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Abstract—How can we efficiently recover missing values for
very large-scale real-world datasets that are multi-dimensional
even when the auxiliary information is regularized at certain
mode? Tensor completion is a useful tool to recover a low-
rank tensor that best approximates partially observed data and
further predicts the unobserved data by this low-rank tensor,
which has been successfully used for many applications such as
location-based recommender systems, link prediction, targeted
advertising, social media search, and event detection. Due to the
curse of dimensionality, existing algorithms for tensor completion
that integrate auxiliary information do not scale for tensors with
billions of elements. In this paper, we propose DISTENC, a new
distributed large-scale tensor completion algorithm that can be
distributed on Spark. Our key insights are to (i) efficiently handle
trace-based regularization terms; (ii) update factor matrices with
caching; and (iii) optimize the update of the new tensor via
residuals. In this way, we can tackle the high computational costs
of traditional approaches and minimize intermediate data, lead-
ing to order-of-magnitude improvements in tensor completion.
Experimental results demonstrate that DISTENC is capable of
handling up to 10 ∼ 1000× larger tensors than existing methods
with much faster convergence rate, shows better linearity on
machine scalability, and achieves up to an average improvement
of 23.5% in accuracy in applications.

I. INTRODUCTION

Extremely large and sparse multi-dimensional data arise
in a number of important applications, including location-
based recommendation, targeted advertising, social media
search, and event detection [1], [2], [3]. Tensors – or multi-
dimensional arrays – are commonly used to capture this multi-
dimensionality. For instance, a movie rating from a user can
be modeled as a tensor where each element is an interaction
between a movie, a user, and the context in which this user
rates the movie (e.g., genre, date of the rating, etc.). A multi-
dimensional social network such as the DBLP network can
be represented as a tensor with 4-tuples, e.g., author-paper-
term-venue. Analytics over such large, diverse, and multi-
dimensional datasets can provide valuable insights with respect
to the underlying relationships between different entities.

However, in practice, many types of multidimensional data
may be noisy or incomplete, limiting the effectiveness of such
analytics. For example, data may be restricted due to data sam-
pling policies, partial access to legacy data warehouses, sparse
feedback from users (e.g., ratings in a recommender system),
data missing at random, and so on [4], [5]. Traditional methods

like matrix completion methods have shown good success in
recovering two-dimensional data, but may not be suitable for
handling missing data in these large multi-dimensional cases.
Analogous to matrix completion, tensor completion aims to
recover a low-rank tensor that best approximates partially
observed data and further predicts the unobserved data using
this low-rank tensor.

While recovering the missing values by tensor completion
is attractive, it is challenging to efficiently handle large-scale
tensors (e.g., ones containing billions of observations in each
mode) due to the high computational costs and space require-
ments. Tensor completion in these scenarios faces challenges
such as: (i) the intermediate data explosion problem where
in updating factor matrices, the amount of intermediate data
of an operation exceeds the capacity of a single machine or
even a cluster [6], [7], [8], [9]; (ii) the large regularization
problem where the regularization term can affect the scalability
and parallelism of tensor completion [10], [11]; and (iii) since
architectures on modern computing facilities have lower ratios
of memory bandwidth to compute capabilities, computations
on tensors that usually have unstructured access patterns are
usually degraded. While there has been research addressing
these challenges of scalability separately, most focus on tensor
factorization, which are not suitable for tensor completion
that needs to estimate all missing values in a tensor at
each iteration. There is a need to fill a gap between tensor
completion and applications with real large-scale datasets.

In this paper, we propose to fill this gap through DISTENC
(Distributed Tensor Completion), a new distributed large-scale
tensor completion algorithm running on Apache Spark. Our
intuition is to tackle the challenges of large-scale tensor
completion through three key insights: (i) by designing an
efficient algorithm for handling the trace-based regularization
term; (ii) by updating factor matrices with caching; and (iii)
by optimizing the update of the new tensor at each iteration,
while minimizing the generation and shuffling of intermediate
data. We find that DISTENC leads to high efficiency compared
with state-of-the-art methods, while delivering similar (and in
many cases improved) accuracy. The three main contributions
of this paper are as follows:
• Algorithm. We propose DISTENC, a novel distributed

tensor completion algorithm with regularized trace of the



information based on ADMM, which is designed to scale
up to real large-scale tensors by efficiently computing
auxiliary variables, minimizing intermediate data, and
reducing the workload of updating new tensors.

• Scalability Our scalability analysis of DISTENC shows
that it achieves up to 10 ∼ 1000× better scalability, per-
forms better linearity as we scale the number of machines,
and converges faster than other methods. Additionally, we
analyze DISTENC in terms of time complexity, memory
requirement and the amount of shuffled data.

• Experiment. We empirically evaluate DISTENC and
confirm its superior scalability and performance in tensor
completion with both synthetic and real-world datasets.
We observe that the proposed DISTENC performs tensor
completion with less time and up to an average improve-
ment of 23.5% in accuracy in applications versus state-
of-the-art methods, while achieving better scalability.

II. PRELIMINARIES

In this section, we provide a brief background on tensors
including key definitions and notations, followed by the tensor
completion. Table I lists the symbols used in this paper.

A. Tensor

Definition 2.1.1 (Tensor). A tensor is a multi-way array,
whose dimension is called mode or order. An N th-order tensor
is an N-mode array, denoted as X ∈ RI1×I2×···×IN . The
number of non-zeros of a tensor X is denoted as nnz(X).

Definition 2.1.2 (Kronecker Product). Given two matrices
A ∈ RI×J and B ∈ RK×L, their Kronecker product A ⊗ B
generates a matrix of size IK×JL, which can be defined as:

A⊗B =

a11B a11B · · · a1JB
...

...
. . .

...
aI1B a11B · · · aIJB

 .
Definition 2.1.3 (Khatri-Rao Product). It is a column-wise
Kronecker product, denoted as A�B where both A ∈ RI×R
and B ∈ RK×R have the same number of columns. Their
Khatri-Rao product produces a matrix of size IK×R defined:

A�B = [a1 ⊗ b1, · · · ,aR ⊗ bR].

Definition 2.1.4 (Hadamard Product). Given two matrices
A and B with the same size I × J , their Hadamard product
A×B is the element-wise matrix product, defined as:

A×B =

a11b11 a12b12 · · · a1Jb1J
...

...
. . .

...
aI1bI1 aI2bI2 · · · aIJbIJ

 . (1)

Definition 2.1.5 (Tensor Matricization). Tensor matricization
is to unfold a tensor into a matrix format with a predefined
sequence of mode order. The n-mode matricization of a tensor
X ∈ RI1×...×IN is denoted as X(n) ∈ RIn×(

∏
k 6=n Ik). The

order of the other modes except mode n can be arranged
randomly to construct the column of X(n).

TABLE I: Symbols and Operations.

Symbols Definitions
X tensor (Euler script letter)

X(n) n-mode matricization of a tensor XXX
X matrix (uppercase bold letter)
x column vector (lowercase bold letter)
x scalar (lowercase letter)
N order of a tensor (number of modes)
[[·]] Kruskal operator
⊗ Kronecker product
� Khatri-Rao product
∗ Hadamard product
◦ outer product
×n n-mode tensor-matrix product
‖X‖2F Frobenius norm of X
nnz(X) number of non-zero elements in X

Definition 2.1.5 (n-mode Tensor-Matrix Product). Given
an N th-order tensor X ∈ RI1×I2×...×IN and a matrix A ∈
RIn×J , their multiplication on its nth-mode is represented as
Y = XXX×nA and is of size I1 × . . . In−1 × J × In+1 . . .× IN .
The element-wise result is illustrated as:

YYYi1,...,in−1,j,in+1,...,iN =

In∑
k=1

Xi1,...,in−1,k,in+1,...,iN Ak,j . (2)

B. Tensor Completion
Tensor completion is extensively applied in tensor mining

to fill the missing elements with partially observed tensors.
Low rank is often a necessary hypothesis to restrict the
degree of freedoms of the missing entries being intractable.
Hence, we focus on the low-rank tensor completion (LRTC)
problem in this paper. First, we introduce the standard
CANDECOMP/PARAFAC(CP)-based tensor completion.

1) CP-based Tensor Completion: CP tensor decomposition
proposed by Hitchcock [12] is one of the most used tensor
factorization models, which decomposes a tensor into a sum
of rank-one tensors. Before being actively researched in recent
years, the LRTC problem is usually considered as a byproduct
of the tensor decomposition problem with missing values.
Given an N th-order tensor X ∈ RI1×I2×···×IN with the rank
R� min(I1, . . . , IN ) that is pre-defined as one of the inputs,
the CP decomposition solves:

minimize
A(1),...,A(N),X

1

2
‖X− [[A(1),A(2), . . . ,A(N)]]‖2F +

λ

2

N∑
n=1

‖A(n)‖2F

subject to Ω ∗X = T,A(n) ≥ 0, n = 1, 2, 3.,

where T denotes the partial observations, A(n) ∈ RIn×R are
the factor matrices, and Ω is a non-negative weight tensor with
the same size as X:

Ωi1...in...iN =

{
1 if Xi1...in...iN is observed,
0 if Xi1...in...iN is unobserved.

Through the CP decomposition, an N th-order tensor X is
decomposed into N factor matrices as follows:

XXX ≈ [[A(1), . . . ,A(N)]] =

R∑
i=1

a
(1)
i ◦ a

(2)
i ◦ . . . ◦ a

(N)
i , (3)
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Fig. 1: Example of CP-based tensor completion with auxiliary information. (a): Rank-R CP tensor completion of a 3-order
tensor with auxiliary information. The tensor X is decomposed into three factor matrices A, B and C, and recovered based
on factor matrices. (b) A 3-order Twitter List tensor with user-expert-topic triples and three similarity matrices generated from
auxiliary information of users, experts and topics, respectively.

where a
(n)
i is the i-th column of matrix An.

2) Tensor Completion with Auxiliary Information: With the
increasing ratio of missing entries, tensor completion may
perform unsatisfactory imputation with degrading accuracy
due to its assumptions on low-rank and uniformly sampling.
In real-world data-driven applications, besides the target tensor
object, considerable additional auxiliary information such as
spatial and temporal similarities among objects or auxiliary
coupled matrices/tensors may also exist and provide poten-
tial help for improving completion quality. An example of
a Twitter List tensor is illustrated in Fig. 1b. Given an
N th-order tensor X ∈ RI1×I2×···×IN with the rank R �
min(I1, . . . , IN ) and similarity matrices B(n), n = 1, . . . , N
of size I1 × I1, . . . , IN × IN , the tensor decomposition with
auxiliary information solves:

minimize
A(1),...,A(N),X

1

2
‖X− [[A(1),A(2), . . . ,A(N)]]‖2F

+
λ

2

N∑
n=1

‖A(n)‖2F +

N∑
n=1

αntr(B(n)TLnB(n))

subject to Ω ∗X = T,A(n) = B(n) ≥ 0, n = 1, 2, . . . , N.,
(4)

where Ln ∈ RIn×In is the graph Laplacian of the similarity
matrix Sn for the mode n, B(n), n = 1, 2, . . . , N are intro-
duced as auxiliary variables, tr(· ) is the matrix trace and αn
is to control the weight of auxiliary information in the mode
n. Fig. 1a shows the rank-R CP tensor completion of a 3-order
tensor with auxiliary information. The tensor X is decomposed
into three factor matrices A, B and C by integrating auxiliary
information and recovered based on them.

3) Optimization Algorithm: Since the objective function in
Eq.(4) is convex with respect to variables A(n) and B(n)

separately, the overall problem is not convex. Motivated by
methods [13], [14], we can construct an algorithm under
the framework of ADMM (Alternating Direction Method of
Multipliers) to find optimal solutions for the objective func-
tion above. ADMM [15] has illustrated its superiority over
alternating least square (ALS) in terms of both reconstruction
efficiency and accuracy [16]. In order to apply ADMM, the

objective function in Eq. (4) can be firstly written in the partial
augmented Lagrangian functions as follow:

Lη(A(n),B(n),Y(n)) =
1

2
‖X− [[A(1),A(2), . . . ,A(N)]]‖2F

+
λ

2

N∑
n=1

‖A(n)‖2F +

N∑
n=1

αn
2

tr(B(n)TLnB(n))

+

N∑
n=1

< Y(n),B(n) −A(n) > +

N∑
i=1

η

2
‖B(n) −A(n)‖2F ,

(5)

where Y(n) is the matrix of Lagrange multipliers for n =
1, 2, . . . , N , η is a penalty parameter and < ∗, ∗ > is an
inner product of matrices. The variables A(n),B(n),Y(n), n =
1, 2, . . . , N can be iteratively updated by calculating the partial
derivatives while fixing other variables, as shown in Algorithm
1 detailed in [4]. There are many ways to check for conver-
gence. The stopping criterion for Algorithm 1 is either one
of the following: (i) the maximal difference between factor
matrices of consecutive iterations is smaller than a threshold;
or (ii) the maximum number of iterations is exceeded.

III. PROPOSED METHOD: DISTENC

In this section, we present the proposed DISTENC, a
distributed algorithm for scalable tensor completion on Spark.

A. Overview

DISTENC provides an efficient distributed algorithm for
the CP-based tensor completion with auxiliary information on
Spark. The algorithm 1 contains three challenging operations:
(i) updating auxiliary variables B(n) (line 4); (ii) updating
factor matrices A(n) (lines 7 and 8); and (iii) updating tensor
X (line 9). In the following subsections, we address the above
challenges with the following main ideas that efficiently update
auxiliary variables, factor matrices and tensors in distributed
systems, while reducing floating point operations (FLOPs).
• (Section III-B) Eigen-decomposing a graph Laplacian

matrix and carefully ordering of computation to decrease
FLOPs in updating auxiliary variables.



Algorithm 1: CP-based Tensor Completion via ADMM

Input: T,A(n)
0 ,Ω,Ωc, λ, ρ, η, ηmax, N

Output: X,A(n),B(n),Y(n)

1 Initialize A
(n)
0 ≥ 0, B

(n)
0 = Y

(n)
0 = 0, t = 0

2 while Not Converged do
3 for n← 1 to N do
4 Update

B
(i)
t+1 ← (ηtI + αnLn)−1(ηtA

(n)
t −Y

(n)
t )

5 Calculate U
(n)
t ←

6 (A
(N)
t � · · · �A

(n+1)
t �A

(n−1)
t � · · · �A

(1)
t )

7 Update A
(n)
t+1 ←

8 (Xt
(n)U

(n)
t + ηtB

(n)
t+1 + Y

(n)
t )(U

(n)
t

T
U(n)t +

λI + ηtI)−1

9 Update Xt+1 = T + Ωc ∗ [[A
(1)
t+1,A

(2)
t+1, . . . ,A

(N)
t+1]]

10 for n← 1 to N do
11 Update Y

(n)
t+1 = Y

(n)
t + ηt(B

(n)
t+1 −A

(n)
t+1)

12 Update ηt+1 =min(ρηt, ηmax)
13 Check the convergence:

max{‖A(n)
t+1 −B

(n)
t+1‖F , n = 1, 2, . . . , N} < tol

14 t = t+ 1

15 return X, A(n), n = 1, 2, . . . , N

• (Section III-C) Carefully partitioning of the workload and
distributing intermediate generation to remove redundant
data generation and reducing the amount of intermediate
data transfer in updating factor matrices.

• (Section III-D) Utilizing the residual tensor to avoid
the explicit computation of the dense tensor and reuse
intermediate data to decrease FLOPs in updating tensor.

B. Calculating Inverse of Graph Laplacian Matrices

Since the update rules for auxiliary variables B(n), n =
1, 2, . . . , N are similar, we focus on updating the variable B(n)

where n could be an arbitrary one from {1, 2, . . . , N}. The
operation in line 4 of Algorithm 1 requires us to compute
the pseudo-inverse of the summation of a matrix αnLn and
a diagonal matrix ηtI where I is an identity matrix with the
same size of Ln. Since such summation will change with the
penalty parameter ηt that will be updated at every iteration,
the question is how to efficiently calculate such a pseudo-
inverse instead of computing it at every iteration due to its
high computational cost with complexity O(I3n).

As a graph Laplacian matrix Ln derived from the sim-
ilarity matrix Sn is symmetric and predefined without any
change in Algorithm 1, we apply an efficient truncated eigen-
decomposition method proposed by Bientinest et al. [17] with
the time complexity O(KIn) and the space complexity O(In)
to it and get its truncated decomposition as Ln = VnΛnVT

n

where Vn ∈ RIn×K and Λn ∈ RK×K . Hence, line 4 of
Algorithm 1 can be re-written as follow:

B
(n)
t+1 ← Vn(ηt + αnΛn)−1VT

n (ηtA
(n)
t −Y

(n)
t ). (6)

𝑨

𝑩

𝑪

𝓧

𝑨𝒊,:

Fig. 2: Memory access on updating Ai,: in a 3-order tensor.

Since (ηt+αnΛn) is a diagonal matrix, its inverse can be ef-
ficiently computed by only computing the reciprocal of entries
on the diagonal instead of calculating the inverse of the whole
matrix (ηtI+αnLn). Furthermore, Eq.(6) performs the matrix
multiplication of the four matrices Vn, (ηt + αnΛn)−1, VT

n

and (ηtA
(n)
t − Y

(n)
t ). Its computing order may significantly

affect the efficiency of computation. In order to reduce FLOPs,
we compute it by firstly multiplying the last two matrices that
result in a relatively small matrix with size K ×R, and then
broadcasting the result with the second one to the first matrix:

B
(n)
t+1 ← Vn(ηt + αnΛn)−1(VT

n (ηtA
(n)
t −Y

(n)
t )). (7)

By this way, we are able to perform the update of an auxiliary
variable B(n) in O(InR+ InKR+ InK

2R) time.

C. Reducing Intermediate Data

As shown in lines 7 and 8 in Algorithm 1, we focus on the
updating rule for an arbitrary A(n) as follow:

A(n) ← (X(n)U
(n)+ηB(n)+Y(n))(U(n)TU(n)+λI+ηI)−1.

(8)
where U(n) = (A(N)� · · · �A(n+1)�A(n−1)� · · · �A(1))
with size (

∏
k 6=n Ik) × R, which entails three matrix-matrix

multiplications as:

H1 = X(n)U
(n),

H2 = (U(n)TU(n) + λI + ηI)−1,

H3 = (H1 + ηB(n) + Y(n))H2.

(9)

We denote H1 = X(n)U
(n) as the matricized tensor

times Khatri-Rao product (MTTKRP) that will lead to the
intermediate data explosion problem in the tensor completion
when tensor X is very large. Explicitly calculating U(n) and
performing the matrix multiplication with X(n) requires more
memory than what a common cluster can afford as computing
U(n) is prohibitively expensive with the size (

∏
k 6=n Ik)×R.

Though the matricized X(n) is very sparse, U(n) is very
large and dense. Hence, inspired by the work [8], we perform
MTTKRP in place by exploiting the block structure of the
Khatri-Rao product. A block is defined as a unit of workload
distributed across machines, which determines the level of
parallelism and the amount of shuffled data. For a better



Algorithm 2: DISTENC-Greedy Algorithm
Input: observed tensor T, number of partitions at

n-mode Pn, number of modes N
Output: wn, n = 1, · · · , N

1 for n = 1, · · · , N do
2 δ = nnz(T)/Pn ← Calculate the chunk size for

n-mode;
3 sum = 0 and εpre = δ;
4 θ(n) ← Calculate nnz for each slice at n-mode;
5 for i = 1, · · · , In do
6 sum← sum+ θ

(n)
i ;

7 ε← Calculate the difference between sum and δ;
8 if sum ≥ δ then
9 wn ← add i if ε < εpre; otherwise, add i− 1;

10 εpre = ε;

illustration, we assume that X ∈ RI1×I2×I3 is a 3-order sparse
tensor whose entry H1(i1, r) can be represented as:

H1(i1, r) =
∑

Xi1, : , :

Xi1,i2,i3A
(3)
i3,r

A
(2)
i2,r

(10)

As shown in Eq.(10), we observe two important properties
of MTTKRP: (i) non-zeros in Xi1, : , : are only associated
with the computation of H1(i1, : ); (ii) the row indices i2
and i3 in A(2) and A(3), respectively, will be accessed based
upon which appear in non-zeros in Xi1, : , : when calculating
H1(in, r). Thus, our idea is to compartmentalize the sparse
tensor X and factor matrices A(1),A(2), · · · ,A(N) into blocks
in order to make the computation of MTTKRP fit into the
memory. Taking a 3-order tensor as an example, we divide
rows of A(1), A(2) and A(3) into P , Q, and K blocks,
respectively. Correspondingly, the tensor X ∈ RI1×I2×I3 can
be further divided into P ×Q×K blocks. A block of a tensor
is denoted as X(p, q, k) with corresponding blocks of factor
matrices A

(1)
(p), A

(2)
(q) and A

(3)
(k). Each process only work on a

block of a factor matrix with entries in the tensor with which
this block is associated, and aggregate partial results computed
by other processors for this block.

Load Balancing. Since the tensor X is very sparse, randomly
dividing it into P × Q × K blocks could result in load
imbalance [18]. The questions is how to identify the block
boundaries. In order to fully utilize the computing resources,
a greedy algorithm is proposed to generate blocks for bal-
ancing the workload. For instance, we split a mode into P
partitions. Each partition will be generated by continuously
adding indices until the number of non-zeros in this partition
is equal to or larger than nnz(X)/P that is considered as the
target partition size. Once adding a slice makes a partition over
the target size, we compare the number of non-zeros in this
partition before and after adding it and pick whichever is closer
to the target size. Other modes would follow the same routine
to identify boundaries for Q partitions and K partitions. The

algorithm for balancing the load for DISTENC is demonstrated
in Algorithm 2, which will take O(Nnnz(X)).

Computing MTTKRP. After compartmentalizing the tensor
and factor matrices into blocks, each process holds the tensor
non-zeros with necessary blocks of factor matrices (non-
local factor matrix rows will be transfered to this process
from others), and performs MTTKRP as shown in Eq.(10).
Specifically, we parallelize such computation based on the
efficient fiber-based data structure [8] in local, indicating that
we directly calculate the row of H1 as follow:

H1(i1, : ) =
∑

Xi1, : , :

Xi1,i2,i3(A
(3)
i3, :
∗A

(2)
i2, :

). (11)

Since such calculation can be done at the granularity of factor
matrix rows, it only requires O(R) intermediate memory per
thread in parallelism. By this way, H1 are row-wise computed
and distributed among all processes. We only need to broad-
cast relatively small factor matrices along with corresponding
indices in the non-zeros of a sparse tensor for each machine
instead of having to compute the entire Khatri-Rao product.

Calculating U(n)TU(n) Based upon the property of Khatri-
Rao product, we can re-write U(1)TU(1) as follow:

U(1)TU(1) = A(3)TA(3) ∗A(2)TA(2). (12)

By this way, we avoid explicitly computing the large interme-
diate matrix U(1) with size I2I3 ×R by calculating the self-
products A(2)TA(2) and A(3)TA(3) of factor matrices A(2)

and A(3). Applying the block matrix form, the computation
of A(1)TA(1) can be represented in a distributed fashion as:

A(1)TA(1) =

P∑
p=1

A
(1)
(p)

T
A

(1)
(p). (13)

Each process calculates a local A
(1)
(p)

T
A

(1)
(p) in the thread-level

parallelism. By aggregating all computations across processes,
the final matrix A(1)TA(1) will be generated and distributed
among all processes, which is a matrix of size R×R that can
easily fit into the memory of each process. Thus, it can be
seen that (H2 + λI + ηI)−1 can be efficiently calculated in
O(R3) time in a single machine.

D. Computing the Updated Tensor

Unlike the tensor factorization/decomposition in which the
input tensor is fixed, tensor completion requires us to update
the tensor X by filling out unobserved elements in each
iteration as shown in line 9 in Algorithm 1. Once completing
updates of A(1), · · · ,A(N) in an iteration, unobserved ele-
ments in a sparse tensor will be filled out by estimated values.
Thus, it turns out to be a dense tensor that leads to a significant
increase in the computation of updating factor matrices in lines
7 and 8 in Algorithm 1. The question is how to avoid such a
problem and keep the computation in the level of O(nnz(X))
time. First of all, we define the residual tensor as:

E = Ω ∗ (T − [[A(1), . . . ,A(N)]]), (14)



which is sparse with the same size of the observed sparse
tensor T. Based upon the definition of tensor matricizied, its
n-mode matricized form can be expressed as:

X(n) ≈ A(n)(A(N)�· · ·A(n+1)�A(n+1)�· · ·A(1))T . (15)

For brevity, we take a 3-order tensor as an example as demon-
strated in the previous section. By leveraging the residual
tensor and the 1-mode matricized form of a tensor, we can
re-write Ht+1

1 shown in the Eq.(9) as:

Ht+1
1 = Xt

(1)U
(1)
t

= ([[A
(1)
t ,A

(2)
t ,A

(3)
t ]](1) + Et(1))U

(1)
t

= [[A
(1)
t ,A

(2)
t ,A

(3)
t ]](1)U

(1)
t + Et(1)U

(1)
t

= A
(1)
t (A

(3)
t �A

(2)
t )T (A

(3)
t �A

(2)
t ) + Et(1)U

(1)
t

= A
(1)
t (U

(1)
t

T
U

(1)
t ) + Et(1)U

(1)
t .

(16)
We see that Ht+1

1 consists of two parts that are able to reduce
the time complexity to O(nnz(X)). Concretely, the first part

A
(1)
t (U

(1)
t

T
U

(1)
t ) takes O((I1+I2+I3)R2) FLOPs as shown

in the computation of H2 of the section III-C; the second part
Et(1)U

(1)
t is performed by the method illustrated in the section

III-C with the complexity O(nnz(X)) since it is only related
to the residual tensor E instead of using a updated dense tensor.
Fortunately, each U

(1)
t

T
U

(1)
t is computed during the iteration

and the results can be cached and reused in only O(R2) space.

E. Complexity Analysis

We now analyze the proposed DISTENC algorithm with
respect to time complexity, memory requirement and data
communication. Its cost is bounded by MTTKRP and its
associated communications. For the sake of simplicity, we take
a N -order tensor X ∈ RI×···×I as the input tensor. We denote
M as the number of machines, p as the number of partitions
for one mode, P = p × p × p as the number of blocks in
a tensor and K as the number of components in the eigen-
decomposition of a graph Laplacian matrix L.

Lemma 1: The time complexity of DISTENC is
O(nnz(X) + NI + NIR + Rnnz(X) + N(IR + IKR +
IK2R) +N(IR2 + dnnz(X)/IeR+ 3IR+R3) +NIR).

Proof: In the beginning, the tensor X is split into P blocks
by applying Algorithm 2. For each mode, computing the
number of non-zero elements in slices takes O(nnz(X)) time
via incremental computations that employ prior summation
results. Identifying the partition boundaries for each mode
takes O(I) time. Since a non-zero element is determined and
mapped to a machine in a constant time based on identified
boundaries, decentralizing all non-zero elements in X to
blocks in machines takes O(nnz(X)). In total, partitioning the
sparse tensor takes O(nnz(X)+NI). After splitting the tensor
into blocks and mapping all non-zero elements to blocks, the
factor matrices are randomly initialized and distributed among
machines based upon block boundaries identified during the
split of the tensor. This process takes O(NIR) time. The
residual tensor E is sparse with the same number of non-zero

Algorithm 3: DisTenC Algorithm

Input: T,A(n)
0 ,Ω,Ωc, λ, ρ, η, ηmax, N

Output: X,A(n),B(n),Y(n)

1 for n← 1 to N do
2 wn ← GreedyAlgorithm(X) in Algorithm 2

3 Partition X based upon wn, n = 1, · · · , N
4 Initialize A

(n)
0 ≥ 0, B

(n)
0 = Y

(n)
0 = 0, t = 0

5 Calculate the residual tensor
E0 = Ω ∗ (T − [[A

(1)
0 , . . . ,A

(N)
0 ]])

6 for t← 0 to T do
7 for n← 1 to N do
8 Update

B
(i)
t+1 ← (ηtI + αnLn)−1(ηtA

(n)
t −Y

(n)
t )

9 Calculate and cache Ftn = U
(n)
t

T
U

(n)
t

10 Calculate Ht
n = MTTKRP (Et(n)U

(n)
t )

11 Update and cache A
(n)
t+1 ← (A

(n)
t Ftn + Ht

n +

ηtB
(n)
t+1 + Y

(n)
t )(Ftn + λI + ηtI)−1

12 Update and cache
Y

(n)
t+1 = Y

(n)
t + ηt(B

(n)
t+1 −A

(n)
t+1)

13 Calculate and cache the residual tensor
Et+1 = Ω ∗ ([[A

(1)
t+1, . . . ,A

(N)
t+1]]− [[A

(1)
t , . . . ,A

(N)
t ]])

14 Update ηt+1 =min(ρηt, ηmax)
15 Check the convergence:

max{‖A(n)
t+1 −A

(n)
t ‖2F } < tol

16 if converged then
17 break out of for loop

18 return X, A(n), n = 1, 2, . . . , N

elements as the input sparse tensor X. Bounded by the non-
negative weight tensor Ω, calculating the residual tensor takes
O(Rnnz(X)) time as an entry of [[A(1), . . . ,A(N)]] can be
obtained in O(R) time. Pre-computing the truncated eigen-
decomposition of a graph Laplacian matrix Ln for n-mode
takes O(KI) time. The error between a factor matrix A(n)

and a matrix of Lagrange multipliers Y(n) can be computed
in O(RI) time. Based upon the order of updating B(n)

introduced in the section III-B, computing the multiplication
of last two matrices VT

n (ηtA
(n)
t −Y

(n)
t ) takes O(IKR). Due

to the relatively small size (K×R) of the result, we broadcast
it with (ηt + αnΛn)−1 of size K ×K to the first matrix Vn

and compute their multiplication in O(IK2R) time. In total,
updating an auxiliary variable takes O(IR+ IKR+ IK2R)
time, and O(N(IR + IKR + IK2R)) time for all modes.
The update of a factor matrix contains three steps. The self-
product A(n)TA(n) for n-mode requires to be performed
in O(IR2) time. Through all N modes in the tensor, it
takes O(NIR2) time. In each mode, computing MTTKRP
of the residual tensor and factor matrices as shown in line
7 of Algorithm 3 by the proposed row-wise method takes
O(dnnz(X)/IeR). As illustrated in line 8 of Algorithm 3,



updating a factor matrix performs a multiplication of two
matrices. The first one can be obtained in O(IR2+3IR) time.
For the second one, it takes O(R3) to calculate the inverse
of the matrix (Ftn + λI + ηtI). The multiplication of these
two matrices takes O(IR2). Thus, updating a factor matrix
takes O(IR2 + dnnz(X)/IeR+ 3IR+R3). In total, it takes
O(N(IR2+dnnz(X)/IeR+3IR+R3)). Updating the matrix
of Lagrange Multiplier Y(n) takes O(IR) time. Checking the
convergence criterion requires O(NIR) to be performed.

Lemma 2: The amount of memory required by DISTENC
is O(nnz(X) + 3NIR+NIK +NK +MNR2).

Proof: During the computation, DISTENC needs to store
data in memory at each iteration as follows: the observed
tensor X, the residual tensor E, factor matrices A(1), A(2),
and A(3), auxiliary variables B(1), B(2), and B(3), Lagrange
multiplier matrices Y(1), Y(2), and Y(3), eigen-decomposed
graph Laplacian matrix Ln = VnΛnVT

n , and the self-
product A(n)TA(n) for n-mode. Since the residual tensor E

is calculated only for those non-zero elements in the observed
tensor X, both of them are kept in the memory at each iteration
with a distributed fashion, which require O(nnz(X)) memory.
For each mode, its factor matrix A(n) has the same size as its
auxiliary variable B(n) and Lagrange multiplier matrix Y(n).
Thus, the total amount of memory used for storing them for
all modes is O(3NIR). The Laplacian matrix Ln for n-mode
is eigen-decomposed into an eigenvector matrix Vn and a
diagonal matrix Λn that is stored as a vector in the machine.
By considering all modes in a tensor, the memory is required to
hold O(NIK+NK) space. The self-product A(n)TA(n) for
n-mode only takes O(R2) memory. Since we will broadcast
it to all M machines, the amount of memory for storing these
self-products for all modes is O(MNR2).

Lemma 3: The amount of shuffled data caused by DIS-
TENC is O(nnz(X) + TNMIR+ TNMR2)

Proof: DISTENC initially employed the greedy algorithm
to identify the partition boundaries for each mode, and par-
titions the observed tensor X into defined groups. In this
process, the whole input tensor is shuffled and cached across
all machines. Thus, the amount of shuffled data in the partition
of the observed tensor is O(nnz(X)). In each iteration,
DISTENC requires to send rows of factor matrices, auxiliary
variables and Lagrange multiplier matrices to corresponding
partitions in which each tensor entry is updated by rows
associated with its index in all modes, which takes O(NMIR)

space in total. Moreover, the self-product A(n)TA(n) for n-
mode is calculated by aggregating all matrices of size R×R
across machines, and then broadcast back to all machines. In
this process, it takes O(NMR2) by considering all modes in
the tensor. Similarly, updating the residual tensor E needs to
copy associated rows of factor matrices into machines, which
takes O(NMIR) space in sum. Therefore, by considering all
cases above, the amount of shuffled data for DISTENC after
T iterations is O(nnz(X) + TNMIR+ TNMR2).

F. Implementation on Spark

In this section, we explore practical issues in terms of
implementations of DISTENC on Spark. Our implementation
is carefully designed to obtain best speed-up and scalability.
Since the input tensor is sparse, all entries are stored in a list
with the coordinate format (COO). The input sparse tensor
is loaded as RDDs. First of all, we apply functions map and
reduceByKey to calculate the number of non-zero elements
for all indices in a mode with the key that is the index in that
mode. These count results are then used to generate partition
boundaries for that mode and persisted in memory. After
that, we apply functions map and aggregateByKey to
partition the tensor into blocks: map transforms an entry of the
sparse tensor into an element in the RDD whose key is a block
ID; aggregateByKey groups these non-zero elements by
block IDs. Partitioned tensor RDDs are then persisted in
memory. In order to speed-up the following computation, for
each mode, we transform a tensor to a pair RDD whose key
is an index in that mode and value is all block IDs with
which entries associated with this index appear in blocks by
employing RDD’s functions flatMap and reduceByKey,
and persist them in memory. Factor matrices are initialized
with random numbers, which are stored as RDDs and dis-
tributed based upon partition boundaries identified previously.
Following the same fashion, matrices of Lagrange multipliers
are initialized with zeros as RDDs. After applying the efficient
truncated eigen-decomposition method, a graph Laplacian
matrix is decomposed into eigenvalues and eigenvectors. As
shown in the section III-B, a diagonal matrix of eigenvalues
is stored as a Array and broadcast to all machines in the
cluster; eigenvectors are stored as RDDs where the key is
the index and the value is the associated eigenvector with the
same partition as factor matrices. The self-product of a factor
matrix is transformed from a factor matrix RDD by utilizing
functions flatMap and reduceByKey and broadcast to
all machines. We update factor matrices as well as auxiliary
variables by using RDD’s functions flatMap, join and
reductByKey. Since the operation join will shuffle the
data and exponentially increase the computational time, we
keep the same partitions when applying join to two RDDs. In
the implementation, we also replace operations groupByKey
by reduceByKey and combineByKey that combines pairs
with the same key on the same machine for efficiency. We also
limit the number of combineByKey operations so that edges
of the same element are available at the same physical location,
minimizing data shuffling. As it can be seen, we cache reused
RDD in memory in order to minimize disk accesses between
consecutive iterations, which would not be possible if using a
system like Hadoop to distribute the computation.

IV. EXPERIMENTS

To evaluate the proposed DISTENC, we perform experi-
ments to answer the following questions:

Q1: Data Scalability. How well do DISTENC and other
baseline methods scale up with the input tensor in terms of
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Fig. 3: Data Scalability of our proposed DISTENC compared with other methods. DISTENC successfully complete tensors with
high dimensionality, sparsity and rank, while the baseline methods fail running out of time or memory. Concretely, DISTENC
is capable of handling 10 ∼ 1000× larger tensors, addressing 100× denser tensors and less effects on rank.

factors such as the number of non-zeros, dimension, mode
length, and rank?

Q2: Machine Scalability. How well does DISTENC scale up
in terms of the number of machines?

Q3: Discovery. How accurately do DISTENC and other
baseline methods perform over real-world tensor data?

A. Experimental Setup

Cluster/Machines. DISTENC is implemented on a 10-node
Spark cluster in which each node has a quad-core Intel Xeon
E5410 2.33GHz CPU, 16GB RAM and 4 Terabytes disk. The
cluster runs Spark v2.0.0 and consists of one driver node and
9 worker nodes. In the experiments, we employ 9 executors,
each of which uses 8 cores. The amount of memory for the
driver and each executor process is set to 8GB and 12GB.

Datasets. Both synthetic and real-world data are used to
evaluate the proposed method. We generate two synthetic
datasets, one for testing the scalability and the other for testing
the reconstruction error. For the scalability tests, we generate
random tensors of size I × J × K by randomly setting a
data point at (i, j, k). For simplicity, we assume that their
similarity matrices are identity matrices for all modes. For the
reconstruction error tests, we first randomly generate factor
matrices A(1), A(2) and A(3) with the specific rank R = 20
by the following linear formula [14]:

A
(1)
i,r = iεr + ε′, i = 1, 2, . . . , I1, r = 1, 2, · · · , R

A
(2)
j,r = jζr + ζ ′, j = 1, 2, . . . , I2, r = 1, 2, · · · , R

A
(3)
k,r = kηr + η′, k = 1, 2, . . . , I3, r = 1, 2, · · · , R

where {εr, ε′r, ζr, ζ ′r, ηr, η′r}r=1,2,...,R are constants generated
by the standard Gaussian distribution N(0, 1). Since each
factor matrix is generated by linear functions mentioned above
column by column, the consecutive rows are similar to each
other. Therefore, we generate the similar matrix for the ith
mode as the following tri-diagonal matrix:

Si =


0 1 0 . . .
1 0 1 . . .
0 1 0 . . .
...

...
...

. . .

 (17)

We then randomly select tensor data points (i, j, k) as our
observation and calculate its value via A

(1)
i, : ◦ A

(2)
j, : ◦ A

(3)
k, : .

This process is performed until we have the desired number
of observed data points. We vary the dimensionality of the
synthetic data as well as the rank in order to test the scalability
and the reconstruction error, respectively.

For real-world datasets, we use Netflix, Facebook, DBLP,
and Twitter summarized in Table II with the following details:
• Netflix: Movie rating data employed in the Netflix prize

[19], forming a user-movie-time tensor data by consider-
ing the time at which a user rated a movie. The rating
ranges from 1 to 5.

• Facebook: Temporal relationships between users from
the Facebook New Orleans networks [20], where We con-
sider a 3-order tensor where the third mode corresponds
to the date when one anonymized user adds the other user
to the first user’s friend list.

• DBLP: A record of DBLP (a computer science bib-
liography) publications including authors, papers, and
conferences. We convert the dataset into a a co-authorship
network with author-author-paper elements, and define
a author-author similarity based on whether they come
from the same affiliation.

• Twitter: Geo-tagged Twitter lists data [21]. A Twitter list
allows a user (creator) to label another user (expert) with
an annotation (e.g., news, food, technology). Since there
are a large number of annotations, we transfer them into
16 general topics like news, music, technology, sports,
etc. We convert relationships between list creators and
experts into a 3-dimensional tensor by adding the topics
of lists as the third mode, and produce a creator-expert
similarity matrix based on their following relationships.

Baseline Methods. We compare DISTENC with two ten-
sor completion methods and two state-of-the-art distributed
matrix-tensor factorization methods. For the tensor completion
methods, we consider; (i) ALS [22], a distributed tensor
completion method based upon the alternating least square
(ALS) with MPI and OpenMP; and (ii) TFAI [14], a single-
machine tensor completion method with the integration of
auxiliary information. We use the original implementation of
ALS. Since the other completion method CCD++ based upon



TABLE II: Summary of the real-world and synthetic datasets
used. K: thousand, M: million, B: billion.

Datasets I J K Non-zeros
Netflix 480K 18K 2K 100M
Facebook 60K 60K 5 1.55M
DBLP 317K 317K 629K 1.04M
Twitter 640K 640K 16 1.13M
Synthetic-scalability 1K∼1B 1K∼1B 1K∼1B 10K ∼10B
Synthetic-error 10K 10K 10K 10M

the circle coordinate descent [22] has a similar performance
with ALS, we only consider ALS as one of our baseline
methods in this paper. For the two distributed matrix-tensor
factorization methods, we consider: (i) SCOUT [23]; and (ii)
FLEXIFACT [10] implemented on MAPREDUCE. We integrate
the similarity matrices of all modes as coupled matrices into
SCOUT and FLEXIFACT, respectively, as the way we adopted
here.

B. Data Scalability

We employ synthetic tensors to evaluate the scalability of
DISTENC comparing with other baseline methods in terms of
three aspects: dimensionality, the number of non-zeros and
rank. For the sake of simplification, we set the similarity
matrices of all modes to the identity matrices in the scalability
tests. All experiments are allowed to run 8 hours. If methods
cannot conduct the results within 8 hours, they will be marked
as Out-Of-Time (OOT).

Dimensionality. We increase the tensor size I = J = K from
103 to 109 while fixing the rank to 20 and the number of non-
zero elements to 107. As shown in Fig. 3a, DISTENC and
SCOUT outperform other baseline methods by successfully
performing tensor completion on tensors of size I = J =
K = 109. On the other hand, both ALS and FLEXIFACT run
with the out-of-memory (O.O.M.) error when I = J = K ≥
107; TFAI causes the O.O.M. error when I = J = K ≥
106. FLEXIFACT does not scale up for very large datasets due
to its high communication cost with an exponential increase.
ALS requires each communication of entire factor matrices
per epoch in the worst case as a coarse-grained decomposition.
TFAI is bounded by the memory of a single machine.

Number of Non-Zeros. We increase the number of non-
zero elements (density) from 106 to 109 while fixing the
dimensionality of the input tensor to I = J = K = 105 and
the rank to 10. As demonstrated in Fig. 3b, only TFAI runs out
of memory due to the bound of a single machine while other
methods including the proposed DISTENC, ALS, SCOUT and
FLEXIFACT are able to scale up to 109 non-zero elements.
DISTENC takes more running time than ALS with shrinked
differences as the number of non-zero elements increases. But
DISTENC outperforms both SCOUT and FLEXIFACT due to
the advantages of Spark that is more fit for running the iterative
algorithms with less disk accesses.

Rank. We increase the rank of a tensor from 10 to 500 while
fixing the dimensionality to I = J = K = 106 and the
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Fig. 4: Machine scalability of DISTENC compared with ALS
and SCOUT. The proposed DISTENC has the best perfor-
mance in terms of machine scalability with 4.9× speed-up,
which also achieves a better linearity on the scalability with
respect to the number of machines.

number of non-zero elements to 107. As shown in Fig. 3c,
all methods except of TFAI are capable of scaling up to rank
200. The running time of ALS rapidly increases when the rank
becomes large due to its cubically increasing computational
cost. DISTENC has a relatively flat curve as the increase of
rank due to its optimization on calculating the inverse of a
symmetric matrix.

C. Machine Scalability

We measure the machine scalability of the proposed DIS-
TENC by increasing the number of machines from 1 to 8.
The synthetic dataset of size I = J = K = 105 with 107

non-zero elements is applied and its rank is set to 10. In Fig.
4, we report the ratio T1/TM where TM is the running time
using M machines. Since TFAI is a single-machine tensor
completion method and FLEXIFACT has a worse scalability on
machines than SCOUT [23], we only compare ALS, SCOUT
and the proposed DISTENC. It can be seen that DISTENC
obtains 4.9x speed-up as increasing the number of machines
from 1 to 8 and achieves a better linearity in terms of machine
scalability, which SCOUT slows down due to the intensive
hard disk accesses and high communication cost.

D. Reconstruction Error

In order to evaluate the accuracy of the proposed DISTENC
with respect to the reconstruction error, we use the synthetic
dataset of size I = J = K = 104 with 107 non-zero
elements and set its rank to 10, and adopt adopt Relative
Error as our evaluation metric. Relative Error is defined as
RelativeError = ‖X − Y ‖F /‖Y ‖F , where X is the recov-
ered tensor and Y is the ground-truth tensor. We randomly
sample the non-zero elements based upon the missing rate as
the testing data to calculate the relative error; the rest is used
as the training data. We report results in Fig. 5 by varying
the missing rate from 30%, 50% and 70%. All results are
averaged by running 5 times in order to reduce the dependency
of randomness. Overall, we witness that DISTENC achieves
comparable performance with TFAI, but better than ALS, and
SCOUT though the relative errors for all methods are relatively
high due to the extreme sparsity of the data. We see that the
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Fig. 5: Reconstruction error on the synthetic data.

integrated auxiliary information (similarity matrix) leads to
significant improvement through the tensor completion. These
relationships can alleviate the problem of sparsity to some
extent and provide valuable information for the tensor com-
pletion to obtain more interpretable low-rank representations.

E. Recommender System

In this section, we apply DISTENC to perform recom-
mendation on large scale real-world datasets and present our
findings. We are mostly interested in illustrating the power
of our approach rather than systemically comparing with all
other state-of-the-art methods. Since SCOUT has a better
scalability than FLEXIFACT and TFAI cannot handle such
large-scale datasets, we only compare out proposed DISTENC
with other two baseline methods ALS and SCOUT. The
root-mean-square error (RMSE) is adopted as our evaluation
metric, which represents the sample standard deviation of the
differences between observed tensor T and predicted tensor
X as RMSE =

√
‖Ω ∗ (T −X)‖2F /nnz(T). It has been

commonly used in the evaluation of recommender systems.
We randomly use 50% of the observation for training, and the
rest for testing. All results are reported by running 5 times
and computing the average performance.

Netflix. We conduct the recommendation on Netflix dataset
which contains a user-movie-time tensor and a movie-movie
similarity matrix generated based on the movie title. As shown
in Fig. 6a, we observe that the proposed DISTENC obtains
the best performance in the precision of recommendation an
average improvement of 14.9% over other baseline methods.
In addition, by introducing the auxiliary information, both
DISTENC and SCOUT outperform ALS. On the other hand,
Fig. 6b shows that the proposed DISTENC converges the
fastest to the best solution by taking advantage of ADMM
[15], [16]. SCOUT takes much longer time on the convergence
by employing the MAPREDUCE framework.

Twitter. Using DISTENC, we also perform the expert recom-
mendation on Twitter List dataset which consists of a creator-
expert-topic tensor as well as creator-creator and expert-
expert similarity matrices calculated based on whether they
are located in the same location (cities). As demonstrated in
Fig. 6a, DISTENC performs the best among all alternative
baseline methods with an average improvement of 21.4% in
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Fig. 6: Results on recommender system: (a) RMSE on Netflix
and Twitter List datasets; (b) Convergence rate for all methods
on the Netflix data.
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Fig. 7: Results on link prediction: (a) RMSE on the Facebook
dataset; (b) Convergence rate for all methods.

the precision. Concretely, DISTENC outperforms ALS with
an improvement of 32.6% in precision, indicating the the
superiority of a tensor completion model integrating auxiliary
information. With respect to the convergence, DISTENC has
similar performance as one on the Netflix dataset shown in
Fig. 6b. Due to the limited space, we omit its details.

F. Link Prediction

As one of the most applications for tensor completion, link
prediction aims to recover unobserved links between nodes
in a low-rank tensor (the matrix is a special case). Using
DISTENC, we perform link prediction on Facebook dataset
that includes a user-user-time tensor and a similarity matrix
user-user generated based on the similarities between their
wall posts. As a similar fashion in the previous section, we
randomly select 50% of observations for training, and the rest
for testing. We also adopt RMSE as the evaluation metric in
this experiment. To reduce statistical variability, experimental
results are averaged by running 5 times. Fig. 7 illustrates the
testing accuracy and the training convergence. As we can see,
both DISTENC and SCOUT have comparable performance
and are better than ALS in precision. Specifically, DISTENC
outperforms ALS with an average improvement of 27.4%;
SCOUT has a better performance than ALS with an average
improvement of 19.5%. In terms of convergence, DISTENC
converges faster to the best solution.

G. Discovery

Since tensor completion performs both imputation and fac-
torization meanwhile, we apply DISTENC on DBLP dataset
that contains a author-paper-venue tensor with a similarity ma-
trix author-author. We randomly select 50% of observations
for training the model. After that, we pick top-k highest valued



elements from each factor after filtering too general elements.
We show 3 notable concepts we found in Table III. It can be
seen that all conferences within a concept are correlated and
all famous researchers in each concept are discovered.

TABLE III: Example of concept discovery results on DBLP.

Concept Authors Conferences

Database
Surajit Chaudhuri, Michael J. Carey, SIGMOD

David J. DeWitt, Rajeev Rastogi, VLDB
Dan Suciu, Ming-Syan Chen ICDE

Data Mining
Jiawei Han, Philip S. Yu, KDD

George Karypis, Christos Faloutsos, ICDM
Shusaku Tsumoto, Rakesh Agrawal PKDD

Info. Retrieval
W. Bruce Croft, Mark Sanderson, SIGIR

Iadh Ounis, ChengXiang Zhai, ECIR
Gerard Salton, Clement T. Yu WWW

V. RELATED WORK

In this section, we review related works on tensor com-
pletion, scalable tensor algorithms, and distributed computing
frameworks.

A. Tensor Completion

Tensor factorization models have been studied and applied
in many fields due to their strong power on multi-dimensional
data analysis. There are two widely used low-rank decom-
positions of tensors, the CANDECOMP/PARAFAC (CP) and
the Tucker decompositions [24]. The most common methods
used to factorize tensors include alternating least square (ALS)
[25], [26], [27], stochastic gradient descent (SGD) [10], [11]
and coordinate descent (CDD) [28], [9]. Tensor completion is
used to estimate missing values in tensors based on their low-
rank approximations, which has been extensively studied and
employed in applications such as recommendations [21], [1],
user group detection [13], and link prediction [29]. Most these
methods only focus on the sampled data when performing
tensor completion without considering auxiliary information
with which tensors usually come. These auxiliary information
help us have a better performance in tensor completion [30].
Though several researchers incorporate auxiliary information
into the matrix factorization problem [31], few studies explore
the tensor completion problem with auxiliary information.
Technically, it is challenging to embed auxiliary information
into a completion model, especially with many heterogeneous
contexts. Narita et al. [30] integrated auxiliary information into
tensor decomposition methods, resulting in better performance
compared with ordinary tensor decomposition methods. Never-
theless, they primarily focus on general tensor decomposition
rather than tensor completion. However, these models usually
face some efficiency challenges since [30] requires solving the
Sylvester equation with a high cost several times in each of
iterations, making them infeasible for large-scale applications.

B. Scalable Tensor Factorization

We witness considerable efforts on developing scalable
algorithms for tensor factorization, most of which focus on
solving the intermediate data explosion problem. Concretely,

pioneers Bader and Kolda [26] develop efficient algorithms for
sparse tensor decomposition by avoiding the materialization
of very large, unnecessary intermediate Khatri-Rao products.
Kolda and Sun [6] continuously work on the specific tensor
decomposition method Tucker for sparse data and solve the
intermediate explosion problem by calculating the tensor-
matrix multiplication one slice or fiber at a time. An alternative
approach, DBN, is introduced in [32] where the authors use
Relational Algebra to break down the tensor into smaller
tensors, using relational decomposition, and thus achieving
scalability. Kang et al. [7] first propose a scalable distributed
algorithm GigaTensor under the MAPREDUCE framework for
the specific tensor decomposition method PARAFAC by de-
coupling the Khatri-Rao product and calculate it distributively
column by column. Jeon et al. [33] improves on GigaTensor
and propose HaTen2 that is a general, unified framework for
both Tucker and CP tensor decomposition. There has been
other alternatives on solving the intermediate data explosion
problem of the pure tensor composition [34], [35], [36].

On the other hand, some researchers put their focus on
developing scalable, distributed algorithms for the tensor de-
composition with additional side information that is usually
represented in a matrix, e.g., a similarity matrix between
experts. Papalexakis et al. [11] propose an efficient scalable
framework to solve the coupled matrix-tensor factorization
problem by leveraging the biased sampling to split the orig-
inal large data into samples, running the common solver to
samples and merging the results based on the common parts
in each sample. Beutel et al. [10] propose FLEXIFACT, a
MAPREDUCE algorithm to decompose matrix, tensor, and
coupled matrix-tensor based on stochastic gradient descent.
Jeon et al. [23] propose SCouT for scalable coupled matrix-
tensor factorization. Shin et al. [9] propose two scalable tensor
factorization algorithms SALS and CDTF based on subset
alternating least square and coordinate descent, respectively.
Livas et al. [16] develop a constrained tensor factorization
framework based on ADMM. Smith et al. [22] optimize
and evaluate three distributed tensor factorization algorithms
based on ALS, SGD and CDD, respectively, by extending
SPLATT [8] that optimizes the memory usage. Despite the
extensive research efforts that have been devoted to tensor
factorization, as reviewed above, distributed tensor completion
using auxiliary information has yet received much attention,
especially on modern distributed computing frameworks such
as Spark. Therefore we believe our work fills an important gap
in tensor-based mining algorithms.

C. Distributed Computing Frameworks

MAPREDUCE [37] is a distributed computing model for
processing large-scale datasets that cannot be handled in
a single machine, running in a massively parallel manner.
MAPREDUCE has been the most popular distributed comput-
ing framework due to its advantages including automatic data
distribution, fault tolerance, replication, massive scalability,
and functional programming by which users only define two
functions map and reduce. HADOOP [38] is an open-source



of MAPREDUCE. Due to its excellent scalability and ease of
use, it has been successfully applied in many data mining
applications [7], [39], [40]. However, HADOOP is inefficient to
execute iterative algorithms due to its intensive disk accesses
[41]. Apache Spark [42] is an in-memory MAPREDUCE,
providing a high-level interface for users to build applications
with respect to large-scale data computation. Spark allows
to store intermediate data in memory and performs efficient
memory-based operations without requiring data to be spilled
to disk (effectively reducing the number of disk Input/Output
operations). Therefore, Spark is capable of performing iterative
algorithms very efficiently. Due to these advantages, Spark has
been used in applications [35].

VI. CONCLUSION

In this paper, we propose DISTENC, a distributed algo-
rithm for tensor completion with the integration of auxiliary
information based on ADMM, which is capable of scaling
up to billion size tensors and achieving good performance
across many applications. By efficiently handling trace-based
regularization term, updating factor matrices with caching, and
optimizing the update of new tensor, DISTENC successfully
addresses the high computational cost, and minimizes the
generation and shuffling of the intermediate data. Through
extensive experiments, DISTENC shows up to 100x larger
scalability than existing methods, and converges much faster
than state-of-the-art methods. In addition, DISTENC obtains
an average improvement of 18.2% on a recommender system
scenario and 23.5% on link prediction.
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