## Physics 606, Quantum Mechanics, Exam 2

Please show all your work.
(You are graded on your work, with partial credit where it is deserved.)
All problems are, of course, nonrelativistic.
Vectors here are marked with arrows.
$\hat{L}^{2}$ etc. here are operators in the coordinate representation.

Some potentially useful equations:

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 m} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{\hat{L}^{2}}{2 m r^{2}}+V(r)\right] \psi(\vec{r})=E \psi(\vec{r})} \\
& \psi_{\vec{k}}(\vec{r})=e^{i \vec{k} \cdot \vec{r}}+\frac{e^{i k r}}{r} f\left(\vec{k}^{\prime}, \vec{k}\right) \\
& f\left(\vec{k}^{\prime}, \vec{k}\right)=-\frac{m}{2 \pi \hbar^{2}} \int d^{3} r^{\prime} e^{-i \bar{k}^{\prime} \cdot \vec{r}} V\left(\vec{r}^{\prime}\right) \psi_{\vec{k}}\left(\vec{r}^{\prime}\right) \\
& \frac{d \sigma}{\Omega}=\left|f\left(\vec{k}^{\prime}, \vec{k}\right)\right|^{2}
\end{aligned}
$$

1. (15) A particle is in an eigenstate of the angular momentum operator $\hat{L}_{z}$ :

$$
\hat{L}_{z}|m\rangle=m \hbar|m\rangle .
$$

Calculate the expectation values of $\hat{L}_{x}$ and $\hat{L}_{y},\langle m| \hat{L}_{x}|m\rangle$ and $\langle m| \hat{L}_{y}|m\rangle$.
[Hint: One method involves using the commutation relations for the angular momentum operators.]
2. An electron in a hydrogen atom is in the state

$$
|\psi\rangle=A(3|1,0,0\rangle+|2,1,1\rangle-|2,1,0\rangle+|2,1,-1\rangle)
$$

where the eigenstates are labeled $|n, l, m\rangle$.
You may use what you know about the energies and other properties of the eigenstates.
(a) (5) Calculate the normalization constant $A$ (for the state to normalized to one).
(b) (5) Calculate the expectation value of the energy, as a dimensionless constant times the energy $E_{1}=-\frac{k e^{2}}{2 a_{0}}$ of the ground state.
(c) (5) Calculate the expectation value of the orbital angular momentum operator $\hat{L}^{2}$.
(d) (5) Calculate the expectation value of $\hat{L}_{z}$.
3. (15) Show that

$$
p_{r}=-i \hbar\left(\frac{\partial}{\partial r}+\frac{1}{r}\right)
$$

is a Hermitian operator. Assume that the functions are finite at $r=0$ and that they $\rightarrow 0$ as $r \rightarrow \infty$.
4. Slow neutrons with momentum $\hbar \vec{k}=\hbar k \hat{z}$, pointing in the $z$ direction, are scattered off a diatomic molecule. (Here $\hat{z}$ is the unit vector along the $z$ axis.) The molecule has atoms centered at $y-b$ and $y+b$, and it is modeled by the potential

$$
V(\mathbf{r})=a \delta(y-b) \delta(x) \delta(z)+a \delta(y+b) \delta(x) \delta(z)
$$

(a) (20) Calculate the scattering amplitude in the (first-order) Born approximation, as a function of the polar angle $\theta$ and the azimuthal angle $\phi$ for the scattered wavevector $\vec{k}^{\prime}$ (with your answer also depending on $a, b, \hbar$, and the neutron mass $m$, of course).
(b) Recall that $k^{\prime} y=k^{\prime} \sin \theta \sin \phi$.
(c) (3) Calculate the differential scattering cross-section $\frac{d \sigma}{d \Omega}$ as a function of these same quantities.
(d) (2) What most obviously demonstrates that this is a quantum-mechanical and not a classical result?
5. A particle moves in a central potential $V(r)$. The potential is short-range, and this means, as usual, that

$$
V(r) \rightarrow 0 \quad \text { and } \quad \psi(r) \rightarrow \text { constant } \times \frac{e^{i k r}}{r} \quad \text { as } \quad r \rightarrow \infty
$$

where $k$ is real for a scattering state and imaginary for a bound state.
But here we are given that an energy eigenstate of the particle has precisely the form

$$
\psi(r)=A \frac{e^{-\alpha r}+e^{-\beta r}}{r}
$$

for all $r$, with $\beta>\alpha$.
(a) (5) What is the angular momentum quantum number $\ell$ for this state? Explain.
(b) (10) Determine the energy of this state.
(c) (10) Calculate the potential $V(r)$ that produced this state.

