Model Selection and Bootstrapping
So you’ve made a model

What’s Next?
- How to choose the appropriate model for your data?
- Which Criteria should you use?
- Avoiding the overfit
Model Selection Techniques

- Akaike Information Criteria
- Bayesian Information Criteria
- Mallow’s Cp
- Stepwise Regression
- Cross validation
Akaike Information Criteria

- Based in information theory
- Gives a quality estimate
- Estimate is a measure of the trade-off between goodness of fit and model complexity
- Not a means to test a model
- K helps prevent overfitting

\[
AIC = 2k - 2\ln(L)
\]

\[
\exp((AIC_{\min} - AIC_i)/2)
\]

\[
AICC = AIC + \frac{2k(k + 1)}{n - k - 1}
\]

L = maximized value of the likelihood function
K = number of parameters in the model
n = sample size
Bayesian Information Criteria

- Based on the likelihood function
- Closely related to the Akaike information criterion (AIC).
- Lower BIC implies either fewer explanatory variables, better fit, or both

<table>
<thead>
<tr>
<th>ΔBIC</th>
<th>Evidence against higher BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2</td>
<td>Not worth more than a bare mention</td>
</tr>
<tr>
<td>2 to 6</td>
<td>Positive</td>
</tr>
<tr>
<td>6 to 10</td>
<td>Strong</td>
</tr>
<tr>
<td>>10</td>
<td>Very Strong</td>
</tr>
</tbody>
</table>
Mallows Cp

- Assesses the fit of an OLS regression model
- The C_p statistic calculated on a sample of data estimates the mean squared prediction error (MSPE) as its population target
- For a good model, C_p should fall on or below the (0,1) line.
- C_p statistic is often used as a stopping rule for various forms of stepwise regression
Stepwise Regression

- Regression models that uses specified technique to choose predictor variables
 - Common Ones Used include:
 - R-square
 - AIC
 - BIC
 - P-values
 - Mallows's C_p

- Problems with this method:
 - Fit can appear better than it actually is
 - Over simplification

- Forward Selection
 - Starts with none and adds until no variables improve the model

- Backward Selection
 - Starts with all, and removes until no improvement in the model is seen

- Combined Selection
 - Allows for variables to be included or excluded at each step
Cross Validation

- Assesses how the results of a statistical analysis will fit to an independent data set
- Start with a training data to develop model
- Model is tested using test data
- Can subset original data into training and test data
- Useful for data that is difficult or costly to collect
Traditional inference

- From any sample, we can figure only one of each statistic (e.g. mean, var, F, AIC, etc.)
- What we don’t know is information on the distribution of that statistic (e.g., shape, variance, skewness, etc.)
- traditional inference infers the distribution of a statistic given that certain assumptions are met; typically:
 - Independence of residuals
 - Normality of residuals
 - Equality of variance of residuals
Limitations to traditional inference

- p-values and confidence intervals are suspect when assumptions are violated
- The sampling distribution of a statistic is often unknown and prohibitively difficult to derive

The bootstrap...

- Seeks to find the distribution of any possible statistic or function
 - without assumptions about the population distribution
 - without deriving the sampling distribution explicitly
 - only from knowledge of the sample itself; i.e., the sample pulls itself up by its bootstraps
Bootstrapping is a method for estimating the sampling distribution of an estimator by resampling with replacement from the original sample.

- means of estimating the statistical accuracy from the data in a single sample.
- Mimics the process of selecting many samples when the population is too small to do otherwise.
- The samples are generated from the data in the original sample by copying it many number of times (Monte Carlo Simulation).
- Samples can then be selected at random and descriptive statistics calculated or regressions run for each sample.
- The results generated from the bootstrap samples can be treated as if they were the result of actual sampling from the original population.
The Idea: Try to do what can’t do in real life – take lots and lots of independent samples.

- Perform desired function on multiple*subsamples*
 - Subsamples: same size as original sample, but chosen *with replacement*
 - With Replacement: if a number has already been picked to be in the subsample, it is still eligible to be picked a second time, third time, etc. This is called resampling your data.
Example of a resample

- First 10 sepal widths for Iris versicolors are: 3.2, 3.2, 3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7
- A possible subsample with replacement would be: 2.9, 2.8, 3.2, 2.3, 2.3, 3.2, 3.1, 3.2, 2.7, 3.2
- In resample, 2.3 and 3.2 occur more often than in the original 10 sepal widths, while 2.8 and 2.4 occur less often
Results – bootstrapped confidence interval

- The distribution of the resample results are centered around the results of the original sample.
- To test for significance, form a $100(1-\alpha)\%$ confidence interval then check to see if that interval contains 0.
Virtually assumption free, except…

- That the distribution of your sample is a close approximation to the population distribution.
 - Tends to be true as # samples \(n \) becomes large
 - But if \(n \) is small, this is precisely when violations of assumptions for traditional statistics matters most
 - The bootstrap has been criticized on these grounds: it can’t help us precisely when we need it most!
 - Inference will always be suspect for small samples. However, it allows us to estimate heretofore unknowable sampling distributions.
Ecological Applications

- Ecologists often use cluster analysis as a tool in the classification and mapping of entities such as communities or landscapes.
- However, the researcher has to choose an adequate group partition level.
- Use bootstrap to test statistically for fuzziness of the partitions in cluster analysis.
- Partitions found in bootstrap samples are compared to the observed partition by the similarity of the sampling units that form the groups.
Example: Iris data – is there a difference in mean sepal widths between the Iris versicolor and I. virginica?

- Using first 10 samples from each species
- Difference in mean sepal widths is -0.07. Is this large or small??

 Ho: There is no difference in mean sepal width between these two species
 Ha: There is a difference in mean sepal width between these two species
• 10,000 bootstrap resamples
• Distribution around the actual sample mean (-0.07)
A 95% confidence interval for the population mean difference can be found by taking the middle 9,500 mean differences from the 10,000 in our bootstrap distribution.

This results in an interval of (-0.36, 0.20).

A population mean difference of 0 is plausible, and there is not significant evidence to reject the null hypothesis (no difference in sepal length).