This problem is relevant to sun dogs: http://en.wikipedia.org/wiki/Sun_dog .
Hint: If $\theta_{2}$ is the angle of refraction at the first interface on the left, show that

$$
\begin{aligned}
& \delta=\text { sum of deviations at the two interfaces } \\
& =\arcsin \left(n \sin \theta_{2}\right)+\arcsin \left(n \sin \left(\phi-\theta_{2}\right)\right)-\phi
\end{aligned}
$$

using geometry and Snell's law at each interface. Then use the derivative of the arcsin already used in Problem C 33.66.

