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Abstract

Fearon (1995) used an ultimatum model of crisis bargaining to show that when
country A is uncertain about country B’s cost of war, then under very broad condi-
tions A’s optimal proposal entails a risk of rejection and hence war. This result is
foundational in establishing private information as a rationalist explanation for war. I
relax one assumption that Fearon makes and find that A’s optimal proposal is risk-free
under broader conditions than previous work has indicated. I do the same for when
the uncertainty is about the military balance instead. The results do not undermine
private information as a rationalist explanation for war, but do suggest that private
information is not as conducive to war breaking out as previous work has indicated. I
also discuss the reasonableness, in incomplete information models of crisis bargaining,
of using various probability distributions to capture the likely empirical distribution of
war costs or the probability of winning a war.

1



1 Introduction

International relations theorists have long posited that misperceptions and uncertainty are

pervasive sources of conflict (e.g., Blainey 1988; Jervis 1976; Van Evera 1999; Waltz 1979).

Early game-theoretic work showed how private information can lead to war between rational

actors (e.g., Brito and Intriligator 1985; Bueno de Mesquita and Lalman 1992; Morrow 1989).

Fearon (1995) analyzed a crisis bargaining model in which the disputed good is fully divisible

and established that private information about military capabilities or resolve, along with

incentives to misrepresent it, is a rationalist explanation for costly, inefficient war that both

sides would like to avoid. Private information, along with commitment problems (Fearon

1995; Powell 2006), is now one of the two well-established rationalist explanations for war.

To demonstrate the private information explanation, Fearon analyzed an ultimatum

model in which country A makes a take-it-or-leave-it proposal to country B, with rejec-

tion of the proposal resulting in war. Under complete information, country A makes an

acceptable proposal and war is avoided. However, when country B’s cost of war is private

information and comes from a continuum of types, then under very broad conditions A’s

optimal proposal entails a risk of rejection and hence war (the “risk-return tradeoff”; Powell

1999). As Powell (2004, 348; 2006, 170, 174) puts it, under incomplete information the

optimal proposal “typically”/“usually”/“generally” carries a risk of rejection and thus war.

In this research note, I examine these conditions in greater detail. Fearon assumes that

the lower bound of the set of B’s possible costs of war is 0, i.e., that the probability dis-

tribution over B’s type assigns positive probability density to B having a 0 (as well as any

arbitrarily small) cost of war. I relax this assumption, which is arguably against the spirit of

the rationalist approach’s assumption that war is costly, and find that the conditions under
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which A makes a risky (interior) proposal are less broad than in Fearon’s analysis. And

as this lower bound increases, the risk-free (corner) proposal becomes more attractive, and

hence is more likely to be made. This leads to a consequent decrease in the risk that war

breaks out.

I then derive an analogous result for when the uncertainty is about the military balance

(probability of winning a war) rather than B’s cost of war. Here too it turns out that A

makes a risk-free proposal under broader conditions than previously appreciated.

Thus, the results call into question the common idea that A’s optimal proposal under

uncertainty “typically”/“usually”/“generally” entails a risk of war. The conditions under

which A makes a risk-free proposal are broader than previously appreciated. This certainly

does not undermine private information as a rationalist explanation for war, but does suggest

that previous work has somewhat overstated the risk of war under uncertainty. I show that

the optimal solution to the risk-return tradeoff often involves no risk. The analysis also

provides some empirically testable predictions about when a risk-free proposal is more likely

to be made, and hence when crisis bargaining is less likely to result in war.

In a related vein, Leventoğlu and Tarar (2008) analyze an infinite-horizon offer-counteroffer

crisis bargaining model in which with sufficient patience (i.e., a high discount factor), private

information (about the cost of war) simply leads to delay in reaching a negotiated settle-

ment rather than a risk of war. That is, in infinite-horizon crisis bargaining, the risk-return

tradeoff need not even exist. In this note, I show that even within the ultimatum model, in

which a delayed agreement is not possible and the risk-return tradeoff therefore must exist,

its optimal solution often involves no risk. Together, these results suggest that uncertainty
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is not nearly as conducive to war breaking out as previous work has implied,1 and perhaps

provide a theoretical justification for the field’s recent focus on commitment problems rather

than informational problems as a cause of war.2

2 Uncertainty About the Cost of War

I use the exact same model as Fearon (1995). Two countries, A and B, have to divide

a divisible good of value 1 between them, or go to war to decide who gets all of it. If

war occurs, A wins with probability p ∈ (0, 1) and B wins with probability 1 − p. The

costs of war are cA, cB > 0. Then, EUA(war) = (p)(1) + (1 − p)(0) − cA = p − cA and

EUB(war) = (p)(0) + (1− p)(1)− cB = 1− p− cB.

The bargaining protocol is a simple ultimatum proposal: A makes a take-it-or-leave-it

proposal (x, 1− x), where x ∈ [0, 1] is A’s proposed share. B’s two choices are to (i) accept

this proposal, resulting in each side’s payoff being its proposed share (i.e., assuming risk-

neutrality), or (ii) go to war, in which case each side gets its expected payoff for war. The

following is the standard result under complete information.

Proposition 1 This game has a unique subgame-perfect equilibrium (SPE) in which B ac-

cepts any proposal such that x ≤ min{p+ cB, 1}, and A proposes x = min{p+ cB, 1}.
1Fey and Ramsay (2011) present a very general analysis of the link between uncertainty

and war, but focus on different questions than the present note.
2Powell (2006) provides an empirical justification, noting that long wars present a problem

for informational explanations of war. A number of recent works combine informational and

commitment problems (e.g., Debs and Monteiro 2014; Wolford, Reiter, and Carrubba 2011).
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2.1 Two Types

Now suppose that A is uncertain about cB, and there are two possible types of B. One type

has cost cBl
and the other has cost cBh

, with 0 < cBl
< cBh

. Also assume that p + cBl
< 1.

Nature chooses B’s cost to be cBl
(the “strong” type) with probability l ∈ (0, 1), and cBh

with probability 1− l. A does not observe this move but knows the probabilities. Then the

following is the standard result.

Proposition 2 Define the following threshold: lcrit =
min{p+cBh

,1}−(p+cBl
)

min{p+cBh
,1}−(p−cA)

∈ (0, 1). Then the

following is the unique perfect Bayesian equilibrium (PBE) of the game:

(i) Type cBl
accepts any proposal x ≤ p + cBl

, and type cBh
accepts any proposal x ≤

min{p+ cBh
, 1}.

(ii) If l > lcrit, then A makes the safe, limited proposal of x = p + cBl
, which both types

of B accept.

(iii) If l < lcrit, then A makes the risky, large proposal of x = min{p+ cBh
, 1}, which only

type cBh
accepts.

This result shows that with two types, whether A chooses to make a safe or risky proposal

depends on the prior probability l that B is the strong (low-cost) type. When this probability

exceeds a certain threshold, A makes a safe proposal; otherwise, she makes a risky proposal.

With two types, there exist reasonable conditions under which the optimal solution to the

risk-return tradeoff involves no risk.

It may be argued that a continuum of types is a more general setting than two (or any

finite number of) types (Powell 2004, 345, 348; Wittman 2009, 590), and perhaps the appro-

priate setting in which to examine the effects of incomplete information on crisis bargaining.
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However, at least two responses can be made to justify using two types (or a finite number

of types), beyond just simplicity considerations.

First, while it is true that a continuum of types is a conceptual generalization over two

types in that we are allowing for more types, it is not really a mathematical generalization:

Proposition 2 cannot be derived from Proposition 3 below (for a continuum of types) just

by plugging in certain values, and has to be derived on its own. Discrete random variables

are not special cases of continuous random variables.

Second, and more importantly, to the extent that we want game-theoretic models to

capture the decision-making of actors with limited cognitive abilities, it may be that the

two-type case (or finite-type case more generally) is a more descriptively accurate model.

That is, it is plausible that actors in the real world deal with uncertainty by conceptual-

izing a few possible types of the opponent that they might be facing. It is not clear that

actors deal with uncertainty by conceptualizing continuums of possibilities, and it seems

that conceptualizing continuums may impose computational burdens that individuals may

cognitively wish to avoid.3 In short, it is plausible that under uncertainty, A would simplify

things by conceptualizing two (or a few) possible opponents that she might be facing, one

who needs a big share of the disputed good to avoid war because he does not perceive war

to be very costly, and another who can be satisfied with a small share.

This is not to argue that a finite-type analysis is preferable to using a continuum of

types, but just to point out that reasonable justifications for the finite-type case can be

given, beyond just simplicity considerations.

3Gintis (2009, xv-xvi) makes a slightly related argument, about finiteness versus infinite-

ness in game-theoretic models.
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2.2 Continuum of Types

The following proposition presents the result when cB comes from a continuum, and is

distributed either on the interval [cBl
, cBh

] or on the interval [cBl
,∞), where 0 ≤ cBl

and p+

cBl
< 1. This is a generalization of Fearon’s (1995, 411) analysis because he restricts attention

to the case where cB is distributed on [0,∞).4 The random variable cB has a cumulative

distribution function F (·) that is differentiable on the interior of the above interval, with

probability density function f(·) = F ′(·) that is positive everywhere on the above interval.

As Fearon does, I assume that the hazard rate f(·)
1−F (·) is non-decreasing, which is satisfied for

many commonly-used distributions including the uniform distribution, the most commonly-

used one in works that assume a specific continuous distribution (Fudenberg and Tirole 1991,

267).

Proposition 3 This game has a unique perfect-Bayesian equilibrium (PBE), in which any

type cB of B accepts any proposal such that x ≤ min{p + cB, 1}, and A’s proposal is as

follows:

(i) If f(cBl
) ≥ 1

cA+cBl

, then A makes the risk-free, limited proposal of x = p+ cBl
.

(ii) If cB is distributed on [cBl
, cBh

] and f(cBl
) < 1

cA+cBl

, then A makes a risky, large

proposal x∗ > p+cBl
, where (a) x∗ is the unique solution to f(x−p)

1−F (x−p)
= 1

x−(p−cA)
if [p+cBh

≤ 1]

or [p + cBh
> 1 and f(1−p)

1−F (1−p)
> 1

1−(p−cA)
], and (b) x∗ = 1 if [p + cBh

> 1 and f(1−p)
1−F (1−p)

≤

1
1−(p−cA)

].

(iii) If cB is distributed on [cBl
,∞) and f(cBl

) < 1
cA+cBl

, then A makes a risky, large

proposal x∗ > p+cBl
, where (a) x∗ is the unique solution to f(x−p)

1−F (x−p)
= 1

x−(p−cA)
if f(1−p)

1−F (1−p)
>

4Fey, Meirowitz, and Ramsay (2013, 42) analyze the case where cB is distributed on

[0, 1− p], i.e., cBl
= 0 and cBh

= 1− p. This is also a special case of the current analysis.
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1
1−(p−cA)

, and (b) x∗ = 1 if f(1−p)
1−F (1−p)

≤ 1
1−(p−cA)

.

The result is similar to Fearon’s (1995), except that he derives that when cB is distributed

on the interval [0,∞), then the condition under which A makes the risk-free proposal is

f(0) > 1
cA
, whereas I derive the more general condition f(cBl

) > 1
cA+cBl

(which simplifies to

Fearon’s condition when cBl
= 0, which he effectively assumes).5

This is a non-trivial difference, because Fearon (1995, 394, 411) concludes from his

condition that “Under very broad conditions, if A cannot learn B’s private information

and if A’s own costs are not too large, then state A’s optimal grab produces a positive

chance of war. . . the ex ante risk of war is always positive for small enough cA greater than

zero.” This follows straightforwardly from the fact that the right-hand-side of f(0) > 1
cA

approaches infinity as cA > 0 approaches 0, and hence for any fixed f(0) the condition

will not hold for cA small enough. This has been interpreted as implying that with a con-

tinuum of types (as opposed to two types), the optimal proposal under uncertainty “typi-

cally”/“usually”/“generally” entails a positive probability of war. Or to put it another way,

the optimal solution to the risk-return tradeoff usually involves risk.6

However, when cBl
> 0, which is more consistent with the rationalist approach’s foun-

dational assumption that war is costly than is cBl
= 0, then this is not the case. From the

5Fey, Meirowitz, and Ramsay (2013, 42) also assume that cBl
= 0 and also derive the

condition f(0) > 1
cA
.

6For example, Powell (2004, 348) writes: “The optimal offer that resolves this trade off

typically entails some risk that the dissatisfied state will reject the offer and go to war.” Sim-

ilarly, Powell (2006, 170, 174) writes: “The optimal solution to this trade-off usually entails

making an offer that carries some risk of rejection and war. . . The optimal offer that resolves

this trade-off generally entails some risk of rejection, and this is the way that asymmetric

information can lead to war.”
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condition f(cBl
) > 1

cA+cBl

, we see that even as cA > 0 becomes arbitrarily small, there is

a discrete threshold 1
cBl

(> 0) such that if the probability density of facing the lowest-cost

(“strongest”) type exceeds it, then A makes a risk-free proposal. And as cBl
increases, this

threshold decreases, meaning that the risk-free proposal is more likely to be made. The

intuition here is that the risk-free proposal of x = p + cBl
is increasing in cBl

, and hence

becomes more attractive as cBl
increases.

This indicates that it is not correct to say that the optimal proposal under uncertainty

with a continuum of types “typically”/“usually”/“generally” carries a positive probability

of war: that conclusion depends on the assumption that the lower bound of the set of B’s

possible costs of war is 0. When this assumption is relaxed, then the condition under which

the optimal proposal is risky is not trivially satisfied. And as either cA or cBl
increases, the

risk-free proposal is more likely to be made. The prediction that crisis bargaining (if no

commitment problems are present) has a 0 probability of war when either A’s cost of war,

or A’s perception of the lower bound of the set of B’s possible costs of war, or both, are suf-

ficiently large, is potentially amenable to empirical testing. (Admittedly, when incomplete-

information crisis bargaining does not result in war, it will be difficult to establish whether

this is because a risk-free proposal was made, or because a risky proposal was made but B’s

cost of war was high enough that it decided to accept the proposal.)

It is also worthwhile to briefly consider the intuition behind the risk-free condition

f(cBl
) > 1

cA+cBl

. This condition states that A makes the risk-free proposal x = p + cBl

when f(cBl
) exceeds a certain threshold. Why? If f(cBl

) is sufficiently high, then by mak-

ing an even slightly risky (interior) proposal, the probability of rejection is too high for the

small gain in territory, if the proposal is accepted, to be worthwhile. On the other hand, if
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f(cBl
) is sufficiently low, then making a sufficiently small interior (risky) proposal is always

worthwhile because the probability of rejection will be sufficiently low, and making an even

larger interior proposal may be worthwhile as well, depending on the shape of f(·).

To see the condition in practice, suppose that cB is uniformly distributed on [cBl
, cBh

].

The uniform distribution, because of its simplicity, is the most commonly used one in works

that assume a specific continuous distribution. The uniform density function is f(cB) =

1
cBh

−cBl

for all cB ∈ [cBl
, cBh

], and plugging this into the condition f(cBl
) > 1

cA+cBl

, we

get cBh
− cBl

< cA + cBl
: if the width of the uniform distribution, cBh

− cBl
, is less than

a certain threshold, then A makes a risk-free proposal. The intuition is that the uniform

density function is constant over [cBl
, cBh

], and hence narrowing the interval of types pushes

the density function up (to maintain the area under the density function at 1), eventually

ensuring that the risk-free condition f(cBl
) > 1

cA+cBl

will hold. With a uniform distribution

of types, the interval of types has to be sufficiently wide for A to make a risky proposal. And

as either cA or cBl
increases, the wider it has to be for the proposal to carry risk.

3 Uncertainty About the Probability of Winning

3.1 Two Types

Now suppose that A knows cB but is uncertain about p. Suppose that there are two possible

values of p, pl and ph, with 0 < pl < ph < 1, and pl + cB < 1. Nature chooses p to be pl with

probability l ∈ (0, 1) and ph with probability 1− l. B observes this move and hence knows

the value of p (thus, we will call pl the strong “type” of B, and ph the weak “type”), whereas

A does not observe the move but knows the probabilities (e.g., A’s military capabilities are

known to both sides but only B knows B’s). The following is the result.
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Proposition 4 Define the following threshold: lcrit =
min{ph+cB ,1}−(pl+cB)
min{ph+cB ,1}−(pl−cA)

∈ (0, 1). Then the

following is the unique perfect Bayesian equilibrium (PBE) of the game:

(i) “Type” pl of B accepts any proposal x ≤ pl + cB, and “type” ph accepts any proposal

x ≤ min{ph + cB, 1}.

(ii) If l > lcrit, then A makes the safe, limited proposal of x = pl+ cB, which both “types”

of B accept.

(iii) If l < lcrit, then A makes the risky, large proposal of x = min{ph + cB, 1}, which

only “type” ph accepts.

This is very similar to Proposition 2: with two types, whether A makes a safe or risky

proposal depends on whether the prior probability that B is the strong type exceeds a

certain threshold. With two types, there exist reasonable circumstances in which the optimal

solution to the risk-return tradeoff involves no risk.

3.2 Continuum of Types

Now suppose that p is distributed on the interval [pl, ph], with 0 < pl < ph < 1 and pl+cB < 1.

The random variable p has a cumulative distribution function F (·) that is differentiable on the

interior of the above interval, with probability density function f(·) = F ′(·) that is positive

everywhere on the above interval. Assume that the hazard rate f(·)
1−F (·) is non-decreasing.

7

Proposition 5 This game has a unique perfect-Bayesian equilibrium (PBE), in which any

7Reed (2003) also analyzes an ultimatum model with uncertainty about the probability

of winning and a continuum of types, but does not present a result as below on when A

will make a risky versus a risk-free proposal. Instead, he assumes that the parameters are

such that the equilibrium proposal is risky (interior) and examines the effect of increasing

the variance of the distribution of types on the risky proposal and the likelihood of war.
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“type” p of B accepts any proposal such that x ≤ min{p + cB, 1}, and A’s proposal is as

follows:

(i) If f(pl) >
1

cA+cB
, then A makes the risk-free, limited proposal of x = pl + cB.

(ii) If f(pl) < 1
cA+cB

, then A makes a risky, large proposal x∗ > pl + cB, where (a) x∗

is a (possibly non-unique; unique if we impose the marginally stronger requirement that the

hazard rate is strictly increasing) solution to f(x−cB)
1−F (x−cB)

= 1
cA+cB

if [ph+cB ≤ 1] or [ph+cB > 1

and f(1−cB)
1−F (1−cB)

> 1
cA+cB

], and (b) x∗ = 1 if [ph + cB > 1 and f(1−cB)
1−F (1−cB)

< 1
cA+cB

].

With a continuum of types, the condition under which A’s optimal proposal is risk-free

is f(pl) > 1
cA+cB

, i.e., the probability density of facing the strongest possible type of B

exceeds a certain threshold. As before, the intuition is that when this probability density

is sufficiently high, then making an even slightly risky (interior) proposal carries too high

a probability of rejection for the small gain in territory, if the proposal is accepted, to be

worthwhile.

Note from the risk-free condition f(pl) >
1

cA+cB
that even as cA > 0 becomes arbitrarily

small, if f(pl) > 1
cB
, then A makes a risk-free proposal. Hence, just like with uncertainty

about cB when we allow cBl
> 0, with uncertainty about p we cannot conclude along Fearon’s

(1995) lines that for cA small enough A’s optimal proposal is definitely risky. The condition

under which A’s optimal proposal is risky is not trivially satisfied. And as either cA or cB

increases, it is more likely that the risk-free condition will be satisfied, and hence that the

risk-free proposal will be made. For cA, the logic behind this is straightforward, and for cB,

the intuition is that the risk-free proposal x = pl + cB is strictly increasing in cB and hence

becomes more attractive as cB increases.

To see the condition in practice, suppose that p is uniformly distributed on [pl, ph]. Sub-
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stituting the uniform density f(p) = 1
ph−pl

into the safe-proposal condition f(pl) > 1
cA+cB

gives cA + cB > ph − pl. That is, if the width of the interval of types, ph − pl, is less than a

certain threshold (in this case, the total costs of war), then A makes a risk-free proposal. As

earlier, the intuition is that if the uniform distribution is sufficiently narrow, then the con-

stant density function will be high enough that the risk-free condition is definitely satisfied.

Whether the uncertainty is about the cost of war or the probability of winning, narrow non-

informative priors (i.e., narrow uniform distributions) are conducive to a risk-free proposal

being made. This is another prediction that is potentially amenable to empirical testing.

4 Conclusion

Informational problems have a rich heritage in the conflict literature as a theorized cause of

war, and many game-theoretic models of crisis bargaining incorporate private information.

Some of these models assume two or a larger finite number of types, others assume a contin-

uous uniform distribution of types, while some assume any continuous distribution of types

with a non-decreasing hazard rate. The standard view is that more types are better and

comprise a more general analysis (Powell 2004, 345, 348; Wittman 2009, 590), and that with

a continuum of types, the optimal proposal “typically”/“usually”/“generally” entails a risk

of rejection and hence war (Powell 2004, 348; Powell 2006, 170, 174).

In this research note, I have taken a closer look at these issues. I have argued that the

finite-type case has reasonable justifications beyond just simplicity. I have shown that when

Fearon’s (1995) assumption that the lower bound of the set of B’s possible costs of war

is 0 is relaxed, a relaxation justified by the rationalist approach’s foundational assumption

that war is costly, then the optimal proposal is risk-free under broader conditions than in
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his analysis. When the uncertainty is about the military balance instead, then here too the

condition under which the optimal proposal is risky is not trivially satisfied. Whatever the

source of uncertainty, the optimal solution to the risk-return tradeoff often involves no risk.

Incomplete-information models of crisis bargaining focus on the interior (risky) solution,

for good reason: this is where the “action” is, in that there is a risk of war. In this note,

I have sought to rehabilitate its poorer cousin, the corner (risk-free) solution, by showing

that the optimal solution to the risk-return tradeoff is the corner solution under broader

conditions than previous work has indicated.

While these results certainly do not undermine private information as a rationalist expla-

nation for war, they do suggest that uncertainty is not as conducive to war breaking out as

previous work has suggested. This result that the optimal solution to the risk-return tradeoff

often involves no risk, especially when combined with Leventoğlu and Tarar’s (2008) result

that in infinite-horizon crisis bargaining the risk-return tradeoff need not even exist, perhaps

provides a theoretical justification for the field’s recent focus on commitment problems rather

than informational problems as a cause of war.
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5 Appendix

Propositions 1, 2, and 4 are straightforward, standard results, and hence the proofs are

omitted.

5.1 Proof of Proposition 3

Any proposal x ∈ [0, p + cBl
] is accepted for sure, resulting in A’s payoff being x. Within

this range, A’s uniquely optimal proposal is thus x = p + cBl
. Thus, if cB is distributed on

[cBl
,∞), or on [cBl

, cBh
] but p + cBh

≥ 1, then the optimal value of x occurs in the interval

[p + cBl
, 1], i.e., we just have to maximize over this range (and can ignore smaller values of

x). On the other hand, if cB is distributed on [cBl
, cBh

] and p + cBh
< 1, then note that A

also strictly prefers x = p + cBl
to any x > p + cBh

, for the latter is rejected for sure and

leads to the strictly smaller payoff of p − cA. Hence, the optimal value of x occurs in the

interval [p+ cBl
,min{p+ cBh

, 1}], i.e., we just need to maximize over this range. Denote this

interval by M .

For any x ∈ M , B accepts the proposal if x ≤ p+ cB, or cB ≥ x− p, which occurs with

probability 1 − F (x − p), where F (·) is the cumulative distribution function for cB. If the

proposal is accepted, A’s payoff is x. B rejects the proposal if x > p + cB or cB < x − p,

which occurs with probability F (x − p). If the proposal is rejected, A’s payoff is p − cA.

Thus, A’s expected utility for any x ∈ M is EUA(x) = [1−F (x− p)](x) +F (x− p)(p− cA).

Differentiating, EU ′
A(x) = 1− F (x− p)− f(x− p)[x− (p− cA)].

EU ′
A(x) ≤ 0 can be re-written as f(x−p)

1−F (x−p)
≥ 1

x−(p−cA)
. LHS is non-decreasing in x and

RHS is strictly decreasing in x. Thus, if this inequality holds at x = p+ cBl
, then it strictly

holds for all greater x, meaning that EUA(x) is strictly decreasing in x on the interval x ∈ M
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and hence is uniquely maximized at x = p+cBl
. Substituting x = p+cBl

into the inequality,

we get f(cBl
) ≥ 1

cA+cBl

. This gives case (i) in the proposition.

Now suppose that cB is distributed on [cBl
, cBh

] and f(cBl
) < 1

cA+cBl

, meaning that

EUA(x) is strictly increasing at x = p + cBl
. First suppose that p + cBh

≤ 1. Note that

EU ′
A(x = p+cBh

) = −(cA+cBh
)f(cBh

) < 0, i.e., EUA(x) is strictly decreasing at x = p+cBh
,

meaning that EU ′
A(x) = 0 for at least one value of x ∈ (p + cBl

, p + cBh
). EU ′

A(x) = 0

is equivalent to f(x−p)
1−F (x−p)

= 1
x−(p−cA)

. Since LHS is non-decreasing in x and RHS is strictly

decreasing in x, EU ′
A(x) = 0 for only a single value of x ∈ (p+cBl

, p+cBh
), which establishes

that the solution is unique (and is a maximizer rather than a minimizer). Now suppose that

p + cBh
> 1. EU ′

A(x = 1) < 0 is equivalent to f(1−p)
1−F (1−p)

> 1
1−(p−cA)

, and hence if the

latter holds then EUA(x) is strictly decreasing at x = 1, meaning that EUA(x) is again

uniquely maximized by setting EU ′
A(x) = 0. On the other hand, if f(1−p)

1−F (1−p)
≤ 1

1−(p−cA)
then

EU ′
A(x = 1) ≥ 0, meaning that EUA(x) is uniquely maximized at x = 1. This completes

case (ii), and the exact same arguments following “Now suppose that p+ cBh
> 1” also cover

case (iii). Q.E.D.

5.2 Proof of Proposition 5

Any proposal x ∈ [0, pl + cB] is accepted for sure, resulting in A’s payoff being x. Within

this range, A’s uniquely optimal proposal is thus x = pl + cB. If ph + cB < 1, then also

note that A’s payoff for any x ≥ ph + cB is constant, since any such proposal is rejected

with probability 1, resulting in A’s expected payoff being
∫ ph
pl
(p− cA)f(p)dp. Thus, we just

need to maximize over the interval x ∈ [pl + cB,min{ph + cB, 1}], i.e., the optimal value of
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x occurs in this interval.8 Denote this interval by M .

For any x ∈ M , B accepts the proposal if x ≤ p+ cB, or p ≥ x− cB, which occurs with

probability 1 − F (x − cB), where F (·) is the cumulative distribution function for p. If the

proposal is accepted, A’s payoff is x. B rejects the proposal if x > p+cB or p < x−cB, which

occurs with probability F (x − cB). If the proposal is rejected, A’s payoff is p − cA. Thus,

A’s expected utility for any x ∈ M is EUA(x) =
∫ x−cB
pl

(p − cA)f(p)dp +
∫ ph
x−cB

(x)f(p)dp =

x−(x+cA)F (x−cB)+
∫ x−cB
pl

pf(p)dp. Differentiating (and using the Fundamental Theorem of

Calculus for the derivative of a definite intergral), EU ′
A(x) = 1−F (x−cB)−f(x−cB)[cA+cB].

EU ′
A(x) < 0 can be re-written as f(x−cB)

1−F (x−cB)
> 1

cA+cB
. LHS is non-decreasing in x and

RHS is constant. Thus, if this inequality holds at x = pl + cB, then it holds for all greater x,

meaning that EUA(x) is strictly decreasing in x on the interval x ∈ M and hence is uniquely

maximized at x = pl+cB. Substituting x = pl+cB into the inequality, we get f(pl) >
1

cA+cB
.

This gives case (i) in the proposition.

Now suppose that f(pl) < 1
cA+cB

, meaning that EUA(x) is strictly increasing at x =

pl+cB. First suppose that ph+cB ≤ 1. Note that EU ′
A(x = ph+cB) = −(cA+cB)f(ph) < 0,

i.e., EUA(x) is strictly decreasing at x = ph + cB, meaning that EU ′
A(x) = 0 for at least

one value of x ∈ (pl + cB, ph + cB). EU ′
A(x) = 0 is equivalent to f(x−cB)

1−F (x−cB)
= 1

cA+cB
. Since

LHS is non-decreasing in x and RHS is constant, it is possible for there to be an interval

8Note that, in contrast to when the uncertainty is about cB, when the uncertainty is

about p then it is not necessarily the case that A prefers to make the best risk-free proposal

(x = pl + cB) to a proposal that is rejected with probability 1 (any x ≥ ph + cB). For

example, if p is uniformly distributed on [pl, ph], then EUA(x ≥ ph+ cB) =
pl+ph

2
− cA, which

for sufficiently small cA and cB strictly exceeds pl + cB. Nevertheless, as shown below, in

equilibrium A never proposes any x ≥ ph + cB.
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of values of x (with the interval strictly to the right of pl + cB and strictly to the left of

ph + cB) that maximize EUA(x), and to ensure that there is a unique maximizer, we have

to impose the marginally stronger restriction that the hazard rate is strictly increasing (just

at the smallest value of x that satisfies f(x−cB)
1−F (x−cB)

= 1
cA+cB

) rather than just non-decreasing.

Now suppose that ph + cB > 1. EU ′
A(x = 1) < 0 is equivalent to f(1−cB)

1−F (1−cB)
> 1

cA+cB
, and

hence if the latter holds then EUA(x) is strictly decreasing at x = 1, meaning that EUA(x)

is maximized (again at possibly an interval of values of x) by setting EU ′
A(x) = 0. On the

other hand, if f(1−cB)
1−F (1−cB)

< 1
cA+cB

then EU ′
A(x = 1) > 0, meaning that EUA(x) is uniquely

maximized at x = 1. This completes case (ii). Q.E.D.
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