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Idealized stable-cavity laser

Assumed to have a lossless optical cavity, finite output coupling,

an ideal laser medium, and orthogonal laser cavity modes:

Ideal
laser gain
medium

Gaussian
transverse
mode profile

Lossless
output
coupler

100% coupling
to single-mode
optical fiber

Resulting quantum-noise-limited Schawlow-Townes linewidth:

∆fosc =
N2

N2 − N1
× π hf ∆f2

cav

Posc



Normal modes

Linear and lossless physical systems generally have a set of

orthogonal, or “normal”, eigenmodes which are

• Solutions to a Hermitian operator

• Guaranteed to be orthogonal

• Guaranteed to form a complete basis set

The orthogonality of these normal modes provides the

basis for many fundamental physical concepts



Examples

Examples of common optical systems with normal or

orthogonal eigenmodes:

• Closed metal waveguides and microwave cavities

• Dielectric resonators

• Index-guided optical fibers and waveguides

• Stable optical resonators and lensguides

(at least in the ideal limit)

The orthogonality of these normal modes provides the

foundation for many fundamental physical concepts



Universal properties of normal mode systems

Systems with normal eigenmodes have universal properties:

1. Total system power or energy is sum of

powers or energies in individual modes.

2. Concept of second quantization leads to

basic concept of “photons”

3. Mode matching couples input signal

entirely into one mode

4. Standard eigenmode expansion procedures apply

5. Standard quantum noise value of one noise photon

per mode leads to Schawlow-Townes linewidth

for laser oscillators



Normal-mode and nonnormal-mode lasers

Two lasers with exactly the same laser parameters:

STABLE LASER CAVITY
(NORMAL MODES)

GEOMETRICALLY
UNSTABLE CAVITY
(NONNORMAL MODES)

Identical
laser gain
media

Very similar
hermite-gaussian
mode profiles

Identical
output
couplings

Transversely variable
mirror reflectivity
profile

100% coupling
to single-mode
optical fibers

But very different Schawlow-Townes linewidths



Not so normal modes . . .

Some common optical systems, however, have distinctly

nonorthogonal or nonnormal eigenmodes.

• These are still linear systems (e.g., passive

optical cavities or waveguides)

• They still have “modes” (eigenmodes)

• But these modes are not orthogonal

and this loss of orthogonality leads to major changes

in the mathematical, physical, and quantum properties

of these “nonnormal systems”



Nonnormal optical systems

• Nonnormal optical systems are governed by equations that are

still linear, but are nonhermitian

• As a result, these systems have nonorthogonal eigenmodes

• And this leads to major changes in all of the

fundamental mode properties of these systems



Examples

Examples of common optical systems with nonnormal

(that is, nonorthogonal) eigenmodes:

◦ Gain-guided semiconductor lasers

◦ Loss-guided or gain-guided ducts

◦ Unstable optical resonators

◦ Finite-diameter stable resonators

◦ Birefringent systems having optical “twist”



Normal mode example: stable resonator modes

The transverse modes of a stable laser cavity are real-valued

Hermite-gaussian functions:

un(x) = Hn(
√

2x/w) exp[−x2/w2] = Hn(ax) e−x2/2a2

with a purely real spot size or scale factor a ≡
√

2/w

n = 3 n = 4 n = 5

n = 0 n = 1 n = 2



Nonnormal example: gain-guided laser modes

Gain-guided or VRMlaser cavities can have complex-valued

(and hence nonorthogonal) Hermite-gaussian cavity modes:

un(x) = Hn(ã x) e−x2/2ã2

with a complex-valued scale factor ã = ejθ ×
√

2/w

n = 3 n = 4 n = 5

n = 0 n = 1 n = 2



Eigenmode equations

The eigenmodes of optical waveguides and resonators

(whether normal or not) are the solutions of some

appropriate linear equation, e.g.:

1) The wave equation for propagating modes

in optical waveguides

[∇2
x + k2(x)

]
ũn(x) = β2

n ũn(x)

2) An integral equation (“Fox and Li equation”) for

resonant modes in optical cavities∫
K(x, x′) ũn(x′) dx′ = γ̃n ũn(x)



Operator formulation

These equations can be rewritten in a generalized

operator formalism:

L ũn(x) = γ̃n ũn(x)

and the operators for many physical systems will be

hermitian, meaning that

L ≡ L† ≡ (LT )∗

where

L∗ ≡ ordinary complex conjugation

LT ≡ transposition of variables

L† ≡ hermitian conjugate, or adjoint



Hermitian operators

Hermitian operators will always have a complete set of

eigenfunctions or “normal modes” which will satisfy both

the operator equation and the boundary conditions

L ũn(x) = γ̃n ũn(x)

These normal modes will always be orthogonal∫
ũ∗

n(x)ũm(x) dx = δnm

and will form a complete basis set, such that any

state ũ(x) of the system can be written as

ũ(x) =
∑

n

c̃nũn(x)



Example: parabolic gain-guided waveguide

Gain-guided duct

Complex Hermite-gaussian modes

n=0 n=2 n=4

The eigenmodes of an optical fiber or duct with tapered

gain guiding, as well as index guiding

n(x) = n0 −
n2x

2

2
, g(x) = g0 −

g2x
2

2

are complex-valued Hermite-Gaussian functions

ũn(x) = ũn0 Hn(ãx) exp[−ã2x2/2]



Effects of gain guiding

Amplitude profiles of higher-order complex HG modes

change significantly with increased gain guiding

Purely
index guided

with weak
gain guiding

with stronger
gain guiding

n = 0

1

2

3

4

5

Phase profiles are also distorted and become nonspherical



Complex-valued Hermite-gaussians

These Hermite-Gaussian eigenmodes

ũn(x) = ũn0 Hn(ãx) exp[−ã2x2/2]

have a complex-valued scale factor (equivalent to

a “complex-valued spot size”)

ã =
(

2π

λ0

)1/2 (
n0n2 + j

λ0

2π
g2

)1/4

≡ |ã| ejθ

As a result, these modes are distinctly nonorthogonal

or nonnormal for the gain-guided case with g2 > 0



Another example: unstable optical resonators

Unstable optical resonators have clear-cut resonant modes

— but the modes are not orthogonal

concave
back

mirror

convex
front
mirror

annular
output
beam

expanding
beam

collimated
beam



Unstable resonator eigenmodes

Consider equivalent unstable lensguide

Adjoint modes Eigenmodes

• Solid lines show right-going eigenmodes for an

unstable lensguide (or a ring unstable resonator)

• Dashed lines show left-going modes for the same

lensguide (or other way around the ring resonator)

• Right- and left-going modes have identical eigenvalues

but mode patterns have an “adjoint” relationship



Examples of unstable-resonator mode profiles

Adjoint modes Eigenmodes

Typical mode profiles:
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Why are these systems nonnormal?

1) In gain-guided systems:

[
∇2

x + k̃2(x)
]
ũn(x) = β2

n ũn(x)

◦ Gain guiding makes wave vector k̃ complex-valued

◦ Wave equation operator is no longer hermitian

2) In unstable optical resonators:∫
K(x, x′) ũn(x′) dx′ = γ̃n ũn(x)

◦ Wave equation is fully hermitian

◦ But boundary conditions at ∞ are not hermitian

◦ Huygens integral operator then becomes nonhermitian



Mathematical properties of nonnormal operators

Nonhermitian operators are mathematically unfriendly:

• Not guaranteed to even have eigensolutions

L ũn(x) ?= γ̃n ũn(x)

• Eigenfunctions, if they exist, are not orthogonal∫
ũ∗

n(x)ũm(x) dx �= 0

• And they may or may not form a complete set

ũ(x) ?=
∑

n

c̃nũn(x)



Eigenmodes and adjoint functions

Suppose a nonhermitian operator L has a set

of eigenmodes ũn satisfying

L ũn(x) = γ̃n ũn(x)

Then its adjoint operator L† will also have a set

of adjoint functions ṽn satisfying

L† ṽn(x) = γ̃∗
n ṽn(x)

These adjoint functions are not physical modes of the

nonnormal system (call them “adjoint functions”, not

“adjoint modes”) — though these adjoint functions ṽn

will have the same eigenvalues γ̃n as the eigenmodes ũn



Nonorthogonality

Eigenmodes ũn of a nonnormal system, if they do exist,

can be normalized

Mnn ≡
∫ ∞

−∞
ũ∗

n(x) ũn(x) dx = 1

but they are not orthogonal to each other

Mnm ≡
∫ ∞

−∞
ũ∗

n(x) ũn(x) dx �= 0 (n �= m)



Biorthogonality

The physical eigenmodes ũn are instead biorthogonal

to the adjoint functions ṽn

∫ ∞

−∞
ṽ∗n(x) ũm(x) dx = δnm =

{ 1, n = m

0, n �= m

The adjoint functions, like the eigenmodes, are also nonorthogonal,

and have a normalization greater than unity

Knm ≡
∫ ∞

−∞
v∗n(x) ṽm(x) dx =

{
Knn > 1, n = m

Knm �= 0, n �= m

These Knn and Knm values have physical significance as adjoint

coupling coefficients and excess quantum noise coefficients



Unusual properties of nonnormal systems

1. Total power or energy no longer given by sum

of powers or energies in individual modes.

2. Second quantization lost; basic concept of

“photons” seriously muddied.

3. Mode matching replaced by adjoint coupling: more

power into one mode than total power in whole system .

4. Major changes required in eigenmode expansion procedures

5. Laser modes experience excess quantum noise, leading

to large increase in Schawlow-Townes linewidth



1) Total energy �= sum of energies per mode

Expand fields of nonnormal system in terms of nonnormal

eigenmodes and evaluate total power or energy:

E(x) =
N∑

n=0

c̃n ũn(x)

Energy =
∫ ∞

−∞
|E(x)|2 dx

=
N∑

n=0

|c̃n|2 +
∑
n �=m

c̃∗ncmMnm

=
∑

n

Energies per mode +
∑
n �=m

“cross-mode terms”

Energy in individual modes greater than total energy in system,

because cross-mode terms can be negative.



2) “Photons” in normal mode systems

Classical energy in fields of a normal laser cavity:

∫ ∞

−∞
|E(x)|2 dx =

N∑
n=0

|c̃n|2 =
N∑

n=0

c̃∗n c̃n

Converting coefficients c̃n and c̃∗n into quantum operators

an and a†n transforms this into a quantum Hamiltonian:

H =
N∑

n=0

a†nan h̄ωqn =
∑

n

[SHO Hamiltonians]

Each mode becomes quantized simple harmonic oscillator; one

photon = one quantum of any one of these oscillators

Procedure is called second quantization



Nonnormal systems no longer have photons?

Classical energy for a nonnormal system however becomes

∫ ∞

−∞
|E(x)|2 dx =

N∑
n=0

|c̃n|2 +
∑
n �=m

c̃∗ncmMnm

Cross-terms no longer vanish; quantum Hamiltonian becomes

H =
N∑

n=0

a†nan h̄ωqn +
∑
n �=m

a†namMnm h̄
√

ωqnωqm .

Cavity modes no separate into individual harmonic oscillators

Process of second quantization thus eliminated, or at least

seriously muddied



3) Mode matching vs. adjoint coupling

mode-matched
  input beam

transmitted
   beam

stable cavity mode

mode-matched
resonant mode

Mode matching is usual way of injecting an input signal

into an optical lensguide or cavity

• Input wavefront matched to one selected eigenmode

of lensguide or cavity (often lowest-order gaussian mode)

• Delivers entire energy into that one selected mode



Mode matching into normal-mode lensguide

Example of mode matching into stable lensguide

mode-matched
input beam

stable
lensguide

mode

Entire input energy coupled into selected mode

(most often lowest-order mode)



Graphic interpretation of mode matching

mode-matched
input beam

stable
lensguide

mode

periods—>

n = 0
mode

 n = 1
 n = 2

log intensity



Mode matching into a nonnormal lensguide

Can also mode match into a nonnormal system:

mode-matched
input beam

unstable
lensguide
modes

Input energy again goes into single selected nonnormal mode



Nonnormal mode matching

Matched coupling

input
wave

periods—>

n = 0
mode

 n = 1
 n = 2

log intensity



Adjoint coupling into nonnormal system

Adjoint coupling to nonnormal system is quite different:

Adjoint input
beam

Unstable
eigenmodes

• Input energy excites multiple modes of the system

• With greater than unity coupling per mode



Graphic interpretation of adjoint coupling

Adjoint coupling

adjoint
input
beam

unstable
lensguide
modes

periods—>

n = 0 mode

 n = 1
 n = 2

log intensity

|c0|
2



General properties of adjoint coupling

Adjoint coupling into nonnormal system means:

• Injected wavefront matched not to selected mode,

but to adjoint function for selected mode

• Selected eigenmode excited with greater than unity

input coupling

• Unavoidably also excites other eigenmodes

• Large (but negative) cross-power terms conserve energy

• Excess coupling factor for mode n equals “Petermann

factor” Knn > 1 for that adjoint function

• All this is possible only with nonnormal modes



4) Expansions in nonnormal eigenmodes

Can fields in nonnormal optical system be expanded as a

superposition of nonnormal eigenmodes of the system?

f̃(x) =
∞∑

n=0

c̃n ũn(x)

Answer is “yes”—but not in usual overlap integral fashion

Example: eigenmode expansion of adjoint coupling into

complex HG modes of a loss–guided duct

Adjoint
input

Loss-guided duct

Complex HG
eigenmodes



First try “quadrature expansion”

To find expansion coefficients c̃n

f̃(x) =
∞∑

n=0

c̃n ũn(x)

try usual quadrature method: multiply both sides by

ṽ∗n(x), and use biorthogonality relation∫
ṽ∗n(x)ũm(x) dx = 0

thereby obtaining “quadrature coefficients”

c̃n =
∫ ∞

−∞
ṽ∗n(x) f̃(x) dx = “quadrature coefficients”



Quadrature expansion may not converge

Expansions using quadrature coefficients converge slowly if

at all — often diverge for strong enough gain guiding

2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8

2 terms

3 terms

4 terms

6 terms

9 terms

11 terms

Quadrature-integral fits (theta = 16 deg)



Quadrature fit for stronger gain guiding

Quadrature expansions diverge wildly for still stronger gain guiding

2 4 6 8 10

0.01

0.1

1

10 11 term expansion

Gaussian
input beam

Strong gain guiding
(theta = 20o)



Minimum error expansion procedure

Is there a better way? By writing mean-square error

for finite N -term eigenmode expansion as

εN =
∫ ∞

−∞

∣∣∣∣∣f̃(x) −
∑

n

c̃nũn(x)

∣∣∣∣∣
2

dx

= 1 −
∑

n

c̃∗nfn −
∑

n

c̃nf∗
n +

∑
n

∑
m

c̃∗nc̃mMnm

one can derive a matrix inversion procedure to find

“minimum error coefficients”

• Produces expansions which do converge well

with increasing numbers of terms.

• But coefficients themselves change as number

of terms is increased



Minimum-error vs. quadrature coefficients

Typical example:

0.1
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30252015105
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5) Quantum noise in laser oscillators

In normal-mode laser cavities, spontaneous emission

from atoms produces quantum noise equivalent to

“one noise photon per mode”

dn

dt
= κ (n + 1)N2 − κ n N1

This leads to quantum-limited Schawlow-Townes

linewidth for laser oscillators

∆fL =
N2

N2 − N1
× π hf ∆f2

c

Posc

Also leads to standard quantum-limited noise figure

for laser amplifiers



Excess noise factor for nonnormal modes

Spontaneous emission rate in nonnormal lasers increases

to Kp noise photons per mode

dn

dt
= κ (n + Kp)N2 − κ n N1

Kp =
∫

ṽ∗0(x) ṽ0(x) dx

= Petermann excess noise factor (>1)

This leads to measurable increase in the quantum-limited

linewidth for lasers having nonnormal cavity modes

∆fL = Kp × N2

N2 − N1
× π hf ∆f2

c

P



Identical laser parameters

but very different Schawlow-Townes linewidths

STABLE LASER CAVITY
(NORMAL MODES)

GEOMETRICALLY
UNSTABLE CAVITY
(NONNORMAL MODES)

Identical
laser gain
media

Very similar
hermite-gaussian
mode profiles

Identical
output
couplings

Transversely variable
mirror reflectivity
profile

100% coupling
to single-mode
optical fibers



Experiment: stable & unstable mini-YAG lasers

Compare quantum linewidths of identical miniature

monolithic stable and unstable resonators

diode
pump
beam

Stable cavity laser

output
beam

Unstable cavity laser

output
beam

Identical YAG samples
Identical dimensions
Identical coatings

diode
pump
beam



Pound-Drever spectrum measurement system

Measure quantum noise sidebands using modified

Pound-Drever stabilization system

QWP PBS

Servo Amp
+LPF

Spectrum
Analyzer

Mixer

Detector

PZT
actuator F-P cavity

Phase
modulator Isolator

Laser
beam

BPF

RF oscillator

Calibration 
signal

RF signals

Low-pass
feedback

Frequency
fluctuations



Measured excess noise factors

Experimental result: large excess quantum noise for

unstable-resonator (nonnormal-mode) laser

0.1

1

10

100

1000
Q

ua
nt

um
 li

ne
w

id
th

   
(k

H
z)

  

0.1 1
Laser power   (mW)     

stable-cavity Nd:YAG laser
cavity loss =  5%,   ENF ≈ 1

unstable-cavity Nd:YAG laser
cavity loss ≈ 13%,   ENF ≈ 180   



Vanadate unstable resonator laser

More definitive experiment using miniature quasi monolithic

Nd:vanadate unstable-resonator laser

  diode
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Fiber delay line spectral measurement system

Measure quantum linewidth using self-heterodyne apparatus

with optical fiber delay line

Isolator  

Nd:vanadate
unstable-resonator
laser 

40 MHz AO 
modulator

Balanced 
receiver

Fiber delay line
To spectrum      
analyzer   



Vanadate unstable resonator measurements

Definitive confirmation of excess quantum linewidth with

ENF ≈ 330 in hard-edged unstable-resonator laser
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Nonnormal polarization eigenmodes

“Twisted” optical resonator with nonnormal polarization eigenmodes

end
mirror

dichroic
plate

birefringent
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end
mirror

nonorthogonal
polarization
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Excess noise with nonnormal polarization modes

Quantum noise properties of an optical resonator with

nonnormal “twisted-polarization” eigenmodes
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B = birefringence; D = dichroism



2 X 1D reservoir model for twisted polarization

Analytical model for nonnormal polarization laser looking into

one-dimensional dual-polarization transmission-line reservoir

BP DM

laser cavity  Lc reservoir  L

LC = polarization cavity

RBP = rotatable birefringent plate

DM = dichroic delectric mirror

L = long waveguide reservoir



Ring reservoir model for twisted polarization

Ring-resonator “2 × 1D” model for twisted polarization laser

DM
Lc

DM

BP

L



Summary

• Some real physical systems are not described by

hermitian operators, and therefore do not have

a complete set of normal modes

• This leads to significant changes in the physical,

mathematical and quantum properties of these

nonnormal systems

• Loss of orthogonality is the key driver for all

of these unusual effects

• All nonnormal systems are also in one way or another lossy

systems (due to internal losses or output coupling) — but

not all lossy systems are nonnormal systems

• Fully quantum treatments are being developed
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