### Badly Evolved?

Exploring Long-Surviving Suspicious Users on Twitter

#### Majid Alfifi and James Caverlee

Department of Computer Science and Engineering Texas A&M University



#### An ideal account:



#### An ideal account:



#### An ideal account:

## User's Lifespan User's Lifespan Joins C

#### An OK account:



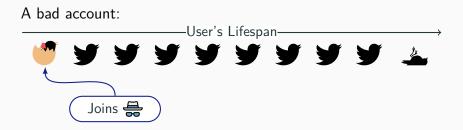
#### An ideal account:

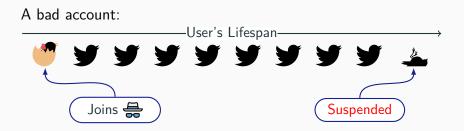
## User's Lifespan User's Lifespan Joins C

#### An OK account:



#### A bad account: User's Lifespan User's **Y Y Y Y Y Y X**





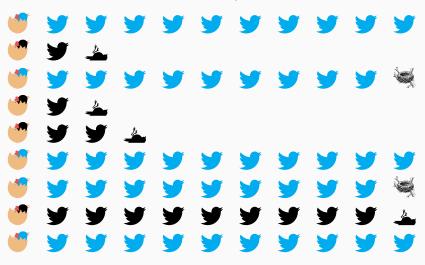
Ideally

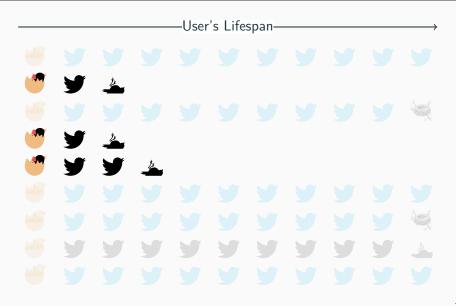
-User's Lifespan–

#### . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . **. . . . . . . .** . **. . . . . . . .** . . . . . . . . . .

Reality

-User's Lifespan—





Our focus

-User's Lifespan------~ ~ ~ ~ ~ ~ ~ ~ ~ Y 4 Y

Do long-lived suspended accounts <u>always</u> engage in bad behaviors?



Do long-lived suspended accounts <u>always</u> engage in bad behaviors?



Do long-lived suspended accounts <u>always</u> engage in bad behaviors?



## Or do they gradually evolve into bad accounts?

Do long-lived suspended accounts <u>always</u> engage in bad behaviors?

Do they <u>abruptly</u> become bad accounts?

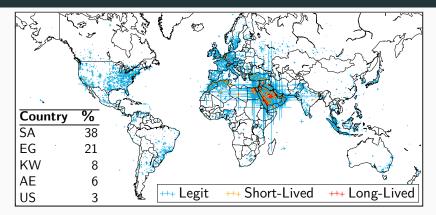
# Or do they gradually evolve into bad accounts?

How are they different from short-lived suspended accounts?



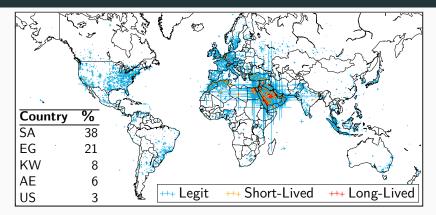
#### Dataset

#### All Arabic tweets in 2015



| Dataset                        | Size          |
|--------------------------------|---------------|
| Tweets                         | 9,285,246,636 |
| Accounts                       | 26,711,275    |
| Tweets from Suspended Accounts | 1,960,160,536 |
| Suspended Accounts             | 6,175,113     |

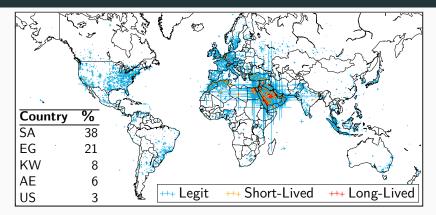
#### All Arabic tweets in 2015



| Dataset                        | Size          | ]   |
|--------------------------------|---------------|-----|
| Tweets                         | 9,285,246,636 |     |
| Accounts                       | 26,711,275    | 1   |
| Tweets from Suspended Accounts | 1,960,160,536 |     |
| Suspended Accounts             | 6,175,113     | 23% |

5

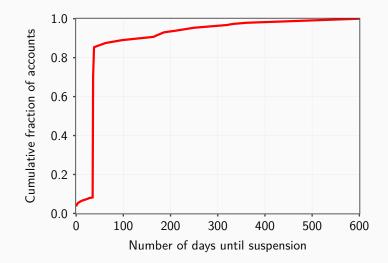
#### All Arabic tweets in 2015



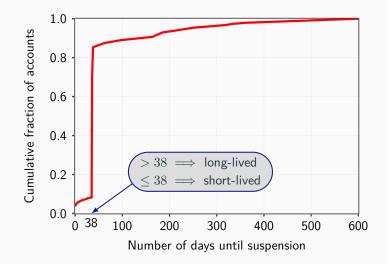
| Dataset                        | Size          |     |
|--------------------------------|---------------|-----|
| Tweets                         | 9,285,246,636 |     |
| Accounts                       | 26,711,275    | 1   |
| Tweets from Suspended Accounts | 1,960,160,536 | 21% |
| Suspended Accounts             | 6,175,113     | 23% |

5

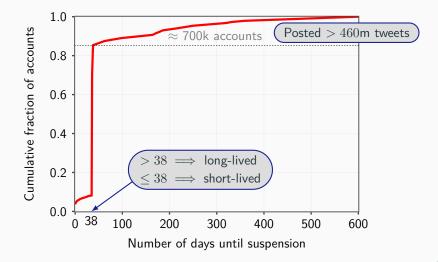
#### Suspended accounts: long-lived vs. short-lived



#### Suspended accounts: long-lived vs. short-lived



#### Suspended accounts: long-lived vs. short-lived



| # | Group      | Accounts | Tweets count |
|---|------------|----------|--------------|
| 1 | long-lived | 17,909   | 42,630,795   |



All accounts that:

- 1. Were created in January 2015 or December 2014.
- 2. Were active on at least 6 different months.
- 3. Were eventually suspended by Twitter.

| # | Group       | Accounts | Tweets count |
|---|-------------|----------|--------------|
| 1 | long-lived  | 17,909   | 42,630,795   |
| 2 | short-lived | 17,909   | 14,129,870   |



A random sample from accounts that:

- 1. Were suspended within 38 days of creation.
- 2. Posted at least 10 tweets.

| # | Group       | Accounts | Tweets count |
|---|-------------|----------|--------------|
| 1 | long-lived  | 17,909   | 42,630,795   |
| 2 | short-lived | 17,909   | 14,129,870   |
| 3 | legit       | 17,909   | 9,772,176    |



A random sample from accounts that:

- 1. Were created in January 2015 or December 2014.
- 2. Were Active on at least 6 different months.
- 3. Were still alive in November 2016.
- 4. Stopped tweeting in January/February 2016.

| Group       | Accounts                  | Tweets count                                                                                  |
|-------------|---------------------------|-----------------------------------------------------------------------------------------------|
| long-lived  | 17,909                    | 42,630,795                                                                                    |
| short-lived | 17,909                    | 14,129,870                                                                                    |
| legit       | 17,909                    | 9,772,176                                                                                     |
| igig        | 17 518                    | 11,849,065                                                                                    |
|             | long-lived<br>short-lived | long-lived         17,909           short-lived         17,909           legit         17,909 |



We exploit a list of ISIS accounts crowdsourced by the Anonymous group and recover their tweets.

We focus on accounts that:

- 1. Were actually suspended.
- 2. Were active in 2015 (>10 tweets).



thehackernews.com

| # | Group       | Accounts | Tweets count |
|---|-------------|----------|--------------|
| 1 | long-lived  | 17,909   | 42,630,795   |
| 2 | short-lived | 17,909   | 14,129,870   |
| 3 | legit       | 17,909   | 9,772,176    |
|   |             |          |              |

| 4 isis | 17,518 | 11,849,065 |
|--------|--------|------------|
|--------|--------|------------|

Methodology

To study users evolution, we split the lifespan of an account into 10 stages:



To study users evolution, we split the lifespan of an account into 10 stages:

# Longer lifespan...User's Lifespan $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ 12345678910

To study users evolution, we split the lifespan of an account into 10 stages:

# Longer lifespan...User's Lifespan $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ 12345678910



To study users evolution, we split the lifespan of an account into 10 stages:

#### Longer lifespan...





At each stage, we measure several signals:

#### **Behavioral**

Number of URLs

Number of Hashtags

Number of Mentions (in and out)

#### Linguistic

Distance from the Twitter stream Self similarity

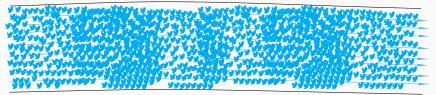
\*\* See paper for all features \*\*

#### Linguistic distance from the Twitter stream

$$H_t(t, \text{BLM}) = -\frac{1}{N} \sum_i \log P_{\text{BLM}}(b_i)$$

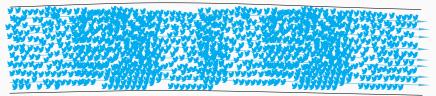
| Variable                | Meaning                                             |
|-------------------------|-----------------------------------------------------|
| BLM                     | Background Language Model from the Twitter stream   |
| t                       | Tweet                                               |
| $H_t$                   | Cross-entropy of a tweet $t$ according to the $BLM$ |
| $b_i$                   | Bigram                                              |
| N                       | Number of bigrams in a tweet $t$                    |
| $P_{\mathrm{BLM}}(b_i)$ | Probability of a bigram $b_i$ according to the BLM  |

- Higher values indicate more sophisticated accounts. (e.g. humans)
- $\circ~$  Repetitive low quality tweets get lower values

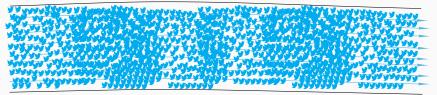


Twitter stream



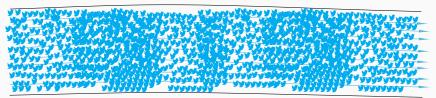






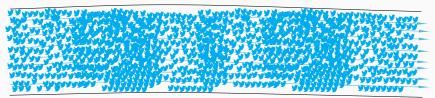
# Linguistic distance from the Twitter stream: an example

| خالد العلي<br>@khaalali1                                             | Follow ~                                |
|----------------------------------------------------------------------|-----------------------------------------|
| Replying to @M_alassad_sy                                            |                                         |
|                                                                      |                                         |
| تركوا من يحبكم ويحب سوريا                                            | ۳ W_alassad_sy لا ۳                     |
| تركوا من يحبكم ويحب سوريا<br>Translated from Arabic by <b>b</b> bing | M_alassad_sy لا ت<br>Wrong translation? |



## Linguistic distance from the Twitter stream: an example

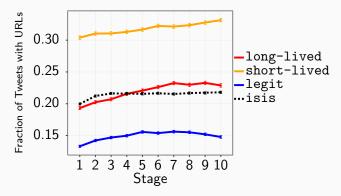




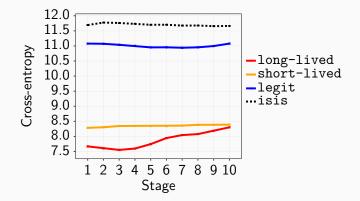
# **Results & Conclusions**

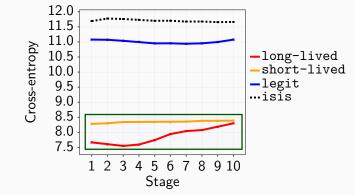
#### How do long-lived accounts evade detection?

They fine-tune their behavioral signals to remain under the radar.

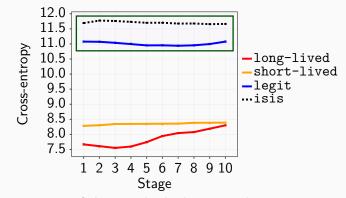


 long-lived may have evaded detection by limiting URL sharing among other signals.

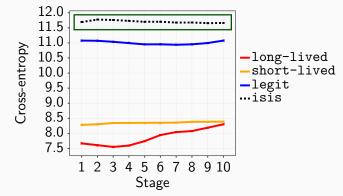




• long-lived fail to evade the linguistic distance measure.



long-lived fail to evade the linguistic distance measure.
isis and legit deviate the most hinting they may both represent real people.

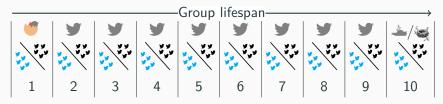


long-lived fail to evade the linguistic distance measure.
isis and legit deviate the most hinting they may both represent real people.

 $\circ$  isis deviates even more, potentially due to their  $\underline{\mathsf{extreme}}$  language.

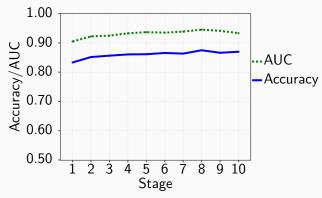
We use a series of binary classifiers (Random Forest) one for each stage.

We use the signals measured at each stage as features.



#### Is an account long-lived?

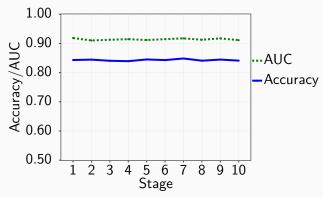
We train binary classifiers for long-lived and other groups:



- long-lived accounts can be detected very early.
- long-lived behavior slightly worsens over time resulting in better detection.

#### Is an account isis?

We train binary classifiers for isis and other groups:



- isis accounts are also detectable early.
- detection performance is consistent implying consistent behavior.

 The majority of long-lived suspicious accounts have most likely been <u>born that way</u> and didn't evolve into bad accounts.



- Long-lived suspicious accounts <u>can be detected early</u> greatly improving the quality of online social content.
- ISIS accounts are easily detectable regardless of their reportedly successful social media practice.





# Thank You!



Slides available at: http://students.cs.tamu.edu/alfifima