Physics 314 Exam 3

Please show all significant steps clearly in all problems.
Boltzmann's constant $=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \quad$ Coulomb's law constant $=8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2}$
$h=$ Planck's constant $=6.63 \times 10^{-34} \mathrm{~J}$ s $\quad \hbar=h / 2 \pi e=1.60 \times 10^{-19}$ Coulomb mass of electron $=9.11 \times 10^{-31} \mathrm{~kg} \quad$ mass of neutron \approx mass of proton $=1.67 \times 10^{-27} \mathrm{~kg}$ $1 \mathrm{eV}=1.60 \times 10^{-19}$ Joule $\quad 1 \mathrm{MeV}=10^{6} \mathrm{eV} \quad c=$ speed of light $=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~nm}=10^{-9} \mathrm{~m} \quad 1 \stackrel{o}{A}=10^{-10} \mathrm{~m} \quad 1$ fermi $=10^{-5}{ }^{o} A$

1. Stars

(a) (7) Draw a rough sketch of the main-sequence line in the Hertzsprung-Russell diagram, which represents all stars when they are born. Show 3 points on this line which respectively correspond to a very massive star, our Sun, and a red dwarf. For each of these, use a tick mark to indicate the position on the horizontal axis, showing a roughly approximate temperature for each of the three. Also, indicate what quantity corresponds to the vertical axis. Finally, give a crude estimate, next to each point, of how long the star might be expected to live as a normal star.
(b) (3) What is the approximate range of possible sizes of stars, in terms of the solar mass $M_{\text {sun }}$?
(c) (6) Let L be the luminosity of a normal star, M be its mass, $t_{l i f e}$ be its lifetime, and T_{e} be its effective temperature. Given the roughly approximate relations $L \propto M^{4}$ and $R \propto M$, obtain the similarly rough relations (i) between $t_{\text {life }}$ and M and (ii) between T_{e} and M.
(d) (4) Why does a large star move to the right and then up in the H-R diagram as its hydrogen fuel is consumed and converted to helium "ash"? Give simple qualitative arguments.
(e) (3) What will happen to our sun when it reaches its end as a normal star in a few billion years? (First it will emit a \qquad then it will become a \qquad and finally it will be a _-_-_-_-_ . State in a little more detail.)
(f) (3) What is a nova? I.e., what happens to produce a nova?
(g) (4) The opacity κ within a star varies with the density ρ and the temperature T, roughly as $\kappa \propto \rho / T^{3.5}$. (The reason is that H^{-}ions are largely responsible for the opacity, and they tend to be destroyed at higher temperature.) In a normal star, the temperature increases substantially with contraction under gravity. But in a Cepheid variable star, energy can be absorbed in creating helium ions rather than increasing the temperature. Give a simple qualitative argument why radial oscillations will be damped in normal stars but enhanced in Cepheids.

2. Binary Systems

(a) (15) Let $\Delta E_{\text {grav }}$ be the gravitational potential energy released when a mass m drops from an accretion disk onto a neutron star with

$$
\begin{equation*}
\frac{G M}{R} \approx 0.14 c^{2} \tag{1}
\end{equation*}
$$

(This is what one gets for $R \approx 15 \mathrm{~km}$ and $M \approx 1.4 M_{\text {sun }}$.)
Let $\Delta E_{\text {nuclear }}$ be the nuclear binding energy released by ${ }^{4} \mathrm{He}$ nuclei reacting to ultimately produce ${ }^{12} \mathrm{C}$.
For ${ }^{4} \mathrm{He}$, the atomic mass is 4.0026032 u (atomic mass units), with $1 \mathrm{u}=1.67 \times 10^{-27} \mathrm{~kg}$. (The corresponding binding energy is 28295.673 keV , with $1 \mathrm{keV}=1000 \mathrm{eV}$).
For ${ }^{12} \mathrm{C}$, the atomic mass is 12.0000000 u . (The corresponding binding energy is 92161.753 keV).
Calculate the approximate ratio $\Delta E_{\text {grav }} / \Delta E_{\text {nuclear }}$.
(b) (5) Using the result of Part (a), describe the two ways in which energy is emitted as helium is deposited onto a neutron star from an accretion disk, and how they differ in intensity of emission and in the total energy emitted over a long time.
(c) (10) Discuss the Roche lobes and Lagrangian points in a binary system, and the role they play in mass transfer from, e. g., a normal star to a compact object. Give as much detail as you can with only about three sentences and one drawing.

Here we consider the Stromgren sphere in a HII region.
(a) (5) What are H I and H II ?
(b) (5) In a steady state within the Stromgren sphere, the number of recombinations must equal the number of ionizations:

$$
\begin{gather*}
\mathcal{R} \frac{4}{3} \pi r^{3}=N_{U V} \tag{2}\\
\mathcal{R}=\alpha n_{e} n_{p}=\alpha n_{e}^{2} \tag{3}
\end{gather*}
$$

Solve for r in terms of the other quantities.
(c) (5) What produces a H II region?
(d) (5) Explain the physical meaning of each of the following quantities in Part (b): $r, N_{U V}$, α, and n_{e}. Give a very crude estimate of n_{e}. E.g., is it 10^{23} per $\mathrm{cm}^{3}, 10^{16}$ per $\mathrm{cm}^{3}, 10^{9}$ per $\mathrm{cm}^{3}, 10$ per cm^{3} ?

4. Galaxies

Here we consider Oort's constants, which are important for the rotation of our Galaxy (and others).
(a) (5) Let Ω be the mean angular velocity of disk stars at a distance r from the center of the Galaxy (measured, as always, in radians/sec). In particular, suppose our Sun is rotating around the galaxy every 240000000 years, and is about 25000 light years from the center of the galaxy. What is Ω at the position of our Sun? (A year is 3.16×10^{7} seconds.)
(b) (5) How fast are you now moving through space as you revolve around the Galaxy with the Sun? (The speed of light is $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$.)
(c) (5) Oort's constants are defined by

$$
\begin{align*}
A & =-\frac{1}{2} r \frac{d \Omega}{d r} \tag{4}\\
B & =-\frac{1}{2 r} \frac{d}{d r}\left(r^{2} \Omega\right) \tag{5}
\end{align*}
$$

Show that $\Omega=A-B$.
(d) (5) Show that $B=-\Omega$ for the special case of a uniformly rotating disk. Then show that this would require

$$
\begin{equation*}
M(r) \propto r^{n} \tag{6}
\end{equation*}
$$

and determine the value of n. Here $M(r)$ is the mass contained within the radius r.

