

a δ-neighborhood around (x0, y0) that lies entirely in R.

Definition 30 If every point in a plane region R is an interior point, then we call R an

open region.

Definition 31 A point (x0, y0) in a plane region R is a boundary point of R if every open

disc centered at (x0, y0) contains points inside R as well as points outside R.

Definition 32 If a region contains all its boundary points, then we say that the region is

closed.

A plane region that contains some but not all of its boundary points is neither open nor

closed, and is analogous to the half-open interval [a, b) or (a, b].

Definition 33 A region in the plane is called bounded if it is a subregion of a closed disc

in the plane.
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Definition 34 (limit of a function of two variables) Let f be a function of two variables

defined, except possibly at (x0, y0), on an open disc centered at (x0, y0), and let L be a real

number. Then lim(x,y)→(x0,y0) f(x, y) = L if for any ϵ > 0, there exists a δ > 0 such that

| f(x, y)− L |< ϵ whenever 0 <
√
(x− x0)2 + (y − y0)2 < δ.

Definition 35 A function f of two variables is continuous at a point (x0, y0) in an

open region R if f(x0, y0) is defined and is equal to the limit of f(x, y) as (x, y) approaches

(x0, y0). That is, lim(x,y)→(x0,y0) f(x, y) = f(x0, y0). The function f is continuous in the

open region R if it is continuous at every point in R.

Polynomial functions are continuous everywhere in their domains, and these are the most

common types of functions encountered in political science applications.

11 Partial Derivatives

Definition 36 If z = f(x, y), then the first partial derivatives of f with respect to x and

y are the functions fx and fy defined by fx(x, y) = lim∆x→0
f(x+∆x,y)−f(x,y)

∆x
and fy(x, y) =

lim∆y→0
f(x,y+∆y)−f(x,y)

∆y
, provided the limits exist.

To find fx, we treat y as a constant and differentiate with respect to x, using the same

differentiation rules as before (for single-variable functions).

To find fy, we treat x as a constant and differentiate with respect to y.

Common notation for partial derivatives, with z = f(x, y): fx(x, y),
∂z
∂x
, ∂

∂x
f(x, y)

If we plot the function z = f(x, y), it is a surface in 3-dimensional Euclidean space as

opposed to a curve in 2-dimensional Euclidean space, and we interpret ∂z
∂x

as a function that

gives the slope of the surface in the x direction (i.e., along the direction of the x-axis) at

23



any given point (x0, y0, z0) on the surface

It is also interpreted as the instantaneous amount by which z increases (or decreases, if

the partial is negative) as x increases by 1 unit, holding the value of y constant

also typically called “marginal effects”

Higher-order partial derivatives: ∂
∂x
(∂f
∂x
) = ∂2f

∂x2 = fxx

∂
∂y
(∂f
∂y
) = ∂2f

∂y2
= fyy

∂
∂y
(∂f
∂x
) = ∂2f

∂y∂x
= fxy (mixed partial derivative)

∂
∂x
(∂f
∂y
) = ∂2f

∂x∂y
= fyx (mixed partial derivative)

THEOREM 14.3

Theorem 32 (equality of mixed partial derivatives) If f is a function of x and y and f , fx,

fy, fxy, and fyx are continuous on an open region R, then for every (x, y) in R, fxy(x, y) =

fyx(x, y).

The continuity condition is satisfied for the polynomial functions that we deal with in

political science applications.

THEOREM 14.15

Theorem 33 (Extreme Value Theorem) Let f be a continuous function of two variables x

and y defined on a closed bounded region R in the xy-plane.

(1) There is at least one point in R where f takes on a minimum value.

(2) There is at least one point in R where f takes on a maximum value.

Definition 37 Let f be a function defined on a region R containing (x0, y0).

(1) f(x0, y0) is a relative minimum of f if f(x, y) ≥ f(x0, y0) for all (x, y) in an open

disc containing (x0, y0).
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(2) f(x0, y0) is a relative maximum of f if f(x, y) ≤ f(x0, y0) for all (x, y) in an open

disc containing (x0, y0).

Definition 38 Let f be a function defined on an open region R containing (x0, y0). We call

(x0, y0) a critical point of f if one of the following is true.

(1) fx(x0, y0) = 0 and fy(x0, y0) = 0.

(2) fx(x0, y0) or fy(x0, y0) does not exist.

THEOREM 14.16

Theorem 34 If f(x0, y0) is a relative extremum of f on an open region R, then (x0, y0) is

a critical point of f .

THEOREM 14.17

Theorem 35 (Second-partials test) Let f have continuous first and second partial deriva-

tives on an open region containing a point (a, b) for which fx(a, b) = 0 and fy(a, b) = 0. To

test for relative extrema of f , we define the quantity d = fxx(a, b)fyy(a, b)− [fxy(a, b)]
2.

(1) If d > 0 and fxx(a, b) > 0, then f(a, b) is a relative minimum.

(2) If d > 0 and fxx(a, b) < 0, then f(a, b) is a relative maximum.

(3) If d < 0, then (a, b, f(a, b)) is a saddle point.

(4) The test gives no information if d = 0.

All of the above can be extended in a straightforward way to functions of 3 or more

variables, in which case we have to use some matrix notation.

Application: the method of least squares
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We believe some variable y is a function of some variable x, and that the function is a

linear one

We have data on x and y, i.e. a set of n “observations” {(x1, y1), (x2, y2), . . . , (xn, yn)}

We want to plot the straight line y = f(x) = ax + b that is the “best fit” to this data,

i.e., we want to determine the “best fit” values of a and b

The “least squares” method of determining the best fit is to minimize the sum of the

squared errors S =
∑n

i=1[f(xi)− yi]
2 =

∑n
i=1[axi + b− yi]

2

The xi’s and the yi’s are fixed numbers, and hence S is a function of two variables, a and

b, i.e., S = S(a, b)

We want to find the point (a0, b0) where S(a, b) achieves its minimum value

Partial derivative of S with respect to a: Sa(a, b) =
∑n

i=1 2xi[axi+ b−yi] = 2a
∑n

i=1 x
2
i +

2b
∑n

i=1 xi − 2
∑n

i=1 xiyi

Partial derivative of S with respect to b: Sb(a, b) =
∑n

i=1 2[axi + b − yi] = 2a
∑n

i=1 xi +

2nb− 2
∑n

i=1 yi

Setting these equal to 0 gives 2 equations in 2 unknowns (a0 and b0), and solving these 2 si-

multaneous equations gives a0 =
n
∑n

i=1 xiyi−
∑n

i=1 xi
∑n

i=1 yi
n
∑n

i=1 x
2
i−(

∑n
i=1 xi)2

and b0 =
1
n
[
∑n

i=1 yi−a0
∑n

i=1 xi]

We can apply the second-partials test to verify that these values of a0 and b0 yield a

minimum of S

12 Constrained Optimization

This is an advanced topic, and we will only discuss it briefly.

Consider the function z = f(x, y) = −x2−y2. A moment’s reflection should convince you

that the plot of this function is a 3-dimensional symmetric “hill” whose peak (maximum) is
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at the point (x, y) = (0, 0), at which z = f(0, 0) = 0. That is, this is the global maximum,

and the function has no minimum. You can use Theorem 35 to verify this formally.

Suppose we want to find the maximum of this function under the equality constraint

2x+ y = 1. That is, we want to solve the following problem.

Maximize f(x, y) = −x2 − y2 subject to 2x+ y = 1.

Why might we impose the constraint 2x+ y = 1? Perhaps for some reason, this relation-

ship between x and y has to hold. Alternatively, suppose we define the domain of f to be

X = {(x, y) ∈ R2 | 2x+ y = 1}.

Graphically, we visualize this problem as follows. f(x, y) is defined on all of R2. Suppose,

however, we consider the restriction of this function to the straight line (in the x-y plane)

2x + y = 1, or y = 1 − 2x. The resulting plot, instead of being a 3-dimensional surface,

will be a 2-dimensional curve (where the “x-axis” is the straight line y = 1 − 2x, and the

“y-axis” is the z-axis). We want to find the maximum of this curve.

One way to solve this problem is by direct substitution. That is, plug y = 1 − 2x

into f(x, y) = −x2 − y2 to get the new function f ∗(x) = −x2 − (1 − 2x)2. Then we just

engage in unconstrained maximization of this function with respect to x; we can engage in

unconstrained optimization because the constraint is already embodied in the substitution,

and hence we can now ignore it. We can simplify f ∗(x) = −x2−(1+4x2−4x) = −5x2+4x−1.

f ∗′(x) = −10x+4, and setting this equal to 0 (the FOC) gives x = 2
5
. The SOC is f ∗′′(x) =

−10 < 0, and hence this is a maximum. Finally, we substitute y = 1 − 2x = 1 − 2(2
5
) = 1

5
.

Thus, (x, y) = (2
5
, 1
5
) is the solution to the constrained maximization problem, and at this

point, f(2
5
, 1
5
) = −(2

5
)2 − (1

5
)2 = −1

5
.

An alternative method, which is especially useful for more complicated constrained max-
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imization problems, is the Method of Lagrange Multipliers. Recall that we want to

solve the following problem.

Maximize f(x, y) = −x2 − y2 subject to 2x+ y = 1.

More generally, suppose we want to maximize some function f(x, y) subject to the equal-

ity constraint g(x, y) = c, where c is some real number (possibly 0). In the above example,

f(x, y) = −x2 − y2, g(x, y) = 2x+ y, and c = 1.

Then we define a function L(x, y, λ) = f(x, y)− λ[g(x, y)− c], where L is called the La-

grangian function or simply the Lagrangian, and λ is called the Lagrange multiplier.1

Note that L is a function of 3 variables instead of 2. Then we find the critical points of L,

i.e., the points (x, y, λ) at which ∂L
∂x

= 0, ∂L
∂y

= 0, and ∂L
∂λ

= 0 all three hold.

Note that for our example, L(x, y, λ) = −x2 − y2 − λ(2x + y − 1), ∂L
∂x

= −2x − 2λ,

∂L
∂y

= −2y − λ, and ∂L
∂λ

= −2x− y + 1. Setting each of these partials equal to 0 and solving

the resulting system of 3 equations in 3 unknowns gives us x = 2
5
, y = 1

5
, and λ = −2

5
. Note

that these are the same values of x and y that the substitution method (which we know is

a sound method) gave us. This should strike you as being pretty remarkable.

Theorem 18.1 on p.416 of Simon and Blume gives the justification for this method, namely

that if (x∗, y∗) is a solution to the constrained maximization problem, then there exists a

real number λ∗ such that (x∗, y∗, λ∗) is a critical point of L.

(Simon and Blume, p.317)

Definition 39 If f is a function of x and y and fx and fy exist at, and are continuous at,

every (x, y) in an open region R, then f is continuously differentiable (or C1) on R.

1Alternatively, we can add instead of subtract, as in L(x, y, λ) = f(x, y) + λ[g(x, y) − c], as the solution
to the constrained maximization problem will be the same either way. Thus, some authors add.
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(Simon and Blume, p.416)

Theorem 36 Let f and g be C1 functions of x and y. Suppose that (x∗, y∗) is a solution of

the problem: maximize f(x, y) subject to g(x, y) = c. Suppose further than (x∗, y∗) is not a

critical point of g. Then there is a real number λ∗ such that (x∗, y∗, λ∗) is a critical point of

the Lagrangian function L(x, y, λ) = f(x, y)− λ[g(x, y)− c]. That is, at (x∗, y∗, λ∗), ∂L
∂x

= 0,

∂L
∂y

= 0, and ∂L
∂λ

= 0 all three hold.

We won’t pursue this topic further, but the method can be expanded to handle functions

of more than 2 variables, multiple equality constraints, and multiple inequality constraints

(e.g., that x ≥ 0 and y ≥ 0) as well.

13 Logarithmic Functions

We know that 100 = 1, 101 = 10, 102 = 100, and so on.

Also, 10−1 = 1
10

= 0.1, 10−2 = 1
102

= 0.01, and so on.

So the number 10 can be raised to any real number (not just integers) power, and the

result is always a positive real number.

So for any positive real number, we can ask the power to which 10 needs to be raised in

order to get that number.

This leads to the notion of the logarithm of base 10. For any positive real number x,

define the function f(x) = log10(x) = the number such that 10 raised to that number equals

x

In other words, log10(x) = a means that 10a = x.

Note that the base of the log function doesn’t have to be 10, but 10 is a commonly-used

based, in fact so common that sometimes authors in math just write log x to mean log10 x
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In empirical work in political science, we more often use the natural logarithm, whose

base is the number e ≈ 2.718. The reason for this is one of the great mysteries of the world.

For the natural logarithm, the standard notation is lnx. That is, ln x = loge x, and

lnx = a means that ea = x

For a strictly positive independent variable x that take on a very wide range of values

(e.g., 1 to 1,000,000), the empirical analyst often includes lnx in a regression equation rather

than x itself, in order to suppress this variation. This can be seen from the graph of y = ln x

Sometimes for a highly-dispersed variable x that takes on values of 0 or even negative

values, the empirical analyst will transform it to make it always positive (e.g., by adding a

fixed positive constant to every observation of x), and then ln it

THEOREM 6.2

Theorem 37 (Logarithmic properties) If a and b are positive numbers and n is a rational

number, then the following properties are true.

(1) ln(1) = 0

(2) ln(ab) = ln(a) + ln(b)

(3) ln(an) = n ln a

(4) ln(a
b
) = ln a− ln b

In maximum likelihood estimation, if L is the likelihood function, it is easier

to find the maximizer of ln(L) (the log-likelihood) than of L, because L is the product

of many terms, whereas by property (2) ln(L) is the sum of many terms, and it is easier

to differentiate (and thereby find the maximizer of) a sum than a product. And because

y = ln(x) is a strictly increasing function, L and ln(L) have the same maximizer
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THEOREM 6.3

Theorem 38 Let u be a differentiable function of x.

(1) d
dx
[lnx] = 1

x
(provided x > 0)

(2) d
dx
[lnu] = 1

u
du
dx

(provided u > 0), from the Chain Rule

14 Integration

14.1 Antiderivatives and Indefinite Integration

So far, given a function f(x), find its derivative

Suppose instead that, given a function f(x), we are asked to find a function whose

derivative is f(x), i.e., find a function F (x) such that F ′(x) = f(x)

For example, if f(x) = 2, we know that F (x) = 2x, since F ′(x) = 2 = f(x)

Similarly, if f(x) = 2x, we know that F (x) = x2

Definition 40 A function F is called an antiderivative of the function f if for every x

in the domain of f , F ′(x) = f(x).

No function has a unique antiderivative, since if F (x) is an antiderivative of f(x), then

so is F (x) + C for any C ∈ R.

THEOREM 5.1

Theorem 39 If F is an antiderivative of f on an interval I, then G is an antiderivative of

f on the interval I if and only if G is of the form G(x) = F (x) + C for all x in I, where C

is a constant.
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If we have a function f(x), the symbol used to denote the antidifferentiation “process”,

i.e., the antidifferentiation “operator”, is
∫
f(x) dx, which is read as “integrate the function

f(x) with respect to the variable x (this is what the dx denotes)”

x is called the variable of integration (similar to the notion of taking the derivative

with respect to x)

To integrate a function means to find its antiderivative

Thus,
∫
2x dx = x2 + C

We add the constant to indicate that the equation is true for any value of C, and hence

this is really a family of solutions (antiderivatives)

The term indefinite integral is a synonym for antiderivative

Definition 41 (definition of integral notation for antiderivatives) The notation
∫
f(x) dx =

F (x) + C, where C is an arbitrary constant, means that F is an antiderivative of f . That

is, F ′(x) = f(x) for all x in the domain of f .

Note that integration and differentiation are “inverse” operations, as seen from
∫
F ′(x)

dx = F (x) + C

That is, integrating the derivative of a function gives us the original function (plus an

arbitrary constant)

Moreover, if
∫
f(x) dx = F (x) + C, i.e., F (x) is an antiderivative of f(x), then differen-

tiating both sides of the equation gives d
dx
[
∫
f(x)dx] = f(x)

That is, differentiating the integral of a function gives us back the function

the two processes “cancel out” each other, and hence they are “inverse” processes

THEOREM 5.2
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Theorem 40 The following integration rules hold, where C and k are any constants.

(1)
∫
0 dx = C

(2)
∫
k dx = kx+ C

(3)
∫
kf(x) dx = k

∫
f(x) dx

(4)
∫
[f(x) + g(x)] dx =

∫
f(x) dx+

∫
g(x) dx

(5)
∫
[f(x)− g(x)] dx =

∫
f(x) dx−

∫
g(x) dx

(6)
∫
xn dx = xn+1

n+1
+ C (provided n ̸= −1)

These rules make it easy to integrate any polynomial function, and the power rule (6) is

the key

14.2 Area, Riemann Sums, and the Definite Integral

Definition 42 (definition of sigma notation) The sum of n terms a1, a2, a3, . . . , an is written

as
∑n

i=1 ai = a1 + a2 + . . .+ an, where i is called the index of summation, ai is called the

i-th term of the sum, and the upper and lower bounds of summation are n and 1,

respectively.

THEOREMS 5.3 and 5.4

Theorem 41 The following rules hold.

(1)
∑n

i=1 kai = k
∑n

i=1 ai, where k is a constant

(2)
∑n

i=1[ai + bi] =
∑n

i=1 ai +
∑n

i=1 bi

(3)
∑n

i=1[ai − bi] =
∑n

i=1 ai −
∑n

i=1 bi

(4)
∑n

i=1 c = cn, where c is a constant
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For a common shape such as a rectangle, we say that the formula for the area of the

rectangle is base times height, where we have some intuitive notion of what we mean by the

area of a shape

It is more accurate to say that we define the area of a rectangle to be its base times its

height

We can use that formula to derive the area of other simple shapes such as a triangle, by

embedding them within rectangles and then being ingenious

What about the area under a never-negative curve y = f(x) on the interval [a, b], where

by “under” we mean down to the x-axis?

We can approximate this area by drawing narrow rectangles approximating this region

under the curve, and then add up the areas of those rectangles

As the width of these rectangles decreases, the approximation becomes more accurate

In the limit, as the width approaches 0, the approximation approaches perfection, and

we define this limit to be the area under the curve

Definition 43 (area of a region in the plane) Let f be continuous and non-negative on the

interval [a, b]. The area of the region bounded by the graph of f , the x-axis, and the vertical

lines x = a and x = b is:

area = limn→∞
∑n

i=1 f(ci)∆x, where n is the number of rectangles used in the approximation,

∆x = b−a
n

is the width of each rectangle, and ci is any value of x in the i’th rectangle.

The approximation
∑n

i=1 f(ci)∆x is called a Riemann sum, although the latter in

general does not require the width of each rectangle to be the same. It also does not require

the function f to be non-negative, and we only need to impose this restriction when defining
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the notion of an area under a curve

More generally, we allow the function to be negative as well, and we allow rectangle i to

have width ∆xi, and we then define a Riemann sum as
∑n

i=1 f(ci)∆xi

When we allow the rectangles to have different widths, we call the largest width the

norm of the partition (the rectangle structure), and denote it by ∥∆∥

Note that ∥∆∥ → 0 implies that n → ∞, but the converse is not true

Now that we no longer require f to be non-negative and the approximation rectangles to

have equal widths, we define the notion of a definite integral, which is related to the idea of

an area but is more general

Definition 44 (the definite integral) If f is defined on the closed interval [a, b] and the limit

of a Riemann sum of f exists, then we say f is integrable on [a, b] and we denote the limit

by:∫ b

a
f(x) dx = lim∥∆∥→0

∑n
i=1 f(ci)∆xi

This limit is called the definite integral of f from a to b. The number a is the lower

limit of integration, and the number b is the upper limit of integration.

Although we use the same
∫
notation for indefinite integrals and definite integrals, they

are different entities. A definite integral is a number (because it is a limit of a certain

function), whereas an indefinite integral is a family of functions. But the Fundamental

Theorem of Calculus will tell us the link between these two and why we use the same

notation

THEOREM 5.6

Theorem 42 If a function f is continuous on the closed interval [a, b], then f is integrable
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on [a, b].

THEOREM 5.7

Theorem 43 (the definite integral as the area of a region) If f is continuous and non-

negative on the closed interval [a, b], then the area of the region bounded by the graph of f ,

the x-axis, and the vertical lines x = a and x = b is given by:

area =
∫ b

a
f(x) dx

Definition 45 We make the following 2 notational definitions.

(1) If f is defined at x = a, then
∫ a

a
f(x) dx = 0

(2) If f is integrable on [a, b], then
∫ a

b
f(x) dx = −

∫ b

a
f(x) dx

THEOREM 5.8

Theorem 44 If f is integrable on the three closed intervals determined by a, b, and c, then:∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx

Theorem 45 (properties of definite integrals) If f and g are integrable on [a, b] and k is a

constant, then the following properties are true.

(1)
∫ b

a
kf(x)dx = k

∫ b

a
f(x)dx

(2)
∫ b

a
[f(x) + g(x)] =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx

(3)
∫ b

a
[f(x)− g(x)] =

∫ b

a
f(x)dx−

∫ b

a
g(x)dx

14.3 The Fundamental Theorem of Calculus

The definite integral, which we generally think of as giving the area under a curve (but it is

more general than that), requires us to compute a limit of a Riemann sum, which is tedious.
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The FTC gives us a much more convenient way of computing a definite integral, while also

telling us why we use the same
∫
notation for definite and indefinite integrals, despite them

being fundamentally different things

Theorem 46 (Fundamental Theorem of Calculus) If a function f is continuous on the

closed interval [a, b], then
∫ b

a
f(x)dx = F (b) − F (a), where F is any function such that

F ′(x) = f(x) for all x ∈ [a, b].

In other words, to compute
∫ b

a
f(x)dx, we simply determine an anti-derivative (i.e., an

indefinite integral) F of f , and then compute F (b) − F (a). No need to calculate a limit of

a Riemann sum

As an example, suppose we want to compute
∫ 5

0
3x2dx. We know that

∫
3x2dx = x3 +C

(where C is a constant). That is, let F (x) = x3 + C. The FTC tells us that
∫ 5

0
3x2dx =

F (5)−F (0) = (53+C)−(03+C) = 125. (Note that the constant C always drops out, and so

we could have just let F (x) = x3. The constant is only important for indefinite integration,

not definite integration, and hence we normally leave it out. Notice how the FTC is worded

near the end.)

We often use the notation
∫ b

a
f(x)dx = [F (x)]ba = F (b)− F (a)

The definite integral
∫ b

a
f(x)dx is a number. Sometimes we are interested in treating

the upper limit of integration (b) as a variable x instead of a constant b, and taking the

derivative of the definite integral (which is now a function of that variable) with respect to

that variable. This leads to the second FTC.

THEOREM 5.13

Theorem 47 (Second Fundamental Theorem of Calculus) If f is continuous on an open
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interval I containing a, then for every x in the interval, d
dx
[
∫ x

a
f(t)dt] = f(x).

Note that in the second FTC we use the notation f(t) in the definite integral, rather

than f(x). That’s because x is now being used to denote the upper limit of integration, and

hence we want to use a different label for the variable of integration. And remember that

the definite integral is not a function of its variable of integration; in fact, any variable can

be used (e.g., t instead of x), and the definite integral is exactly the same (it just depends

on f , b, and a). All of this may seem a bit confusing and arcane, and the second FTC is

used less often than the more straightforward first FTC, but the second is sometimes used

in applied work, so it’s useful to know that it exists. You can study it in detail if you ever

need to take the derivative of a definite integral (where the upper limit of integration is a

variable).

15 Calculus and Probability Theory

In the section of math camp on probability theory, you will learn about continuous random

variables, which are more complicated than discrete random variables. We just briefly

discuss this topic here, in order to give you a sense of how calculus plays a role in probability

theory.

In a discrete probability distribution, we assign an exact probability to each of the

(finite or countably infinite) possible values that the discrete random variable (that is drawn

from the discrete probability distribution) can take.

The simplest discrete probability distribution is the single Bernoulli trial (also called

a binomial trial): the random variable takes the value of 1 (“success”) with probability

q ∈ (0, 1), and the value of 0 (“failure”) with probability 1− q

38



If Y is a discrete random variable with the probability function p(y), then the ex-

pected value of Y , E(Y ), is defined to be E(Y ) =
∑

y y · p(y)

So for the above Bernoulli trial, E(Y ) = q

Continuous random variables, whose value is determined by a draw from a continuous

probability distribution, can take on an (uncountably) infinite number of possible values

Two simple continuous probability distributions: the uniform distribution, and the nor-

mal distribution

We characterize continuous probability distributions not by the probability they assign

to each possible value (as for discrete distributions), i.e., by a probability function p(y),

but by a cumulative distribution function F (y), defined by F (y) = Pr(Y ≤ y) for any

y ∈ (−∞,∞) (the CDF also applies to discrete probability distributions, but is an optional

tool there, but crucial to continuous probability distributions)

If F (y) is differentiable on an interval I, then we define the probability density func-

tion f(y) to be the derivative of the cumulative distribution function, i.e., f(y) = F ′(y) for

all y in I

We associate common continuous probability distributions with the graph of their density

functions, e.g., draw the graph of f(y) for the normal and uniform distributions

F (y) = Pr(Y ≤ y) =
∫ y

−∞ f(t)dt

If f(y) is a density function, then (1) f(y) ≥ 0 for any value of y, and (2)
∫∞
−∞ f(y)dy = 1

These are the continuous equivalents of the discrete rules that (1) 0 ≤ p(y) ≤ 1 for any

value of y, and (2)
∑

y p(y) = 1

Also, Pr(a ≤ Y ≤ b) =
∫ b

a
f(y)dy = F (b) − F (a) (the latter equality follows from the

first FTC)
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The expected value of a continuous random variable Y is E(Y ) =
∫∞
−∞ yf(y)dy provided

that the integral exists.

Compare this definition to that of a discrete random variable. Basically, the density

function f for a continuous random variable is the “equivalent” of the probability function

p for a discrete random variable, although f(y) does not give the probability that Y = y,

which is technically 0 for any value of y
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16 Homework Problems

1. Consider the sets A = {a, b, c, d}, B = {b, d, e}, and C = {c, x, y}. Answer the following

questions, in each case listing the elements in alphabetical order.

(a) What is A ∩ C?

(b) What is C ∪B?

(c) What is B \ A?

(d) List every subset of B.

2. Find the set of real numbers for which the inequality 2− 5x ≤ 12 holds. That is, solve

for x.

3. Find the set of real numbers for which the following inequality holds. (Recall that | a |

denotes the absolute value of a.)

(a) | x− 3 |≤ 2

(b) 3 <| x+ 2 |

4. Find the distance between the points (−2, 1) and (3, 4) in the Cartesian plane. (Recall

that the distance formula is d =
√
(x2 − x1)2 + (y2 − y1)2.)

5. Sketch the graph of the linear equation y = 2x+1. (A neat hand-drawn figure is fine.)

6. Write the equation, in the form y = mx + c, of the straight line passing through the

points (1, 5) and (−3, 0). (That is, find the values of m and c.)

7. (a bit more challenging; try your best) Use the ϵ-δ definition of a limit (definition 5 in

the notes above) to prove that limx→2(3x− 2) = 4.
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8. Find the following limit, using whatever method you want. limx→2(4x
2 + 3)

9. The same for the following limit. limx→1
x2+x+2
x+1

10. The same for the following limit. limx→0(1 +
1
x2 )

11. (looks difficult, but is not really; try your best) Use the Intermediate Value Theorem

(Theorem 10 in the above notes) to show that the polynomial function f(x) = x3+2x−1

has a 0 (i.e., a point where f(x) = 0) in the interval [0, 1].

12. (looks difficult, but is not really; try your best) Use definition 14 (in the above notes)

to find the derivative f ′(x) of the function f(x) = 3x + 2. (That is, your solution

should actually use definition 14, and should not just apply some differentiation rule.)

13. Find the derivative f ′(x) of each of the following functions, using whichever differenti-

ation rule you want to (unless otherwise indicated).

(a) f(x) = 2x3 − x2 + 3x. Also find f ′′(x). Find the value of f ′(3) and f ′′(3).

(b) f(x) = x2 − 4
x
. Also find f ′′(x). Find the value of f ′(1) and f ′′(1).

(c) f(x) = (x2 − 2x+ 1)(x3 − 1) (use the product rule)

(d) f(x) = 3x−2
2x−3

(use the quotient rule)

(e) f(x) = (9− x2)2/3 (use the chain rule)

14. (looks difficult, but is not really; try your best) Use implicit differentiation to find dy
dx

for the following equation. x2 − y2 = 16.

15. For the following function, find the intervals of x on which the function is strictly

increasing and strictly decreasing. Use the first and second order conditions to find
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the relative maxima and relative minima of the function, and evaluate the value of the

function at these points. Based on your answers, provide a graph showing what this

function looks like (a neat hand-drawn figure will be fine). f(x) = −2x2 + 4x+ 3

16. Calculate the following indefinite integral.
∫
(x3 + 2)dx

17. Use the Fundamental Theorem of Calculus (Theorem 46 in the above notes) to calculate

the following definite integral.
∫ 2

1
(5x4 + 5)dx

18. Use L’Hopital’s Rule (Theorem 31 in the above notes) to evaluate the following limit.

limx→∞
3x2−2x+1
2x2+3

19. For the function f(x, y) = x2 − 3xy + y2, find ∂f
∂x
, ∂f

∂y
, ∂2f

∂x2 ,
∂2f
∂y2

, ∂2f
∂y∂x

, and ∂2f
∂x∂y

. Find

the (x, y) points (if any) at which ∂f
∂x

= 0 and ∂f
∂y

= 0 both hold (this may involve

solving 2 equations in 2 unknowns). For each such point (if any), calculate d in the

second-partials test (Theorem 35 in the above notes), and apply the test to determine

whether each of those points is a relative minimum, a relative maximum, a saddle

point, or whether the test gives no information as to this.

20. In any given speech, candidate Trump can choose to speak x words, where x ∈ [0,∞).

Each word spoken increases his support by 120 units (where “unit” is a deliberately

vague concept on my part). That is, s(x) = 120x. However, each word spoken makes

him increasingly hoarse, and at an exponential rate: h(x) = 3x2. His utility function

is his support minus his hoarseness: U(x) = s(x)− h(x).

(a) Find the optimal number of words he should speak at any given speech, i.e., find

the maximizer of U(x).
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(b) Now suppose that his speech cannot exceed 15 words, i.e., x ∈ [0, 15]. Find the

solution to this constrained maximization problem, i.e., find the maximizer on

this range (using any method you want).

21. Consider the function z = f(x, y) = −3x2 + 2y. Find the maximum of this function

subject to the equality constraint 3x− y = 10:

(a) by direct substitution.

(b) using the Method of Lagrange Multipliers.
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