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Abstract

In consumer goods markets, theory shows that it is generally profitable for
sellers to use search-deterrence strategies to alter buyer search. These results
rely on agents’ reacting solely to the economic content of these pressure tac-
tics, ignoring any behaviorally based responses search deterrence may evoke.
To test the validity of this assumption, this paper examines an experimental
market where profit-maximizing strategy dictates that sellers should exercise
one form of search deterrence, exploding offers. Sellers demonstrate a reluc-
tance to use such offers against human buyers, but they are less reluctant to
use them against computerized buyers. Human buyers are three times more
likely to deviate from optimal strategy by rejecting rather than accepting these
offers. Survey responses are consistent with other-regarding-preference-based
reasons for sellers’ actions but not buyers’. Taken together, these results sug-
gest the benefits of tactics that rely on pressuring decision-makers may be more
nebulous than previously thought.
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1 Introduction

Many markets are modeled as dynamic. For instance, buyers search and learn new

information about their valuations over time before finalizing purchase decisions.

Recent theory developments (Courty and Hao, 2000; Nocke et al., 2011; Armstrong

and Zhou, 2016) show sellers often earn more than a static price discrimination

theory would predict. They do so by using dynamic contracts to alter buyers’

information structure. Implicit in the execution of these contracts is the pressure

sell. Sellers prod buyers to make a decision immediately rather than at their leisure.

While perfectly rational agents will respond to this pressure in a manner consistent

with theory, other agents may respond to increased pressure—or even the thought

of increased pressure on someone else—with a suboptimal, behaviorally based

response.1

This paper examines this question in a laboratory experiment designed to im-

plement a simplified consumer search model (Armstrong and Zhou, 2016): two

sellers simultaneously choose one of three prices and make either an exploding

or non-exploding offer.2 Buyers, previously unaware of their (personal) value for

either seller’s good, randomly visit one seller and learn their (personal) value for

that seller’s good. In doing so, they receive the seller’s offer. The buyers must then

decide whether to visit the other seller. If the first seller makes an exploding offer, a

visit to the second seller will terminate the opportunity to buy from the first seller.

Because seller behavior is conditional on perceived buyer response, two treat-

ments are used to isolate seller behavior. In one, sellers knowingly interact with

1Beginning with Güth et al. (1982), there is a substantial body of literature showing that actions
that violate some form of fairness are met with a negative response, even in a single-shot setting
(Cooper and Kagel, 2016). We interpret a plausible extension of this research that buyers would
negatively reciprocate against a pressure sell, and sellers would be reluctant to make such sells.
There is empirical precedent for such thinking (see Kahneman et al., 1986). Similarly, a large body
of literature is generally consistent with the idea that pressure exacerbates optimal decision-making
(for example, see Shah et al., 2012).

2The exploding offer is an offer that is valid for only a short time period; the period is short enough
to ensure that the receiver of the offer cannot find any new competing offers before deciding on the
current offer. In the experiment, we assume the offer expires instantly after a buyer’s visit.
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computer buyers programmed to follow optimal strategy; in the other, they interact

with human buyers. Common across both treatments is the equilibrium prediction.

The opportunity to use exploding offers removes the incentives for sellers to com-

pete on price; they will play a pure strategy of charging the highest price with an

exploding offer.3 Buyers will reject or accept exploding offers, unbiasedly, based on

expected value and profit maximization.

In contrast to the equilibrium prediction, human buyers are three times more

likely (i.e., 15 probability points more) to violate profit-maximizing strategy by

rejecting an exploding offer than accepting it. This differential rate of suboptimal

play alters sellers’ incentives; seller’s best-response is to charge the lowest price,

albeit with an exploding offer. In a deviation from this best response, sellers use

exploding offers about two-thirds as often against human buyers as they do against

computer buyers. Overall, sellers play the equilibrium strategy five times more

often against computer buyers than human buyers.

Though our design features only exploding offers, we suspect the basic flavor

of these results—that buyers and sellers respond more negatively to pressure sales

tactics than standard theory predicts—applies to all forms of search deterrence, a

tactic that is continually evolving and expanding in the field.4 Originally, cases

of consumer search deterrence were confined to specific markets and situations.

Literature suggests use of exploding offers was common among professional sales-

people (Cialdini, 2003) and health clubs offering memberships (Xiong and Chen,

2014). Buy-now discounts were noted in home improvement service contracts

(Bone, 2006) and housing rentals (Robinson, 1995). Internet commerce expanded

3Exploding offers will cause high-valuation buyers to buy immediately from the seller and may
drive away medium-valuation buyers who would have returned to buy the product if their search
was not deterred. If the distribution of buyers is increasing in valuation, these tactics will be more
profitable, compared to regular free-recall offers.

4Exploding offers are special limiting cases of other forms of search deterrence, “buy-now” dis-
counts and deposits. If a deposit or discount is sufficiently high, a buyer will be forced to either accept
the offer immediately or reject it entirely. Further, with sufficient return costs, there exist equilibria
such that any pricing decision is effectively an exploding offer, because buyers will not return to
sellers whose offer they have rejected (Armstrong and Zhou, Proposition 4).
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its scope, in part, by greatly reducing the costs of maintaining, tracking, and noti-

fying customers for search deterrence. Tracking “cookies” may lead to increases in

prices should a consumer leave a website and return. ”Daily deals” or ”flash sale”

websites now market limited-time offers to registered customers by email, text or

social networks. The initial market valuations of flash sale websites and single-day

revenues of the most popular daily-sale events are on the order of magnitude of

billions of dollars.5 Recent patents suggest search-deterrence technology will only

improve.6 Closely related to the expansion of search-deterrence strategies is the

movement in consumer protection policies. In 2005, the European Union began

prohibiting sellers from making false claims about product availability “in order

to elicit an immediate decision and deprive consumers of sufficient opportunity or

time to make an informed choice.”(Armstrong and Zhou, 2016)

However, there need not be one single underlying mechanism for sellers’ and

buyers’ departures from equilibrium play. Our survey results find separate pat-

terns behind buyer and seller responses. Buyers who answer the fewest questions

correctly on the Cognitive Reflection Test (CRT; Frederick, 2005) are most likely

to reject an exploding offer they should accept. Such buyers are no more or less

likely to accept an exploding offer they should reject, creating a differential nega-

tive response to exploding offers. The same test does not predict seller exploding

offer use. On exit surveys, about a third of sellers indicate a reliance on free-recall

offers, often justified by how an exploding offer would affect buyers. These sellers

are far less likely to use exploding offers. Interestingly, not one buyer indicates a

corresponding concern about the effects of exploding offers. Our interpretation is

that sellers’ reluctance to use exploding offers is driven by other regarding prefer-

5See Rao (2016); Soper (2017); Lavin (2016). Recent trends suggest flash sale websites may be fading
from popularity after initial fanfare, while scheduled daily deals are thriving. This is surprising, as
there is little distinction between the two methods. We suspect the slight difference in the framing of
the two types of sales may be responsible. In our conclusion, we discuss this issue more broadly as a
topic for future research.

6See patents numbers US 8543470 B2, US 7418405 B1 and US 20100023407 A1 (Utter et al., 2008;
Grady and Orttung, 2010, 2013).
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ences, but buyers are intuitively (rather than deliberately) biased toward rejecting

exploding offers. Having two separate triggers for suboptimal play under pressure

tactics broadens the implications of our findings. It is well known that fairness and

norm considerations can alter strategies used in markets (Kahneman et al., 1986);

less is known about the implications of buyers’ rejecting pressure sales innately,

even when the sellers’ intentions are benevolent. In our conclusion, we explore

such implications within and outside the context of search deterrence.

2 Related Literature

Investigations into search deterrent strategies initially attracted the attention of

researchers and policy makers in the labor market. Most work concerns buyers’

making exploding offers to sellers, where the numbers of offers and purchases may

both be extremely constrained. These unique features, not found in consumer goods

markets, make it difficult, if not impossible, to extrapolate the preceding works

to consumer goods markets.7 Lippman and Mamer (2012) theoretically model

this setup and conclude that the optimal offer choice for buyers varies greatly

depending on underlying assumptions. The labor market focus also produces

experimental results that are not particularly relevant to consumer goods markets.

For instance, Niederle and Roth (2009) show that matching markets with exploding

offers—and with binding acceptances—create early and dispersed transactions and

lower match quality. Lau et al. (2014) find experimental employees hired through

exploding offers exhibit less effort for their employers than do traditional hires,

leading to welfare losses for both sides. Tang et al. (2009) examine how employers

select the duration of an exploding offer to a prospective employee. They find

experimental proposers tend to set deadlines that are too short, and their offers are

frequently rejected.
7There are also clear-cut examples of labor markets in which exploding offers are the norm. Law

students applying for appellate court clerkships frequently receive exploding offers (Roth and Xing,
1994; Avery et al., 2001, 2007; Niederle and Roth, 2009).
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Armstrong and Zhou (2016) do not include these preceding features (i.e., match-

ing quality, reciprocity after market transaction, variable exploding offer length),

and neither does our paper. Their paper, the theoretical basis for ours, involves mul-

tiple firms’ applying strategies of search deterrence to increase consumers’ search

cost and affect their search behavior in the market. The authors concede their model

does not incorporate “behavioural factors,” but they speculate these factors could

either make search-deterrent strategies either more or less profitable. The prima-

ry purpose of this paper concerns these factors and their implications on market

outcomes.

Also related are experimental studies in sequential search markets. Early s-

tudies focus on the optimal stopping rule when individuals faced price or wage

offers (Schotter and Braunstein, 1981; Cox and Oaxaca, 1989; Kogut, 1990). Those

experiments evaluate individuals’ search behavior when uncertain price/wage of-

fers follow a known distribution and searching involves a constant search cost.

On one hand, they find, the search outcome is usually very efficient; on the other

hand, subjects tend to stop earlier than the risk-neutral optimal strategy, which

is consistent with risk aversion. More recently, the sequential searching behavior

has been evaluated under more general experimental markets—where sellers make

price offers and buyers make purchase decisions (Grether et al., 1988; Cason and

Friedman, 2003). Our paper builds on this strand of literature by allowing for the

possibility of search deterrence. Contrary to previous findings, our main result

implies buyers generally search longer than the risk-neutral optimum, that is, in the

opposite direction of the risk-averse prediction.

3 The Model

The experiment in this paper implements a simplified model based on Armstrong

and Zhou (2016). There are a few major changes from the literature. First, the only

search deterrence sellers may use is an exploding offer. Second, buyers are aware
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of all sellers’ pricing decisions immediately; this results in optimal buyer strategies

that do not require assumptions on the distribution of seller strategies. To avoid

buyers’ strategically avoiding sellers who use exploding offers (and potentially

eliminating the use of such strategies in equilibrium), buyers randomly encounter

sellers, so that search order is exogenous.

We also discretize buyer valuations and seller prices. This change reduces the

number of decisions for subjects, simplifying the problem. Assuming optimal play

by buyers, the end result is a 6 x 6 symmetric normal-form game between two

sellers. Table 2 (at the end of this section) provides payoffs for a seller given a

fixed offer and a pricing strategy, conditional on the other seller’s offer and pricing

strategy. The table will be used as a theoretical benchmark for analysis of sellers’

choices in the experimental game.

3.1 The Search

This model represents an experimental search market of two sellers with one buyer

who visits each seller sequentially in a random order.8 Each seller offers a good that

has a private value for the buyer drawn from the same ex-ante value distribution:

Vi
k ∈ {V1,V2, ...,VK} (where i = 1, 2 represents sellers and k = 1, 2, ...,K represents

K possible values) with probability υ1 ≡ prob(V1), υ2 ≡ prob(V2), ..., υK ≡ prob(VK).

The game is as follows:

1. Each seller sets a price from a possible price range: Pi ∈ {P1,P2, ...,PL} and

chooses an offer type as either an exploding or a free-recall offer.

2. Nature randomly selects which seller the buyer will visit first (S1).9

3. The buyer observes the prices of both sellers (P1 and P2) and his value of the

first good he10 visits (V1).
8Several identical buyers were used in our experiments to reduce noise in seller realized payoffs.

Each seller can choose only one strategy for all buyers in each period.
9We denote the first seller S1 and the other seller S2.

10As a convention, we assume female sellers and a male buyer.
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4. The buyer chooses whether to accept the first offer or to visit S2. If he chooses

to accept, the transaction occurs and the game ends; otherwise, the game

continues to the next step.

5. The buyer visits S2 and observes the value of the good (V2).

6. The buyer chooses whether to accept or reject the offer from S2. If he accepts,

the transaction occurs and the game ends. If he rejects and the first offer was

an exploding offer, no transaction occurs and the game ends. If he rejects and

the first offer was a free-recall offer, the game continues to the next step.

7. The buyer chooses whether to accept or reject the offer from S1 (if it is a

free-recall offer).

Each player’s payoff is determined after the game ends. If there is no transaction,

all players receive zero payoff. If there is a transaction, the buyer receives a payoff

equal to the difference between his value and the price of the good he bought; that

seller receives a payoff equal to that price; the (other) seller with no transaction

receives zero payoff.

3.2 Buyer Best Response

We assume that the buyer is rational and has an objective to maximize his expected

payoff. Because the buyer will have full information when visiting the second

seller, whether the second seller uses an exploding offer has no effect on the buyer’s

strategy; he will maximize surplus regardless. Thus we need to consider only two

cases: (1) the first offer is a free-recall offer, and (2) the first offer is an exploding

offer.

If the first offer is a free-recall offer, visiting S2 does not prevent the buyer from

revisiting S1; the buyer always searches.11 After visiting both sellers, the buyer

11In some cases, it is not necessary for the buyer to search. For example, if V1 is the highest possible
value from the distribution and P1 ≤ P2. In which case, there is no gain or loss from searching, so we
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chooses an option that provides him the highest payoff from three possible options.

The options are (1) accepting the first offer (V1 − P1), (2) accepting the second offer

(V2 − P2), and (3) rejecting both offers (zero payoff).

If the first offer is an exploding offer, the buyer will decide by comparing the

payoff from accepting the first offer to the expected payoff from rejecting the offer.

The payoff from accepting the first offer is the difference between the value and the

price of the first offer, or Π1 = V1 − P1, whereas the expected payoff from visiting

S2 is

E(Π2) =
K∑

k=1

υk
∗max(0,V2

k − P2).12 (1)

The buyer accepts the first offer if Π1 > E(Π2) and rejects otherwise.13 If he rejects

the first offer, the buyer will accept the second offer only if V2 > P2.

3.3 Seller Strategies

Like the buyer, we assume that each seller is rational and has an objective to

maximize her expected payoff. In this market, each seller is required to choose a

price and an offer type before knowing which seller the buyer will visit first. There

are three possible cases to consider: (1) both sellers use exploding offers; (2) both

sellers use free-recall offers; and (3) one seller uses an exploding offer and the other

seller uses a free-recall offer.

First, consider the case in which both sellers use exploding offers. Consider

seller i with a price Pi, who plays with seller j with a price P j. Two possible

situations occur with equal probability:14

assume for simplicity that the buyer always visits the second seller if the first offer was a free-recall
offer. Different assumptions do not change the equilibrium of the game.

12If a value of the good from the second seller is higher than the price, the buyer will accept the
offer and gain V2

k − P2; however, if V2
k < P2, he will reject the offer and earn zero payoff. So, for each

value k of the second good, the buyer will earn the greater of 0 and V2
k − P2. The expected payoff is

calculated from the sum of the multiplication of max(0,V2
k − P2), and its probability as shown above.

13If Π1 = E(Π2), we assume that the buyer would search with probability 1
2 . Different tie-breaking

rules do not change the equilibrium of the game.
14For simplicity, we assume the same probability of visiting each seller first. It is possible to assume
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1. A buyer visits seller i first. The buyer will accept the offer if the difference

between his valuation of the first good and its price is greater than the expected

payoff from the second offer; i.e., Vi
k − Pi > E(Π j) =

∑K
l=1 υl

∗max(0,V j
l − P j), as

shown in equation (1). He otherwise rejects the offer. The probability that he

will accept the offer is

Prob(accept i1) =
K∑

k=1

υk
∗Di

k, (2)

where Di
k = 1 if Vi

k − Pi > E(Π j) and = 0 otherwise.

2. A buyer visits seller j first. Similar to the first case, the buyer will accept

the offer from seller j with probability
∑K

l=1 υl
∗D j

l where D j
l = 1 if V j

l − P j >

E(Πi) =
∑K

k=1 υk
∗max(0,Vi

k − Pi) and = 0 otherwise, as shown in equation (2).

If the buyer rejects the offer from seller j, he will visit seller i. When visiting

seller i, he will accept the offer if his value of product i (Vi) is above Pi or

with probability
∑K

k=1 υk
∗Bi

k where Bi
k = 1 if Vi

k > Pi and = 0 otherwise. So, the

probability that the buyer will purchase from seller i is

Prob(accept i2) =(1 −
K∑

l=1

υl
∗D j

l )
∗

K∑
k=1

υk
∗Bi

k. (3)

Since seller i receives a payoff Pi only if the buyer purchases from her, seller

i’s expected payoff is Pi∗[ 1
2 Prob(accept i1)+1

2 Prob(accept i2)].

Second, consider the case in which both sellers use free-recall offers. Again, consider

seller i with price Pi who plays with seller j with price P j. The order of seller visits

has no effect here, because a buyer always searches in this scenario. Therefore, the

buyer will purchase from seller i if (1) Vi
k − Pi > V j

l − P j and (2) Vi
k − Pi > 0. The

different probabilities.

9



Table 1: Choices of Valuation Distributions

High buyer-heterogeneity

V ∈ {10, 25, 40, 55, 65, 70},
υ1 = υ2 = υ3 = υ4 = 0.125, and υ5 = υ6 = 0.25,
P ∈ {25, 30, 35}.

Low buyer-heterogeneity

V ∈ {10, 25, 40, 55, 65, 70},
υ1 = υ2 = υ5 = υ6 = 0.1, and υ3 = 0.2, and υ4 = 0.4,
P ∈ {25, 30, 35}.

probability that the buyer will purchase from seller i is

Prob(accept i3) =
K∑

k=1

K∑
l=1

υkυl
∗Ai j

kl, (4)

where Ai j
kl = 1 if (1) Vi

k − Pi > V j
l − P j and (2) Vi

k − Pi > 0 and Ai j
kl = 0 otherwise.

Therefore, his expected payoff is Pi∗Prob(accept i3).

Last, consider the case in which one seller uses an exploding offer and the other

seller uses a free-recall offer. Because the second seller’s offer type has no effect

on the buyer’s strategy, we can use the expected payoffs from the previous two

cases. If seller i uses an exploding offer while seller j uses a free-recall offer, seller

i’s expected payoff is Pi∗[ 1
2 Prob(accept i1)+1

2 Prob(accept i3)].15 If seller i uses a

free-recall offer while seller j uses an exploding offer, seller i’s expected payoff is

Pi∗[ 1
2 Prob(accept i3)+1

2 Prob(accept i2)].16

15The case in which the buyer visits seller i first is equivalent to the case in which both sellers use
exploding offers, and the case in which the buyer visits seller j first is equivalent to the case in which
both sellers use free-recall offers.

16The case in which the buyer visits seller i first is equivalent to the case in which both sellers use
free-recall offers, and the case in which the buyer visits seller j first is equivalent to the case in which
both sellers use exploding offers.
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3.4 Parameter Choices for Experimental Search Markets

The previous analysis shows how payoffs are calculated in this game. For any sets

of values Vi
k ∈ {V

i
1,V

i
2, ...,V

i
K}, probabilities υ1, ..., υK, and prices Pi ∈ {Pi

1,P
i
2, ...,P

i
L},

we can calculate payoffs for any combinations of strategies for each seller. Table 1

provides parameter choices used in our experiment. We use the same sets of values

and prices but different probabilities for the high- and low- buyer-heterogeneity

distributions. The high-buyer-heterogeneity distribution offers a greater variance

of buyers’ values for items than does the the low-buyer-heterogeneity distribu-

tion.17 One interpretation of this heterogeneity is that it represents the underlying

competitiveness of the market depending on the similarity of the sellers’ products.

The valuation structures provide different incentives for buyers across distribu-

tions. Suppose, for example, a buyer faces exploding offers from both sellers at a

price of 35. Under the high-buyer-heterogeneity distribution, a buyer will accept

the first offer only if his value for the first item is either 65 or 70. In contrast, under

the low-buyer-heterogeneity distribution, a buyer will accept the first offer if his

value for the first item is either 55, 65 or 70. Under both distributions, if the first

offer is rejected, the second offer will be accepted as long as his value for the second

item is above 35 (i.e., the values of 40, 55, 65, 70).

Buyer optimization provides different expected payoffs for each seller-strategy

pair across each treatment. Table 2 provides a matrix of these values in normal

form.18 The table introduces our convention of referring to seller strategies. The

price a seller offers will be followed by a letter (“E” or “F”) to indicate whether

the offer is an exploding or free-recall offer. Under both distributions, the unique

17Specifically, the discrete high-buyer-heterogeneity distribution has a mean of 50, a variance of
450, and a skewness of -0.76; the discrete low-buyer-heterogeneity distribution has a mean of 47,
a variance of 306, and a skewness of -0.78. Our intent was to change the variance without greatly
modifying the other moments. However, we were constrained by the equilibrium prediction and the
need to use relatively simple distributions with our subjects.

18The payoff matrices are calculated based on two assumptions: (1) when facing the same net
values from two sellers, a buyer has the same probability of accepting each seller’s offer; (2) a buyer
rejects an offer with zero payoff.
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Table 2: Two-Seller Game Table with Expected Payoffs for One Seller’s Strategy
Choice (Row) Given Other Seller’s Strategy Choice (Column). Payoffs provided
for row player only. Because the game is symmetric, the payoffs for the column
player are found in the transpose cell. For the strategy labels, letters “F” and “E”
denote free-recall and exploding offers, respectively. The number indicates price.
For example, “25E” indicates the strategy of offering price 25 with an exploding
offer. The equilibrium payoffs are in bold.

High-Buyer-heterogeneity Distribution
25E 30E 35E 25F 30F 35F

25E 11.33 12.50 12.50 13.67 15.04 15.63
30E 11.72 13.59 15.00 12.89 16.41 18.05
35E 13.67 13.67 15.86 14.22 15.04 19.14
25F 9.38 11.91 12.50 11.72 14.45 15.63
30F 9.61 11.25 14.30 10.78 14.06 17.34
35F 10.39 11.21 13.13 10.94 12.58 16.41

Low-Buyer-heterogeneity Distribution
25E 30E 35E 25F 30F 35F

25E 11.50 11.50 15.50 13.50 14.94 15.25
30E 13.80 13.80 13.80 14.48 16.20 17.93
35E 9.10 16.10 16.10 9.45 16.89 18.90
25F 10.00 11.44 15.75 12.00 14.88 15.50
30F 10.28 12.00 13.73 10.95 14.40 17.85
35F 11.55 11.99 14.00 11.90 12.78 16.80

equilibrium for sellers involves an exploding offer with the highest price of 35

(points), that is, (35E, 35E).

Finally, these results rely on the assumption of risk neutrality. Risk-averse

buyers should act differently in two main ways: they should more often accept ex-

ploding offers, and they should show preference for a sure surplus over a random

distribution of surpluses from the second seller. This will increase the profitability

of exploding offers for sellers, even if both sellers choose to use exploding offers. If

sellers rather than buyers are risk averse, there is a possibility that sellers may offer

lower prices in equilibrium but still use exploding offers. However, this result de-

pends on the assumption of one buyer in the model, an assumption chosen without
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loss of generality in a risk-neutral framework. With 24 buyer-valuation draws in-

stead (as in our experiment), risk-averse sellers have sufficient diversification over

buyer valuation levels that (35E, 35E) is the unique equilibrium.

4 Experimental Design and Procedures

Experimental methodology is essential for research questions such as these. Be-

cause search-deterrence strategies are often offered casually and not publicly an-

nounced, “It is hard to obtain empirical evidence about this form of price discrim-

ination.”(Armstrong and Zhou, 2016, p. 26) The laboratory setting also addresses

the question of credibility with search-deterrence offers. An exploding offer in the

laboratory will expire with certainty. In the field, search-deterrence offers may be

cheap talk. It is in the interest of firms to make statements that prod customers to

buy quickly and without looking at competing offers. If a customer refuses their

initial offer and return, firms will face incentives to sell to the customer rather than

keeping their word on their initial search-deterring offer.

The experiment consisted of two treatments. In the computer-buyer treat-

ment (CB), human sellers were matched against computer buyers programmed

to play optimal strategies. In the human-buyer treatment (HB), human sellers were

matched against human buyers. Sellers were fully informed about which type of

buyers they were matched against. Each group consisted of eight sellers (for all

treatments) and 16 buyers (only for the HB treatment). For the CB treatment, a

session contained two or three groups (16 or 24 subjects), while for HB treatment

a session contained one group (24 subjects). In each period, four markets were

randomly formed. Each market consisted of two sellers and 24 buying decisions

from either computer buyers programmed to play optimal strategies (CB treatmen-

t) or four human buyers (HB treatment). Each human buyer played six different

possible buying decisions with randomly determined item-value pairs.19 In each

19Experimental economics often relies on techniques (e.g., multiple price lists, strategy method)
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market, half of the buyers visited one seller first and the other half visited the other

seller first.

There were 20 total periods. In each period, buyers and sellers were randomly

rematched into new markets, but the role of each subject (i.e., buyer or seller) was

fixed for the entire session. In addition, the same random matching was used in

every session and treatment.20

Each period began with sellers’ choosing a price and an offer type (i.e., exploding

or free-recall offer). A seller’s price and offer type were the same for all buyers that

encountered the seller. Buyers would observe the prices and offer types of both

sellers in the market, but they would see only the value of the item from the first

seller they encountered. Each buyer’s valuation for each of the six possible buying

decisions was drawn independently from the known valuation distribution.

In the HB treatment, buyers played their six possible buying decisions sequen-

tially (see Figure 1 for a screenshot of the first of six buying decisions).21 In each

decision, they chose whether to buy the item from the first seller immediately or

visit the second seller. Visiting the second seller allowed the buyer to observe his

personal value of the item from the second seller. If the first seller made a free-recall

offer, the buyer could choose to visit the second seller and still have the opportunity

to buy the item from the first seller. If the first seller used an exploding offer, the

buyer could not buy the item from the first seller after observing his valuation from

the second seller.

where subjects are given several choices that might occur and paid for the one that does occur.
Our intent on the buyer side is to learn what buyers would do for all 36 item-value combinations.
Unfortunately, having buyers play through all possible buying decisions each period is not feasible,
because of both time constraints and buyer fatigue. Instead we use six randomly selected item-value
combinations. We view six as the highest number of decisions we could ask buyers to make each
round without encountering fatigue or time limit issues. Our intent on the seller side is to use the 24
buying decisions to reduce the risk associated with a single buyer-valuation draw that can alter the
equilibrium of the game for risk-averse sellers (see Section 3.4).

20If in one session, subject i was matched with subject j in period n; in all other sessions, subject i
would be matched with subject j in period n as well.

21There was no time limit placed on buyers to make these decisions. In most cases buyers made
their decision in less than a minute.
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Figure 1: Decision on One of Six Items, Human-Buyer Treatment. The first seller
has used an “Offer B” (a free-recall offer) so the buyer can choose to search and
observe his value of the second seller’s item without losing the option to buy from
the first seller.

After all four buyers had completed their six buying decisions, screens showed

sellers the outcome of all 24 buying decisions in their market. One screen (Figure 2a)

showed the price and strategy used by themselves and the other seller in the market,

the number of items sold by each seller, and the total profit for each seller. Another

screen (Figure 2b) provided information about each of the 24 buying decisions in

the market. Sellers were provided this large amount of feedback to give them the

best opportunity to respond optimally to buyers over the course of the experiment.

It is important to note that our theoretical model featured a game with two sellers

and one buyer. Our experiment departed a little from this design for pragmatic

reasons. First, sellers were compensated based on 24 buying decisions rather than

just one. This reduces the noise in the realization of payoffs for sellers, though

it does not alter the risk-neutral strategy of the game. Buyers play six different

possibilities of this same game with identical seller strategies to provide us with
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Figure 2: A Seller’s Feedback Screen at the End of the Period. Sellers could toggle
between each of the screens. (a, left) Both sellers are informed on the performance
of each other in the market in aggregate. (b, right) Each seller observes all 24 buying
decisions.

more information about buyer decisions under different values for the seller items

(see footnote 19). While at most, one of these decisions affects buyers’ payoffs, all

six potentially affect sellers’ payoffs. This decision was made because it would have

been impractical—in terms of both cost and physical space—to pair 24 buyers with

each pair of sellers.

Before each session began, the instructions were shown on screen and read aloud

to ensure the game was common knowledge among the subjects. After seeing and

hearing the instructions, the subjects answered a multiple-choice quiz about the

game to ensure that they understood how to play it. Each subject needed to answer

all questions correctly before the game started. Throughout the experiment, to

avoid any priming effects associated with language, exploding offers were referred

to as “Offer A” and free-recall offers were referred to as “Offer B.”

After the 20 periods elapsed, subjects filled out a questionnaire consisting of

demographics information, a risk-preference test (similiar to Eckel and Grossman,

2008), and a Cognitive Reflection Test (Frederick, 2005).

The risk-preference question asked subjects to choose their preferred 50/50 lot-

tery from the following five outcome pairs, increasing in order of risk: ($10, $10),
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($18, $6), ($26, $2), ($34, $-2), ($42, $-6).22 Since economic theory predicts clear

departures from the risk-neutral equilibrium in our game for risk-averse agents,

these survey responses are relevant to categorize subject deviations from that equi-

librium.

The CRT consists of three questions with apparently easy, but incorrect, an-

swers.23 Answering the questions correctly requires more deliberative thinking.

Frederick (2005) proposed the test as a measure of an individual’s propensity to use

System 1 (“quick”) or System 2 (“deliberative”) thinking (for more on dual-system

theory see Stanovich and West, 2000; Kahneman, 2011). Results are shown to cor-

relate with susceptibility to cognitive biases (e.g., Oechssler et al., 2009; Hoppe and

Kusterer, 2011; Besedeš et al., 2012), strategic thinking (e.g., Brañas-Garza et al.,

2012; Carpenter et al., 2013; Kiss et al., 2016), and other-regarding preferences (e.g.,

Corgnet et al., 2015; Cueva et al., 2016; Peysakhovich and Rand, 2015).24 Because all

of these behavioral tendencies might cause systematic deviations from equilibrium

play, we hypothesized the test would correlate with such deviations.

Subjects were then privately paid their earnings (plus a five dollar show-up

bonus) in the session in cash. Each seller in both treatments was paid based on one

randomly selected period.25 Seller earnings were determined by the price chosen

in that period multiplied by the quantity sold, and the conversion rate was four

cents for one point. Each buyer in the HB treatment was paid based on one random

decision in one random period. The earnings were calculated from the difference

22By the same order, the distribution of subjects’ most preferred pairs is 29%, 26%, 23%, 5%, 17%.
23The questions are: “A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball.

How much does the ball cost (in cents)?” (easy: 10, correct 5); “If it takes 5 machines 5 minutes to
make 5 widgets, how long would it take 100 machines to make 100 widgets (in minutes)?” (easy: 100,
correct: 5); “In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48
days for the patch to cover the entire lake, how long would it take for the patch to cover half the lake
(in days)?” (easy: 24, correct: 47). Respectively, 46%, 25%, 16%, and 13% of subjects answered zero,
one, two, and three questions correctly.

24See Brañas-Garza et al. (2015) for a full survey.
25We chose to pay for one random decision to eliminate any subject complementarities that might

occur across decisions or periods, most notably income effects. See Azrieli et al. (forthcoming) and
Brown and Healy (forthcoming) for a greater discussion.
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between the value and the price of that particular item purchased. The earnings

were zero if no purchase was made. The conversion rate for a buyer was $1 for two

points.26 For an 80-minute session, subjects earned $18, on average.

The experiment was conducted in the Economic Research Laboratory at Texas

A&M University. Two (32 sellers) and three (24 sellers, 48 buyers) sessions of the

CB and HB treatments, respectively, were conducted in April 2013 and October

2013 using the high-buyer-heterogeneity distributions (see Table 1). As an addi-

tional robustness check on the main results and to demonstrate that results found

in both treatments are not due to specific idiosyncrasies associated with param-

eter choices, three (56 sellers) and four (32 sellers, 64 buyers) sessions of the CB

and HB treatments, respectively, were conducted in February 2016 using the low-

buyer-heterogeneity distributions. All 256 subjects were Texas A&M University

undergraduate students recruited campus-wide using ORSEE (Greiner, 2015). The

experiment was programmed and conducted with the software Z-tree (Fischbacher,

2007).

5 Results

Result 1 Sellers played equilibrium strategy five times more frequently in the computer-

buyer treatment than in the human-buyer treatment. That is, they used exploding offers

more often and offered higher prices against computer buyers. Over time, sellers increased

prices, used exploding offers more often, and played equilibrium strategy more often in

the computer-buyer treatment. In contrast, in the human-buyer treatment, sellers reduced

prices and played equilibrium strategy less often over time.

26We chose a larger conversion rate for buyers to make it similar to many field settings. Often in field
settings, sellers make many individual transactions, earning a small margin on each. Buyers make
one transaction and earn the entire surplus. If cost and the capacity of an experimental laboratory
were not binding, we might have 24 buyers for every two sellers in the lab. Pragmatically we cannot
do this. So instead, sellers were compensated based on six buying decisions from each of the four
buyers, while buyers were compensated based on one buying decision. The differential rates of
payment were common knowledge to all participants.
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Table 3: Rate of Exploding Offers, Equilibrium Play and Average Offer Price
Collapsed to Seller

Panel A: Rate of Exploding Offer Use by Seller
(mean, standard deviation, number of observations)

Distribution: Both
High Buyer-

Heterogeneity
Low Buyer-

Heterogeneity

Human Buyer
0.474

(0.252)
56

0.546
(0.253)

24

0.420
(0.242)

32

Computer Buyer
0.663

(0.198)
88

0.680
(0.190)

32

0.654
(0.203)

56

Panel B: Average Offer Price by Seller
(mean, standard deviation, number of observations)

Distribution: Both
High Buyer-

Heterogeneity
Low Buyer-

Heterogeneity

Human Buyer
26.795
(1.502)

56

26.948
(1.329)

24

26.680
(1.630)

32

Computer Buyer
29.764
(1.860)

88

30.359
(2.126)

32

29.424
(1.613)

56

Panel C: Rate of Equilibrium Play by Seller
(mean, standard deviation, number of observations)

Distribution: Both
High Buyer-

Heterogeneity
Low Buyer-

Heterogeneity

Human Buyer
0.046

(0.074)
56

0.046
(0.067)

24

0.046
(0.080)

32

Computer Buyer
0.226

(0.211)
88

0.323
(0.238)

32

0.171
(0.172)

56
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Table 3, Panel A provides a breakdown of seller exploding offer use by treatmen-

t, collapsed to the subject level. Sellers used exploding offers roughly two-thirds

as often against human buyers as they did against computer buyers (66% CB vs.

47% HB; t-test and Mann-Whitney-Wilcoxon, p < 0.01).27 This difference is more

pronounced under the low-buyer-heterogeneity than the high-buyer-heterogeneity

distribution, though both are significant at the 5 percent level when evaluated sep-

arately. Table 3, Panel B shows seller pricing decisions have similar differences

across treatments. The prices that sellers offered to human buyers were roughly

three points lower than the ones they offered to computer buyers (29.764 CB vs.

26.795 HB; t-test and Mann-Whitney-Wilcoxon, p < 0.01). The result and signifi-

cance do not noticeably change when evaluating distributions separately.

As a result, the equilibrium strategy of 35E, charging the highest price with an

exploding offer, is often utilized against computer buyers but rarely used against

human buyers. Table 3, Panel C reveals that this equilibrium strategy is played

roughly one-fourth of the time in the CB treatment and less than 5 percent of the

time in the HB treatment (p < 0.01, t-test and Mann-Whitney-Wilcoxon, whether

distributions are pooled or evaluated separately). In sum, there is little evidence of

equilibrium play by sellers against human buyers.

As a robustness check on these main results, we also categorize them at the

cohort level, to alleviate the concern they could be driven by cohort-level effects.28

Appendix Table A.1 provides a listing of all 18 cohorts and their respective averages

of our three dependent variables. In a two-tailed randomization test, the difference

between means in human- vs. computer- buyer cohorts is the 12th (p < 0.01), 1st

(p < 0.01), and 40th (p ≈ 0.01) largest magnitude possible of 31,824 possibilities29 for

27Significance testing, if not explicitly mentioned otherwise, assumes independent observations at
the subject level. That is, we are not counting multiple observations per subject as independent. For
statistical tests (i.e., t-tests and Mann-Whitney-Wilcoxon) we accomplish this by comparing subject
averages (collapsing 20 seller or 120 buyer decisions). For regressions, we cluster at the subject level.

28We provide this cohort-level data and tests in the interest of full disclosure for the skeptical reader.
As Fréchette (2012) notes, there is little evidence of these cohort-level effects existing in laboratory
experiments except in cases where they are quite obvious ex-ante.

29Since there are seven human- and 11 computer- buyer cohorts, there are 31,824 possible mappings
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exploding offer use, price, and equilibrium play, respectively. Regression analysis

using both standard and wild bootstrap (Cameron et al., 2008) clustering at the

cohort level finds the differences between human- and computer- buyer treatments

significant at the 1 percent level (see Appendix Tables A.3 and A.4).

Figure 3 displays the dynamics of seller decisions across treatments. Over 20

periods, sellers in the CB treatment appear to increase their use of exploding offers.

The relation is inconclusive for sellers in HB treatment. Linear trend analysis

confirms this finding: sellers’ exploding offer use is predicted to increase by 1.5

probability points each period in the CB treatment but remain unchanged in the

HB treatment (see Appendix Table A.7 for more details). By the final five periods,

about 73 percent of sellers in the CB treatment used an exploding offer, whereas only

about 51 percent of sellers in the HB treatment used an exploding offer (p < 0.01,

for both t-test and Mann-Whitney-Wilcoxon).

Figure 4 displays seller price dynamics across treatments. In the early periods,

average prices across treatments are very similar. After that, they diverge. Seller

prices increase in both CB treatment but decrease in both HB treatment. A similar

pattern is found in equilibrium-strategy use by sellers, as shown in Fiqure 5; the

use of equilibrium strategies is increasing in the CB treatment and decreasing in the

HB treatment. Linear trend analysis confirms that both trends are significant (see

Appendix Table A.7).

Result 2 Buyers deviated from optimal, profit-maximizing strategies more often when they

encountered an exploding offer compared to when they encountered a free-recall offer. With

exploding offers, it is more common for buyers to reject an offer they should accept than

accept an offer they should reject. This difference remains even after controlling for the costs

of suboptimal play.

Buyers made six buying decisions in each period over 20 periods. Pooling

the results from the seven sessions of 16 buyers each, there were a total of 13,440

of our dependent variable to these cohorts.
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Figure 5: Rate of Equilibrium Play by Sellers by Period, HB and CB Treatments

(6 × 20 × 16 × 7) buying decisions. Sellers used exploding offers in 47 percent of

these decisions. This resulted in 6,372 exploding offer buying decisions and 7,059

decisions with free-recall offers.30

The ways buyers could have deviated from the optimal strategies differed based

on the type of the offers they encountered. With a free-recall offer, buyers had the

opportunity to learn all information about both items. They would violate the

profit-maximizing strategy only by making a choice (i.e., buy item 1, buy item

2, don’t buy) that would not maximize their surplus. With an exploding offer,

buyers made decisions with imperfect information. They would violate the optimal

strategy by choosing to reject (or accept) an exploding offer when the expected (net)

value of continuing to the second item was negative (positive). Table 4, Panel

A shows subject-level frequency of these two types of suboptimal play. Perhaps

30Due to a computer glitch, nine buying attempts were not recorded. These affected four different
buyers over two periods in one session. Given the small number of observations lost compared to
the total number in the sample, we cannot envision how this loss of data affects any results.
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Table 4: Rate of Deviations from Optimal Play by Type, Collapsed to Buyer

Panel A: Buyer Deviation Rate, Free-recall vs. Exploding Offers
(mean, standard deviation, number of observations)

Valuation Type
Exploding

Offer
Free-recall

Offer
Difference
(Paired)

Overall
(112 subjects)

0.157
(0.125)

0.058
(0.108)

0.100∗∗∗

(0.121)

High Buyer-Heterogeneity
(48 subjects)

0.103
(0.080)

0.047
(0.082)

0.056∗∗∗

(0.090)

Low Buyer-Heterogeneity
(64 subjects)

0.198
(0.138)

0.066
(0.123)

0.132∗∗∗

(0.132)

Panel B: Buyer Deviation Rate, Exploding Offer Rejection vs. Acceptance
(mean, standard deviation, number of observations)

Valuation Type
Exploding Offer

Should Be
Accepted

Exploding Offer
Should Be
Rejected

Difference
(Paired)

Overall
(112 subjects)

0.214
(0.199)

0.077
(0.110)

0.137∗∗∗

(0.223)

High Buyer-Heterogeneity
(48 subjects)

0.143
(0.126)

0.036
(0.065)

0.107∗∗∗

(0.154)

Low Buyer-Heterogeneity
(64 subjects)

0.266
(0.226)

0.108
(0.126)

0.159∗∗∗

(0.262)

unsurprisingly given the greater difficulty of making a decision with incomplete

information, buyers are roughly 10 probability points (or three times) more likely

to deviate from the optimal play with an exploding offer than with a free-recall

offer. The average rate of suboptimal play with an exploding offer is 16 percent

compared to 6 percent with a free-recall offer (p < 0.01, paired t-test and Wilcoxon

signed rank, whether distributions are pooled or evaluated separately).

The suboptimal play buyers make with exploding offers can be further classified.

In some cases, buyers should accept an exploding offer, but instead they reject

it. In other cases, buyers should reject an exploding offer, but they accept it.

Overall, buyers encountered slightly more exploding offers that they should have
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accepted than ones they should have rejected (3,754 vs. 2,618, 59% vs. 41%).31

Buyers were much more likely to reject an exploding offer they should accept than

accept an exploding offer they should reject. Table 4, Panel B provides subject-

level frequencies of these two types of deviations from optimal play. Buyers made

suboptimal decisions 14 percentage points (or three times) more often by rejecting

an exploding offer than by accepting one (p < 0.01, paired t-test and Wilcoxon signed

rank, whether distributions are pooled or evaluated separately). The absolute levels

of these rates are substantial. Under the low heterogeneity distribution, roughly

one in four exploding offers that should have been accepted were rejected.

As a robustness check we also can examine these results at the cohort level.

As Appendix Table A.2 shows, there were seven human buyer cohorts. In each of

the seven, the rate of suboptimal play was higher when buyers faced an exploding

offer compared to when they faced a free-recall offer. Similarly, in each of the seven,

the rate of suboptimal play was higher when buyers faced an exploding offer they

should accept compared to when they faced one they should reject. For a two-tailed

permutations test this is the (tied) highest treatment effect of 128 (27) possibilities,

equivalent to a p-value of 0.016. Regressions with both standard clustering and

wild bootstrap clustering at the buyer-cohort level find similar levels of significance

(p < 0.01, see Appendix Tables A.5 and A.6).

The costs of suboptimal play vary by situation. Figure 6 classifies the rate of

suboptimal play based on the expected costs of rejection (negative values indicate

situations where rejection is optimal). The figure indicates that most suboptimal

decisions with exploding offers occur where the cost of decision is relatively small

(i.e., under 5 points). However, the skew to the right side of the graph further

illustrates that suboptimal play is more likely in rejection of exploding offers than

31Note that each buyer in the experiment made 120 buying decisions. On average, a buyer encoun-
tered 54 free-recall offers, 39 exploding offers he should accept, and 27 exploding offers he should
reject under the high heterogeneity distribution. Under the low heterogeneity distribution, a buyer
encountered 70 free-recall decisions, 30 exploding offers he should accept, and 20 exploding offers he
should reject on average. Note the ratios of exploding offers that should be accepted vs. ones that
should be rejected do not vary across valuation distributions.
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Figure 6: Rate of Buyer Suboptimal Play by Cost of Rejecting Exploding Offer

in their acceptance. Inexplicably, suboptimal play occurs more often under the low

heterogeneity distribution, even after controlling for costs.

Table 5 provides regressions of instances of buyer suboptimal play with explod-

ing offers on the cost of suboptimality and other variables. The general form of the

model is

logit
(
Pr
(
yi j = 1

∣∣∣ci j, Ii j, di j, αi

))
= aci j + bIi j + d′i jγ + αi + ϵi j, (5)

where yi j represents whether the subject i deviated from the optimal strategy when

facing exploding offer j (1=yes, 0=optimal play). The variable ci j is the value of the

expected cost of playing the suboptimal strategy. Indicator variable Ii j represents

whether the optimal strategy involves accepting an exploding offer (1=acceptance

is optimal, 0=rejection is optimal). The term di j is a vector containing indicator

dummies for each of the 20 periods and the treatment (when necessary); αi is the

random effect of subject i; ϵi j represents cluster-robust standard errors.
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Table 5: Logistic Regression of Buyer Suboptimal Play on Cost of Suboptimality
and Type of Optimal Play. Average marginal effects shown. For an alternate
version of this table, with coefficient estimates, see Appendix Table A.8.

Both valuations
High buyer-

heterogeneity
Low buyer-

heterogeneity

cost of suboptimality
-0.020∗∗∗

(0.001)
-0.019∗∗∗

(0.001)
-0.016∗∗∗

(0.002)
-0.015∗∗∗

(0.002)
-0.022∗∗∗

(0.002)
-0.022∗∗∗

(0.002)

acceptance is optimal -
0.069∗∗∗

(0.021) -
0.057∗∗

(0.023) -
0.079∗∗

(0.036)

valuation dummy Y Y N N N N
period dummies Y Y Y Y Y Y
random effects Y Y Y Y Y Y

observations 6372 6372 3144 3144 3228 3228
subject clusters 112 112 48 48 64 64
log likelihood -1933.892 -1899.576 -732.985 -714.777 -1189.653 -1172.800

The regressions confirm the general observations from Figure 6. For every

expected point cost of deviating from the optimal play, subjects are 2 probability

points less likely to deviate. However, subjects are 6–8 probability points more likely

to deviate from optimal play when optimal play involves accepting an exploding

offer rather than rejecting it. Another way to look at the results is that for rates of

suboptimal play to be equal with rejection and acceptance of exploding offers, the

cost of rejecting an exploding offer would have to be 4 points greater. This is largely

consistent with what is seen in Figure 6, as the figure would be symmetric if the

x-axis were shifted by that amount.

Result 3 Measures of propensity toward “quick” (vs. “slow”) thinking explain buyers’

over-rejection of exploding offers; measures of risk aversion explain buyers’ under-rejection.

Result 2 showed that buyers exhibited a greater tendency for suboptimal play

when they encountered an exploding offer that should be accepted rather than

rejected. To better understand this phenomenon, we focus on what buyer char-

acteristics are most correlated with this incongruity. Our specific focus is gender,

elicited risk preferences, and CRT scores.32

32Sections 3.4 and 4 provided background on how risk and systems of thinking might explain
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To isolate the effect of each term, we expand the regression model from (5),

specifically examining the interaction of these terms and the “accepting an explod-

ing offer is optimal” dummy variable. Formally,

logit
(
Pr
(
yi j = 1

∣∣∣ci j, Ii j, xi, di j, αi

))
= aci j+bIi j+ ãIi jci j+x′iβ+ Ii jx′i β̃+d′i jγ+αi+ϵi j. (6)

The variables remain the same as before. The 3x1 vector xi is added to the model

to represent subject i’s gender (1=male, 0=female), risk preference and correct

responses on the CRT (0, 1, 2, or 3). Variables are taken from non-incentivized

survey questions (see Section 4 for more detail). Gender is elicited directly from

subjects in a demographic survey. The grouping of preferred gambles, 1 or 2 vs.

3, 4, or 5—roughly half the subjects fall into each group (see footnote 22)—will be

used as a proxy (with unit value if a subject chose 3, 4, or 5 in the test) for subject risk

preference. The number of questions subjects correctly answered on the CRT (i.e.,

0, 1, 2, or 3) is used as a proxy for subjects’ propensity to inhibit “quick” (System

1) responses and engage in deliberative (System 2) decision-making (see Stanovich

and West, 2000; Kahneman, 2011).

Table 6 provides the results of this regression. To correctly interpret interaction

terms, average marginal effects are calculated when the acceptance of an exploding

offer is optimal (i.e., “acceptance is optimal” dummy variable is 1) and when the

rejection of an exploding offer is optimal (i.e., “acceptance is optimal” dummy

variable is 0).

The coefficients of the regression are quite telling. As before, suboptimal play

is more common (7 probability points more likely) when the optimal play involves

accepting an exploding rather than rejecting it. The coefficients of risk aversion are

in the direction one would suspect (see Section 3.4 for more detail). Acceptance of

an exploding offer leads to a certain payoff, while visiting the second seller involves

deviations from the risk-neutral theoretical predictions, respectively. We include gender because it is
known to correlate with risk and social preferences (Croson and Gneezy, 2009), as well as the CRT
(Frederick, 2005), and we have imperfect proxies of these measures.
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Table 6: Logistic Regression of Buyer Suboptimal Play on Cost of Suboptimality
and Type of Optimal Play with Gender and Survey Data Interactions. Interactions
on “acceptance [of exploding offer] is optimal” dummy variable. Average marginal
effects at 0 and 1 of “acceptance is optimal” dummy shown. For coefficient estimates
see Appendix Table A.9.

When
acceptance is

optimal
(acceptance is

optimal=1)

When
rejection is

optimal
(acceptance is

optimal=0)

cost of suboptimality
-0.023∗∗∗

(0.002)
-0.012∗∗∗

(0.002)

above median risk tolerance
0.033

(0.027)
-0.047∗

(0.029)

correct CRT questions
-0.040∗∗∗

(0.013)
-0.008
(0.012)

male
-0.004
(0.026)

-0.007
(0.028)

acceptance is optimal
0.073∗∗

(0.021)

valuation dummy Y
period dummies Y
random effects Y

observations 6372
subject clusters 112
log likelihood -1871.563

a random distribution of possible payoffs. Fittingly, buyers whose survey responses

place them below median for risk tolerance are 3 probability points more likely to

accept an optimal exploding offer and 5 probability points more likely to accept a

suboptimal one, compared to the higher-risk-tolerance counterparts in the sample.

While the former coefficient is not significant and the latter is only marginally so,

the difference between the two is significant (p < 0.05).

As one would expect, subjects who answered more questions correctly on the

CRT are less likely to deviate from profit-maximizing strategy with exploding

offers. Interestingly, this effect is isolated to cases with exploding offers that should

be accepted; an additional correct CRT response is equal to a 4-probability-point

reduction in rejecting an exploding offer that should be accepted. There is virtually
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no corresponding reduction in suboptimal play with exploding offers that should

be rejected.

Result 4 The differential rate of suboptimal play in rejecting and accepting exploding offers

by human buyers alters the pricing decision for sellers. While (35E, 35E) is the equilibrium

with optimal buyers, (25E, 25E) is the equilibrium after accounting for human-buyer

behavior. Seller play indicates a significant aversion to the use of exploding offers against

human buyers that cannot be explained by payoff differences alone.

Table 7 provides payoff tables for sellers in both treatments under each valuation

distribution. The two computer-buyer tables are identical to theory. The human-

buyer tables are based on the empirically observed play of subjects; they are based

on the predicted rejection probabilities from equation (5), omitting period effects. In

each of the four cases, the equilibrium involves both sellers’ playing an exploding

offer. The computer treatment has the equilibrium of buyers’ offering price 35 with

an exploding offer. The low-buyer-heterogeneity HB treatment has an equilibrium

of buyers’ offering price 25 with an exploding offer. The high-buyer-heterogeneity

distribution HB treatment has both equilibria.33

As Result 1 demonstrates, sellers do not exclusively play exploding offers even

against computers. Given the observed play of human sellers and buyers, how

should a single seller best respond? Appendix Figure A.1 provides the expected

payoffs for seller strategies in each treatment and distribution using the regression

model in Equation (5) to model human behavior and the period-by-period empir-

ically observed seller play. In all four cases, a strategy utilizing an exploding offer

was generally most profitable, though the difference in profit between exploding

offers and free-recall offers was reduced with human buyers. In the CB treatment,

35E (or 30E) was most profitable for sellers. In the HB treatment, 25E was most

profitable for sellers.
33In this treatment, the quantal response equilibrium model (McKelvey and Palfrey, 1995) selects

(25E, 25E) as the more crucial equilibrium, because the limit of two buyers with decreasingly noisy
play converges to (25E, 25E).
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Result 3 provides insight on why exploding offers are still the most profitable

against human buyers. While humans over-reject exploding offers, the rate of

rejection decreases as the cost of the rejection increases. By reducing the price from

35 to 25, sellers increase the cost of rejection by 10. According to the regressions in

Table 5, this should reduce the probability of rejection by 15–20 points.

In all cases, sellers could maximize profits by using exploding offers, but a

significant portion played free-recall offers. Given that expected payoffs for seller

strategies varied across treatment, it is not clear whether sellers actually displayed

an additional reluctance to play exploding offers against humans. Table 8 provides

a conditional logit model of seller strategy choice in each of the four cases.

logit
(
Pr
(
actioni jt = 1

∣∣∣∣lpayoffi jt−1, explodingi jt

))
= β1×lpayoffi jt−1+β2×explodingi jt,

(7)

where actioni jt = 1 represents the choice of strategy j ∈ {25E, 30E, 35E, 25F, 30F, 35F}
at period t, lpayoffi j is the corresponding lagged expected payoff for strategy j

(calculated based on sellers’ empirical choices and buyers’ optimal or empirical

play in the previous period), and explodingi jt is equal to 1 if the current strategy

action involves using an exploding offer.

The results show that, compared to their computer buyer counterparts,34 sellers

had a significant, non-payoff-based reluctance to play exploding offers with human

buyers. The reluctance is considerably stronger under the high-buyer-heterogeneity

distribution than it is under the low-buyer-heterogeneity distribution.35 The results

also indicate that sellers are more sensitive to variations of expected payoffs because

of the other competitors or buyers in the human-buyer treatment.

The types of sellers that refrain from using exploding offers are explained in the

34Note that we use the same valuation draws across different sessions with high- and low- buyer-
heterogeneity distributions.

35Using the quantal response equilibrium model (McKelvey and Palfrey, 1995) to represent seller
decisions as noisy best responses and including a term for exploding offer aversion, yield similar
results.
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Table 8: Conditional Logit of Seller Action (i.e., 25E, 30E, 35E, 25F, 30F, 35F)
on Lagged Payoff of Action and Type of Offer with Human-Buyer Treatment
Interactions.

Both valuations High-buyer Low-buyer
heterogeneity heterogeneity

lagged payoff of strategy 0.475∗∗∗ 0.485∗∗∗ 0.475∗∗∗ 0.619∗∗∗ 0.475∗∗∗ 0.403∗∗∗

(0.0537) (0.0952) (0.0790) (0.167) (0.0735) (0.120)

human × lagged payoff 0.715∗∗∗ 0.983∗∗∗ 0.378∗∗ 1.587∗∗∗ 1.040∗∗∗ 1.165∗∗∗

(0.148) (0.184) (0.181) (0.325) (0.215) (0.251)

exploding offer - -0.0247 - -0.400 - 0.150
(0.175) (0.358) (0.199)

human × exploding offer - -0.663∗∗ - -1.485∗∗∗ - -0.457∗

(0.261) (0.524) (0.276)

subject clusters 144 144 56 56 88 88
observations 16416 16416 6384 6384 10032 10032
log likelihood -4525.996 -4481.975 -1768.664 -1705.540 -2743.742 -2736.308

next result.

Result 5 Neither the propensity toward “quick” (vs. “slow”) thinking, risk preferences,

nor gender appears to explain seller differences in exploding offer use with computer buyers.

Only gender explains differences in exploding offer use with human buyers. On exit surveys,

a few sellers mentioned the use of free-recall offers as part of their general strategies. The

reason they give for not using exploding offers is a concern for buyers. Such sellers are far

less likely to use exploding offers and more likely to be women.

As explained in Result 3, subjects were classified into different levels of risk pref-

erence and propensity toward intuitive vs. deliberative thinking based on their

responses to a survey given at the end of each experimental session. Table 9 pro-

vides the results of a logit regression of exploding offer use, with risk-preference

measurement, CRT scores, gender, and valuation interacted on a human-buyer

dummy. Surprisingly, risk measures and CRT scores both provide little explana-

tory power for seller exploding offer use with human or computer buyers. This

finding contrasts greatly with their explanatory power for buyer behavior. Even

though there is no correlation with risk,36 gender effects are quite substantial. Male
36Female subjects generally exhibit higher degrees of risk aversion on experimental tasks than do
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Table 9: Logistic Regression of Exploding Offer Use on Human Buyer Treatment
with Valuation, Gender, and Survey Data Interactions. Average marginal effects
at 0 and 1 of “human buyer” dummy shown. For coefficient estimates see Appendix
Table A.12.

Buyer is
human

(human buyer=1)

Buyer is
computer

(human buyer=0)

above median risk tolerance
-0.024
(0.081)

0.004
(0.052)

correct CRT questions
-0.020
(0.035)

0.028
(0.022)

male
0.166∗∗

(0.083)
0.009

(0.051)

human buyer
-0.230∗∗∗

(0.044)

valuation dummy Y
period dummies Y
random effects Y

observations 2880
subject clusters 144
log likelihood -1731.09

sellers are 17 probability points more likely to use exploding offers than female

sellers to use exploding offers with human buyers. There is no difference with

computer buyers. Confirming previous results, sellers were much less likely to use

exploding offers on human buyers than on computer buyers.

In the latter sessions, under the low-buyer-heterogeneity distribution, subjects

answered an open-ended question asking them to explain the reasons behind their

decisions in the experiment. Ten out of 32 sellers noted the use of free-recall offers

as part of their general strategies. Most justified this choice with a concern for

how exploding offers would affect human buyers (see Appendix Table A.14). This

expression is quite predictive: these 10 subjects used exploding offers in 24.5 percent

of their offers; the others used exploding offers in 50 percent of their offers (p < 0.01,

t-test and Mann-Whitney-Wilcoxon). Interestingly, there is no significant difference

between the average price offered (26.8 vs. 26.6) by these two groups, suggesting

males (see Croson and Gneezy, 2009, for a survey).
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Table 10: Sellers’ and Buyers’ Welfare Analysis

Panel A: high-buyer-heterogeneity distribution

buyer strategy seller strategy total payoff buyer payoff seller payoff

Mean Std. Err. Mean Std. Err. Mean Std. Err.

best response 35E 27.884 0.139 12.844 0.078 15.039 0.070
best response actual-computer 28.165 0.126 15.224 0.105 12.941 0.106

actual 25E 27.932 0.160 17.162 0.113 10.770 0.055
actual actual-human 27.903 0.160 16.429 0.128 11.473 0.081

best response actual-human 28.436 0.146 16.830 0.117 11.606 0.082

Panel B: low-buyer-heterogeneity distribution

buyer strategy seller strategy total payoff buyer payoff seller payoff

Mean Std. Err. Mean Std. Err. Mean Std. Err.

best response 35E 26.091 0.089 10.527 0.048 15.564 0.050
best response actual-computer 26.510 0.078 13.464 0.076 13.046 0.074

actual 25E 26.093 0.099 14.853 0.070 11.240 0.038
actual actual-human 26.067 0.099 14.163 0.084 11.905 0.055

best response actual-human 26.901 0.085 14.846 0.073 12.055 0.060

this tendency is unrelated to the desire to transfer income to buyers.

The survey response may also explain the difference between genders in the

use of exploding offers. Female subjects were more likely to indicate the use of

free-recall offers in their overall strategy. Fifty-five percent of female subjects (6 of

11) and 19 percent of male subjects (4 of 21) indicated a concern for buyers (p ≈ 0.056

on Fisher exact test). Differences on exploding offer use among the subjects who

indicated this concern (23 percent exploding offer use for female subjects vs. 30

percent for men) and those who do not (51 percent female vs. 50 percent for male)

do not exhibit gender effects.

Result 6 Sellers’ deviation from equilibrium strategy leads to lower earnings in the computer-

buyer treatment and higher earnings in the human-buyer treatment. Holding sellers’ s-

trategies constant, buyers’ deviations from best response cause slight losses to buyers, and

sellers; their main effect on earnings is through altering seller play.

Table 10 provides estimates of buyer, seller, and total payoffs for a variety of

buyer and seller strategies across all four treatments. Because buyers’ values of
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items are taken from a random distribution, payoff estimates vary across simula-

tions even when strategies are exact. The first row of the welfare calculations in each

panel gives the theoretical earnings for each treatment. In both valuations, sellers

should make considerably more than buyers, and the disparity should be greater

under the low-buyer-heterogeneity distribution. However, sellers do not play 35E

(their equilibrium strategy) exclusively, even against computer buyers. This results

in a loss of $2.00–$2.50 between seller earnings at the theoretical optimum and seller

earnings in the computer-buyer treatments. Total surplus is increased by $0.40 as

sellers use some amount of free-recall offers against computer buyers.

Human buyers did not respond to sellers’ offers the same way computer buyers

did. As payoff Table 7 shows, accounting for these new strategies makes (25E,

25E) the new equilibrium for sellers instead of (35E, 35E). Sellers would have done

very poorly if they played this equilibrium solely against human buyers. They

would have made $10.77 and $11.24 in the low- and high-buyer-heterogeneity

distributions of the HB treatment, respectively. However, sellers did not play this

strategy exclusively. Here they increased their payoffs by roughly $0.70 by charging

higher prices or using free-recall offers. This deviation from the equilibrium strategy

could either be due to bounded rationality or collusion. Given the relatively poor

seller earnings with computer buyers (they could collectively charge high prices

as the sole equilibrium strategy but do not), bounded rationality appears to be the

more likely explanation.

Buyers did not behave as optimal play would dictate. If we hold seller strategies

as constant, buyers could have improved their earnings by $0.40–$0.70 by following

optimal strategies. Sellers were not particularly hurt directly by these deviations;

they cost sellers only about $0.15 of their earnings. Of course, seller strategies were

not constant; the way buyers responded to exploding offers greatly changes the

strategic structure of the game. This had a second-order effect of moving the seller

equilibrium from (35E, 35E) to (25E, 25E), which costs sellers more than $4.00 in
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earnings in theory (or $1.00–$1.50 in practice).

Buyer behavior alone eliminated the advantage of exploding offers in this mar-

ket. From Table 7, the deviations of human buyers make (25E, 25E) an equilibrium.

For comparison, had all exploding-offer strategies been eliminated from the game,

(25F, 25F) would be the equilibrium. The payoffs for both outcomes are nearly

identical.

6 Discussion

Our experiment identifies two pronounced departures from equilibrium. First,

buyers deviate from optimal strategies more often by rejecting than by accepting

them. Second, sellers demonstrate a significant reluctance to use exploding offers

on human buyers. This reluctance is unrelated to their best response toward sub-

optimal, human-buyer play. The total effect is that sellers play the equilibrium

strategy five times more often against computer buyers than human buyers.

The behavior of buyers who answer the fewest questions correctly on the CRT

is crucial to this result. This category of subjects is considered the most prone

to System 1 thinking. These subjects are most likely to reject exploding offers

suboptimally, but they are no more likely than other subjects to suboptimally accept

them. A possible explanation is that the fast, intuitive response to an exploding

offer is to run from the offer and search further. Only after deliberation does one

understand the value in accepting such offers.

Another explanation is fairness. Exploding offers could be viewed as unjustified

capture of surplus compared to a normal level of profit in this market. Kahneman

et al. (1986) suggest in such instances sellers will be loath to use such tactics and

if they do, buyers will react negatively to them. We see no exit-survey evidence

that suggests buyers feel this way. Certain sellers who infrequently use exploding

offers appear to make claims consistent with this principle. For sellers, there is no

correlation between correct CRT answers and reluctance to use exploding offers.
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These two explanations highlight two major ways behavioral economics is es-

sential to understanding markets and games. First, agents may have norms con-

cerning what are reasonable profits and tactics in an economic environment. Nu-

merous empirical and experimental studies suggest agents will need to restrict their

actions to comply with these norms or face retaliation from other agents. Second,

System 1 responses in economic transactions may alter market equilibrium as well,

even when a player does not feel wronged by the other party. Here, buyers may in-

tuitively feel that the correct response to a high-pressure offer is to reject it, thereby

reducing the profitability of that technique.

The applications of this latter explanation are far less studied but may be quite

meaningful. For instance, in personal finance, mortgage refinancing offers always

carry a deadline because of interest rate variability. While the deadline is unlikely

to be perceived as unfair, the existence of a deadline may lead those consumers

who rely heavily on System 1 to not refinance. Thus, our results may provide

one explanation for the anomaly that a significant portion of homeowners do not

refinance their mortgages when economic conditions are unambiguously favorable

(see Keys et al., 2016).

There are some suggestive policy implications from our work. The European

Union prohibits sellers from making false claims about product availability. Arm-

strong and Zhou (2016) advocate a cooling-off period after sales as an alternative.

Our findings indicate the need to make such policy changes may not be as great

as theory predicts. While a firm could selectively hire, train or automate its sale

staff to use search deterrence without compunction, some potential customers will

be prone to fast thinking. The response of these customers will diminish potential

gains from any search-deterrence strategy.

Finally, our experiment provided, as intended, an environment where sellers’

pressure was clearly intentional but contained minimal emotional connotation. In

different contexts, the pressure sale may be more salient and the intent of sell-
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ers may be less clear. This nuance may be tremendously important. Among

search-deterrence techniques, flash sale websites are fading from popularity, while

scheduled single-day sales are thriving. In terms of standard theory, there is not a

substantial difference between these two methods of sales. However, it’s likely that

customers feel greater pressure from constant notification of temporary sales than

from expecting quick sales on a single, scheduled day. There is likely a deeper, com-

plex relationship between the nature of the pressure sell and buyers’ suboptimal,

negative response. We leave this as an intriguing topic for future research.
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Tibor Besedeš, Cary Deck, Sudipta Sarangi, and Mikhael Shor. Decision-making

strategies and performance among seniors. Journal of Economic Behavior & Orga-

nization, 81(2):524–533, 2012.

John Bone. The hard sell : an ethnographic study of the direct selling industry. Ashgate,

Aldershot, England; Burlington, VT, 2006.

39
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Appendices: Not Intended for Publication

A Additional Tables and Figures

Table A.1: Exploding Offer Rate, Average Price, and Rate of Equilibrium Play by
Seller Cohort

Cohort
Number

Session
Number

Buyer
Type

Buyer
Valuation

Heterogeneity

Exploding
Offer Rate

Average
Price

Rate of
Equilibrium

Play

1 1 human high 0.488 27.375 0.088
2 2 computer high 0.638 31.406 0.456
3 2 computer high 0.725 30.938 0.394
4 3 human high 0.675 26.438 0.019
5 4 human high 0.475 27.031 0.031
6 5 computer high 0.763 29.750 0.213
7 5 computer high 0.594 29.344 0.231
8 6 human low 0.288 27.531 0.069
9 7 computer low 0.625 28.844 0.125
10 7 computer low 0.569 29.625 0.263
11 7 computer low 0.606 29.688 0.125
12 8 computer low 0.700 29.563 0.213
13 8 computer low 0.731 28.250 0.063
14 9 human low 0.481 27.250 0.094
15 10 human low 0.519 26.000 0.006
16 11 human low 0.394 25.938 0.013
17 12 computer low 0.650 30.406 0.288
18 12 computer low 0.694 29.594 0.119

Table A.2: Mistake Rate by Buyer Cohort

Suboptimal Play Rate
All Offers Exploding Offers Only

Cohort
Number

Session
Number

Buyer
Valuation

Heterogeneity

Against
Free-Recall

Offers

Against
Exploding

Offers

When
Acceptance
is Optimal

When
Rejection

is Optimal

1 1 high 0.020 0.093 0.035 0.136
4 3 high 0.031 0.115 0.036 0.168
5 4 high 0.069 0.115 0.044 0.162
8 6 low 0.080 0.243 0.121 0.349
14 9 low 0.071 0.221 0.138 0.281
15 10 low 0.055 0.137 0.088 0.166
16 11 low 0.034 0.180 0.109 0.230
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Table A.3: Regression of Dependent Variables on Main Treatment Effect with
Clustering at the Seller Cohort Level.

Exploding
Offer Rate

Average
Price

Equilibrium
Play Rate

human buyer
treatment

-0.189∗∗∗

(0.046)
-0.193∗∗∗

(0.042)
-2.97∗∗∗

(0.355)
-3.013∗∗∗

(0.343)
-0.181∗∗∗

(0.038)
-0.187∗∗∗

(0.037)
low buyer
heterogeneity -

-0.066
(0.040) -

-0.667∗

(0.358) -
0.092∗∗

(0.043)

period dummies N Ya N Ya N Ya

observations 2880 2880 2880 2880 2880 2880
cohort clusters 18 18 18 18 18 18
r-squared 0.035 0.055 0.142 0.154 0.059 0.080

a. Alternate regression specifications replacing period fixed effects with a single continuous period variable or
omitting the variable altogether does not change coefficients in any meaningful way.

Table A.4: Regression of Dependent Variables on Main Treatment Effect with
Clustering at the Seller Cohort Level. Wild bootstrap clustering used. P-values
given.

Exploding
Offer Rate

Average
Price

Equilibrium
Play Rate

human buyer
treatment

-0.189∗∗∗

p = 0.004
-0.193∗∗∗

p = 0.002
-2.97∗∗∗

p = 0.002
-3.013∗∗∗

p = 0.002
-0.181∗∗∗

p = 0.004
-0.187∗∗∗

p = 0.002
low buyer
heterogeneity -

-0.066∗

p = 0.1 -
-0.667∗

p = 0.056 -
-0.092∗∗

p = 0.044

period dummies N Ya N Ya N Ya

observations 2880 2880 2880 2880 2880 2880
cohort clusters 18 18 18 18 18 18
r-squared 0.035 0.055 0.142 0.154 0.059 0.080

a. Alternate regression specifications replacing period fixed effects with a single continuous period variable or
omitting the variable altogether does not change coefficients in any meaningful way.
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Table A.5: Regression of Mistake Rate on Offer Type with Clustering at the Buyer
Cohort Level.

Suboptimal Play Rate

seller uses
exploding offer

-0.095∗∗∗

(0.016)
-0.103∗∗∗

(0.146)
-0.095∗∗∗

p = 0.008
-0.103∗∗∗

p = 0.009
low buyer
heterogeneity -

0.049∗∗

(0.017) -
0.049∗∗∗

p ≈ 0.000

type of clustering standard standard wild bootstrap wild bootstrap
period dummies N Ya N Ya

observations 13,431 13,431 13,431 13,431
cohort clusters 18 18 18 18
r-squared 0.025 0.044 0.026 0.044

a. Alternate regression specifications replacing period fixed effects with a single continuous period variable or
omitting the variable altogether does not change coefficients in any meaningful way.

Table A.6: Regression of Mistake Rate on Offer Type with Clustering at the
Buyer-cohort Level.

Suboptimal Play Rate

acceptance
is optimal

0.123∗∗∗

(0.012)
0.122∗∗∗

(0.015)
0.123∗∗∗

p = 0.006
0.122∗∗

p = 0.011
low buyer
heterogeneity -

0.076∗∗

(0.020) -
0.076∗

p = 0.088

type of clustering standard standard wild bootstrap wild bootstrap
period dummies N Ya N Ya

observations 6372 6372 6372 6372
cohort clusters 18 18 18 18
r-squared 0.029 0.054 0.029 0.054

a. Alternate regression specifications replacing period fixed effects with a single continuous period variable or
omitting the variable altogether does not change coefficients in any meaningful way.

Table A.7: Linear Time Trends of Dependent Variables.

Exploding
Offer Rate

Average
Price

Equilibrium
Play Rate

human buyer
treatment × period

-0.000
(0.003)

-0.138∗∗∗

(0.021)
-0.007∗∗∗

(0.021)
computer buyer
treatment × period

0.015∗∗∗

(0.002)
0.107∗∗∗

(0.021)
0.008∗∗∗

(0.002)

constant 0.497∗∗∗

(0.249)
28.488∗∗∗

(0.208)
0.134∗∗∗

(0.018)

observations 2880 2880 2880
subject clusters 144 144 144
r-squared 0.043 0.134 0.057
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Table A.8: Logistic Regression of Buyer Suboptimal Play on Cost of Suboptimal-
ity and Type of Optimal Play. Coefficients shown. For an alternate version of this
table, with marginal effects, see Table 5.

Both valuations
High buyer-

heterogeneity
Low buyer-

heterogeneity

cost of suboptimality
-0.214∗∗∗

(0.016)
-0.214∗∗∗

(0.018)
-0.250∗∗∗

(0.022)
-0.253∗∗∗

(0.027)
-0.184∗∗∗

(0.021)
-0.184∗∗∗

(0.022)

acceptance is optimal -
0.822∗∗∗

(0.275) -
1.085∗∗

(0.517) -
0.699∗∗

(0.328)

valuation dummy Y Y N N N N
period dummies Y Y Y Y Y Y
random effects Y Y Y Y Y Y

observations 6372 6372 3144 3144 3228 3228
subject clusters 112 112 48 48 64 64
log likelihood -1933.892 -1899.576 -732.985 -714.777 -1189.653 -1172.800
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Table A.9: Logistic Regression of Buyer Suboptimal Play on Cost of Subopti-
mality and Type of Optimal Play with Gender and Survey Data Interactions.
Interactions on “acceptance [of exploding offer] is optimal” dummy variable. For
an alternate version of this table, with average marginal effects evaluated at 0 and
1 of “acceptance is optimal” dummy shown, see Table 6. Also see A.10 for average
marginal effects at (below median risk aversion=1 and correct CRT questions=3)
and 0 and 1 of acceptance is optimal dummy.

Suboptimal play

cost of suboptimality
-0.175∗∗∗

(0.602)

acceptance is optimal
0.970

(0.601)

male
-0.103
(0.406)

above median risk tolerance
0.701∗

(0.391)

correct CRT questions
-0.112
(0.167)

acceptance is optimal×
cost of suboptimality -0.058∗∗

(0.0256)

male 0.637
(0.531)

above median risk tolerance 1.041∗∗

(0.520)

correct CRT questions -0.293
(0.238)

valuation dummy Y
period dummies Y
random effects Y

observations 6372
subject clusters 112
log likelihood -1871.563
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Table A.10: Logistic Regression of Buyer Suboptimal Play on Cost of Subopti-
mality and Type of Optimal Play with Gender and Survey Data Interactions. In-
teractions on “acceptance [of exploding offer] is optimal” dummy variable. Average
marginal effects at (above median risk tolerance=0 and correct CRT questions=3)
and 0 and 1 of acceptance is optimal dummy shown.

When
acceptance is

optimal
(acceptance is

optimal=1)

When
rejection is

optimal
(acceptance is

optimal=0)

cost of suboptimality
-0.013∗∗∗

(0.003)
-0.013∗∗∗

(0.004)

above median risk tolerance
0.022

(0.019)
-0.040∗

(0.023)

correct CRT questions
-0.023∗∗∗

(0.005)
-0.008
(0.011)

male
-0.004
(0.019)

-0.007∗∗

(0.029)

acceptance is optimal
-0.018
(0.036)

treatment dummy Y
period dummies Y
random effects Y

observations 6372
subject clusters 112
log likelihood -1871.563
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Table A.11: Logistic Regression of Buyer Suboptimal Play on Cost of Subop-
timality and Type of Optimal Play with Gender and Survey Data Interactions,
Free-Recall Offers. Interactions on “choice of higher-priced item [of free-recall
offer] is optimal” dummy variable.

Suboptimal play

cost of suboptimality
-0.058∗∗∗

(0.009)

higher-priced is optimal
0.463

(0.397)

male
-0.132
(0.489)

above median risk tolerance
0.249

(0.452)

correct CRT questions
-0.756∗∗∗

(0.226)

higher-priced is optimal×
cost of suboptimality 0.008

(0.017)

male 0.096
(0.363)

above median risk tolerance -0.572∗

(0.345)

correct CRT questions 0.454
(0.176)

valuation dummy Y
period dummies Y
random effects Y

observations 5920
subject clusters 112
log likelihood -938.8467
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Table A.12: Logistic Regression of Exploding Offer Use on Human Buyer Treat-
ment with Valuation, Gender, and Survey Data Interactions. The marginal effects
shown in Table 9 are derived from the regression represented in this table.

Suboptimal play

human buyer
-1.10∗∗∗

(0.337)

male
-0.043
(0.243)

above median risk tolerance
0.021

(0.247)

correct CRT questions
0.133

(0.105)

human×
male 0.654

(0.435)

above median risk tolerance -0.124
(0.428)

correct CRT questions -0.216
(0.186)

valuation dummy Y
period dummies Y
random effects Y

observations 2880
subject clusters 144
log likelihood -1731.09
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Table A.13: Open Ended Survey Response Answers, Buyers. Data available only
for Low-Buyer Heterogeneity Distribution Subjects (N = 64).

Type of Response Example Statement(s)
Number of

Subjects Percent

Heuristic “If I made a profit of over 30 pts then I automatically
accepted the offer...” 18 0.281

Best-Response

“As the buyer, When given Offer A, I looked to see
what the offer was and compared the price and chose
a value from them, keeping in mind the options and
probability. But for the Offer B, i looked and both
options first and then calculated which...”

17 0.266

Surplus
Maximization “Y-X Which ever made the highest net profit for me.” 17 0.266

Always
Search “i always searched the marked [sic]...” 17 0.266

Take Any
Positive Surplus

“...and i had enough value to buy it, i would buy it
because i knew forsure [sic] i would get points...” 3 0.047

Purchase Higher
Value Item

“It was based on how high the value number was, if
the value was below half i clicked search no matter
what”

2 0.031

Miscellaneous ”I picked the item that had a low value”; ”I guess”;
random letters, etc. 4 0.062

Total 64 1.000

Table A.14: Open Ended Survey Response Answers, Sellers. Data available only
for Low-Buyer Heterogeneity Distribution Subjects (N = 32).

Type of Response Example Statement(s)
Number of

Subjects Percent

Free-Recall Use
Without Explanation “went with option b at lowest price” 2 0.062

Free-Recall Use
With Explanation

“I TRIED TO GIVE PEOPLE THE OPTION TO
ALWAYS COME BACK TO BY ITEM TO
PURCHASE AND RARELY EVER SOLD FOR
THE MAX PRICE”

8 0.250

Trial-And-Error

“The first several periods I tested the different offers,
and found the low priced B or A offers worked best
to achieve the most points. The B offer worked well
regardless of the other sellers offer and the A offer
only worked well when the other chose B”

16 0.500

Miscellaneous ”What felt right.”; “What worked in the past.”;
“Least random” 6 0.188

Total 32 1.000
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