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Well researched area
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Our focus
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Research goals

Do long-lived suspended accounts always engage in bad

behaviors?
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Or do they gradually evolve into bad accounts?
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How are they different from short-lived suspended accounts?
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Dataset



All Arabic tweets in 2015

Dataset Size
Tweets 9,285,246,636
Accounts 26,711,275
Tweets from Suspended Accounts 1,960,160,536
Suspended Accounts 6,175,113 5
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Suspended accounts: long-lived vs. short-lived

1.0

0.6 -

0.4 -

0.2 -

Cumulative fraction of accounts

0.0 - - - - .
0 100 200 300 400 500 600

Number of days until suspension



Suspended accounts: long-lived vs. short-lived

1.0
n
-E‘ /
3
3 0.8+
®
ks
c 06 N
.0
9
E 04
2
B > 38 — long-lived
E 0.2 A < 38 = short-lived
S —~
0.0

038 100 200 300 400 500 600

Number of days until suspension



Suspended accounts: long-lived vs. short-lived

Cumulative fraction of accounts

1.0

0.8 -

0.6 -

0.4 -

0.2 -

0.0

1
~ 700k accounts (Posted > 460m tweets)
> 38 — long-lived
< 38 — short-lived
/
038 100 200 300 400 500 600

Number of days until suspension



Four account groups

# | Group Accounts | Tweets count
1 | long-lived 17,909 42,630,795
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All accounts that:

1. Were created in January 2015 or December 2014.
2. Were active on at least 6 different months.
3. Were eventually suspended by Twitter.



Four account groups

# | Group Accounts | Tweets count

2 17,909 14,129,870
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A random sample from accounts that:

1. Were suspended within 38 days of creation.
2. Posted at least 10 tweets.



Four account groups

# | Group Accounts | Tweets count

3 | legit 17,909 9,772,176
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A random sample from accounts that:

1. Were created in January 2015 or December 2014.
2. Were Active on at least 6 different months.

3. Were still alive in November 2016.

4. Stopped tweeting in January/February 2016.



Four account groups

# | Group Accounts | Tweets count

| 4 | isis | 17518 | 11,849,065 |
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We exploit a list of ISIS accounts crowdsourced by the Anonymous

group and recover their tweets. Anonymous

Takes down

We focus on accounts that:
20,000 ISIS

Twitter Accounts

1. Were actually suspended.

2. Were active in 2015 (>10 tweets). = i} ehackernews . com


thehackernews.com

Four account groups

# | Group Accounts | Tweets count
1 | long-lived 17,909 42,630,795
2 17,909 14,129,870
3 | legit 17,909 9,772,176

\ 4 \ isis 17,518 11,849,065
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stages:
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Evolution modeling

To study users evolution, we split the lifespan of an account into 10
stages:

Longer lifespan...

User's Lifespan
P Y| Y| Y| Y| Y| Y| Y| L
3 4 5 6 7

Shorter lifespan...
User's Lifespan——

Y Y Y Y Y Y .
415|6|7|8[9]10

»

L 4
2

L
3

1



Stage-wise measures

At each stage, we measure several signals:
Behavioral

Number of URLs
Number of Hashtags

Number of Mentions (in and out)

Linguistic
Distance from the Twitter stream

Self similarity

** See paper for all features **



Linguistic distance from the Twitter stream

Hy(t, BLM) —*ZIOgPBLM(b)

Variable | Meaning

BLM Background Language Model from the Twitter stream

t Tweet

H, Cross-entropy of a tweet ¢ according to the BLM
b; Bigram

N Number of bigrams in a tweet ¢

Pgra(b;) | Probability of a bigram b; according to the BLM

o Higher values indicate more sophisticated accounts. (e.g. humans)

o Repetitive low quality tweets get lower values

10
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Twitter stream
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@M _alassad_sy Do not leave who loves you and loves Syria
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Results & Conclusions




How do accounts evade detection?

They fine-tune their behavioral signals to remain under the radar.

i

o

2 0.30

E —long-lived
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Stage

o long-lived may have evaded detection by limiting URL
sharing among other signals.
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What is the linguistic difference between groups?
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What is the linguistic difference between groups?
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o long-lived fail to evade the linguistic distance measure.
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represent real people.
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What is the linguistic difference between groups?
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o long-lived fail to evade the linguistic distance measure.
o isis and legit deviate the most hinting they may both
represent real people.
o isis deviates even more, potentially due to their extreme

language. 13



Can we detect accounts? How early?

We use a series of binary classifiers (Random Forest) one for each
stage.
We use the signals measured at each stage as features.

Group lifespan
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Is an account ?

We train binary classifiers for long-1ived and other groups:

1.00

2 | — ~AUC
— Accuracy

0.60

00—
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Stage
o long-lived accounts can be detected very early.
o long-lived behavior slightly worsens over time resulting in

better detection.
15



Is an account isis?

We train binary classifiers for isis and other groups:

1.00
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0.60

0.50
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o isis accounts are also detectable early.
o detection performance is consistent implying consistent

behavior.
16



Conclusions

o The majority of long-lived suspicious accounts have most
likely been born that way and didn't evolve into bad accounts.
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o Long-lived suspicious accounts can be detected early greatly

improving the quality of online social content.

o ISIS accounts are easily detectable regardless of their

reportedly successful social media practice.

17



Thank You!

Slides available at:
http://students.cs.tamu.edu/alfifima
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