Exploding Offers with Experimental Consumer Goods*

Alexander L. Brown
Department of Economics
Texas A\&M University
Ajalavat Viriyavipart
Department of Economics
Texas A\&M University
Xiaoyuan Wang ${ }^{\dagger}$
School of Management and Economics
University of Electronic Science and Technology of China

October 6, 2014

Abstract

Recent theoretical research indicates that search deterrence strategies are generally optimal for sellers in consumer goods markets. Yet search deterrence is not always employed in such markets. To understand this incongruity, we develop an experimental market where profit-maximizing strategy dictates sellers should exercise one form of search deterrence, exploding offers. We find that buyers over-reject exploding offers relative to optimal. Sellers underutilize exploding offers relative to optimal play, even conditional on buyer over-rejection. This tendency dissipates when sellers make offers to computerized buyers, suggesting their persistent behavior with human buyers may be due to a preference rather than a miscalculation.

Keywords: exploding offer, search deterrence, experimental economics, quantal response equilibrium
JEL: C91 D21 L10 M31

[^0]
1 Introduction

One of the first applications of microeconomic theory is to the consumer goods market: basic supply and demand models can often explain transactions in centralized markets quite well. When markets are decentralized, often additional modeling is required to explain the interactions of consumers and producers. One popular model, a search model, suggests consumers sample prices from a variety of producers, buying once the price of goods falls below a certain threshold (Stigler, 1961, Rothschild, 1974). If decisions of sellers can affect buyer search, the model becomes more complicated. Armstrong and Zhou (2013) show under relatively mild conditions, it is unilaterally profitable for sellers to deter search. Specifically the strategies of exploding offers (i.e., "take-it-or-leave-it" offers), "buy-now" discounts, and requiring deposits for the option to buy later are profitable for sellers. Given the profitability of such strategies, a natural question to ask is why they are not seen more often in market transactions. One possibility is that producers are justifiably concerned that consumers may respond more negatively to these tactics than theory predicts. The focus of this paper will be an experimental investigation of this question: whether producers are hesitant to use exploding offers and whether consumers respond more negatively to such offers than theory predicts. We choose the tactic of offering exploding offers over the other two search-deterrence tactics (i.e.,"buy-now" discounts, deposits) because (1) it is an extreme case of the other two tactics; (2) it is the most simple to understand; and (3) it is the most likely of the three to generate a negative reaction from buyers.

Prior to Armstrong and Zhou (2013), the focus of most economic research on exploding offers concerned labor markets, a type of market where there are specific cases of exploding offers being the norm. ${ }^{1}$ There may be distinct features of labor markets-not found in consumer goods markets-that are responsible for the prevalence of exploding offers. Exploding offers may be an essential tool in the unraveling of matching markets, as employers compete to lock down new employees earlier and earlier (Niederle and Roth, 2009). Additionally, if employers are required to have only one outstanding offer to a candidate at a time, exploding offers can be seen as a technique to "forestall the event that no one is hired" (Lippman and Mamer, 2012). Evidence of negative responses to exploding offers also relies on features unique to labor markets. Lau et al. (forthcoming) find experimental evidence that employees will respond negatively to employers' use of exploding offers by reducing effort after being hired; there is no equivalent reaction that

[^1]could occur in consumer goods markets.
Thus it is an open question how individuals will react to exploding offers in consumer goods markets, a setting where the use of such offers is notably different from labor markets. Observing behavior of buyers and sellers in situations with exploding offers would be difficult. Firms do not have incentives to record or publicly release their use of exploding offers. Moreover, markets may offer more durable products or long term services, and receive certain amounts of new demand at each period, which makes information less transparent and traceable at the individual consumer level.

For these reasons we turn to experimental analysis, the first such analysis of exploding offers in the consumer goods setting. We implement a simplified version of Armstrong and Zhou (2013): two sellers simultaneously choose from one of three prices and either make an exploding or non-exploding offer. Buyers, previously unaware of their personal value for either seller's good, randomly visit one seller and learn their value for that seller's good. In doing so, they receive the seller's offer. The buyer must then decide whether to visit the other seller. If the first seller makes an exploding offer, a visit to the second seller will terminate the opportunity to buy from the first seller. If our intuition and previous experimental results are any guide, buyers will over-reject exploding offers. They will choose to visit the second seller more often than theory would predict. Sellers may also make decisions inconsistent with theory.

We can observe the behavior of buyers directly. Sellers' behavior, however, is conditional on perceived buyer response. To isolate this effect, we use two treatments. In one, sellers knowingly interact with computer buyers programmed to follow optimal strategy; in the other they interact with human buyers.

Our results are striking. Consistent with our intuition, buyers reject exploding offers roughly 20% more often than optimal theory dictates. The tendency persists through all twenty periods of the experiment. Sellers make exploding offers less often to human buyers than computer buyers. Adjusting payoffs for sellers to account for the increased propensity of buyers to reject exploding offers, we find that sellers still are hesitant to give human buyers exploding offers, a tendency we term "exploding-offer aversion." The net result of these differences from optimal strategy is a transfer of surplus from sellers to buyers. That is, seller payoffs in the computer-buyer treatment are higher than in the human-buyer treatment, and human buyers earn more than computer buyers.

These results can help explain why exploding offers in consumer markets may not be as
prevalent as theoretically predicted. Buyers will likely reject them more than the optimal level. Sellers make fewer exploding offers than optimal even after accounting for this buyer behavior. Although one should be cautious in making field predictions directly from the results of laboratory data, it is important to note that many of the features that might make sellers hesitant to use exploding offers and buyers quick to reject them are not present in this laboratory environment. Sellers make offers anonymously and are somewhat insulated from the negative feelings of having their offer rejected. Buyers may find exploding offers less objectionable on a computer interface than through an actual human seller. So there are some reasons to suggest that the tendencies found in this experiment might be amplified in actual field market situations.

The remainder of the paper is organized as follows: Section 2 provides the theoretical model used in our experiment. Section 3 discusses our experimental design. Section 4 presents the results. Section 5 closes the paper with a brief discussion of related work and concluding remarks.

2 The Model

The experiment in this paper implements a simplified model based on Armstrong and Zhou (2013). The following section describes the basic setup of the model and the assumptions and simplifications used in the experiment. Section 2.1 explains how the sequential search game takes place. Sections 2.2 and 2.3 explain the optimization problem for the buyer and seller, respectively. Section 2.4 describes simplifying assumptions and parameter choices that will be used in the experiment. The main changes from the literature are to discretize buyer valuations and seller pricing. This change reduces the number of decisions for subjects, simplifying the problem. Assuming optimal play by buyers, the end result is a 6×6 symmetric normal-form game between two sellers. Table 1 (at the end of this section) provides payoffs for a seller given a fixed offer and pricing choice strategy, conditional on the other seller's pricing and offer choice strategy. The table will be used as a theoretical benchmark for analysis of sellers choices in the experimental game.

2.1 The Search

This model represents an experimental search market of two sellers with one buyer who visits each seller sequentially in a random order \square_{\square}^{2} Each seller offers a good which has a pri-

[^2]vate value for the buyer drawn from the same ex-ante value distribution: $V_{k}^{i} \in\left\{V_{1}^{i}, V_{2}^{i}, \ldots, V_{K}^{i}\right\}$ (where $i=1,2$ represents sellers and $k=1,2, \ldots, K$ represents K possible values) with probability $v_{1} \equiv \operatorname{prob}\left(V_{1}\right), v_{2} \equiv \operatorname{prob}\left(V_{2}\right), \ldots, v_{K} \equiv p\left(V_{K}\right)$. The game is as follows:

1. Each seller sets a price from a possible price range: $P^{i} \in\left\{P_{1}^{i}, P_{2}^{i}, \ldots, P_{L}^{i}\right\}$ and chooses an offer type as either an exploding or a free-recall offer.
2. Nature randomly selects which seller the buyer will visit first $\left.\left(S^{1}\right)\right]^{3}$
3. The buyer observes the prices of both sellers (P^{1} and P^{2}) and his value of the first good he ${ }^{4}$ visits $\left(V^{1}\right)$.
4. The buyer chooses whether to accept the first offer or to visit S^{2}. If he chooses to accept, the transaction occurs and the game is ended; otherwise, the game continues to the next step.
5. The buyer visits S^{2} and observes the value of the good $\left(V^{2}\right)$.
6. The buyer chooses whether to accept or reject the offer from S^{2}. If he accepts, the transaction occurs and the game is ended. If he rejects and the first offer was an exploding offer, no transaction occurs and the game is ended. If he rejects and the first offer was a free-recall offer, the game continues to the next step.
7. The buyer chooses whether to accept or reject the offer from S^{1} (if it is a free-recall offer).

Each player's payoff is determined after the game is ended. If there are no transactions, all players receive zero payoff. If there is a transaction, the buyer receives a payoff equal to the difference between his value and the price of the good he bought; that seller receives a payoff equals to that price; the (other) seller with no transaction receives zero payoff.

2.2 Buyer Best Response

We assume that the buyer is rational and has an objective to maximize his expected payoff. Because the offer type of the second seller has no effect on a strategy of the buyer, we only need to consider two cases; (1) the first offer is a free-recall offer and (2) the first offer is an exploding offer.

[^3]If the first offer is a free-recall offer, visiting S^{2} does not prevent the buyer from revisiting S^{1}, the buyer always searches $\left[^{5}\right.$ After visiting both sellers, the buyer chooses an option that provides him the highest payoff from three possible options. The options are (1) accepting the first offer $\left(V^{1}-P^{1}\right),(2)$ accepting the second offer $\left(V^{2}-P^{2}\right)$, and (3) rejecting both offers (zero payoff).

If the first offer is an exploding offer, the buyer would make a decision by comparing the payoff from accepting the first offer and the expected payoff from rejecting the offer. The payoff from accepting the first offer is the difference between the value and the price of the first offer or $\Pi^{1}=V^{1}-P^{1}$ whereas the expected payoff from visiting S_{2} is

$$
\begin{equation*}
\left.E\left(\Pi^{2}\right)=\sum_{k=1}^{K} v_{k}^{*} \max \left(0, V_{k}^{2}-P^{2}\right) \cdot{ }^{6}\right] \tag{1}
\end{equation*}
$$

The buyer accepts the first offer if $\Pi^{1}<E\left(\Pi^{2}\right)$ and rejects otherwise. 7 If the first offer was rejected, the buyer accepts the second offer as long as $V^{2}>P^{2}$.

2.3 Seller Strategies

Similar to the buyer, we assume that each seller is rational and has an objective to maximize her expected payoff. In this market, each seller is required to choose a price and an offer type before knowing which seller the buyer would visit first. There are three possible cases to be considered: (1) both sellers use exploding offers; (2) both sellers use free-recall offers; and (3) one seller uses an exploding offer and another seller uses a free-recall offer.

First, consider a case where both sellers use exploding offers. Consider seller i with a price P^{i}, who plays with seller j with a price P^{j}. There are two possible situations that occur with equal probability $]^{8}$

1. A buyer visits seller i first. The buyer will accept the offer if the difference between his valuation of the first good and its price is greater than the expected payoff from the second

[^4]offer; i.e., $V_{k}^{i}-P^{i}>E\left(\Pi^{j}\right)=\sum_{l=1}^{K} v_{l}^{*} \max \left(0, V_{l}^{j}-P^{j}\right)$ and rejects otherwise. The probability that he will accept the offer is
\[

$$
\begin{equation*}
\operatorname{Prob}\left(\operatorname{accept} i_{1}\right)=\sum_{k=1}^{K} v_{k}{ }^{*} D_{k}^{i} \tag{2}
\end{equation*}
$$

\]

where $D_{k}^{i}=1$ if $V_{k}^{i}-P^{i}>E\left(\Pi^{j}\right)$ and $=0$ otherwise.
2. A buyer visits seller j first. Similar to the first case, the buyer will accept the offer from j with probability $\sum_{l=1}^{K} v_{l}{ }^{*} D_{l}^{j}$ where $D_{l}^{j}=1$ if $V_{l}^{j}-P^{j}>E\left(\Pi^{i}\right)=\sum_{k=1}^{K} v_{k}^{*} \max \left(0, V_{k}^{i}-P^{i}\right)$ and $=0$ otherwise. If the buyer rejects the offer from seller j, he will visit seller i. Upon visiting i, he will accept the offer as long as his value is above P^{i} or with probability $\sum_{k=1}^{K} v_{k}^{*} B_{k}^{i}$ where $B_{k}^{i}=1$ if $V_{k}^{i}>P^{i}$ and $=0$ otherwise. So, the probability that the buyer will purchase from seller i is

$$
\begin{equation*}
\operatorname{Prob}\left(\operatorname{accept} i_{2}\right)=\left(1-\sum_{l=1}^{K} v_{l}{ }^{*} D_{l}^{j^{j}}\right)^{*} \sum_{k=1}^{K} v_{k}^{*} B_{k}^{i} . \tag{3}
\end{equation*}
$$

Therefore, seller i^{\prime} s expected payoff is $P^{i *}\left[\frac{1}{2} \operatorname{Prob}\left(\right.\right.$ accept $\left.i_{1}\right)+\frac{1}{2} \operatorname{Prob}\left(\right.$ accept $\left.\left.i_{2}\right)\right]$.
Second, consider the case where both sellers use free-recall offers. Again, consider seller i with price P^{i} who plays with seller j with price P^{j}. The order of seller visits has no effect here because a buyer always searches in this scenario. Therefore, the buyer will purchase from seller i if (1) $V_{k}^{i}-P^{i}>V_{l}^{j}-P^{j}$ and (2) $V_{k}^{i}-P^{i}>0$. The probability that the buyer will purchase from seller i is

$$
\begin{equation*}
\operatorname{Prob}\left(\operatorname{accept} i_{3}\right)=\sum_{k=1}^{K} \sum_{l=1}^{K} v_{k} v_{l}{ }^{*} A_{k l^{\prime}}^{i j} \tag{4}
\end{equation*}
$$

where $A_{k l}^{i j}=1$ if (1) $V_{k}^{i}-P^{i}>V_{l}^{j}-P^{j}$ and (2) $V_{k}^{i}-P^{i}>0$ and $A_{k l}^{i j}=0$ otherwise. Therefore, his expected payoff is $P^{i *} \operatorname{Prob}\left(\right.$ accept $\left.i_{3}\right)$.

Last, consider a case where one seller uses an exploding offer and another seller uses a freerecall offer. Because an offer type of the second seller has no effect on the buyer' strategy, we can use the expected payoffs from the previous two cases. If seller i uses an exploding offer while seller j uses a free-recall offer, seller i^{\prime} s expected payoff is $P^{i *}\left[\frac{1}{2} \operatorname{Prob}\left(\right.\right.$ accept $\left.i_{1}\right)+\frac{1}{2} \operatorname{Prob}\left(\right.$ accept $\left.\left.i_{3}\right)\right]{ }^{9}$ If seller i uses a free-recall offer while seller j uses an exploding offer, seller i 's expected payoff is $P^{i *}\left[\frac{1}{2} \operatorname{Prob}\left(\right.\right.$ accept $\left.i_{3}\right)+\frac{1}{2} \operatorname{Prob}\left(\right.$ accept $\left.\left.\left.i_{2}\right)\right]\right]^{10}$

[^5]Table 1: Expected Payoffs for One Seller's Strategy Choice Given Other Seller's Strategy Choice

	$25, \mathrm{E}$		$30, \mathrm{E}$		$35, \mathrm{E}$	
$25, \mathrm{~F}$	$30, \mathrm{~F}$		$35, \mathrm{~F}$			
$25, \mathrm{E}$	11.91	13.28	13.28	$\mathbf{1 5 . 0 4}$	15.82	16.21
$30, \mathrm{E}$	11.72	13.59	15	13.36	$\mathbf{1 7 . 5 8}$	18.52
$35, \mathrm{E}$	$\mathbf{1 3 . 6 7}$	$\mathbf{1 3 . 6 7}$	$\mathbf{1 5 . 8 6}$	14.49	15.59	$\mathbf{2 0 . 5 1}$
$25, \mathrm{~F}$	9.18	12.7	13.48	12.3	15.23	16.41
$30, \mathrm{~F}$	9.14	10.08	13.83	10.78	14.06	17.34
$35, \mathrm{~F}$	10.12	10.66	11.76	10.94	12.58	16.41

Note: For the strategy labels letters " F " and " E " denote free-recall and exploding offers, respectively. The number indicates price. For example, " $25, \mathrm{E}$ " indicates the strategy of offering price 25 with an exploding offer. This convention is used throughout the paper.

2.4 Parameter Choice for an Experimental Search Market

The previous analysis shows how payoffs are calculated in this game. For any sets of values $V_{k}^{i} \in\left\{V_{1}^{i}, V_{2}^{i}, \ldots, V_{K}^{i}\right\}$, probability v_{1}, \ldots, v_{K}, and prices $P^{i} \in\left\{P_{1}^{i}, P_{2}^{i}, \ldots, P_{L}^{i}\right\}$, we can calculate payoffs for any combinations of strategies for each seller. Because we are interested in a case where using an exploding offer is an optimal strategy, we choose parameters for our experimental market as follows:

$$
\begin{aligned}
& V \in\{10,25,40,55,65,70\}, \\
& v_{1}=v_{2}=v_{3}=v_{4}=0.125, \text { and } v_{5}=v_{6}=0.25, \\
& P \in\{25,30,35\} .
\end{aligned}
$$

In this case, there exists a unique equilibrium in which both sellers in the market choose an exploding offer with the highest price of 35 (points). In this equilibrium, a buyer would accept the first offer only if his value for the first item is either 65 or 70 and reject all other values. If the first offer was rejected, the second offer would be accepted as long as his value for the second item is above 35 ($40,55,65,70$). All other combinations of choices cannot be established as a Nash Equilibrium. We provide expected payoffs for all decisions in Table 1 .

3 Experimental Design

The experiment consisted of two treatments. In the computer-buyer treatment (CB), human sellers were matched against computer buyers programmed to play an optimal strategy. In the human-buyer treatment (HB), human sellers were matched against human buyers. Sellers were fully informed about the type of their buyers. Each session consisted of eight sellers (for either treatment) and sixteen buyers. In each period, four markets were randomly formed from each
randomly selected pair of sellers. The market consisted of two sellers and four buyers. In the every market, two of the buyers visited one seller first and the other two visited the other seller first.

There were twenty total periods. Each period, buyers and sellers were randomly rematched into new markets, but the role of each subject (i.e., buyer or seller) was fixed for the entire session. In addition, the same random matching was used in every session and treatment ${ }^{11}$

Each period began with sellers choosing a price and offer type (i.e., exploding or free-recall offer). The seller's price and offer types were the same for all buyers that encountered the seller. Buyers would observe the prices set by both sellers in the market and their offer type, but would only see their valuation of items from the first seller they encountered. Each buyer's valuation for each of the six buying decisions was drawn independently from the known valuation distribution.

Buyers decided separately for each of their six buying decisions whether to buy the item from the first seller immediately or visit the second seller. Visiting the second seller would allow the buyer to observe his personal valuation of the item from the second seller. If the first seller made a free-recall offer, the buyer could choose to visit the second seller and still have the opportunity to buy an item from the first seller. If the first seller used an exploding offer, the buyer could not buy the item from the first seller after observing his valuation from the second seller. Figure 1 provides an example of the interface human buyers used to make their six buying decisions in the HB treatment (in this case it is the first buying decision of six).

After all buyers buyers had completed their six buying decisions, buyers were informed of their profits from each of their six buying decisions. A screen also showed sellers the outcome of all twenty-four buying decisions in their market. One screen (Figure 2a) showed the price and strategy used by themselves and the other seller in the market, the amount of items sold by each seller and the total profit for each seller. Another screen (Figure 2b) provided information about each of the twenty-four buying decisions in the market. Sellers were provided this, admittedly, large amount of feedback to provide the best opportunity for them to best respond to buyers over the course of the experiment.

Before each session began, the instructions were both shown on screen and read aloud to ensure the game was common knowledge among the subjects. After the instructions, the subjects answered a quiz, in multiple choice form, to establish that they understood how to play the game.

[^6]

Figure 1: A human buyer's decision on one of six items. The first seller has used an "Offer B" (a free-recall offer) so the buyer can choose to search and observe his value of the second seller's item without losing the option to buy from the first seller.

Each subject needed to answer all questions correctly before the game started. Throughout the experiment, to avoid any priming effects associated with language, exploding offers were referred to as "Offer A" and free-recall offers were referred to as "Offer B."

After the twenty periods had elapsed, subjects filled out a questionnaire consisting of demographics information, a risk preference test (Eckel and Grossman, 2008), and a Cognitive Reflection Test (Frederick, 2005). Subjects were then privately paid their earnings in the session (plus a five dollar show-up bonus) in cash. Each seller in both treatments was paid based on one randomly selected period ${ }^{12}$ Seller earnings were determined by the price chosen in that period multiplied by the quantity sold and the conversion rate was four cents for one point. Each buyer in the HB treatment was paid based on one random decision in one random period. The earnings were calculated from the difference between the value and the price of that particular item purchased or zero if no purchase was made. The conversion rate for a buyer was a dollar for two points. For an 80 minute session, subjects earned $\$ 18$, on average.

The experiment was conducted in the Economic Research Laboratory at Texas A\&M University,

[^7]| You | Your Competitor | |
| :---: | :---: | :---: |
| Offer Type | Offer A | Offer B |
| Price | Price: 30 | Price: 35 |
| Quantity Sold | | |
| Profit | | 10 (out of 24) |

YOUR SALE LOG					
Period	Did Buyer Visit You First? (Hall Will Visit You First.)	$\begin{aligned} & \hline \text { Buyer's Value of Your } \\ & \text { tem } \\ & \hline \end{aligned}$	Your price	$\begin{gathered} \text { Did Buyer Purchase Your } \\ \text { Item? } \end{gathered}$	$\begin{gathered} \hline \text { Did Buyer Search Both } \\ \text { Hems? } \\ \hline \end{gathered}$
1	Yes	${ }^{25}$	${ }^{30}$	No	Yes
1	Yes	25	30	No	Yes
1	Yes	25	30	No	Yes
1	Yes	40	${ }^{30}$	No	Yes
1	Yes	55	${ }^{30}$	Yos	No
1	Yes	55	${ }^{30}$	Yes	No
1	Yes	56	${ }^{30}$	No	Yes
1	Yes	${ }^{55}$	30	Yes	No
1	Yos	${ }^{65}$	${ }^{30}$	Yes	No
?	Yes	${ }^{65}$	${ }^{30}$	Yes	No
1	Yes Yes	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	30 30	Yes	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$
Petiod	Diid Buyer Visit You first? (Half Will Visit You First.)	$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { Biver's Value of Yout } \\ \text { tem } \end{array} \\ \hline \end{array}$	Youll pice	$\begin{array}{\|l\|} \hline \text { Din Buyee Purchase Yout } \\ \text { Hemm? } \\ \hline \end{array}$	Did Buyer Search Both Items?
1	No	10	${ }^{30}$	No	No
1	No	40	${ }^{30}$	No	No
1	No	40	30	Yes	Yes
1	No	55	30	No	Yes
1	No	${ }^{65}$	30	No	No
1	No	${ }_{65} 65$	30 30	${ }_{\text {Yos }}^{\text {No }}$	$\xrightarrow{\text { No }}$
1	$\begin{gathered} \text { No } \\ \text { No } \end{gathered}$	${ }_{70}^{65}$	30 30	Yes No	Yes
1	No	70	${ }_{30}$	No	No
1	No	70	30	No	No
	No	70	${ }^{30}$	No	No
1	No	70	30	Yes	Yes

Figure 2: A seller's feedback screen at the end of the period. Sellers could toggle between each of the screens. (a, left) Both sellers are informed on the performance of each other in the market in aggregate. (b, right) Each seller observes all twenty-four buying decisions.
in April and October 2013. Four sessions (32 sellers) of the CB treatment and three sessions (24 sellers, 48 buyers) of the HB treatment were conducted. All 104 subjects were Texas A\&M University undergraduate students recruited campus wide using ORSEE (Greiner, 2004). The experiment was programmed and conducted with the software Z-tree (Fischbacher, 2007).

4 Results

Result 1 Sellers play different strategies against computer and human buyers. Sellers offer lower prices and chose to use exploding offers less often against human buyers. Both tendencies persist, if not intensify, over the course of the experiment.

We first compare sellers' decisions in the computer-buyer treatment (CB) with those in the human-buyer treatment (HB). Table 2 provides a summary of all seller decisions across both treatments. Over all periods, sellers used exploding offers more often (67.96% in CB vs. 54.58% in HB) and offered lower prices (30.36 on average in CB vs. 26.95 on average in HB). Pooling these values at the subject level and comparing across treatment, a rank sum test suggests that these values are significantly different ($p<0.035$ and $p<0.001$, respectively).

Table 2 also shows the frequency that each combination of strategy and price was used over 20 periods. The modal response (used in 32% of all observations) in the CB treatment was the equilibrium strategy, an exploding offer with a price of 35 (points). This strategy was used in less

Table 2: Summary Table of Sellers' Decisions

Buyer Type	Observations	Exploding Offers	$25, \mathrm{E}$	$30, \mathrm{E}$	$35, \mathrm{E}$	$25, \mathrm{~F}$	$30, \mathrm{~F}$	$35, \mathrm{~F}$	Average Price 1
	640	435	71	157	207	110	75	20	30.36
computer	100.00%	67.96%	11.09%	24.53%	32.34%	17.19%	11.72%	3.13%	(0.16)
	480	262	165	75	22	164	40	14	26.95
human	100.00%	54.58%	34.38%	15.62%	4.58%	34.17%	8.33%	2.92%	(0.14)

[^8]than 5% of all observations in the HB treatment. Thus, sellers play the theoretically predicted, equilibrium strategy when it is optimal against computers programmed to play as theory would suggest. They do not play such strategy against human buyers, who we will see later are not playing the theoretically optimal strategy. The modal response in the HB treatment was an exploding offer with a price of 25 (used in 34% of all observations), a strategy only used in about 11% of all observations in the CB treatment. We will show later (in Result 3) the importance of this specific strategy in the HB treatment.

We can also observe the dynamics of subject decisions. Over the twenty periods in the experiment, both the sellers in the CB and HB treatments increased their use of exploding offers (Figure 3). The percentage of sellers who used an exploding offer in the CB treatment is higher than in the HB treatment in most periods. In the last 5 periods, about 76% of sellers in CB treatment used an exploding offer, whereas only about 65% of sellers in HB treatment used an exploding offer. Using an OLS regression with period dummy variables, a joint test of the period dummy variables suggests that the average exploding offer usage was significantly different between two treatments $(p \approx 0.010)$. Yet a linear trend test reveals that the increase rates for both treatments were similar ($p \approx 0.476$).

Figure 4 demonstrates seller price dynamics are quite different across treatments. In the first 2 periods, average prices across treatment are nearly identical. After that, they diverge. Although seller prices in the CB treatment remain the same (if not increase), in the HB treatment, they quickly drop (p -values for linear trend coefficients are 0.176 and 0.000 , respectively). In the last 5 periods, seller prices were on average 30.49 in the CB treatment and 26.65 in the HB treatment; the price difference is significant ($p<0.001$ for a t-test collapsed to subject level).

The tendency of sellers to use exploding offers is not isolated to a certain preference or demographic. A linear probability regression with subject random effects indicates that choosing

Figure 3: Proportion of Exploding Offers Used by Sellers by Period, HB and CB Treatments
an incrementally safer option on the risk-preference survey, getting an additional CRT question correct, and being female are all negatively correlated with the tendency to use exploding offers. However, the correlation is not significant ($0.40<p<0.76$ for all measures).

Result 2 When given an exploding offer, buyers reject the offer (search for the second seller's item) more often than profit-maximizing play dictates. This tendency holds over all prices and valuations; it persists throughout the experiment.

Buyers make 6 purchase attempts in each period over 20 periods. Pooling the results from 3 sessions of 16 buyers each, there are a total of $5,760(6 \times 20 \times 16 \times 3)$ purchase attempts. Table 3 provides summary data on all of these choices ${ }^{13}$ In 3,144 of these purchase attempts buyers encounter an exploding offer on the first item they search. Optimal play (based on the price of the items and buyer valuation of the first item) dictates that buyers should accept this first offer in 1,861 (59.11%) instances; instead buyers accept in only 1,618 instances (51.46%), a difference that is statistically significant ($p<0.001$ for both a T test and rank sum test at the subject level) ${ }^{14}$

[^9]

Figure 4: Average Price Offered by Sellers by Period, HB and CB Treatments

Table 3: Summary Table of Buyers' Decisions

	1st offer is exploding		1st offer is free-recall		Overall	
	Actual	Optimal play	Actual	Optimal play	Actual	Optimal play
Accepts 1st offer, immediately	$\begin{gathered} \hline 1,618 \\ 51.46 \% \end{gathered}$	$\begin{gathered} 1,861 \\ 59.11 \% \end{gathered}$	$\begin{gathered} 539 \\ 20.68 \% \end{gathered}$	$\begin{gathered} 689 \\ 26.43 \% \end{gathered}$	$\begin{gathered} \hline 2,157 \\ 37.51 \% \end{gathered}$	$\begin{gathered} 2,550 \\ 44.34 \% \end{gathered}$
Searches for 2nd offer	$\begin{gathered} 1,526 \\ 48.54 \% \end{gathered}$	$\begin{gathered} 1,283 \\ 40.81 \% \end{gathered}$	$\begin{gathered} 2,068 \\ 79.32 \% \end{gathered}$	$\begin{gathered} 1,918^{2} \\ 73.57 \% \end{gathered}$	$\begin{gathered} 3,594 \\ 62.49 \% \end{gathered}$	$\begin{gathered} 3,202 \\ 55.66 \% \end{gathered}$
Accepts 2nd offer	$\begin{gathered} 1,131 \\ 35.97 \% \end{gathered}$	$\begin{gathered} 921(+129)^{1} \\ 29.29 \%(+4.1 \%) \end{gathered}$	$\begin{gathered} 1,085 \\ 41.62 \% \end{gathered}$	$\begin{gathered} 1,032(+237) \\ 39.59 \%(+9.09 \%) \end{gathered}$	$\begin{gathered} 2,216 \\ 38.53 \% \end{gathered}$	$\begin{gathered} 1,953(+366) \\ 33.96 \%(+6.36 \%) \end{gathered}$
Recalls 1st offer	-	-	$\begin{gathered} 794 \\ 30.46 \% \end{gathered}$	$\begin{gathered} 521(+237) \\ 19.98 \%(+9.09 \%) \end{gathered}$	$\begin{gathered} 794 \\ 13.81 \% \end{gathered}$	$\begin{gathered} 521(+237) \\ 9.06 \%(+4.12 \%) \end{gathered}$
Accepts neither offer	$\begin{gathered} 395 \\ 12.56 \% \end{gathered}$	$\begin{gathered} 233(+129) \\ 7.41 \%(+4.1 \%) \end{gathered}$	$\begin{gathered} 189 \\ 7.25 \% \end{gathered}$	$\begin{gathered} 94(+88) \\ 3.61 \%(3.38 \%) \end{gathered}$	$\begin{gathered} 676 \\ 11.75 \% \end{gathered}$	$\begin{gathered} 327(+217) \\ 5.69 \%(3.77 \%) \end{gathered}$
Total offers	3,144	3,144	2,607	2,607	5,751	5,751

${ }^{1}$ Numbers in parenthesis represent indifference treatments for optimal play. The subjects can receive the same net value or the subjects may receive a best offer with 0 net value. Therefore, we provide a conservative measure and its upper bound.
${ }^{2}$ We assume that consumers search only when the current value is strictly smaller than the difference between the highest value 70 and the other seller's price. Therefore, this measure is also a lower bound. There are 498 indifference cases.

The net result is that buyers accept the second offer, the only offer that remains, far more often than the optimal strategy dictates. Buyers accept the second offer 1,131 (35.97\%) times after an exploding offer, higher than the $921-1,050(29.29-33.39 \%)$ times 5^{15} they would if they followed optimal strategy.

The average expected (net) loss of earnings for such deviation (when a buyer rejects an exploding offer he should accept) is about 7 points per item. If that specific decision was chosen for the buyer (remember 1 in 120 buying decisions is randomly selected for the buyer), the buyer would lose $\$ 3.50$, the equivalent of 7 points. On average buyers made this deviation six times per session (292 deviations/48 buyers ≈ 6).

It should be noted that buyers also display a tendency to search for a second offer more often than "optimal" with free-recall offers, though these cases are very different from exploding offers. In general, buyers with a free-recall offer should continue to search for the second offer unless they will receive a surplus from the first seller than cannot be beaten by the second seller (e.g., receiving the highest possible value on an item offered at the lowest possible price). In those cases, it is unnecessary for buyers to search-the first offer is optimal—but searching produces no economic loss as buyers may recall their first offer. Buyers with free-recall offers ultimately chose the right item-the one with the highest net gain- 86.74% of the time ${ }^{16}$

The tendency for buyers to turn down exploding offers more often than optimal play is not isolated to a specific valuation or seller price pair. Figure 5 illustrates optimal response (dashed line) and actual response (solid line) in terms of rejection rate for buyers over different valuations for the first item when the seller uses an exploding offer. For instance when a buyer has a value higher than 55, in most instances optimal play would be to accept the offer. In the experiment, however, buyers show a substantial amount of rejection under these high values. Separating the data by seller-price pairs (i.e., the price the first seller makes with an exploding offer and the price the second seller offers), the over-rejection patterns remain under all price pairs (Figure 6).

Buyers persistently over-reject exploding offers over the course of the experiment. Figure 7 plots the rejection rate from optimal play and buyer rejection rate. In every period, the actual rejection rate is greater than or equal to the rate predicted by optimal play. Both a parametric t -test and non-parametric rank sum test, collapsed to the subject level, suggest the rejection rate with

[^10]

Figure 5: Rate of Buyer Rejection of Exploding Offer, Theoretical Prediction and Actual Play
human buyers is higher than optimal ($p<0.001$).
Survey measures show some correlation with the tendency of buyers to reject exploding offers. A linear probability regression with subject random effects indicates that choosing an incrementally safer option on the risk-preference survey and being female are both negatively correlated with rejecting exploding offers, but the correlation is not significant ($p \approx 0.228,0.262$, respectively). Getting an additional CRT question correct is associated with a 2.17% reduction in rejecting exploding offers, a result that is significant ($p \approx 0.024$). This last correlation suggests the tendency for buyers to over-reject exploding offers is more associated with the less cognitively-adept subjects ${ }^{17}$

Result 3 Because of their propensity to reject exploding offers, human buyers present different incentives to sellers than computers following optimal strategy. In addition to the standard equilibrium found when buyers play the theoretically optimal strategy, the sellers' pricing game with the payoffs created by human buyers contains a second equilibrium where sellers both make exploding offers at the lowest price. The quantal response equilibrium model shows this second equilibrium is the limiting equilibrium.

[^11]

Graphs by Seller's Price and Competitor's Price

Figure 6: Aggregate Rejection Rate, Theoretical Prediction vs. Actual Play, Separated by Seller Pricing Pairs (First Seller Price, Second Seller Price)

Figure 7: Rate of Buyer Rejection of Exploding Offer by Period, Theoretical Prediction and Actual Play

Table 4: Payoff Matrices for Seller Strategies, Given Theoretically Optimal Play and Empirical Play of Human Buyers

Theoretical						
	$25, \mathrm{E}$	$30, \mathrm{E}$	$35, \mathrm{E}$	$25, \mathrm{~F}$	$30, \mathrm{~F}$	$35, \mathrm{~F}$
25, E	11.909	13.271	13.271	13.674	15.059	15.641
30, E	11.721	13.563	14.949	12.887	16.409	18.071
35, E	13.675	13.675	$\mathbf{1 5 . 8 2 4}$	14.200	15.035	19.143
25, F	10.016	12.740	13.309	11.781	14.528	15.679
30, F	9.650	11.291	14.312	10.816	14.137	17.434
35, F	10.486	11.258	13.173	11.012	12.618	16.493
Simulated Human Buyers ${ }^{1}$						
25, E	$\mathbf{1 1 . 7 3 0}$	13.694	14.901	12.571	14.647	15.595
30, E	10.880	13.105	14.401	11.759	14.475	16.601
35, E	10.812	13.566	$\mathbf{1 5 . 5 1 3}$	11.510	13.624	17.839
25, F	10.940	13.575	14.985	11.781	14.528	15.679
30, F	9.937	12.767	15.234	10.816	14.137	17.434
35, F	10.313	12.561	14.167	11.012	12.618	16.493
The "human buyer" payoff matrix is calculated like the theoretically						
optimal matrix, except that the observed rejection rate of exploding						
offers is used rather than the theoretical optimum.						

Result 2 demonstrates that human buyer behavior is significantly different from optimal behavior. As one might expect, this presents different expected payoffs for sellers in the HB treatment than theory predicts. Table 4 presents a comparison of payoffs depending on whether the two sellers in the game face human or computer buyers. The human buyer payoffs are constructed using the buyer choice distributions in our sample. They capture the fact that an average buyer will over-reject exploding offers. Payoff values are determined by a simulation where 20,000 "human" buyers receive the offers of two sellers in random order. The payoffs for strategies that involve exploding offers are generally lower with human buyers than the theoretical prediction. This difference creates a second, pure-strategy, symmetric equilibrium where both sellers play the lowest price as an exploding offer $((25, E),(25, E))$ in addition to the pure-strategy, symmetric equilibrium of both sellers playing the highest price with an exploding offer (($35, E),(35, E))$. The latter strategy pair is the only pure-strategy, symmetric equilibrium that exists in theory or against computer buyers who play the theoretically optimal strategy.

There are two points about the game with simulated human buyers that require more explanation. First, it is surprising that both pure-strategy equilibria feature sellers making exploding offers. Our results this far have stressed that human buyers reject these offers more often than
their computer counterparts, seemingly making such strategy less profitable. Making exploding offers, nonetheless, is still the most profitable of the two seller strategies. Note that if sellers pick equal prices with different types of offers, the seller with the exploding offer earns higher expected profits. Lowering prices against an exploding offer can lead to higher payoffs in some cases. Sellers may find it effective to offer an exploding offer with a lower price to induce a reluctant buyer to accept an exploding offer.

Second, the existence of two pure-strategy, symmetric equilibria brings up the issue of equilibrium selection. It is desirable to be able to focus on one equilibrium and there are many techniques to do so. We use one such technique, the quantal response equilibrium model (QRE) (McKelvey) and Palfrey, 1995, 1998). The technique will ultimately show that the lower priced equilibrium $((25, E),(25, E))$ is the "limiting equilibrium."

The quantal response equilibrium model (QRE) (McKelvey and Palfrey, 1995, 1998) has become a standard way to model a game theory data setting where equilibrium strategies are not always played. For this reason, it is quite often used with experimental data. In a quantal response equilibrium, each player has correct beliefs about which strategies every other player will play. Expected payoffs for each strategy choice can be calculated given those beliefs.

$$
\begin{equation*}
\pi_{i}\left(s_{i}\right)=E\left[u_{i}\left(s_{i}, s_{-i}\right) \mid s_{i}\right] \tag{5}
\end{equation*}
$$

Then a given player noisily best responds according to those expected payoffs. Specifically, they choose strategies with higher expected payoffs more often. As Camerer (2003) notes, typically the QRE uses a logit payoff response function

$$
\begin{equation*}
P\left(s_{i}\right)=\frac{\exp \left(\lambda \pi_{i}\left(s_{i}\right)\right)}{\left.\sum_{s_{k}} \exp \left(\lambda \pi_{i}\left(s_{k}\right)\right)\right)} . \tag{6}
\end{equation*}
$$

Because each player calculates $P\left(s_{i}\right)$ which is dependent on all other players' values for $P\left(s_{i}\right)$, the system is recursive. For a given λ, the solution to the system of equations (6) is a quantal response equilibrium. The parameter λ measures each player's sensitivity in responding to these payoffs. At $\lambda=0$ players play each strategy with equal probability. As λ increases, each player best responds better, playing higher payoff yielding strategies more frequently, until at $\lambda=\infty$ each player is playing a purely best response and we are at a Nash equilibrium, "the limiting equilibrium." (McKelvey and Palfrey, 1995)

To model the quantal response equilibrium in our experiment, we use an equivalent formaliza-
tion of the QRE model. Rather than having players make noisy choices, we have them maximize noisy utility functions. The expected utility for a given strategy choice is subject to a random element. Given consistent beliefs and the strategy set S_{i}, each player i solves the problem

$$
\begin{equation*}
\max _{s_{k} \in S_{i}} \pi_{i}\left(s_{k}\right)+\epsilon_{i k} . \tag{7}
\end{equation*}
$$

The ϵ^{\prime} s are independently and identically distributed type-1 extreme value, making the problem and equilibrium equivalent to the system of equations shown in (6).

Figure 8 illustrates the prevalence of different seller strategies under the quantal response equilibrium model in the HB and CB treatment. The payoffs given in table 4 are directly used as sellers' payoffs for playing different strategies ${ }^{18}$ In the CB treatment, exploding offers lead to consistently better payoffs than free-recall offers given the computer buyers' optimized play. In the HB treatment, however, buyers consistently over-reject exploding offers. Modifying seller payoffs to account for this over-rejection creates a new game, one where both sellers making an exploding offer with price 25 becomes an additional Nash Equilibrium. Figure 8 (b) shows that the QRE model selects this equilibrium as the limiting equilibrium.

It is interesting to note that this limiting equilibrium strategy is also the modal strategy choice of sellers in the HB treatment (see Result 1).

Result 4 In both treatments, sellers demonstrate a reluctance to play strategies that involve the use of exploding offers. The tendency persists through all twenty periods against human buyers, but dissipates against computer buyers who play optimal strategy. This analysis controls for the differential expected payoffs of both strategies in the human- and computer-buyer treatments.

The quantal response model provides a baseline utility framework for sellers (see equation 7). In order to determine whether sellers have any preferences toward exploding offers not captured in the model, we introduce a new term δ that is included in sellers' utility only if they make an exploding offer. If δ is negative (positive), than sellers are reluctant (overeager) to use exploding offers; they derive additional negative (positive) utility from making them. If δ is zero, sellers do not have a systematic bias in their use of exploding offers. As the use of exploding offers varies between treatments and also within treatment by period (see Figure 3), we introduce four terms to capture the dynamics and treatment effects of exploding offers. The terms $\delta_{H 0}, \delta_{H T}$ represent the

[^12]Figure 8: Seller Strategies in Quantal Response Equilibrium by λ with Payoffs Determined by Either Theoretical-Optimum or Empirically-Observed, Human-Buyer Play

(a) Theoretical Optimum Buyer

(b) Empirically Observed Buyer
δ term in the first and last periods of the human buyer treatment, respectively; the terms $\delta_{C 0}$, and $\delta_{C T}$ represent the δ term in the first and last periods of the computer-buyer treatment, respectively. All other periods are convex combinations of their respective treatments' two terms. Similar terms are constructed for λ in the QRE model: $\lambda_{H 0}, \lambda_{H T}, \lambda_{C 0}$, and $\lambda_{C T}$. Equation (8) provides this utility model for subject i in period t.

$$
\begin{equation*}
u_{i t}\left(s_{i t}\right)=\left(\frac{20-p}{19} u_{X 0}\left(s_{i t}\right)+\frac{p-1}{19} u_{X T}\left(s_{i t}\right)\right) \tag{8}
\end{equation*}
$$

$X \in\{C, H\}$ represents two treatments.
where

$$
\begin{aligned}
& u_{C 0}\left(s_{i t}\right)=\lambda_{C 0}\left(\sum_{-i} \hat{u}\left(s_{i t}, s_{-i}\right) \widehat{\operatorname{Prob}}\left(s_{-i}\right)+\delta_{C 0} \mathcal{I} \text { (exploding offer) }\right) \\
& u_{C T}\left(s_{i t}\right)=\lambda_{C T}\left(\sum_{-i} \hat{u}\left(s_{i t}, s_{-i}\right) \widehat{\operatorname{Prob}}\left(s_{-i}\right)+\delta_{C T} \mathcal{I} \text { (exploding offer) }\right) \\
& u_{H 0}\left(s_{i t}\right)=\lambda_{H 0}\left(\sum_{-i} \hat{u}\left(s_{i t}, s_{-i}\right) \widehat{\operatorname{Prob}}\left(s_{-i}\right)+\delta_{H 0} \mathcal{I} \text { (exploding offer) }\right) \\
& u_{H T}\left(s_{i t}\right)=\lambda_{H T}\left(\sum_{-i} \hat{u}\left(s_{i t}, s_{-i}\right) \widehat{\operatorname{Prob}}\left(s_{-i}\right)+\delta_{H T} \mathcal{I} \text { (exploding offer) }\right)
\end{aligned}
$$

There are a few things to note about this structural model. The use of the terms $\frac{20-p}{19}$ and $\frac{p-1}{19}$ allow us to model each parameter as being representative of the initial or final period in the experiment, with all other periods being a weighted average of the two parameters. The bar above all $\hat{u}^{\prime} s$ indicates that the utility functions are taken from empirically observed data. Specifically, we use the values found in Table 4 for the HB and CB conditions for HB and CB estimation, respectively. Similarly the bar above each $\widehat{\operatorname{Prob}}\left(s_{-i}\right)$ indicates we are using the empirically found frequencies of playing s_{-i} by sellers in the $C B$ and $H B$ treatments for the $H B$ and $C B$ estimation.

Table5provides parameter estimates for this model. Initially, in both the HB and CB treatments sellers were reluctant to use exploding offers. Both coefficients, δ_{CO} and δ_{HO}, are significantly less than 0 ($p<0.001$). By period 20, however, sellers' reluctance to use exploding offers on human buyers persists ($\delta_{H T}$ is significantly less than $0, p<0.001$), but sellers show no reluctance to use exploding offers on computer buyers ($\delta_{C T}$ is only marginally significant, $p \approx 0.054$) The terms of

[^13]Table 5: Parameter Estimates for Dynamic QRE Model of Exploding Offer Usage with Both Human and Computer Buyers

	Computer Buyers	Human Buyers
$\lambda_{\mathrm{X} 0}$	$0.964^{* * *}$	$1.427^{* * *}$
	(0.149)	(0.205)
λ_{XT}	$0.748^{* * *}$	$3.272^{* * *}$
	(0.139)	(0.212)
$\delta_{\mathrm{X} 0}$	$-2.017^{* * *}$	$-1.106^{* * *}$
	(0.202)	(0.232)
δ_{XT}	-0.595^{*}	$-1.442^{* * *}$
	(0.308)	(0.269)
LL	-1036.710	-710.265

${ }^{1} X \in\{C, H\}$ represents computer-buyer treatment
or human-buyer treatment.
this "exploding-offer aversion" are economically significant. Literally interpreting the coefficients suggests that sellers experience a disutility equivalent to $\$ 1.10-\$ 1.40$ in possible earnings in using exploding offers against human buyers ${ }^{20}$ Full analysis of both buyer and seller earning are found in the next result.

The λ term in the HB treatment is generally greater than the corresponding term in the CB treatment. An F-test rejects the joint hypothesis of both $\lambda_{\mathrm{CO}}=\lambda_{\mathrm{HO}}$ and $\lambda_{C T}=\lambda_{H T}$ ($p<0.001$). Further, the estimate of λ increases in the HB treatment over the 20 periods ($\lambda_{H T}$ is significantly greater than $\lambda_{H O}, p<0.001$), but if anything the estimate decreases in the CB treatment. The λ is usually interpreted as the "noisiness" parameter in a QRE model. Thus, our estimation results indicate that sellers play more "accurately" with human buyers. This may be due to two facts. First, we used empirical play information in the estimation. The empirical play is determined by seller-buyer interactions. Second, sellers may face less payoff uncertainty when playing with human buyers, given that they reject high price offers or exploding offers with higher probability.

Result 5 Sellers in the human-buyer treatment earn less than sellers in the computer-buyer treatment. Human buyers are better off compared with computer buyers. The aggregate surplus of the human-buyer treatment is lower than that of the computer-buyer treatment.

Result 2 shows the primary difference between human buyers and optimal play, utilized by computer buyers, is the human buyers' greater tendency to reject exploding offers. This difference

[^14]

Figure 9: Average Profit for Buyers and Sellers in Human- and Computer- Buyer Treatments. (a, left) Average Profit for Sellers. (b, right) Average Profit for Buyers.
in play leads to great differences in earnings. Sellers earn more on average each period with computer buyers ($\$ 12.94$) than human buyers ($\$ 11.47$). Both a parametric t-test and non-parametric rank sum test, collapsed to subject level, confirm sellers earn more in the CB treatment ($p<0.001$ for both tests). Human buyers' earnings are significantly greater than computer buyers (\$16.429 vs. $\$ 15.224, p<0.001$ for both tests). These results cannot be due to different realizations of buyer valuations; both computer buyers and human buyers received exactly the same draws of a random distribution of valuations.

Figures 9 (a) and (b)—which show the average earnings of sellers and buyers, respectively, in each treatment, over the twenty periods of the experiment-demonstrate these differences in payoffs persist. There is evidence to suggest the difference between seller earnings in HB and CB treatments is actually increasing over the course of the experiment. Between the two treatments, the average difference in seller earnings is $\$ 1.172$ in periods $1-10$; the average difference in seller earnings is $\$ 1.771$ in periods $11-20$. A difference-in-difference regression reveals this result is significant ($\$ 0.60, p<0.001$). Similarly, buyers' profit difference on average is $\$ 1.205$ and it is increasing over time ($p=0.003$). There is also a downward trend in the average profit for computer buyers ($p=0.029$).

The total market surplus for both buyers and sellers is higher for the CB treatment. A t-test ($p=0.075$) and a rank-sum test ($p=0.073$) at group level show the difference is marginal, or statistical significant at 90% confidence interval. In monetary value, the average difference is $\$ 0.27$, or 0.95% of the average surplus each period.

5 Conclusion

This paper provides the first experimental investigation into methods of search deterrence in the consumer goods market. Although theory (Armstrong and Zhou, 2013) suggests some form of search deterrence is optimal for sellers in most conditions, our suspicion was that buyers might respond negatively to such tactics, reducing the likelihood they would be used by sellers. Our findings confirm this suspicion. Buyers reject exploding offers more often than is optimal. Sellers use exploding offers less often than both the theoretical optimum and a profit-maximizing strategy based on actual buyer behavior would dictate. Sellers do not demonstrate a similar tendency with computer buyers, suggesting their aversion to exploding offers may be a preference-based phenomenon and not the result of miscalculation.

The results of this experiment provide suggestive evidence as to why search deterrence in consumer markets may not be as widespread as theory might suggest. Buyers simply do not like exploding offers and reject them more than what profit-maximizing behavior would dictate. A best-responding seller would have to take this into account and use exploding offers less often than the theoretical optimum. Further, sellers who are exploding-offer averse, like in our experiment, would use even fewer exploding offers.

The results and implications of this work fill a previously unexamined area in the literature. Most theoretical and experimental work examine exploding offers in labor markets, where buyers make exploding offers to sellers. For instance, in theoretical work, Lippman and Mamer (2012) characterize under which conditions a buyer, seeking to purchase an asset from a seller, will use exploding offers. In experimental work, Niederle and Roth (2009) show that matching markets with exploding offers-together with binding acceptances-create early and dispersed transactions and lower match quality. Lau et al. (forthcoming) find experimental employees hired through exploding offers exhibit less effort for their employers, leading to welfare losses for both sides. Tang et al. (2009) frame their experimental Ultimatum Deadline Game as a hiring problem. Proposers offer responders some amount of time to make a decision. They find experimental proposers tend to set deadlines that are too short, and their offers are frequently rejected. Only Armstrong and Zhou (2013) explicitly model a consumer goods market. Their model, the theoretical basis for this paper, involves sequential consumer search where multiple firms choose whether or not to use exploding offers and set prices accordingly.

This paper also relates to experimental studies in sequential search markets. Early studies
in sequential search markets focus on the optimal stopping rule when individuals faced price or wage offers (Schotter and Braunstein, 1981; Cox and Oaxaca, 1989; Kogut, 1990). Those experiments evaluated individuals' search behavior when uncertain price/wage offers follow a known distribution and searching involves a constant search cost. They find that consumers tend to stop earlier, compared with risk neutral consumers, who only care about marginal expected gains. The literature naturally extends to more general experimental markets where sellers make price offers and buyers make purchase decisions (Grether et al., 1988; Cason and Friedman, 2003). That research involves testing equilibrium price and evaluating market performance. For example, Cason and Friedman (2003) test "noisy search equilibrium" using both computer buyers and real buyers. The paper builds on this strand of literature by augmenting traditional search experimental designs with the possibility of exploding offers. Unlike the previous findings, the use of exploding offers generally leads buyers to search longer than optimal, as buyers are more likely to reject sellers' exploding offers and continue their search.

Of course, one simplification we have made is using exploding offers as the only example of search deterrence in our experiment. We specifically chose exploding offers rather than other forms of search deterrence, because the strategy is the simplest form of search deference, an extreme case of the model, and the one believed most likely to provoke a negative response from buyers. Theory shows other search deterrence strategies are optimal in a greater variety of situations than exploding offers (Armstrong and Zhou, 2013). We leave it as a future extension of our work to experimentally investigate buyers' response to such search deterrence.

References

Mark Armstrong and Jidong Zhou. Search deterrence. Working Paper, University of Oxford, 2013.
Christopher Avery, Christine Jolls, Richard A. Posner, and Alvin E. Roth. The market for federal judicial law clerks. The University of Chicago Law Review, 68(3):793-902, 2001.

Christopher Avery, Christine Jolls, Richard A. Posner, and Alvin E. Roth. The new market for federal judicial law clerks. The University of Chicago Law Review, 74(2):447-486, 2007.

Yaron Azrieli, Christopher P. Chambers, and Paul J. Healy. Incentives in experiments: A theoretical analysis. 2014.

Colin F. Camerer. Behavioral Game Theory. Princeton University Press, 2003.

Timothy N. Cason and Daniel Friedman. Buyer search and price dispersion: a laboratory study. Journal of Economic Theory, 112(2):232-260, 2003.

James C. Cox and Ronald L. Oaxaca. Laboratory experiments with a finite-horizon job-search model. Journal of Risk and Uncertainty, 2(3):301-329, 1989.

Catherine C. Eckel and Philip J. Grossman. Forecasting risk attitudes: An experimental study using actual and forecast gamble choices. Journal of Economic Behavior \& Organization, 68(1):1 17, 2008.

Urs Fischbacher. z-tree: Zurich toolbox for ready-made economic experiments. Experimental Economics, 10(2):171-178, 2007.

Shane Frederick. Cognitive reflection and decision making. Journal of Economic Perspectives, 19(4): 25-42, 2005.

Ben Greiner. The online recruitment system ORSEE 2.0-a guide for the organization of experiments in economics. University of Cologne, 2004.

David M. Grether, Alan Schwartz, and Louis L. Wilde. Uncertainty and shopping behaviour: An experimental analysis. Review of Economic Studies, 55(2):323-42, 1988.

Carl A. Kogut. Consumer search behavior and sunk costs. Journal of Economic Behavior \& Organization, 14(3):381-392, 1990.

Nelson Lau, Yakov Bart, Joseph Neil Bearden, and Ilia Tsetlin. Exploding offers can blow up in more than one way. Decision Analysis, forthcoming.

Steven A. Lippman and John W. Mamer. Exploding offers. Decision Analysis, 9(1):6-21, 2012.
Richard D. McKelvey and Thomas R. Palfrey. Quantal response equilibria for normal form games. Games and Economic Behavior, 10(1):6-38, 1995.

Richard D. McKelvey and Thomas R. Palfrey. Quantal response equilibria for extensive form games. Experimental Economics, 1(1):9-41, 1998.

Muriel Niederle and Alvin E. Roth. Market culture: How rules governing exploding offers affect market performance. American Economic Journal: Microeconomics, 1(2):199-219, 2009.

Alvin E Roth and Xiaolin Xing. Jumping the gun: Imperfections and institutions related to the timing of market transactions. The American Economic Review, pages 992-1044, 1994.

Michael Rothschild. Searching for the lowest price when the distribution of prices is unknown. The Journal of Political Economy, pages 689-711, 1974.

Andrew Schotter and Yale M. Braunstein. Economic search: An experimental study. Economic Inquiry, 19(1):1-25, 1981.

George J Stigler. The economics of information. The journal of political economy, pages 213-225, 1961.

Wenjie Tang, J. Neil Bearden, and Ilia Tsetlin. Ultimatum deadlines. Management Science, 55(8): 1423-1437, 2009.

[^0]: *We thank the Texas A\&M Humanities and Social Science Enhancement of Research Capacity Program for providing generous financial support for our research. We have benefited from helpful comments by Gary Charness, James Cox, Catherine Eckel, Silvana Krasteva, seminar participants at Georgia State University, and conference participants of the 2013 North American Economic Science Association and 2013 Southern Economic Association Meetings. Daniel Stephenson and J. Forrest Williams provided invaluable help in conducting the experimental sessions.
 ${ }^{\dagger}$ Corresponding author. Please contact at wangxy@uestc.edu.cn.

[^1]: ${ }^{1}$ For instance, law students applying for appellate court clerkships frequently receive exploding offers Roth and Xing, 1994, Avery et al. 2001. 2007, Niederle and Roth, 2009.

[^2]: ${ }^{2}$ Several identical buyers were used in our experiments for a larger sample size. Each seller can only choose one strategy for all buyers in each period.

[^3]: ${ }^{3}$ We denote the first seller S^{1} and the other seller S^{2}.
 ${ }^{4} \mathrm{As}$ a convention, we assume female sellers and a male buyer.

[^4]: ${ }^{5}$ In some cases, it is not necessary for the buyer to search. For example, if V^{1} is the highest possible value from the distribution and $P^{1} \leq P^{2}$. In which case, there is no gain or loss from searching, so we assume for simplicity that the buyer always visits the second seller if the first offer was a free-recall offer. Different assumptions do not change the equilibrium of the game in our experiments.
 ${ }^{6}$ If a value of the good from the second seller is higher than the price, the buyer would accept the offer and gain $V_{k}^{2}-P^{2}$; however, if $V_{k}^{2}<P^{2}$, he would reject the offer and earn zero payoff. So, for each value k of the second good, the buyer would earn the greater of 0 and $V_{k}^{2}-P^{2}$. The expected payoff is calculated from the sum of the multiplication of $\max \left(0, V_{k}^{2}-P^{2}\right)$ and its probability as shown above.
 ${ }^{7}$ If $\Pi^{1}=E\left(\Pi^{2}\right)$, we assume that the buyer would search with probability $\frac{1}{2}$. Different tie-breaking rules do not change the equilibrium of the game.
 ${ }^{8}$ For simplicity, we assume the probability of visiting each seller first to be equal. It is straightforward to use a different probability.

[^5]: ${ }^{9}$ The case where the buyer visits i first is equivalent to the case where both sellers use exploding offers and the case where the buyer visits j first is equivalent to the case where both sellers use free-recall offers.
 ${ }^{10}$ The case where the buyer visits i first is equivalent to the case where both sellers use free-recall offers and the case where the buyer visits j first is equivalent to the case where both sellers use exploding offers.

[^6]: ${ }^{11}$ If in one session, subject i was matched with subject j in period n; in all other sessions, subject i would be matched with subject j in period n as well.

[^7]: ${ }^{12}$ We choose to pay for one random decision to eliminate any subject complimentarities that might occur across decisions or periods, most notably income effects. See Azrieli et al. (2014) for a greater discussion.

[^8]: ${ }^{1}$ Standard error is reported in this column (in parentheses) rather than percent of observations.
 Note: For the data labels letters " F " and " E " denote free-recall and exploding offers, respectively. The number indicates price. For example, " $25, \mathrm{E}$ " indicates the strategy of offering price 25 with an exploding offer. This convention is used throughout the paper.

[^9]: ${ }^{13}$ Due to a computer glitch 9 buying attempts were unable to be recorded. These affected four different buyers over two periods in one session. Given the small number of observations lost compared to the total number in the sample, we cannot envision how this loss of data would affect any results.
 ${ }^{14}$ The difference is even more glaring when one considers buyers accepted 49 exploding offers that they should have

[^10]: rejected, meaning buyers rejected 292 exploding offers they should have accepted (292-49=243=1861-1618).
 ${ }^{15}$ This number varies depending on whether optimal buyers would have bought the second item if the net gain from doing so was zero (when value=price).
 ${ }^{16}$ In the remainder of these choices buyers mistakenly chose the item they valued most, ignoring price, rather than focusing on net gain.

[^11]: ${ }^{17}$ It is important to remember these subjects are representing consumers. While an argument could be made that subjects with higher CRT scores are more representative of producers (as firms presumably hire and promote more cognitively-adept individuals), it is not clear what distribution of CRT scores best represent consumers. So there is reason to take seriously the over-rejections of the subjects with low CRT scores.

[^12]: ${ }^{18}$ To be clear, this means we are analyzing a two-player, normal-form game. We set buyer behavior as fixed. That is, we are not using QRE to model buyer behavior.

[^13]: ${ }^{19}$ One potential issue with the estimation δ is that it might reflect some type of risk aversion. There is little evidence to support this claim. While subjects surveyed to have greater risk-averse preferences are less likely to use exploding offers (though not significantly so), a difference-in-differences regression reveals no correlational evidence to suggest those subjects are more reluctant to use exploding offers against human buyers vs. computer buyers.

[^14]: ${ }^{20}$ This is a tricky point. Sellers are only paid based on one randomly-selected period of twenty so no one decision to avoid an exploding offer has an expected cost of $\$ 1.10-\$ 1.40$. However, the pattern of behavior of continually avoiding exploding offers does cost sellers losses of this magnitude.

