1. (15) A particle is in an eigenstate of the angular momentum operator L
Zzlm)= mhlm) .
Calculate the expectation values of Lx and Ly, {m|Lx|m) and (m|Ly|m).

[Hint: One method involves using the commutation relations for the angular momentum operators.]
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2. An electron in a hydrogen atom is in the state
lw)=A(3]1,0,0)+|2,1,1)—]2,1,0)+|2,1,-1))
where the eigenstates are labeled |n,l,m).

You may use what you know about the energies and other properties of the eigenstates.

(a) (5) Calculate the normalization constant A (for the state to normalized to one).

(b) (5) Calculate the expectation value of the energy, as a dimensionless constant times the energy
2

E = ke of the ground state.
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(c) (5) Calculate the expectation value of the orbital angular momentum operator L .

(d) (5) Calculate the expectation value of L.
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3.(15) Show that

L(d 1
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is a Hermitian operator. Assume that the functions are finite at r =0 and that they -0 as r — e .
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4. Slow neutrons with momentum Ak = 7ikz , pointing in the z direction, are scattered off a diatomic

molecule. (Here 7 is the unit vector along the z axis.) The molecule has atoms centered at y—b and
y+b, and it is modeled by the potential

V(r)=ad(y-b)8(x)8(z)+ad(y+b)6(x)d(z) -

(a) (20) Calculate the scattering amplitude in the (first-order) Born approximation, as a
function of the polar angle @ and the azimuthal angle ¢ for the scattered wavevector

k' (with your answer also depending on a, b , % , and the neutron mass m , of
course).

Recall that k', = k'sin@sing .

(b) (3) Calculate the differential scattering cross-section Z—g as a function of these same
quantities.

(c) (2) What most obviously demonstrates that this is a quantum-mechanical and not a
classical result?
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5. A particle moves in a central potential V(r) . The potential is short-range, and this means, as usual,

that
eikr
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-

as r— oo

where k is real for a scattering state and imaginary for a bound state.

But here we are given that an energy eigenstate of the particle has precisely the form
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forall » ,with B>0a .

(a) (5) What is the angular momentum quantum number { for this state? Explain.

(b) (10) Determine the energy of this state.

(¢) (10) Calculate the potential V(r) that produced this state.
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