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1 Introduction

The stag hunt game provides a tradeoff between two pure-strategy equilibria: an efficient, risky

equilibrium and an inefficient, safe equilibrium. The risks involved are strategic. The strategy

associated with the safe equilibrium ensures a constant payoff. The risky strategy yields reduced

payoffs if others do not play the same strategy. Thus, the choice between equilibrium depends

on players’ beliefs (and higher order beliefs) about how individuals naturally coordinate. While

philosophical implications of this choice are quite profound, frustratingly, methods in basic game

theory cannot select which of these two pure-strategy equilibria is inherently correct.

A great deal of work in game theory and experimental economics has addressed the issue of

equilibrium selection in this specific game under complete information. Early experiments find

repeated, randomly-rematched, play converges to the inefficient equilibrium (Cooper et al., 1990,

1992). Later research has less absolute findings; structural differences across experiments appear

to determine which equilibrium is dominant (see Devetag and Ortmann, 2007). The most glaring

exception, Rankin et al. (2000), achieves near universal coordination on the efficient equilibrium

by slightly varying (i.e., perturbing) payoffs each round, in contrast to the convention of keeping

payoffs constant for several rounds.

Perturbed payoffs are also utilized in theoretical models, but generally to justify coordination

away from the efficient equilibrium. Carlsson and van Damme (1993a,b) introduce private signals

about payoffs in the stag hunt game. Agents best respond by playing the safe strategy up until a

sufficiently high signal after which they play a risky strategy. Their “global games” approach deter-

mines a unique threshold that is the sole equilibrium that survives removal of iterated dominated

strategies. With two players, this threshold is equivalent to the risk dominance solution (Harsanyi

and Selten, 1988).

How can perturbed payoffs have such starkly different implications in theory and experiments?

The distinction between identical signals that are public or private—while structurally very similar—

may determine radically different equilibrium outcomes. In such case, the design of Rankin et al.

is perfectly suited to test the predictions of global games in the stag hunt. We can greatly alter

game theoretic predictions without changing much else. Further, the Rankin et al. design provides

a case known to produce coordination on the efficient equilibrium, so any movement to the global-

games prediction under incomplete information is easily observable. To that end, we conduct an

experiment where subjects play a sequence of perturbed stag hunt games either with complete or



1 Introduction 3

Tab. 1: A Class of Stag Hunt Games
A B

A 1, 1 0, Q
B Q, 0 Q,Q

incomplete information. Under the complete information treatment—a setting nearly identical to

Rankin et al.—subjects coordinate on the efficient equilibrium. Under the incomplete information—

a setting designed to match the motivating example of the theory of global games —subjects achieve

the efficient equilibrium almost as often, inconsistent with the global games prediction.

Our paper, Rankin et al., and Carlsson and van Damme (1993a,b) all rely on the notion of a

general class of stag hunt game forms, depicted in Table 1.1 When Q ∈ [0, 1], the game has two

strict equilibria: either both players choose A or both players choose B. Both equilibrium selection

criteria and human subject behavior can be generally classified by threshold strategies, that is,

choosing A if Q < Q∗ and B if Q ≥ Q∗ for some Q∗ ∈ [0, 1]. Any strategy profile where both

players use threshold strategies with the same Q∗ will constitute an equilibrium because they will

always end up playing (A,A) when Q < Q∗ and (B,B) when Q ≥ Q∗. In fact, risk dominance

(Harsanyi and Selten, 1988) selects (A,A) when Q < 0.5 and (B,B) when Q > 0.5.

Our complete information treatment replicates the findings of Rankin et al. (2000). Subjects

utilize thresholds only on the top quartile of signals (i.e., Q∗ ∈ (0.75, 1]), far higher than the

predictions of risk dominance. This results in subjects playing choice A with high probability.

Our incomplete information treatment matches the environment of the motivating example of

Carlsson and van Damme (1993a,b). They consider an environment where each agent observes a

private and noisy signal about Q, the global games parameter, with the true value of Q remaining

unknown. In this global stag hunt game, their theory uses iterated elimination of dominated

strategies to pin down a unique dominance solvable equilibrium. The unique threshold equilibrium

is also Q∗ = 0.5. In contrast, we find most subjects utilize thresholds that are far higher than

the predicted global games threshold. The cohort-level differences between treatments are not

statistically meaningful.

In sum, there is little evidence in our experiment to support the predictions of global games or

risk dominance as criteria for equilibrium selection. Subjects appear to coordinate on the efficient
1 It should be noted that our experiment utilizes a linear projection of this game where payoffs are mapped from

0 and 1 to 100 and 500 while the experiments of Rankin et al. use w and w + 370 for w ∈ [0, 50] where the value of
w is changed in each period. Carlsson and van Damme (1993a) use this exact game but Carlsson and van Damme
(1993b) scale this game by a factor of 4. The scales are theoretically equivalent and produce the same results. We
normalize and use the [0,1] scale for ease of reading and interpretation.
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equilibrium immediately and do not deviate from it. Further, the effect of introducing private

signals—in the spirit of Carlsson and van Damme—to the experimental setup of Rankin et al.

appears to be nil.

We caution how far we can extend this conclusion. The level of coordination in stag hunt games

under complete information is sensitive to structural changes (Devetag and Ortmann, 2007). The

results under Rankin et al.’s design (our complete information treatment) are quite exceptional

for their level of efficient outcomes achieved. Our results may only show that changes between

incomplete and complete information treatments in this context are minimal, a result consistent

with many global games experiments (e.g., Heinemann et al., 2004). That being said, our findings

are still quite relevant. Another experiment that compares stag hunt games under complete vs.

incomplete information, Cabrales et al. (2007) concludes the criterion of risk-dominance is predictive

in global stag hunt games. That paper uses an alternative study for their complete information

baseline (i.e., Battalio et al., 2001) that does not provide the high efficiency results of Rankin et al..

We provide a necessary counterpoint.

The remainder of the paper is organized as follows. The next subsection provides an extensive

literature review of stag-hunt experiments, global games models and experiments. Section 2 de-

scribes our specific analytical framework. Section 3 lays out the experimental design. Section 4

presents results from the experiments, including debriefing questionnaires. We discuss our results

in section 5.

1.1 Related literature

There is a long and storied history of experimental stag hunt games under complete information.

Beginning in the early 1990s, experiments featured a large number of periods to examine which of

the pure-strategy equilibria would survive many rounds of repeated play. Under matching protocols

designed to ensure no subject ever encountered the same subject again, Cooper et al. (1990, 1992)

find subject play converged to the inefficient pure-strategy equilibrium. Combined with the results

of similar coordination games with a greater number of equilibria (Van Huyck et al., 1990, 1991),

the idea that strategic uncertainty doomed players to coordination only on low-payoff equilibria

became prevalent. Robustness tests show that this result, while common, was not absolute (see

Devetag and Ortmann, 2007, for a survey). Altering payoffs to make the risky option relatively

more attractive (Battalio et al., 2001; Clark et al., 2001; Dubois et al., 2012; Schmidt et al., 2003;
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Stahl and Van Huyck, 2002), utilizing fixed rather than stranger matching (Clark and Sefton,

2001), including preplay communication (Duffy and Feltovich, 2002, 2006) and informing players

about their opponent’s relatively high risk tolerance (Büyükboyacı, 2014), all appear to increase

coordination on the efficient equilibrium. Pairs who survey as being more patient are more likely

to coordinate on the efficient equilibrium (Al-Ubaydli et al., 2013).

The strongest evidence of subjects coordinating on the efficient equilibrium comes from Rankin

et al. (2000), the basis for our complete information treatment. They report an experiment in

which subjects play a sequence of 75 perturbed stag hunt games under complete information where

payoffs, action labels, and game forms are changed in each period. They show that payoff dominance

emerges as an equilibrium selection principle. Almost all subjects in the last 15 periods use threshold

strategies that are close to 1, a payoff-dominant threshold; even when the value of Q is as large

as 0.97, slightly more than half of the subjects select a risky choice. Our findings replicate these

results.

The 2× 2 stag hunt game is also the basis for the initial theory of global games (Carlsson and

van Damme, 1993a). The same authors generalize this framework to a generic class of 2× 2 games

(Carlsson and van Damme, 1993b). Building upon this work, Morris and Shin (1998, 2003) develop

a more universal theory and the most popular application of global games theory, the currency

attack game. In this game, usually modeled with more than two players, an individual has two

choices: “attack” and “not attack.” Not attacking produces a sure payoff of 0. Attacking involves a

sure cost of T , but may produce a benefit of Y , the global game parameter, provided enough other

players also attack. The hurdle for a successful attack is determined by the non-increasing function

h(Y ). It is important to realize this hurdle function is the model’s major departure from global stag

hunt games, as reaching the efficient or inefficient equilibrium—holding player choices constant—

is independent from the global games parameter in the stag hunt game. Nonetheless, there are

many similarities to the global stag hunt game. Both models feature two pure-strategy equilibria

in complete information and a single global games threshold under incomplete information.2

Beginning with Heinemann et al. (2004), nearly all experiments on global games focus on some

form of the currency attack model, rather than the stag hunt game. Their framework features a

game of 15 subjects under two information conditions: complete and incomplete information about
2 Another minor but important difference is that increasing noise in the currency attack game changes the odds of

success as well as the expected payoff. However, in global stag hunt games, the unique equilibrium, coinciding with
the risk-dominant threshold, is the same for any noise levels that are arbitrarily small, because the expected payoff
does not change with different noise levels.
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the value of Y . Subjects in their study play 10 independent situations in each of the 10 periods for

a total of 100 situations. They present three main findings. First, estimated mean thresholds follow

the comparative statics of the global games solution. Second, subjects select “attack” more often in

sessions with complete information than in sessions with incomplete information and they coordinate

more often than the theoretical predictions for both information conditions. The qualitative results

of our data follow these two main findings even though we use different games with different settings.

Third, the variations in estimated thresholds among cohorts are large but are about the same for

both information conditions despite the different theoretical predictions: equilibrium multiplicity

for complete information and uniqueness for incomplete information. Our results are different from

both Heinemann et al. (2004) and the theoretical predictions; we observe a larger standard deviation

across cohorts with incomplete information than across cohorts with complete information.

One interesting extension to the currency attack game is Szkup and Trevino (2015a) who ex-

perimentally allow subjects choose the precision level at a cost.3 In their experiment, subjects can

select from six precision levels, where more precise signals are more costly. The results show that

more than one-third of subjects select the equilibrium precision level, which yields the highest ex-

pected payoffs. For coordination, subjects who select signals with more precision coordinate more

often than those who select less precise signals. We might view this costly information acquisition

as a signal of coordination. In addition, when the precision level is exogenously given to them at no

cost, subjects in their study behave similarly to subjects in our study. That is, subjects coordinate

more often when observing more precise information. Schotter and Trevino (2017) examine subject

response time in this framework.

Other papers model and experimentally test the effects of receiving an additional public signal to

a currency attack framework (Cornand, 2006). Several make the game dynamic (Shurchkov, 2013),

including endogenous entry (Duffy and Ochs, 2012), and exogenous public signals (Shurchkov, 2016).

Kawagoe and Ui (2010) examines how ambiguity differentially affects payoff and risk dominance

predictions. It should be noted that these extensions to the currency attack game are generally done

to understand and predict empirical macroeconomic phenomena rather than more basic questions

on whether individuals naturally coordinate.4 Nonetheless, several find little difference between in-

complete and complete information treatments as we do. Some find coordination on the equilibrium

predicted by payoff dominance (rather than risk dominance) as we do. However, given that very
3 Szkup and Trevino (2015b) study this similar game but with a continuum of players.
4 An exception, Heinemann et al. (2009) compare the results of the currency attack game with known lotteries to

measure the level of strategic uncertainty perceived by subjects within the game.
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minor differences in the complete information stag hunt game can produce disparate results with

regards to coordination on equilibria, it is unlikely one would be able to confidently infer results

about the global stag hunt game from any of these studies using the currency attack game.

To our knowledge, only two experiments examine the global stag hunt game. Brindisi et al.

(2014) test differences between static and dynamic global stag hunt games, finding significant dif-

ferences as their theory predicts. Their static treatment uses a variation of the global stag hunt

where the parameter gives information about the risky payoff, rather than the safe as in ours. While

it was by no means the point of their paper, similar to our study, they find subjects in sessions with

incomplete information choose to coordinate more often than theory would predict.

In a design, in many ways, very similar to ours, Cabrales et al. (2007) compare complete informa-

tion stag hunt games with incomplete information stag hunt games. In sharp contrast to our results,

they find that in both treatments subject play converges to the inefficient equilibrium, which under

their parameters is the global games solution and risk-dominant threshold solution.5 Their complete

information treatment does not perturb payoffs like Rankin et al.. This creates two issues which

make testing global games predictions more difficult: (i) the change between treatments involves

both a change of payoff perturbations and information structures; (ii) the game under complete

information was already likely to produce coordination on the inefficient equilibrium. Contrary to

our results, the authors find support of the risk-dominant and global games solutions. However, the

authors conclude that learning through payoff differences, rather than deducing iterated removal

of dominated strategies is responsible for the movement to the global games and risk dominant

solution. We find the differences between our results fascinating, and speculate on them in our final

section.

2 Analytical Framework

We choose the motivating game of Carlsson and van Damme (1993a,b) to test their global games

prediction. We examine the perturbation of payoffs in both complete and incomplete information

and calculate threshold equilibria under both. That is, all equilibria are of the form choosing A

if Q < Q∗ and B if Q ≥ Q∗ for some Q∗ ∈ [0, 1] (see Table 1). Under complete information, any

strategy profile where both players use the same threshold strategy will constitute an equilibrium.
5 Rather than provide subjects with a continuum of possible global games parameters, their design only uses five

discrete states. In all five, under complete information the risk-dominant criterion would select the secure strategy.
So the risk-dominant threshold and the global games solution is a boundary condition.
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However, under incomplete information, the iterated elimination of dominated strategies forces

players to conform to the unique threshold equilibrium, which is not efficient. Given this theoretical

prediction, it is unfavorable for subjects in the incomplete information treatment to coordinate on

the most efficient threshold.

2.1 Stag Hunt Games under Compete Information

Let us generalize the complete information stag hunt game as shown in Table 1 to n ≥ 2 players.

Each player i simultaneously chooses between A and B. Let k denote the number of players,

including i, that choose A. Player i’s payoff to A is π(k, n) = k−1
n−1 · 1 +

(
1− k−1

n−1

)
· 0 = k−1

n−1 for

k ≥ 1 and to B is Q.6

Suppose Q ∈ (0, 1), consider the strategy profile in which all n players choose A. Since k = n,

the payoff to A is 1. Deviating from the strategy profile yields Q, which is less than 1 by assumption.

Hence, playing A is a best response to the other n− 1 players choosing A and by symmetry a strict

Nash equilibrium. Consider the strategy profile in which all n players choose B. The payoff to B is

always Q. Deviating from the strategy profile yields 0, which is less than Q by assumption. Hence,

playing B is a best response to the other n− 1 players choosing B and by symmetry a strict Nash

equilibrium.7

2.2 Equilibrium Selection

Between the two pure Nash equilibria when Q ∈ (0, 1), all of the players prefer all-A, which yields

them 1, over all-B, which yields them less than 1. The presence of multiple Pareto-ranked equilibria

confronts the player with a strategy coordination problem. While the high payoff favors A, strategic

uncertainty, which is inherent in the strategy coordination problem, may lead players to choose B

instead. Intuitively, if Q is high, then it is more likely that players will choose B. Two equilibrium

selection principles payoff and risk dominance select different thresholds.

Given the fact that it is more attractive to choose B when Q is high, we expect a player to play

a “threshold” strategy where the player chooses A if Q < Q∗ and B if Q ≥ Q∗ for some Q∗ ∈ [0, 1].

Any strategy profile where all players use threshold strategies with the same Q∗ will constitute

an equilibrium because the group will always end up playing all A when Q < Q∗ and all B when

Q ≥ Q∗.
6 For example, suppose n = 8 and k = 3, π(3, 8) = 2

7
.

7 There are also mixed strategy Nash equilibria but no other pure Nash equilibria.



2 Analytical Framework 9

Tab. 2: A Class of Global Stag Hunt Games Observed by Player i
A B

A 1, 1 0, Qi
B Qi, 0 Qi, Qi

Harsanyi and Selten (1988) introduce payoff dominance which compares the efficiency of equilib-

ria and selects the equilibrium that all players prefer. In the class of stag hunt games, this principle

selects the all-A equilibrium regardless of the value of Q, which does not capture the intuitive notion

that the likelihood of all A should depend on Q.8

Harsanyi and Selten (1988) develop risk dominance which compares the riskiness of equilibria.

For n = 2, risk dominance is equivalent to choosing the equilibrium with the larger basin of

attraction under best response dynamics. That is, in this game, we compare between (1 − Q)2, a

product of deviation losses from an equilibrium (A,A), and (Q− 0)2, a product of deviation losses

from an equilibrium (B,B). The former is larger when Q < 0.5, so the (A,A) equilibrium has the

larger basin of attraction, in which case both payoff dominance and risk dominance agree on the

selection of A by both players. However, the latter is larger when Q > 0.5, so the (B,B) equilibrium

has the larger basin of attraction, in which case payoff dominance and risk dominance conflict.

For n > 2, Harsanyi and Selten (1988, pp.207-209) use the tracing procedure to select the risk-

dominant equilibrium. We follow Proposition 3.1 of Carlsson and van Damme (1993a) to show that

Q∗ is equal to 0.5, which is the same as the case where n = 2, see Appendix for details.

Proposition 1. For all n ≥ 2, in a stag hunt game with complete information, there are multiple

equilibria as symmetric and monotone strategies. Any thresholds between 0 and 1 are equilibria.

Payoff dominance has a threshold of 1 and risk dominance has a threshold of 0.5.

Proof. See Appendix for the proof of the condition regarding the risk-dominance threshold, all other

statements are trivial.

2.3 Global Stag Hunt Games

Carlsson and van Damme (1993b) develop an equilibrium selection theory based on the idea that the

payoff parameters of a game cannot be observed with certainty. In this global stag hunt game, each

player observes the payoff parameters with errors as in Table 2, but his/her payoff is determined by

the actual payoff parameters in Table 1. With this assumption, there exists a unique equilibrium
8 Selecting A is not always the payoff-dominant equilibrium if Q can be larger than 1; in this case, B strictly

dominates A. Therefore, payoff dominance is a threshold strategy with Q∗ = 1.
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threshold which equals the risk-dominant threshold of the game with complete information. In fact,

Carlsson and van Damme (1993b) show that this is true for any 2 × 2 games in which the initial

subclass of games is large enough and contains games with different equilibrium structures.

Following Carlsson and van Damme (1993a, section 4), we assume that everything about the

stag hunt game is common knowledge except the payoff to the safe choice Q. Each player receives

a signal Qi = Q + εi that provides an unbiased estimate of Q. The signals are noisy so Q is not

common knowledge amongst the players. Let Q denote a random variable that is distributed on

the interval [a, b] where a < 0 and b > 1. So it is possible that Q > 1, in which case B strictly

dominates A and it is possible that Q < 0, in which case A strictly dominates B. Let (ε1, ε2, . . . , εn)

denote an n-tuple of zero mean independently and identically distributed random variables. The

εi are assumed to be independent of Q and to be distributed within [−E,E] where E≤ − a
2 and

E ≤ b−1
2 . The incomplete information model is described by the following rules:

1. (Q, ε1, ε2, . . . , εn) are randomly generated to obtain (Q,Q1, Q2, . . . , Qn) .

2. Player i observes Qi≡Q+ εi and chooses between A and B.

3. Each player i receives payoffs which are determined by choices made in step 2 and the actual

value of Q in the Table 1 with the mean matching protocol.

Carlsson and van Damme (1993b) use the iterated elimination of strictly dominated strategies

to show that there exists a unique dominance solvable equilibrium with a threshold Q∗ = 0.5. That

is, player i would select A if Qi < Q∗ and B if Qi > Q∗. Remarkably this is true for any E > 0 that

is arbitrarily small. Carlsson and van Damme’s argument thus gives another reason to expect the

risk-dominant equilibrium if the players have arbitrarily small uncertainty about Q. We provide a

detail of the proof by starting with a global stag hunt game with n = 2 and extend it to a general

case of n > 2 in the Appendix.

Proposition 2. For all n ≥ 2, in a stag hunt game with incomplete information (i.e., a global stag

hunt game), there exists a unique equilibrium threshold of 0.5. This threshold is consistent with the

risk dominant equilibrium of the underlying complete information game.

Proof. See Appendix.
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Tab. 3: Version of Global Stag Hunt Game Form Used in the Experiment
A B

A 500,500 100, Q
B Q, 100 Q,Q

A B

A 500,500 100, Qi
B Qi, 100 Qi, Qi

(a, left) Actual payoff table; (b, right) Subject i’s estimated payoff table.

3 Design, Procedures, and Predictions

3.1 Experimental Design

The experiments implemented the stage game form given in Table 3: each player observed the

right payoff matrix but his/her payoff was determined by the left payoff matrix. The stage game

was played 100 times to give adequate experience for the iterated elimination of strictly dominated

strategies to converge to equilibrium. The values of Q used in the experiment were integers in

the interval 0 to 600, that is, Q ∈ {0, 1, 2, . . . , 600}. The sequences of a hundred values of Q were

generated by a computer using a uniform distribution. The units denote twentieths of a cent or

2,000 points = $1.

Two treatments were conducted. The baseline treatment was designed to be intentionally similar

to Rankin et al. (2000).9 With complete information about Q, εi = 0, that is Qi = Q. The

incomplete information treatment was designed to fit the motivating example of Carlsson and van

Damme (1993a,b). The global games parameter Qi = Q + εi where εi is uniformly distributed

between -50 and 50, that is, εi ∈ {−50,−49, . . . , 49, 50}. The sequences were generated in the same

way as the Q sequences in the complete information treatment. That is in each period, eight ε’s

were generated for eight participants in a cohort. The same sequence of Qi was used in all cohorts

of a treatment, but different sequences were used between the two treatments.

As is common in the stag hunt literature (Battalio et al., 2001; Rankin et al., 2000, etc.) subjects

were grouped in cohorts of 8. Similar to Stahl and Van Huyck (2002) but unlike Rankin et al. we

follow a “mean matching” protocol to accelerate convergence. That is, subjects are matched against

all seven other subjects in the cohort each period and receive a payoff equal to the mean of the
9 Our complete information treatment is different from Rankin et al. in three important ways. First, subjects are

matched against everyone in the cohort each period and receive a payoff equal to the mean of the matches. Second,
Q is allowed to be smaller than 0 and larger than 1 as required by global games theory to get a unique equilibrium
under incomplete information. In order to apply the iterated dominance argument, the initial subclass of games
must be large enough and contain games with different equilibrium structures. Lastly, action labels are fixed (a risky
choice is always labeled A and a safe choice is always labeled B) and subjects play the games for 100 periods. After
each period, each subject receives feedback on the the actual value of Q, the number of subjects in the cohort who
chose A and B, and his/her payoff.
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matches.10

3.2 Experimental Procedures

Each treatment consisted of 72 subjects divided over three session of three cohorts each. The

participants were Texas A&M University undergraduates recruited campus wide using ORSEE, see

Greiner (2015).

The experiment was programmed and conducted with the software z-Tree, see Fischbacher

(2007). The experiment was conducted in the Economic Research Laboratory at Texas A&M

University in February and March of 2013. A five dollar show up fee plus their earnings in the

session were paid to the participants in private and in cash. The average earnings were about

$29.19 for a session that lasted between 70 and 90 minutes.

After the instructions were read aloud, the participants filled out a questionnaire to establish

that they knew how to calculate their earnings. After each period, each subject received feedback

on the actual value of Q, the number of subjects in the cohort who chose A and B, and his/her

payoff.

After the decision-making portion of the session was completed, participants filled out a ques-

tionnaire that asked them to explain their behavior in the session.

3.3 Theoretical Predictions

In our experiment, we transform the game in Tables 1 and 2 to the games in Table 3: G2 =

400 × G1 + 0.25}, where G2 is the game used in the experiment and G1 is the game in Table

1. This transformation matches previous work of Rankin et al. (2000) and Stahl and Van Huyck

(2002) and avoids the possibility of decimal points and negative earnings in any periods.

We use a group size n = 8. That is, each player is matched with each of the other seven players

in a two-player game and earns the average payoff from these matches (a mean matching protocol).

Whether one considers this a game with 2 players (as is often convention) or a game with 8 players,

Propositions 1 and 2 hold (i.e., they are defined for n ≥ 2 with payoffs that apply to both cases).

Under complete information, there is no uncertainty about value of Q, that is, Qi = Q. Propo-

sition 1 shows payoff dominance threshold is 500 and the risk dominance threshold is 300 and all
10 One may consider comparing behavior under incomplete information between two matching protocols: random

matching and mean matching. Under complete information, the results from Rankin et al. (2000) (random matching)
and Stahl and Van Huyck (2002) (mean matching) show no difference.
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other thresholds are equilibria. This result produces a very ambiguous prediction.

Prediction 1. Each cohorts will coordinate on a single threshold on [100, 500] which is an equilib-

rium for the game.

Under incomplete information, εi is uniformly distributed between -50 and 50. Applying Propo-

sition 2, a unique threshold equilibrium Q∗ satisfies equation (1) with n = 8 or

Q∗ =

8∑
k=1

[100 + {400× ( k−1
n−1 )}]×

7!
(k−1)!(8−k)!

27
. (1)

That is Q∗ = 300, the threshold that is consistent with the risk dominant equilibrium of the

underlying complete information game.

Prediction 2. Cohorts will coordinate on the global games solution and risk dominant threshold

300, the sole equilibrium to survive removal of iterated dominated strategies in this global stag hunt

game.

4 Experimental Results

4.1 Aggregate Results

Figure 1 displays the overall frequency of choice A by value of Qi by treatment, for the first 50

periods. Figure 2 provides the same information for the last 50 periods. The solid line on the

left denotes the risk-dominant threshold, which is our predicted equilibrium for treatments with

incomplete information. That is, subjects will select A when Qi < 300 and B when Qi > 300. All

thresholds between 100 and 500 are equilibria for complete information treatments. The dotted

line on the far right is a threshold of 500, the payoff-dominant threshold.

In the first 50 periods, the average threshold of both treatments were between risk dominance

and payoff dominance. For Qi below 300, in which payoff dominance and risk dominance agree on

selecting A, almost all choices under both treatments were A, as expected. Subjects selected B

more often than A only when Qi was above 450. When Qi was between 450 and 500, around 35

percent (42 percent) of choices under incomplete (complete) information were A.

The results of the last 50 periods were similar to the first 50 periods. The main difference

was that in the last 50 periods, A was selected more often for Qi below 350 and less often for Qi
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Fig. 1: Frequency of choice A given the value of Qi by treatment for the first 50 periods.
Each treatment line represents 3600 subject decisions averaged over the 12 signal realization
categories.

Fig. 2: Frequency of choice A given the value of Qi by treatment for the last 50 periods.
Each treatment line represents 3600 subject decisions averaged over the 12 signal realization
categories.
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above 400. Although A was selected more often under complete information than under incomplete

information, the results under the two information conditions were similar.

4.2 Cohort Thresholds

Our predictions are made at the cohort level because if there is convergence to a single threshold,

all subjects in the cohort must be playing the same strategy. This idea is common in both complete

information stag hunt games and global currency attack games, despite the differences in procedures.

As a consequence, we follow Heinemann et al. (2004) in estimating the following logit model for

each cohort j,

logit (Pr(Aijt|Qit, j)) = b0j − b1j ×Qit, (2)

where the probability of an individual, i, in cohort j, choosing to play A in period t is dependent

on a fixed term determined individual’s cohort (b0j) and an interaction term of that cohort and

observed private signal (b1j). As Heinemann et al. note, the threshold can be estimated by b0j/b1j

and the level of cohort dispersion by π/
(
b1
√
3
)
. Table 4 reports both coefficients and values for

periods 76 to 100.11 Robust standard errors are clustered at the cohort-period level.

The average thresholds are 429.11 and 446.22 for the incomplete and complete information

treatments, respectively. It is notable that the two values close to the risk-dominant threshold of

300 occurred in the incomplete information treatment and the one value essentially at the payoff-

dominant threshold of 500 occurred in the complete information treatment.12 However, comparing

the 9 cohorts in each treatment, we cannot reject the hypothesis that both treatments were drawn

from the same distribution (p = 0.83 for a Mann-Whitney test). Utilizing an alternate regression

specification, similar to equation (2), that calculates treatment-specific coefficients rather than

cohorts (see overall values in Table 4), we do not see a significant difference in thresholds (p = 0.24).

Most estimated thresholds are around 450 regardless of treatment. A stochastic steady state

appears to have emerged for most cohorts with a threshold in the interval [400,500]. These thresholds

are cohort-specific and would seem difficult to predict on an a priori basis.13

The dispersion measures across cohorts are generally higher in the incomplete information treat-
11 We omit cohort 10 because it has a perfect threshold. In the last 25 periods, all subjects selected A when Q ≤ 486

and B when Q ≥ 502. There was no value of Q between 486 and 502; we used their average (494) as a threshold.
12 In the last 50 periods, all eight subjects in that cohort played A when Q was in the interval [0, 500) and played
B when Q was in the interval [500, 600] in every period. There is another cohort under the complete information
treatment that produced an almost perfect step function but this cohort switched a strategy at Q = 400.

13 A similar logistic regression (not shown) using a time trend as in equation (3) does not change the qualitative
results of thresholds.
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Cohort b0 b1

estimated
threshold
b0/b1

estimated
dispersion
π/
(
b1
√
3
)

Incomplete Information: 9 cohorts, 72 subjects, 1800 observations

1 18.193
(4.159)

-0.056
(0.012)

326.877
(3.77)

32.589
(7.308)

2 13.618
(2.241)

-0.037
(0.006)

369.282
(6.969)

49.185
(8.016)

4 14.552
(2.980)

-0.033
(0.007)

436.831
(7.489)

54.448
(11.340)

6 29.868
(6.443)

-0.068
(0.015)

439.802
(7.777)

26.708
(5.705)

3 97.968
(27.769)

-0.216
(0.059)

454.523
(5.910)

8.415
(2.294)

8 24.569
(3.032)

-0.054
(0.007)

455.457
(5.970)

33.624
(4.078)

9 76.794
(29.358)

-0.167
(0.063)

458.800
(5.359)

10.836
(4.041)

7 28.753
(3.936)

-0.062
(0.008)

460.112
(6.890)

29.025
(3.933)

5 31.069
(6.004)

-0.068
(0.014)

460.250
(4.772)

26.869
(5.414)

Overall 13.495
(2.662)

-0.032
(0.005)

424.665
(15.714)

57.078
(9.227)

Complete Information: 9 cohorts, 72 subjects, 1800 observations

15 211.372
(13.316)

-0.527
(0.033)

401.085
(0.132)

3.442
(0.218)

16 18.248
(3.154)

-0.043
(0.007)

422.385
(6.739)

41.985
(6.743)

12 9.789
(4.200)

-0.023
(0.004)

423.908
(8.980)

78.547
(13.403)

18 27.263
(4.259)

-0.063
(0.010)

435.904
(3.704)

29.001
(4.720)

14 23.004
(7.484)

-0.051
(0.016)

452.832
(9.079)

35.705
(11.149)

13 32.422
(4.200)

-0.072
(0.009)

453.410
(4.940)

25.366
(3.322)

11 41.826
(8.430)

-0.091
(0.018)

460.581
(5.240)

19.973
(3.964)

17 68.300
(5.027)

-0.145
(0.011)

471.847
(0.716)

12.530
(0.920)

10 - - 494
-

0
-

Overall 18.982
(3.202)

-0.043
(0.007)

446.385
(9.551)

42.653
(6.777)

Tab. 4: Estimated Cohort Threshold Values from Logit Regressionfor the Last 25 Peri-
ods. Since each cohort contains 8 subjects each cohort threshold is based on 200 total sub-
ject decisions. Standard errors are clustered at the cohort-period level for cohort estimates.
A separate regression estimates the overall treatment thresholds with robust standard errors
clustered at the cohort level.
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ment, though not significantly so. The result contradicts the theoretical comparative static of global

games—that would predict lower dispersion in the incomplete information treatment—because the

incomplete information game contains a unique theoretical threshold. It also shows that observing

incomplete information as in the global game setting could not solve the problems of the equilib-

rium multiplicity of the underlying game with complete information. In fact, it performs worse in

predicting a unique threshold.

4.3 Individual Thresholds

While some subjects adjusted thresholds over time, others were “exact threshold players,” individ-

uals who always chose A for Qi below a certain value and always chose B for Qi above that value.

For the last 25 periods, 76 percent of the subjects in the incomplete information treatment and

81 percent of the subjects in the complete information treatment were exact threshold players. In

order to more precisely measure the heterogeneity of each subject, we estimated the following logit

model for each subject:

logit (Pr(Aijt|Qit, j)) = b0i − b1i ×Qit + b2i1/t, (3)

all three coefficients b0i, b1i, b2i are specific for subject i. We also add a time trend, 1/t, for period

t, to capture rapid learning at the beginning of a session and smaller afterward. For subjects whose

thresholds cannot be measured using the logit model, we use the middle of the switching point

as the threshold.14 The average estimated threshold, b0i/b1i (i.e., when 1/t approaches zero) are

432.894 and 448.855 for the incomplete and complete information treatments, respectively. This

difference is not large (16), but it is marginally significant (p = 0.107 for a Mann-Whitney test).

The range of the estimated thresholds for subjects under incomplete information is wider than

for subjects under complete information.15 This further supports our idea that observing incomplete
14 If a subject used an exact threshold, that is, he always played A when Qi ≤ w and played B when Qi ≥ z when

there was no Qi between w and z in any periods, we will use w+z
2

as a threshold. For example, if a subject always
played A when Qi ≤ 497 and played B when Qi ≥ 502, that subject’s threshold is 499.5. There are seven and eight
exact threshold players under complete and incomplete information, respectively. If there are some errors, that is, a
subject did not always play A when Qi ≤ w or B when Qi ≥ z for any values of w and z, we select w and z which
yield the least errors. There are eight and seven players under complete and incomplete information whom we use
this method, respectively. Because of their random behavior, we also exclude two players under complete information
whose estimated thresholds from the logit model are above 600.

15 The largest and smallest individual thresholds under incomplete information are 511 and 289, while under
complete information they are 504 and 344. Similar to the cohort thresholds, the dispersion of estimated thresholds
across individuals is higher in the incomplete information treatment. The standard deviations of thresholds are 51.1
and 37.6 for incomplete and complete information, respectively.
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Earnings ($) Incomplete Complete
Q∗ = 100 (Expected) $18.17 $18.55
Q∗ = 300 (Expected) $23.17 $23.60
Q∗ = 500 (Expected) $24.83 $25.44

Average (Actual) Earnings $24.03 $24.49

Tab. 5: Expected earnings when all subjects use the same thresholds of 100, 300, and 500 and
average earnings in the experiments, by treatment (N=144).

information could not solve the problems of equilibrium multiplicity.

4.4 Efficiency Loss from Incomplete Information

There are two reasons for lower payoffs under incomplete information than under complete infor-

mation. First, observing different private signals of Q could lead to mis-coordination even when

players use the same threshold. For example, if two players use the same threshold of 300 but player

1 observes his private signal of 310 while player 2 observes 290, player 1 would play B and player

2 would play A, which results in mis-coordination. The payoff loss in our experiments from this

type of mis-coordination alone would be approximately 58 cents. Second, incomplete information

leads to a unique threshold equilibrium of 300. It is less efficient than a threshold of 500, a payoff-

dominant threshold, which is one of the equilibrium thresholds under complete information. The

expected payoff difference between the thresholds of 300 and 500 is $1.66 in our experiments.

Table 5 reports the expected earnings when subjects use various thresholds and the average

earnings from our experiments under each information condition. The average earnings of each of

the 72 subjects under incomplete information and complete information treatments are $24.03 and

$24.35, respectively. This difference, at the subject level, is statistically significant (p < 0.024 for

a t-test and p = 0.0184 for a Mann-Whitney test), but it is relatively small (only 32 cents). It is

smaller than the difference between the average earnings of subjects under incomplete information

and the theoretical prediction, which is 86 cents (the average earnings are also significantly greater

than the expected earnings from using a threshold of 300, p < 0.001 for both treatments). This

result is quite positive from an efficiency standpoint since subjects under incomplete information

earn significantly greater than the theoretical prediction and the efficiency loss from observing

imprecise information is not large.
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4.5 Debriefing Questionnaire

After the 100 choices were made, the subjects were asked to complete a debriefing questionnaire

consisting of four questions. The answers given clarified and confirmed the results we observed on

subject coordination and decision-making.

The first question was: “What strategy did you use while playing this game? Please include

details about what led you to choose A or B.” Seventy-two percent of the subjects in the incomplete

information treatment and ninety-two percent of the subjects in the complete information treatment

reported clearly that they were using a threshold.16 Twenty-five different exact thresholds were

mentioned in the responses, ranging from 300 to 500.17 Ten percent of the subjects reported what

we call a fuzzy threshold. They would chose A for sure if Q was less than w and B for sure if Q

was more than z, where w < z, and sometimes one or the other for Q in [w, z].18 This confirmed

that subjects used thresholds in their decision-making process.

The second and the third questions were: “Did you change your strategy over time?” and “If you

changed your strategy, what made you change it?” The typical response involved the behavior of the

other players, in particular, the need to coordinate on the same threshold. For example, a subject

wrote, “I was initially choosing the highest number of all those provided, so that was typically

A unless B was a higher number. However, through the experiment other participants stopped

choosing the highest number (A = 500) when B became more than 400.” Our interpretation of

this quote is that the participant started using what might be called a wishful thinking strategy

(Maximax) because they wrote that the payoff to A was 500. Over time they learned that the group

was coordinating on a threshold of 400 and this led them to change their behavior.19

16 For example, a subject wrote, “I chose B when the odds were that Q was greater than 500. I used the estimate
to decide this.”

17 The most frequent exact threshold strategy was to choose A if Q is less than 500 and B otherwise. It was chosen
by nineteen percent of the subjects. Other popular choices were thresholds at 450, 400, and 440 to 445 in order of
decreasing popularity. Self-reported and estimated thresholds in our analysis for each subject were similar.

18 Subjects using a fuzzy threshold seem to be engaged in fast and slow thinking popularized by Kahneman (2011).
Schotter and Trevino (2017) exploit the difference in measured response time to accurately predict observed individual
thresholds in a global game. We could also view these subjects as using pure strategies for low and high signals, and
mixed strategies for signals between w and z.

19 Reading the debriefing answers from the cohort that perfectly coordinated on the payoff-dominant threshold of
500, cohort 10, we are now convinced that subjects initially started with a wishful thinking strategy rather than
any equilibrium concepts such as payoff dominance. The answers from subjects in cohorts with significantly lower
thresholds, cohorts 1 and 2, revealed that many subjects in these cohorts started by using low thresholds. Once
other subjects observed that they could not coordinate on high thresholds, they had to change to lower thresholds.
In contrast, more subjects in other cohorts started from using high thresholds.
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5 Discussion

The experiment of Rankin et al. (2000) is intriguing in two ways. First, its design produces a level

of efficient play in stag hunt experiments not seen in other design. Second, its use of perturbed

payoffs brings the design functionally very close to a global game (as much as a game could ever be

under complete information). Given that the global games prediction is equivalent to the criterion

of risk-dominance and not payoff dominance, it is peculiar that these two properties are found in

the same experimental design.

Our experiment replicates the design of Rankin et al., but provides a second treatment—that

varies only slightly—to create a global game. Having only a minor functional difference between

treatments is desirable for many reasons; one such reason is that we may directly compare threshold

strategies. The thresholds in both treatments are quite similar and very close to the predictions of

payoff dominance, but not risk dominance.

It is tempting to conclude that this is a victory for payoff dominance and that the theory of

global games has little predictive power in stag hunt games. Indeed, other global games experiments

using the more complicated currency attack game (often with further modifications) have reached

similar conclusions. (e.g., Heinemann et al., 2004). But Cabrales et al. (2007) follow a very similar

approach in their research and reach a very different conclusion. They find the global games

threshold, equivalently risk dominance, is predictive in stag hunt games of long-run play. However,

it is also similarly predictive under complete information, in a setting that does not follow the

perturbed payoff structure of Rankin et al.. In both our paper and theirs, the results in the global

game treatment appear dependent on the complete information analogue.

It is interesting to speculate on what may have caused the differences in results between our

experiments. A natural starting point is to investigate the payoffs in our experiment. One possibility

is that the low stakes in each period could lead subjects to risk more and learn more slowly. However,

the accumulation of earnings from several periods would result in several dollars lost, and subjects

would easily have been able to conclude this and adjust accordingly to maximize payoffs from

each round. Another explanation could be that the gains from playing best response are small

compared to the efficiency loss from moving to the equilibrium, and, as such, players would rather

try to coordinate on high thresholds. Previous work suggests subjects are reluctant to play best

response when it requires them to move to less efficient outcomes (e.g., Van Huyck et al., 1997).

Our own back-of-the-envelope calculations suggest, in our experiment, the efficiency loss is more
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than nine times the monetary incentive to best respond. Because this value is highly dependent to

the optimization premium (Battalio et al., 2001), the value of best responding, and Cabrales et al.

(2007) find that subjects in the treatment with a higher optimization premium are more likely

to converge to the theoretical prediction than those in the treatment with a lower optimization

premium, there may be some validity to this story.

Another possibility may be that the structure of our game puts global games threshold is in

the middle of the possible parameter realizations Q∗ = 0.5, separating realizations into cases where

payoff and risk dominance coincide Q∗ < 0.5 and differ Q∗ > 0.5. In Cabrales et al. (2007) all

five possible states were above the risk dominance threshold, meaning there was no parameter

realization where the two criterion coincided. In other words, in their experiment risk dominance

would always select the secure option. Stahl and Van Huyck (2002) investigate this very issue in

complete information using the Rankin et al. (2000) design, comparing two treatments with different

ranges of experience: one with 0 < Q < 1 and one with 0.5 < Q < 1. They find that subjects in

the first treatment coordinate on higher thresholds, providing possible plausibility to this story.

It is difficult to say what these results may mean for the theory of global games. It may

be as Crawford et al. (2013) argue that the theory is not a good predictor of human behavior

because it requires many steps iterated strategic thinking, and experimental evidence repeatedly

finds that individuals fall short of the many steps required for this level reasoning. This argument

could explain why subjects in the incomplete information treatments in our study deviate from

the equilibrium prediction and use thresholds close to the payoff-dominant threshold. It also may

explain the general lack of an effect of incomplete information in global games experiments.

Alternatively, there is the possibility many of these experiments (ourselves included) are testing

global games incorrectly. Payoff perturbations may be present in every game—even those with

complete information—because of strategic uncertainty. In such case, the meaning and identifica-

tion of treatment effects between incomplete and complete information treatment is quite dubious;

both treatments would actually be quite similar. Assuming the noise from strategic uncertainty

fits the appropriate theoretical constraints, one would test global games simply by observing how

predictive risk-dominance is as a equilibrium selection device under complete information. As we

have previously stated, the evidence of this is quite mixed.

There is frustratingly very little we know for certain in this domain. As desirable as it would

be to have a model to pick the “right” equilibrium in the stag hunt game, we cannot even test such



5 Discussion 22

model until we decide what is the “right” experimental framework in which to test this model.
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A Mathematical Appendix

A.1 Proof of Proposition 1

According to Harsanyi and Selton, the players’ prior belief Si about player i’s strategy should
coincide with the prediction of an outside observer who reasons in the following way about the
game:

(i) Player i believes that his opponents will either all choose A or that they all choose B; he
assigns a subjective probability zi to the first event and 1− zi to the second.

(ii) Whatever the value of zi, player i will choose a best response to his beliefs.
(iii) The beliefs (i.e. the zi) of different players are independent and they are all uniformly

distributed on [0.1].
From (i) and (ii), the outside observer concludes that player i chooses A if zi > Q, and that

he chooses B if zi < Q. Hence, using (iii), the outside observer forecasts player i’s strategy as
Si = (1 − Q)A + QB, with different Si being independent. Harsanyi and Selten assume that the
mixed strategy vector S = (S1, ..., Sn) describes the players’ prior expectations in the game. Since
S is not a Nash equilibrium, this expectation is not self-fulfilling, and, thus, has to be adapted.
In a stag hunt game, the situation is symmetric, either all players will have A as the unique best
response against S in which case all-A is the distinguished equilibrium, or they will all have B as
the unique best response against S and in which case all-B is the distinguished equilibrium.
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We can write player i’s expected payoff associated with A when each player chooses A with
probability t as:

Aπn(t) =
∑n
k=1

(n−1)!
(k−1)!(n−k)! t

k−1(1− t)n−kπ (k, n),
where π (k, n) is the payoff of selecting A when k players including player i select A from a total

of n players.
If the players’ prior S is (1−Q)A+QB, then the expected payoff associated with A is Aπn(1−Q).

Each player’s best response against S is A if Aπn(1 − Q) > Q and B if Aπn(1 − Q) < Q. When
π (k, n) = k−1

n−1 , Q = Aπn(1 − Q) when Q = 0.5, we can conclude that A risk dominates B when
Q < 0.5 and B risk dominates A when Q > 0.5.

A.2 Proof of Proposition 2

Consider a 2X2 stag hunt game with incomplete information as shown in Table 2 where q is uniform
on some interval [a, b] where a < 0 and b > 1. Each player receives a signal Qi = Q + εi that
provides an unbiased estimate of Q. The εi is uniformly distributed within [−E,E] where E≤− a

2

and E ≤ b−1
2 . The signals Q1 and Q2 are independent. After observing the signals, the players

choose actions simultaneously and get payoffs corresponding to the game in Table 2 with the actual
value of Q. It is understood that the structure of the class of games and the joint distribution of
Q, Q1 and Q2 are common knowledge.

It is easily seen that player i’s posterior of q will be uniform on [Qi −E,Qi +E] if he observes
Qi ∈ [a+ E, b− E], so his conditionally expected payoff from choosing B will simply be Qi. More-
over, for Qi ∈ [a+ E, b− E], the conditional distribution of the opponent’s observation Qj will be
symmetric around Qi and have support [Qi − 2E,Qi + 2E]. Hence, the probability that Qj < Qi

is equal to the probability that Qj > Qi, which is 0.5.
Now suppose player i observes Qi < 0, his conditionally expected payoff from choosing B is

negative and smaller than the minimum payoff from choosing A, which is 0. Hence A is conditionally
strictly dominate B for player i when he observes Qi < 0. It should be clear that iterated dominance
arguments allow us to get further. For instance, if player j is restricted to playing A when observing
Qj < 0, then player i, observing Qi < 0, must assign at least probability of 0.5 that player j would
select A. Consequently, player i’s conditionally expected payoff from choosing A will be at least
0.5, so choosing B (which yields 0) can be excluded by iterated dominance for Qi = 0.

Let Q∗
i be the smallest observation for which A cannot be established by iterated dominance.

By symmetry, obviously, Q∗
1 = Q∗

2 = Q∗. Iterated dominance requires player i to play A for any
Qi < Q∗, so if player j observes Q∗ he will assign at least probability 0.5 to player i’s choosing A
and, thus, player j’s expected payoff from choosing A will be at least 0.5. Since player j’s expected
payoff from choosing B equals Q∗, we must have Q∗ ≥ 0.5, for otherwise iterated dominance would
require player j to play A when he observes Q∗.

We can proceed in the same way for large values of Q. B is dominant for each player if Qi > 1

because the expected payoff from choosing B is larger than the maximum payoff of choosing A.
Let Q∗∗ be the largest value for which B cannot be established by iterated dominance. If player
j observes Qj = Q∗∗, his expected payoff from choosing A will be at most 0.5 given that player i
conforms to iterated dominance. Since Q∗∗ equals player j’s expected payoff from choosing B, we
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can conclude that Q∗∗ ≤ 0.5. Combine these two findings with the fact that Q∗ ≤ Q∗∗, we get
Q∗ = Q∗∗ = 0.5.

When n > 2, player i’s payoff is the average payoff from the matches with the other n−1 players
or π(k, n) = k−1

n−1 . Since the game is symmetric, each player has the same Q∗. The probability that
for each player j 6= i, Qj < Qi is equal to the probability that Qj > Qi, which is 0.5. We can use
the same argument as the case where n = 2 to conclude that A strictly dominates B at high values
of Qi and B strictly dominates A at low values of Qi. We need to find a critical value of Q∗ in
which the expected payoff from selecting A and B are the same when player i observe Q∗. When

subject i observes Q∗, his expected payoff is
∑n
k=1

π(k,n)× (n−1)!
(k−1)!(n−k)!

2(n−1) . This expression is equal to
0.5 which is the same to the expected payoff in a standard 2X2 game. That is Q∗ does not change
and equals to 0.5. Using the mean matching protocol preserves the expected payoff which results
in the same Q∗ of 0.5.


