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Abstract

A large class of adaptive models take imitation as the primary diver of behavior,
while others focus on some form of myopic optimization. Previous literature is mixed
on which class of adaptive models is more appropriate for describing human behavior.
We conduct an experiment using a continuous-time, all-pay auction, providing richer
data than previous studies and clean separation between the theoretical predictions
of imitative models and those of optimization models. In accordance with theoretical
predictions from adaptive models, but in contrast to Nash equilibrium predictions,
we observe incessant disequilibrium cycles in bidding behavior. Myopic optimization
models greatly outperform imitative models in characterizing the observed behavior.
The provision of social information regarding the bids and payoffs of others—a required
informational assumption for imitative models—neither increases the predictive power
of imitative models nor disrupts the observed bidding cycles. Instead, it increases both
the speed of cycles and the precision of optimization behavior.
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1 Introduction

Nash Equilibrium is a powerful tool for understanding strategic behavior. Even when agents

fall short of perfect rationality, simple adaptive processes can often drive long-run behavior

towards equilibrium predictions. For this reason, adaptive models have long been employed

to justify the application of equilibrium solution concepts in the presence of bounded ratio-

nality (e.g., Cournot et al., 1897; Nash, 1951). In such environments, the long run predictions

of many adaptive models are remarkably similar to equilibrium, making it difficult to sep-

arate the predicitons of alternative adaptive models. However, in strategic environments

with unstable equilibria, adaptive dynamics may fail to converge, leading boundedly ratio-

nal agents to exhibit persistent disequilibrium behavior. In these unstable environments,

we can clearly separate the distinct theoretical predictions from different adaptive models,

as behavior remains strongly non-convergent. Moreover, they provide strong evidence that

characterizing the adaptive processes from which equilibria emerge can be equally important

as characterizing equilibrium behavior.1

Different adaptive models often make fundamentally different behavioral assumptions. In

particular, a large class of adaptive models take imitation as the primary diver of adaptive

behavior, while others focus on some form of myopic optimization. To investigate the ex-

planatory power of these distinct classes of adaptive models, this paper presents experimental

results from laboratory experiments on continuous-time all-pay auctions2 with continuous

strategy spaces, discontinuous payoff functions, a finite population of agents, and highly a

unstable Nash equilibrium. These combined features foster disequilibrium bidding cycles,

an outcome running contrary to the predictions of both the Nash and quantal response

equilibrium but consistent with adaptive models. Further, the cycles, themselves, generate

1For more on the importance of understanding adaptive dynamics out of equilibrium, see Sandholm (2010)
or Weibull (1997).

2The all-pay auction has been examined extensively in experimental environments (see Dechenaux et al.,
2014, for a survey). Previous experimental studies (e.g., Gneezy and Smorodinsky, 2006; Lugovskyy et al.,
2010; Ernst and Thöni, 2013) of the all-pay auction conduct a sequence of discrete rounds in which subjects
secretly select their bids and the single highest bidder receives a price. Unlike these previous studies, we
investigate all-pay auctions with three bidders who compete over two equally valuable prizes. The top two
bidders each receive a prize, while the lowest bidder receives no prize. As in the standard all-pay auction,
every bidder pays her bid. In contrast to previous studies, our subjects adjust their bids asynchronously
throughout the experimental session and earn flow payoffs continuously over time.
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distinctly different, instantaneous predictions of imitative and myopic optimization models.

Imitative models provide a convenient explanation for the predictive power of equilibrium

without resorting to the assumption of perfectly rational agents. If agents imitate the most

successful strategies, then other strategies will gradually die out, and successful strategies

will be increasingly employed by the population. Such imitative dynamics illustrate how

long run behavior can stabilize on equilibrium even when agents have little understanding

of the strategic incentives they face. For example, Vega-Redondo (1997) proves that a noisy

imitate-the-best dynamic leads to the emergence of Walrasian equilibrium under Cournot

competition between a finite number of firms. However, this explanation of equilibrium re-

mains unorthodox in in economics, where agents are typically assumed to be goal-oriented

utility maximizers. Accordingly, other models of adaptive behavior describe boundedly ratio-

nal agents who myopically respond to their individual payoff incentives instead of imitating

the successful strategies employed by others (e.g., Fudenberg and Levine, 1998; Gilboa and

Matsui, 1991; Smith, 1984).

Each of these adaptive models place different informational requirements on agents. Im-

itative dynamics describe agents who mimic the actions taken by their successful peers, so

imitation necessarily requires that agents observe the actions and payoffs of others. In con-

trast, myopic optimization dynamics describe agents who select actions that maximize their

individual payoffs, so the minimum information requirement for agents under these models is

simply to observe their own payoffs. To examine the robustness of adaptive models to these

informational requirements, our treatments manipulate the availability of social information

regarding the bids and payoffs of others. In our local information treatment, subjects can

only observe their own bids and payoffs. In our global information treatment, subjects can

also observe the bids and payoffs of others. We hypothesize that imitative models will model

subject behavior well when social information is present, while myopic optimization models

will work in the absence of social information.

Contrary to this hypothesis, when social information is provided for subjects, optimiza-

tion models provide more reliable predictions of bidding behavior than imitative models.

Specifically, we find that optimization behavior is more precise, bids are higher, earnings

are lower, and bidding cycles occur more rapidly when subjects have access to global in-
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formation. Subjects with access to social information consistently employ strategies that

better respond to their opponents’ strategies instead of merely mimicking the most success-

ful strategies employed by others. Under local information, subjects are unable to observe

the behavior of others, so they employ a trial-and-error strategy and exhibit significantly

more behavioral noise.

The failure of imitative models to reliably characterize subject behavior in this experiment

may suggest a general failing of imitative models to accurately represent human cognition.

While a direct interpretation of imitative models would confine subjects to playing only

previously employed strategies, we consider a more liberal model which predicts that agents

are more likely to play strategies close to the most successful previously employed strategies.3

Our global-information treatment is designed to make executing this dynamic as easy as

possible; subjects only need to click on the highest bar on a computer screen to follow

the dynamic exactly (see Section 3.1 for a more detailed description). However, instead

of merely imitating successful strategies employed by others, subjects clearly employ more

sophisticated optimization methods that involve estimating the forgone payoff to previously

unemployed strategies. Moreover, the explanatory power of imitative models changes little

with the provision of social information, suggesting that social information helps subjects to

more effectively optimize instead of promoting imitation.

Previous literature includes several attempts to investigate whether imitation or opti-

mization best describes actual behavior in games. None have utilized a dataset as rich as

ours—our use of continuous time, continuous strategy spaces, and discontinuous payoff func-

tions allows us to reach uniquely definitive conclusions regarding the predictive validity of

alternative adaptive dynamics (see section 4 for our specific hypotheses). Perhaps in part

because of this data limitation, there appears to be little consensus reached on the degree

to which individuals imitate or optimize. Tests of imitative models using a wide variety of

experimental designs have have found evidence both in favor (Offerman et al., 2002; Feri

et al., 2011) and against (Cheung and Friedman, 1998; Friedman et al., 2015) the predictive

power of imitative models. Similarly, research on dynamic cognition and behavioral learning,

which like our paper examines how individuals respond to information about games, finds

3The deterministic imitate-the-best model is the limiting case of this model.
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both support (Offerman et al., 2002) and opposition (Ho et al., 2007; Camerer and Hua Ho,

1999) to the notion that individuals respond to payoff information by imitating previous ac-

tions that earned higher payoffs. Our paper’s novel experimental design provides conclusive

evidence on this issue, strongly rejecting the idea that people are naturally imitators rather

than optimizers.

The paper also contributes to the small, but burgeoning area of literature that studies

the properties of disequilibrium dynamics in continuous-time games (i.e., Oprea et al., 2011;

Cason et al., 2014). Consistent with that literature (specifically, Cason et al.), we observe

persistent, disequilibrium cycles that cannot be predicted by standard equilibrium-based

models of game theory. Our treatment variable allows us to characterize the channels through

which these equilibrium cycles respond to the availability of social information. Specifically,

social information does not alleviate disequilibrium cycling, rather it reduces behavioral

noise in optimization and increases the frequency of cycles. Further, because our design

features a continuous strategy space, it provides detailed data regarding the accuracy with

which alternate evolutionary models predict the behavioral dynamics of these disequilibrium

cycles. To our knowledge, these contributions are unique within the literature.

This paper proceeds as follows: Section 2 presents the structure of the game and two

different equilibrium models. It also describes and the various adaptive models that will be

used to characterize the experimental data. Section 3 presents the full design and procedures

of the experiment. Section 4 provides our hypotheses. Section 5 presents the main results

and Section 6 concludes.

2 Theory

In all-pay auctions, multiple agents expend costly effort to compete over a limited number

of prizes. Prizes are awarded to the agents who expend the most effort, but every agent

bears the cost of her own effort, even if she does not win a prize. All-pay auctions often

model strategic environments that involve both conflict and non-recoverable costs such as

political lobbying (Baye et al., 1993), patent races (Marinucci and Vergote, 2011), biological

competition (Chatterjee et al., 2012), and international warfare (Hodler and Yektaş, 2012).
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The all-pay auction involves three players who compete over two prizes. Each player i

starts with a endowment w and selects her bid bi from the closed interval [0, w]. The top

two bidders each receive a prize with value v and the lowest bidder receives no prize. Every

player must pay her bid, regardless of whether or not she won a prize. In the case of a tie,

the winner is determined randomly. Accordingly, the payoff function for player i is given by:

πi (bi, bj, bk) =



w − bi + v if bi > min {bj, bk}

w − bi + 2v/3 if bi = bj = bk

w − bi + v/2 if bi = min {bj, bk} < max {bj, bk}

w − bi otherwise

(1)

2.1 Equilibrium Models

We consider equilibrium models including the Nash equilibrium and the logit quantal re-

sponse equilibrium. Nash equilibrium assumes that each agent selects a best response to the

strategies selected by others. In contrast, the logit quantal response equilibrium assumes

that agents make probabilistic errors in their payoff evaluations.

2.1.1 Nash Equilibrium

The all-pay auction investigated here with three bidders and two winners has no pure strategy

Nash equilibrium, but it does have a unique symmetric mixed strategy Nash equilibrium.

First derived by Clark and Riis (1998),4 the corresponding probability density function for

the bid of player i given by

f (bi) =
1

2v

(
1− bi

v

)−1/2
for all bi ∈ [0, v]. (2)

The black line in Figure 1 illustrates this equilibrium density function. Note that that

Nash equilibrium probability density function approaches infinity as bids approaches the

value of the prize and remains at zero for any bid above the value of the prize. Thus, in

equilibrium players are likely to bid near the value of the prize but never above it.

4Appendix Section A.1 contains an alternate derivation of the equilibrium.
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Figure 1: Nash Equilibrium and Logit Quantal Response Equilibria

2.1.2 Logit Quantal Response Equilibrium

While the Nash equilibrium describes the behavior of perfectly rational and perfectly precise

agents, the logit quantal response equilibrium described by McKelvey and Palfrey (1995)

and Lopez (1995) allows us to model the behavior of imprecise boundedly rational agents.

Such agents make probabilistic errors in their evaluation of alternate strategies. Although

they typically fail to select a best response, they are more likely to select strategies that

yield higher payoffs.

Unlike the perfectly rational agents described by Nash equilibrium, agents in logit quantal

response equilibrium may place positive probability on dominated strategies, since their be-

havior is fundamentally stochastic. In the case of a continuous strategy space, the probability

density function for the logit quantal response equilibrium mixed strategy σi satisfies:

f (bi) =
exp (η−1πi (bi, σ−i))ˆ
exp (η−1πi (x, σ−i)) dx

(3)

6



Here η denotes the level of behavioral noise in an agent’s evaluation of payoffs. When η is

small, agents make small errors, and the strategy distribution approaches the Nash equilib-

rium. When η is large, the logit quantal response equilibrium approaches uniformly random

play. To illustrate this tendency, Figure 1 depicts the logit quantal response equilibrium

under alternate values of η.

A closed form solution for the logit quantal response equilibrium of an all-pay auction

with a single prize is provided by Anderson et al. (1998). To the best of our knowledge,

no closed form solution is currently available for the logit quantal response equilibrium of

an all-pay auction with two prizes. Accordingly, a formal derivation of the logit quantal

response equilibrium in this case is found in Appendix Section A.2. The logit quantal

response equilibrium probability density function for the bid of player i is

f (bi) =
ηG
(√

ηv
)

exp (−ηbi)√
ηv [1− exp (−ηw)]

[
exp

(
G−1

(
G (
√
ηv)

[
1− 1− exp (−ηbi)

1− exp (−ηw)

])2
)]−1

, (4)

where G (x) =
´ x
0

exp (u2) du =
√
π
2

erfi (x).

2.2 Evolutionary Game Theory

The experiment in this paper involves continuous-time, two good, three-bidder all pay auc-

tions. These auctions are conducted in groups of three, but subjects’ rewards are calculated

using mean matching, so essentially every subject plays every other subject all the time. In

situations like these, it is useful to consider models from evolutionary game theory, the study

of “large populations of agents who repeatedly engage in strategic interactions,” (Sandholm,

2010).

2.2.1 Evolutionary Stability

By design, this all-pay auction has evolutionary dynamics that make it a prime candidate for

persistent disequilibrium. Accordingly, it has no evolutionary stable strategy. The idea of

an evolutionarily stable strategy was introduced by Smith and Price (1973), who employed

it to identify the stability of biological phenotypes in large populations under the pressures
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of mutation and natural selection. More recently, game theorists and social scientists have

employed evolutionary stability criteria to model the behavioral stability of Nash equilibria

in a wide variety of strategic settings.5

A strategy is evolutionarily stable if it induces a self-enforcing convention. That is,

a strategy x is evolutionarily stable if no other strategy y can invade it when the entire

population initially employs strategy x. More formally, in a in a symmetric normal form

game, a strategy x is evolutionarily stable if there exists some C ∈ (0, 1) such that for all

ε ∈ (0, C) and for any other strategy y

π ( x | εy + (1− ε)x ) > π ( y | εy + (1− ε)x ) (5)

Thus, if x is evolutionarily stable and a sufficiently small proportion of the population devi-

ates to an alternate strategy y, then agents who employ x will earn a strictly higher payoff

than agents who employ y.

The Nash equilibrium strategy for the all-pay auction is not evolutionarily stable. Too see

why, suppose that a small proportion ε of the population deviates from the Nash equilibrium

strategy x to an alternate strategy y under which agents always bid the full value of the prize.

Since the support of the equilibrium bid distribution is given by the closed interval [0, v],

agents who employ the invading strategy y will win the prize with probability one whenever

they are matched against an agent who employs the equilibrium bidding strategy. In this

case, the invading strategy y earns a higher expected payoff than the equilibrium mixed

strategy x, so the equilibrium mixed strategy for the all-pay auction with three bidders

and two prizes is not evolutionarily stable. A formal derivation of this result is found in

Appendix Section A.3. Since mixed strategy Nash equilibrium fails to induce a self enforcing

convention in this all-pay auction, we expect to observe dynamic instability in experimental

bidding behavior.

5These settings include price competition (Alos-Ferrer and Ania, 2005), linguistics (Demichelis and
Weibull, 2008), and corporate investment (Parayre and Hurry, 2001).
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2.2.2 Adaptive Dynamics

As we expect this experimental environment to be rife with instability, we have ample op-

portunity to examine the adaptive behavior of subjects. In particular, we will specifically

examine noisy optimization dynamics and a noisy imitation dynamics from evolutionary

game theory (Sandholm, 2010). In these adaptive models, agents make asynchronous strat-

egy adjustments over time. The timing of these adjustments follows a homogeneous Poisson

process with a rate of δ adjustments per second. The value bit here denotes the bid employed

by agent i at time t. To determine the relative strengths of these models, we also develop a

multi-parameter model that nests each as a special case.

Under deterministic optimization models, such as those described by Gilboa and Matsui

(1991) and Golman (2011) agents switch precisely to their best response. In contrast, the

logit dynamic is a noisy optimization model (Fudenberg and Levine, 1998; Hopkins, 1999),

predicting that agents will be more likely to select bids that yield higher payoff. Under this

model, the likelihood that an agent i who adjusts her bid at time t will select a particular

bid b is given by:

fi,t (b) =
exp (βπi (b, b−i,t))´ w

0
exp (βπi (x, b−i,t)) dx

(6)

Purely imitative models (e.g., Duersch et al., 2012; Golman, 2011; Taylor and Jonker,

1978; Oechssler and Riedel, 2001) predict that agents will exclusively imitate the strategies of

other agents they encounter. Such models predict that agents will never innovate by playing a

strategy that was not previously employed by others in the population. In an experiment such

as this one, with a continuous strategy space and finite number of subjects, this prediction

will almost certainly fail as subjects pick new strategies that were not previously employed

by others. To increase the flexibility of these imitative models, we consider a noisy imitation

model under which agents are more likely to select bids that are close to the bid that

is currently employed by the agent with the highest earnings rate. Let bHt denote the bid

employed by the agent who has the highest earning rate at time t. Under this noisy imitative

model, the likelihood that an agent who adjusts her bid at time t will select a particular bid

b is given by:

fi,t (b) =
exp

(
γ
∣∣b− bHt ∣∣)´ w

0
exp (γ |x− bHt |) dx

. (7)
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It is important to note that the noiseless imitate-the-best dynamic is a special case of

this model where γ →∞.

To examine the relative strength of the noisy imitation and optimization dynamics, we

develop a combined model that includes each both imitation and optimization as a special

case. In this combined model, the attraction of a bid x for an agent i at time t is given by

Ait (b) = απi (b, b−i,t)− β |b− bi,t| − γ
∣∣b− bHt ∣∣ . (8)

Here bit denotes the the bid employed by agent i at time t and bHt denotes the bid employed

by the agent who is earning the highest payoff at time t. The parameter α denotes the extent

to which agents are more likely to select strategies that yield higher payoffs. The parameter

β denotes the degree to which bids are autocorrelated, that is, the extent to which agents

tend to select bids that are close to their previous bids.6 The parameter γ captures denotes

the tendency to imitate success, that is, the extent to which agents tend to pick bids which

are close to the bid employed by the highest earning player. Accordingly, the the likelihood

that agent i will select a bid x when she makes an adjustment at time t is given by

fit (b) =
exp (Ait (b))´ w

0
exp (Ait (x)) dx

. (9)

3 Experimental Design and Procedures

3.1 Design

To implement the game discussed in Section 2, subjects were endowed with w = $10 and

competed for prizes with value v = $7. Subject bids were bounded on the interval [0, w]. As

this game takes place in continuous time, each session consisted of one continuous 40 minute

period. During this period, subjects could adjust their bids as frequently as desired with the

click of the mouse. Whenever a subject clicked, her bid instantaneously changed to the level

corresponding to the horizontal position of her mouse, and the corresponding payoff rates

were immediately recalculated.

The experiment consisted of two informational treatments. Under the global information

6Results show the removal of this autocorrelation term does not affect the relative explanatory power of
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Figure 2: User Interface Under Local Information

Figure 3: User Interface Under Global Information
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treatment, each subject received real-time information regarding the bids and payoffs of every

participant in her cohort. Under the local information treatment, subjects only observed

their own bid and payoff. In both treatments, bids and payoffs were recorded at a rate of

four times per second.

Figures 2 and 3 illustrate the experimental interface under the local-information and

global-information treatments, respectively. The subject’s current bid and payoff is repre-

sented by a blue line. The horizontal position of the blue line indicates the subject’s current

bid and the height of the blue line indicates the subject’s current payoff. The subject’s

current bid and payoff are displayed numerically at the bottom of the screen. Under the

global-information treatment, the current bid and payoff of each other subject is represented

by a red line.

To provide random rematching in continuous time, we employ a mean matching protocol

(e.g. Cason et al., 2014; Oprea et al., 2011). Each subject’s instantaneous payoff is given by

the expected value of her payoff from being randomly matched into a group of three agents.

By the law of large numbers, high frequency mean-matching provides a superior approxima-

tion to truly continuous random matching than does high frequency random matching.

3.2 Procedures

Thirty subjects participated in one session of the global-information treatment and 27 sub-

jects participated in one session of the local-information treatment. Subjects were recruited

from the Texas A&M undergraduate population using econdollars.tamu.edu, an ORSEE

database (Greiner, 2015). All sessions were run in the Texas A&M Economic Research

Laboratory using z-Tree (Fischbacher, 2007).

At the end of every session, each subject received the time average of their instantaneous

payoff plus a five dollar show-up payment. Subject earnings averaged $15.20 in the global-

information treatment and $16.09 in the local-information treatment, including the five dollar

show-up payment. In equilibrium, average subject earnings would equal $15.00, so subjects

received slightly above equilibrium earnings under both treatments. All sessions lasted less

than one hour.

the imitative or logit terms (see Table 3).
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Figure 4: Changes in the distribution of bidding behavior over time in a population
of 30 simulated agents under adaptive dynamics obtained from a nonparametric con-
ditional density estimator with a bid bandwidth of 0.5 and a time bandwidth of 0.3
seconds

4 Hypotheses

The game utilized in our experiment is not evolutionary stable (see section 2.2.1), so adaptive

models predict persistent disequilibrium rather than convergence to equilibrium. Figure 4

shows a heat map illustrating the changes in the predicted distribution of bidding behavior

over time in our experiment for a population of 30 simulated agents. We employ the adaptive

dynamics in equation 8 where α = 3, β = 0.3, and γ = 0.3. In contrast to the static

predictions of Nash and Quantal Response Equilibrium model (see section 2.1), the adaptive

model predicts persistent bidding cycles.7 This theoretical prediction results in the following

hypothesis.

Hypothesis 1 Subjects will exhibit persistent bidding cycles under both the local information

treatment and the social information treatment.

Throughout these disequilibrium cycles, adaptive models of imitation and optimization

predict very different behavioral dynamics. Figure 5 provides an example of the predicted

7The intuition for bidding cycles is as follows. When bids are sufficiently low agents can benefit by
slightly outbidding their competitors, so competition gradually drives bids upwards. As bids gradually
increase towards the value of the prize, average profits decrease. When profits became sufficiently low,
agents can effectively opt-out of the auction by bidding close to zero, thus reinitializing the bidding cycle.
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Figure 5: The predicted probability density of a new bid selected by player 1 at time t.
The top panel illustrates the predicted density under imitative models and the lower
panel illustrates the predicted density under myopic optimization models.
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probability density of a new bid selected by player 1 at time t. The upper figure illustrates the

predicted density under noisy imitative models and the lower figure illustrates the predicted

density under noisy myopic optimization models. The horizontal position of each vertical

line indicates the current bid of one player and the height of the line indicates the current

payoff to this player. The shaded area under the curve indicates the probability density for

a new bid selected by player 1.

Under the bidding profile depicted in figure 5, player 2 is has the highest payoff with bid

b2, so noisy imitation models predict that player 1 is likely to imitate this successful strategy

by selecting a new bid that is close to b2. In contrast, noisy optimization models predict that

player 1 is only likely to select bids that are slightly higher than b2 as selecting a bid slightly

lower than b2 would not improve the payoff to player 1. This sharp contrast between the

theoretical predictions from imitation and optimization in this game is part of what allows

our experimental design to provide a uniquely powerful test of these adaptive models.

Since our experimental design allows us to disentangle imitation from optimization in

observed subject behavior, we next ask how these models will perform under our different

information treatments. Adaptive imitation models place a strong informational requirement

on agents. As Schlag (2011) notes, “imitation is a simple behavior that has two basic

ingredients. One needs to be able to observe what others have done and one needs to be

capable of doing what they have done.” Hence adaptive imitation models require agents

to observe the behavior of their peers. In contrast, adaptive optimization models describe

agents who attempt to directly maximize their own payoff, so adaptive optimization models

require agents only to observe their own payoffs.

Our local information treatment provides each subject with information regarding their

own bids and payoffs, so we hypothesize that noisy optimization behavior (depicted in the

lower panel of figure 5) will be observed in that treatment. In contrast, information regarding

the bids and payoff of others is only provided in our global information treatment, so we

hypothesize that noisy imitative behavior (depicted in the top panel of figure 5) will be

observed in that treatment. Moreover, our global information treatment is designed to make

implementing adaptive imitation as easy as possible; subjects only need to click on the highest

bar on a computer screen (see figure 3 for a depiction of the interface) to implement adaptive

15



imitation. In contrast, implementation of adaptive optimization is more computationally

demanding for subjects, since it requires them to compute counterfactual payoffs from their

information regarding the bids of others. Accordingly, we hypothesize that

Hypothesis 2 Imitative models will outperform optimization models in the social informa-

tion treatment, but not in the local information treatment.

Finally, a growing literature (e.g., Merlo and Schotter, 2003; Armantier, 2004; Cardella,

2012; Brown et al., 2009) suggests that the provision of social information to economic agents

helps agents to behave more rationally and come closer to the predictions of traditional

economic theory and those of Nash equilibrium. For this reason, we speculate that the

additional information provided by our social information treatment may help subjects to

learn their way out of disequilibrium cycles and behave more consistently with the theoretical

predictions of Nash equilibrium. This reasoning leads to our final hypothesis.

Hypothesis 3 Behavior in the social information treatment will exhibit greater stability and

greater consistency with Nash equilibrium.

5 Results

Table 1 provides summary statistics for both the local information and global information

treatments and a comparison with the equilibrium predictions. Recall that the Nash equilib-

rium of this game predicts that subjects will employ a mixed strategy with bids distributed

according to the probability density function described in Section 2.1.1. On average, subjects

in both of our treatments exhibit lower bidding than the equilibrium prediction. Conse-

quently, the average earnings in both treatments are higher than the equilibrium prediction.

In both treatments, we also observe instances of dominated bidding—bids above 7—which

are never predicted to occur in equilibrium. Consistent with hypothesis 1, we do not observe

a convergence to equilibrium in either treatment; the last 10 minutes of the experiment are

not noticeably closer to equilibrium play than the first 10 minutes of the experiment. In

general, there are only minor differences between the first and last 10 minutes of the ex-
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Private Information Global Information
Equilibrium
Prediction

initial 10
minutes

last 10
minutes

overall
initial 10
minutes

last 10
minutes

overall

mean bid 3.73 3.54 3.57 4.57 4.31 4.47 4.67
bids above 7a 1.95% 0.45% 1.22% 5.57% 4.58% 6.96% 0.00%
minimum bidsb 1.63% 3.77% 3.03% 0.72% 0.81% 0.90% 0.00%c

mean earnings 10.94 11.13 11.11 10.20 10.36 10.21 10.00

a. In this game, bids above 7 are always dominated by bidding 0.

b. The minimum bid is 0.

c. A bid of 0 is in the support of the mixed equilibrium strategy. However, the predicted occurrence of such

bids by the equilibrium model is 0, because the strategy space is continuous.

Table 1: Summary Statistics for Bids and Earnings in Local Information Treatment,
Global Information Treatment, and Equilibrium Predictions. The treatment statistics
include groupings by the first 10 minutes and last 10 minutes to provide more detail about initial
and final play.

periment. Of those differences that exist (e.g., average bid decreasing, earnings increasing),

most are moving away, rather than toward, equilibrium predictions.

Result 1 Both average payoffs and average bids differ significantly across treatments.

i. Subjects bids are higher and closer to the Nash equilibrium predictions in the global-

information treatment.

ii. Payoffs in the global-information treatment are lower and closer to equilibrium than

those in the local-information treatment.

Bids in the global-information treatment are significantly higher than those in the local

information treatment. Table 1 shows that the mean bid in the global information treatment

is $0.90 higher than the mean bid in the local information treatment, so the former is closer to

the equilibrium prediction. Subjects in the global information treatment are also more likely

to select dominated bids above 7 and less likely to make 0 bids than those in the local infor-

mation treatment. Figure 6 provides nonparametric estimates of the aggregate bid density

under each treatment, showing that bids in the global information treatment are generally

larger than those in the local information treatment. A non-parametric Kolmogorov-Smirnov

test finds the empirical bid distributions to be significantly different (p < 0.01).

Figure 6 illustrates nonparametric estimates of the aggregate bid density under each treat-

ment alongside the symmetric Nash equilibrium density function. As Table 1 implies, both
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Figure 6: Empirical Bid Distributions. The density function is estimated using the local
constant kernel density estimator of Rosenblatt et al. (1956) and Parzen (1962) with a normal
kernel and a bandwidth of 0.5.

of the observed bid distributions are generally lower than the equilibrium distribution, but

with longer right tails. A non-parametric Kolmogorov-Smirnov test finds both empirically

observed bid-distributions to be significantly different from the Nash equilibrium distribu-

tion (p < 0.01). Moreover, neither bid distribution is consistent with logit quantal response

equilibrium. A Kolmogorov-Smirnov test finds both the local-information-treatment bid dis-

tribution and the global-information-treatment bid distribution to be significantly different

from their corresponding maximum-likelihood logit quantal response equilibrium predictions

(p < 0.01; local information: η = 0.792, global information: η = 0.505).

Payoffs also differ significantly across treatments. Table 1 shows that mean payoffs in the

local information treatment are $0.90 higher than the global information treatment. Subjects

in the global information treatment earned an average of $15.21 while subjects in the local

information treatment, subjects earned an average of $16.11; significantly higher earnings at

the one percent level. A non-parametric Kolmogorov-Smirnov test finds the empirical payoff
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Figure 7: Empirical Expected Payoff Functions under Alternate Treatments. The ex-
pected payoff function is estimated using the local constant kernel regerssion estimator of Nadaraya
(1964) and Watson (1964) with a normal kernel and a bandwidth of 0.5

distributions to be significantly different (p < 0.01).

In equilibrium, every bid between zero and the value of the prize should yield the same

expected payoff since rational agents must be indifferent between pure strategies over which

they mix. Figure 7 shows that both treatments violate this indifference property. However,

this violation is much more severe in the local information treatment than in the global in-

formation treatment, suggesting that subjects in the global information treatment are more

precisely maximizing their payoffs. A non-parametric Kolmogorov-Smirnov test finds both

empirically observed earnings distributions to be significantly different from the Nash equi-

librium distribution (p < 0.01). Similarly, the empirical earnings distributions are also incon-

sistent with quantal response equilibrium. A Kolmogorov-Smirnov test finds both the local-

information-treatment earnings distribution and the global-information-treatment earnings

distribution to be significantly different from their corresponding maximum-likelihood, quan-

tal response equilibrium predictions (p < 0.01; local information: η = 0.792, global informa-

tion: η = 0.505).
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Result 2 Throughout the 40 minute session, subject behavior in both treatments is char-

acterized by a state of disequilibrium, resembling neither the Nash-equilibrium nor the logit

quantal response equilibrium. There is no convergence to equilibrium; rather behavior in both

treatments is characterized by persistent cycling.

Consistent with hypothesis 1, the bidding behavior observed in each treatment is char-

acterized by persistent, identifiable, disequilibrium cycling. Figures 8 and 9 illustrate “heat

maps” for the same periods as Figures 10(a-f). Moreover, note that the observed cycles

in bidding behavior are consistent with the theoretical predictions from adaptive models

illustrated by figure 4. In contrast to Hypothesis 3, these cycles are more rapid in the

global-information treatment than in the local information treatment, so bidding behavior

is actually less stable under the presence of social information.

One quantitative way to analyze the observed bidding behavior is to examine the time

series of the mean bid employed by subjects. Figures 10(a-c) illustrate the dynamics of

the average bid in the global information treatment for the first, middle, and last minute,

respectively, of the session. There is also a strong cyclical pattern to the mean bid in all

three phases. Figures 10(d-f) provide the dynamics of the average bid in the local informa-

tion treatment for the first, middle, and last minute, respectively, of the session. If subjects

employ an equilibrium mixed strategy, then future changes in the mean bid should be un-

correlated with past changes in the mean bid. To test this hypothesis, we conduct the

Ljung–Box test on the differenced time series of the mean bid. We find that the Ljung–Box

test rejects the null hypothesis of uncorrelated changes in the mean bid at the one per-

cent level under both treatments, suggesting that subjects exhibit significant disequilibrium

dynamics in both treatments.

Result 3 Observed bidding dynamics differ significantly across treatments.

i. Bidding cycles have higher frequency in the global information treatment than in local

information treatment.

ii. Bidding dynamics under the global information treatment exhibit far less behavioral

noise than under the local information treatment.
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Figure 8: Changes in the empirical distribution of bids over time under global in-
formation obtained from a nonparametric conditional density estimator with a bid
bandwidth of 0.5 and a time bandwidth of 0.3 seconds. Figures (a-c) depict the global
information treatment for the first, median, and last minute, respectively.
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formation obtained from a nonparametric conditional density estimator with a bid
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The cycles observed in the aggregate bid data also differ across treatments. Figures 8

and 9 in the global information treatment are characterized by frequent cycles that appear

to be about 5 seconds in length. The cycles are more noisy in Figures 10 (b,d,f) in the

local information treatment and the distance from the peak of one cycle to the next can

be as large as 20 seconds. The heat maps in Figures 8 and 9 also confirm these results.

While cyclical patterns repeat about every 5 seconds in the global information treatment,

they repeat about every 20-40 seconds in the private information treatment. Consistent with

these results, the maximum likelihood estimates reported below indicate greater precision

and less autocorrelation in the global information treatment, suggesting that the underlying

adaptive processes are significantly different across treatments.

Result 4 Behavior in both treatments is far more consistent with optimization than imita-

tion.

It is useful to examine which factors best explain bidding behavior in the observed data.

To that end, we estimate adaptive models of both noisy optimization and noisy imitation

(see Section 2.2.2 for a full description of these models). Each model provides a continuous

probability distribution that gives the likelihood fit(b) that a given bid b will be selected by

a subject i at time t, based on a single precision parameter β (see equations 6 and 7 and

figure 5 for more details). For a given β, the total likelihood for each of these models is

the product of all observed fi,t(bi,t). The β∗ that maximizes this likelihood function is the

maximum likelihood precision parameter. Table 2 provides results for both models under

both treatments of the experiment.

There is a clear ranking of these single parameter models in terms of how they explain

the data. In contrast to hypothesis 2, optimization dynamics are a better predictor of

disequilibrium subject behavior than noisy imitation dynamics under both treatments. Both

models have more explanatory power in the global information treatment than in local

information treatment, which is consistent with our finding of greater behavioral noise in the

local-information treatment than the global-information treatment (see Result 3 for details).

After examining simple one-parameter models separately, it is desirable to combine the

noisy optimization, and noisy imitation models in a combined model. We also consider
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Global Information Local Information
Optimization Imitation Optimization Imitation

precision parameter (β)
1.54

(0.15)
0.60

(0.07)
0.68

(0.05)
0.33

(0.12)

observations 32634 32634 27225 27225

total log-likelihood -58808.48 -66379.35 -57155.04 -58812.47

Table 2: Maximum-Likelihood Models of Noisy optimization and Imitation Dynamics,
Global-Information and Local-Information Treatments. The noisy optimzation model out-
performs the noisy imitation-response model. Both models perform better in the global information
treatment than in the local information treatment. All parameters are significant at the 1% level.
Standard errors are obtained via subject clustered bootstrap estimation.

models that include an autocorrelation term accounting for the tendency of subjects to

select new bids close to their previous bid. This term is especially relevant in the local

information treatment where subjects are unable to observe the bids of others, and hence,

tend to employ a trial and error strategy.8

Table 3 provides parameter estimates for the combined model in the local-information

and global-information treatments. In the global-information treatment, subject bidding

behavior is primarily driven by payoff incentives following the noisy optimization dynamic.

In addition, there is also some degree to which individuals tend to select bids close to their

own previously used bid. Under local information, bidding behavior is largely driven by

autocorrelation with previously selected bids, with the payoffs under the noisy imitation

dynamic as a secondary factor.

The difference in the explanatory power of the noisy optimization dynamic across treat-

ments is not surprising. Subjects have the ability to directly maximize their payoff only

when they have information regarding the bids employed by others. Thus, in the global-

information treatment, they can directly respond to their payoff incentives. In the local-

information treatment, they only receive information about the payoff they earn from the

strategy they currently employ. Without further information about the strategies employed

by others, subjects cannot easily determine how their payoff would change if they were to

8To make this point more salient, if the bid autocorrelation term were part of our one-parameter model
comparison in Table 2, it would provide the greatest explanatory power in the local-information treatment.
In the global information treatment, it would still outperform the imitative response model, but not the
optimization response model.
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Global Information Local Information

logit (α)
(payoffs)

1.37
(0.11)

1.48
(0.14)

0.56
(0.07)

0.48
(0.05)

previous bids (β)
(subject specific)

-
0.56

(0.07)
-

1.39
(0.11)

imitation response (γ)
(the highest earning bid)

0.12
(0.03)

0.07
(0.03)

0.10
(0.02)

0.08
(0.02)

observations 32634 32634 27225 27225

log-likelihood -58345.36 -49805.06 -56954.91 -33030.53

mean log-likelihood -1.79 -1.52 -2.09 -1.21

typical bid likelihood 0.17 0.22 0.12 0.30

Table 3: Multiple-Parameter Models of Bidding Dynamics. A multi-parameter model
including terms for logit and imitative dynamics is estimated on both the local and global informa-
tion treatments. An additional specification includes a term for the tendency of subjects to make
bids close to their previous bids. All parameters are significant at the 1% level. Standard errors
are obtained via subject clustered bootstrap estimation.

adjust their strategy. In this case, it makes sense that subjects would experiment by making

trial adjustments and then return to the strategies that provided the highest payoffs. This

trial-and-error approach is consistent with the high autocorrelation of current bids and pre-

vious bids in the local-information treatment and it also explains how subjects are able to

approximately best respond to their opponents’ strategies without directly observing them.

Imitation explains very little of the observed behavior in either treatment. In the local

information treatment, subjects see neither the payoff nor the strategy of any subject other

than themselves, so the lack of imitation is unsurprising, since subjects can not directly

implement the imitative model. However, in the global-information treatment, subjects

need only to click on the highest bar to perfectly follow the imitative model, but the data

indicate that subjects use something more complex than a simple imitation heuristic; they

perform noisy myopic payoff optimization.

The autocorrelation in subject bids may explain why the imitative dynamic appeared to

have some explanatory power in a one-parameter model. Since bids tend to bunch together,

as illustrated in Figure 8, the autocorrelation with a subject’s own previous bid produces

similar predictions to imitation of the bids employed by others. Consequently, a simple

one-parameter imitation model with no autocorrelation parameter can misidentify autocor-
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relation in a subject’s own bids for imitation of others. Results from the combined model

presented in Table 3 suggest that much of the explanatory power attributed to imitation

under the global informaton treatment actually results from autocorrelation with a subjects

own previous bid.

6 Conclusion

This study experimentally investigates dynamic bidding behavior in continuous-time, all-pay

auctions. In contrast to previous experimental studies of the all-pay auction, our subjects

earned continuous flow payoffs and could adjust their bids asynchronously throughout the

experiment. By permitting this type of asynchronous adjustment, we obtain a remarkably

fine-grained picture of the empirical bidding behavior, allowing a close examination of be-

havioral bidding dynamics.

Consistent with theoretical predictions from adaptive models, but in contrast with both

Nash and quantal response equilibrium predictions, subjects in our experiment exhibited

persistent cyclical bidding behavior. This sustained disequilibrium behavior, along with the

markedly discontinuous nature of payoff functions in the all-pay auction, allows us to closely

investigate the predictive power of imitative and optimization dynamics. Surprisingly, be-

havior in the global-information treatment, which provides each subject with the information

to easily employ imitative dynamics, is characterized by increased precision of optimization

behavior but very little imitative behavior, resulting in higher bids, lower payoffs, and more

rapid behavioral cycles.

Our results suggest a general failure of imitative models to adequately describe human

cognition in strategic settings. Subjects in the global information treatment could easily

imitate the highest performing subject by selecting the highest line on a computer screen.

However, instead of merely imitating successful strategies, subjects followed more sophisti-

cated optimization methods, responding to the structure of their payoff incentives. In the

local-information treatment, subjects do not have the necessary information to imitate other

subjects. In the absence of social information, subjects employ trial-and-error strategies,

selecting strategies near those that gave them higher payoffs. Subjects in the global infor-
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mation treatment compete more vigorously, their bidding cycles are far more rapid, and they

exhibit far less behavioral noise. As a result, both average bids and average earnings are

significantly closer to equilibrium predictions in the global information treatment than in

the local information treatment.

While this experiment is primarily concerned with testing theoretical predictions, it also

provides some interesting policy implications. In particular, these results suggest that policy

makers may want to promote the distribution of social information in strategic environments

where effort expenditure has positive externalities, such as patent races or competition for

research grants. In contrast, policy makers may want to discourage the distribution of social

information in strategic environments where effort expenditure is wasteful or has negative

externalities, such as political lobbying or international warfare. Naturally, further research

will be needed to verify the extent to which these experimental results carry over to other

strategic environments.
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A Mathematical Appendix

A.1 Nash Equilibrium Derivation

Consider the following auction with three bidders and two prizes. Each player starts with an

endowment w selects her bid from the closed interval [0, w]. After all three bids have been

selected, the top two bidders each receive a prize with value v < w. However, every player

must pay her bid, regardless of whether or not she won a prize. In the case of a tie, the

remaining prizes are randomly assigned among the tying players. Accordingly, the payoff

function for player i is given by:

πi (si, sj, sk) =



w − si + v if si > min {sj, sk}

w − si + 2v/3 if si = sj = sk

w − si + v/2 if si = min {sj, sk} < max {sj, sk}

w − si otherwise

Suppose that there exists a continuous symmetric mixed strategy Nash equilibrium with

support over the closed interval [0, v]. Let F (z) = P (bj < z) denote the corresponding
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cumulative distribution function. Let Wi denote the event that bidder i wins and receives

and item. Let Li denote the event that bidder i loses and does not receive and item. If

bidder j and bidder k follow this Nash equilibrium mixed strategy, then the probability that

bidder i loses the auction is given by:

P (Li) = P (bi < bj and bi < bk)

= P (bi < bj)P (bi < bk) = P (bi < bj)
2

= [1− P (bj < bi)]
2 = [1− F (bi)]

2

= 1− 2F (bi) + F (bi)
2

Now the probability that bidder i wins the auction is given by:

P (Wi) = 1− P (Li)

= 1−
[
1− 2F (bi) + F (bi)

2]
= 2F (bi)− F (bi)

2

Hence bidder i’s expected payoff, conditional on her bid, is given by:

πi (bi) = w + vP (Wi)− bi

= w + v
[
2F (bi)− F (bi)

2]− bi
= w + 2vF (bi)− vF (bi)

2 − bi

If the mixed strategy F is a best response for agent i, then she must be indifferent between

all of the bids in the support of F . Hence all of the bids in the closed interval [0, v] must

yield the same expected payoff for bidder i. Moreover, since bidding zero will certainly yield

an expected payoff of zero, every bid between zero and v must yield an expected payoff of

zero. Accordingly, we can write:
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πi (bi) = 0 for all bi ∈ [0, v]

2vF (bi)− vF (bi)
2 − bi = 0

−bi = −2vF (bi) + vF (bi)
2

−bi
v

= −2F (bi) + F (bi)
2

1− bi
v

= 1− 2F (bi) + F (bi)
2√

1− bi
v

= 1− F (bi)

F (bi) = 1−
√

1− bi
v

for all bi ∈ [0, v]

Differentiating this cumulative distribution function obtains the Nash equilibrium prob-

ability density function:

f (bi) =
1

2v

(
1− bi

v

)−1/2
for all bi ∈ [0, v]

A.2 Logit Quantal Response Equilibrium Derivation

Consider the following auction with three bidders and two prizes. Each player starts with an

endowment w selects her bid from the closed interval [0, w]. After all three bids have been

selected, the top two bidders each receive a prize with value v < w. However, every player

must pay her bid, regardless of whether or not she won a prize. In the case of a tie, the

remaining prizes are randomly assigned among the tying players. Accordingly, the payoff

function for player i is given by:

πi (si, sj, sk) =



w − si + v if si > min {sj, sk}

w − si + 2v/3 if si = sj = sk

w − si + v/2 if si = min {sj, sk} < max {sj, sk}

w − si otherwise
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Suppose that there exists a continuous symmetric logit quantal response equilibrium

with support over the closed interval [0, w]. Let F (z) = P (bj < z) denote the corresponding

cumulative distribution function. Let Wi denote the event that bidder i wins and receives

and item. Let Li denote the event that bidder i loses and does not receive and item. If

bidder j and bidder k follow this mixed strategy, then the probability that bidder i loses the

auction is given by:

P (Li) = P (bi < bj and bi < bk)

= P (bi < bj)P (bi < bk) = P (bi < bj)
2

= [1− P (bj < bi)]
2 = [1− F (bi)]

2

= 1− 2F (bi) + F (bi)
2

Accordingly, the probability that bidder i wins the auction is given by:

P (Wi) = 1− P (Li)

= 1−
[
1− 2F (bi) + F (bi)

2]
= 2F (bi)− F (bi)

2

Hence bidder i’s expected payoff, conditional on her bid, is given by:

πi (bi) = w + vP (Wi)− bi

= w + v
[
2F (bi)− F (bi)

2]− bi
= w + 2vF (bi)− vF (bi)

2 − bi

Under a logit quantal response equilibrium, agents do not always select their best re-

sponse, but they are more likely to select bids that yield higher payoffs. Here the level of

behavioral noise is indexed by the parameter η. As η approaches infinity, the logit quantal

response equilibrium approaches uniformly random behavior. As η approaches zero, the logit
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quantal response equilibrium approximates a Nash equilibrium. Formally, we can write:

f (b) =
exp (ηπi (b))ˆ w

0

exp (ηπi (x)) dx

f (b) =
exp

(
η
(
2vF (b)− vF (b)2 − b

))
C0

C0f (b) = exp
(
2ηvF (b)− ηvF (b)2 − ηb

)
C0
dF

db
= exp

(
2ηvF (b)− ηvF (b)2 − ηb

)
Integrating both sides of this differential equation obtains

C0

ˆ
exp

(
ηvF 2 − 2ηvF

)
dF = exp (−ηb) db

ηC0

ˆ
exp

(
ηvF 2 − 2ηvF

)
dF =

1

η
− 1

η
exp (−ηb)

C1 exp (ηv)

ˆ
exp

(
ηv (F − 1)2

)
dF =

1

η
− 1

η
exp (−ηb)

ˆ
exp

(
ηv(F − 1)2

)
dF = C3 − C4 exp (−ηb)

We can solve for the cumulative distribution function F in terms of the the imaginary

error function by introducing the function G (x) =

ˆ x

0

exp (u2) du =
√
π
2

erfi (x).

G (
√
ηv (F − 1)) = C3 − C4 exp (−ηb)
√
ηv (F − 1) = G−1 (C3 − C4 exp (−ηb))

F − 1 =
1
√
ηv
G−1 (C3 − C4 exp (−ηb))

F (b) = 1− 1
√
ηv
G−1 (C3 − C4 exp (−ηb))
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Now since bids are restricted to be non-negative, we have

F (0) = 0

1− 1
√
ηv
G−1 (C3 − C4 exp (0)) = 0

1
√
ηv
G−1 (C3 − C4) = 1

G−1 (C3 − C4) =
√
ηv

C3 − C4 = G (
√
ηv)

C3 = C4 +G (
√
ηv)

Similarly, since bids cannot exceed the endowment w, we have

F (w) = 1

1− 1
√
ηv
G−1 (C3 − C4 exp (−ηw)) = 1

1
√
ηv
G−1 (C3 − C4 exp (−ηw)) = 0

G−1 (C3 − C4 exp (−ηw)) = 0

C3 − C4 exp (−ηw) = G (0) = 0

C4 +G (
√
ηv)− C4 exp (−ηw) = 0 since C3 = C4 +G (

√
ηv)

G (
√
ηv) = C4(exp (−ηw)− 1)

C4 =
G
(√

ηv
)

exp (−ηw)− 1

We can use these solutions for C3 and C4 to obtain a closed form solution for the cumu-

lative distribution function F

F (b) = 1− 1
√
ηv
G−1 (C3 − C4 exp (−ηb))

F (b) = 1− 1
√
ηv
G−1 (C4 +G (

√
ηv)− C4 exp (−ηb)) since C3 = C4 +G (

√
ηv)

F (b) = 1− 1
√
ηv
G−1

(
G (
√
ηv)

[
1− 1− exp (−ηb)

1− exp (−ηw)

])
since C4 =

G
(√

ηv
)

exp (−ηw)− 1
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Differentiating the cumulative distribution function F obtains the corresponding proba-

bility density function

f (b) = F ′ (b) = − 1
√
ηv

∂

∂b

[
G−1

(
G (
√
ηv)

[
1− 1− exp (−ηb)

1− exp (−ηw)

])]
f (b) = − 1

√
ηv

∂

∂b

[
G−1 (H(b))

]
f (b) = − 1

√
ηv

∂G−1(H(b))

∂H(b)
H ′(b)

f (b) = − 1
√
ηv
G′(G−1(H(b)))−1H ′(b)

f (b) = − 1
√
ηv

exp(G−1(H(b))2)−1H ′(b) since G′ (x) = exp
(
x2
)

f (b) = − 1
√
ηv

exp(−G−1(H(b))2)H ′(b)

f (b) = − 1
√
ηv

exp(−G−1(H(b))2)H ′(b)

f (b) =
ηG
(√

ηv
)

exp (−ηb)
√
ηv [1− exp (−ηw)]

exp(−G−1(H(b))2) since H ′(b) = −
ηG
(√

ηv
)

exp (−ηb)
[1− exp (−ηw)]

f (b) =
ηG
(√

ηv
)

exp (−ηb)
√
ηv [1− exp (−ηw)]

exp

(
−G−1

(
G (
√
ηv)

[
1− 1− exp (−ηb)

1− exp (−ηw)

])2
)

A.3 Evolutionary Instability of the Nash Equilibrium

Intuitively, a strategy is evolutionarily stable if it induces a self-enforcing convention. In

other words, a strategy x is evolutionarily stable if no other strategy y can invade it when

the entire population initially employs strategy x. More formally, in a in a symmetric normal

form game, a strategy x is evolutionarily stable if there exists some C ∈ (0, 1) such that for

all ε ∈ (0, C) and for any other strategy y

π ( x | εy + (1− ε)x ) > π ( y | εy + (1− ε)x ) (10)

Thus, if x is evolutionarily stable and a sufficiently small proportion of the population devi-

ates to an alternate strategy y, then agents who employ x will earn a strictly higher payoff

than agents who employ y.

The Nash equilibrium strategy for the all-pay auction is not evolutionarily stable. To see
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why, suppose that a small proportion ε of the population deviates from the Nash equilibrium

strategy x to an alternate strategy y under which agents always bid the full value of the

prize. Since the support of the equilibrium bid distribution is given by the closed interval

[0, v], agents who employ the invading strategy y will win the prize with probability one

whenever they are matched against an agent who employs the equilibrium bidding strategy.

So the expected payoff to an agent who deviates to strategy y is given by

π ( y | εy + (1− ε)x ) = ε2π1 (y, y, y) + 2ε (1− ε) π1 (y, y, x) + (1− ε)2 π1 (y, x, x)

π ( y | εy + (1− ε)x ) = ε2π1 (y, y, y) since π (y, y, x) = π1 (y, x, x) = 0

π ( y | εy + (1− ε)x ) = −ε
2v

3
since π1 (y, y, y) = −v

3

On the other hand, the expected payoff to an agent who employs the equilibrium mixed

strategy is given by

π ( x | εy + (1− ε)x ) = ε2π1 (x, y, y) + 2ε (1− ε) π1 (x, y, x) + (1− ε)2 π1 (x, x, x)

π ( x | εy + (1− ε)x ) = ε2π1 (x, y, y) + 2ε (1− ε) π1 (x, y, x) since π1 (x, x, x) = 0

π ( x | εy + (1− ε)x ) < −ε2π1 (x, y, y) since π1 (x, y, x) < 0

π ( x | εy + (1− ε)x ) < −ε2E{bid|x} since π1 (x, y, y) = −E{bid|x}

π ( x | εy + (1− ε)x ) < −2ε2v

3
since E{bid|x} =

2v

3

π ( x | εy + (1− ε)x ) < π1
(
y, (εy + (1− ε)x)2

)
since − 2ε2v

3
< −ε

2v

3

Thus the invading strategy y earns a higher expected payoff than the equilibrium mixed

strategy x, so the equilibrium mixed strategy for the all-pay auction with three bidders and

two prizes is not evolutionarily stable. Hence the mixed strategy Nash equilibrium does not

induce a self enforcing convention in this all-pay auction. Accordingly, we expect to observe

dynamic instability in experimental bidding behavior.
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