
Physics 314 Final Exam

Please show all significant steps clearly in all problems.

Please also be clear, precise, and reasonably complete in answering qualitative
questions.

Boltzmann’s constant = 1.38×10−23 J/K Coulomb’s law constant = 8.99×109 N m2/C2

h = Planck’s constant = 6.63× 10−34 J s h̄ = h/2π e = 1.60× 10−19 Coulomb
mass of electron = 9.11× 10−31 kg mass of neutron ≈ mass of proton = 1.67× 10−27 kg
1 eV = 1.60× 10−19 Joule 1 MeV = 106 eV c = speed of light = 3.00× 108 m/s

1 nm = 10−9 m 1
o

A= 10−10 m 1 fermi = 10−5
o

A

1. Internal Heat of Planets and Moons

(a) (6) What are the three sources of internal heat that can lead to volcanic activity for a
planet or moon? (One is relevant early in its history, and the other two might be relevant
even after billions of years.) Please give an example and a few words of explanation in each
case. (You may not remember the name of a specific satellite, but you can still say something
about it.)

(i)

(ii)

(iii)
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Now suppose that the initial radioactivity of the earth was spread uniformly throughout its
interior, and that one cubic centimeter of material released about 8000 erg/year, or 1 m3

released 800 J/yr. Suppose also that the rate of energy loss through the surface of the earth
was about 50 erg/(cm2 sec), or 1.6×106 J/(m2 yr), and that the heat capacity was roughly
equal to that of water: 1 calorie/(gram C◦), or 4186 J/(kg C◦).

Other relevant data:
radius of earth = 6.37×108 cm = 6.37×106 m
mass of earth = 5.98×1027 gm = 5.98×1024 kg

(b) (6) How much energy would be released by radioactivity within the earth during the first
half billion years, or 5×108 years?

(c) (6) How much energy would escape from the earth during this time?
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(d) (6) What would the approximate temperature of the earth have been after this first half
billion years, in ◦C?

(e) (6) Radioactive decays are still occuring, of course, but suppose that they had suddenly
turned off after the first half billion years. How long would it take for all the heat to escape
from the earth?

(f) (6) Consider a moon which has the same basic composition as the earth but whose radius
is only 1/100 that of the earth. With the same assumption as in part (e), how long would this
moon take to lose all its initial heat? Derive and use a simple scaling argument (involving
Rearth and Rmoon) to get the answer.
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2. General Relativity

(a) (9) In

ds2 = R (t)2
[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
− c2dt2 (1)

explain what is meant by each of the following expressions (preferably with a bit of interesting
commentary).

(i) ds (or, if you prefer, a finite ∆s):

(ii) R (t):

(iii) k:

(b) (5) What is the currently preferred value of k and what does this mean for cosmology?
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3. Origins

(a) (8) What are the “four pillars” of the standard big-bang cosmology? I.e., what are the
four observational tests for which theory and observation show convincing agreement?

[You can make up for a lack of detailed knowledge about one part by giving more detaills
on another part.]

(i)

(ii)

(iii)

(iv)
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(b) (9) Give a description, with a few well-chosen sentences, of how the Solar System came
to be, and why it has its basic structure.

(c) (8) Give a brief description of how stars are born, with reference to the density-wave
theory and other possible mechanisms for star formation.
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4. Resonances

(a) (5) Let Torbital be the orbital period of Mercury as it revolves around the Sun. Let
Trot be the time for Mercury to make one complete rotation on its axis (as seen by a fixed
observer). One Mercurian day is equal to two Mercurian years. I.e., an observer at a fixed
point on the surface of Mercury sees two years go by from sunrise to sunrise. What is the
ratio Trot/Torbital?

(b) (5) In this part, let Torbital be the orbital period of our Moon as it revolves around the
Earth. Also, let Trot be the time for the Moon to make one complete rotation on its axis (as
seen by a fixed observer). For our Moon, what is the ratio Trot/Torbital?

(c) (5) Explain why we have the kind of spin resonances that are illustrated in parts (a) and
(b).

(d) (5) Give another example of a spin resonance in the Solar System, or alternatively give
an example of an orbital resonance.
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5. Lagrangian Points (20)

Consider two objects with masses M1 and M2, rotating around their common center of
gravity with an angular velocity

−→
Ω (measured in radians/sec, and with a direction given by

the right hand rule). Also suppose that there is a third mass m at a distance −→r from the
center of mass, with a velocity −→v in the rotating frame of reference, and with m� M1, M2.
In the rotating frame, m feels the two real forces

−→
F 1 = −G

M1m

r2m1

−→r m1
rm1

, −→r m1 = −→r −−→r 1 (2)

−→
F 2 = −G

M2m

r2m2

−→r m2
rm2

, −→r m2 = −→r −−→r 2. (3)

It also feels two fictitious forces: the centrifugal force

−→
F centrifugal = mrΩ

2
−→r

r
(4)

and the Coriolis force
−→
F Coriolis = −2m

−→
Ω ×−→v . (5)

(a) (5) Draw a picture representing M1 and M2 and show the positions of the 5 Lagrangian
points.
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(b) (15) Use the above real and fictitious forces to discuss the behavior of a small mass m if
it is placed at or very near each point. Assume that M1 > 25M2.

(i) L1

(ii) L2

(iii) L3

(iv) L4

(v) L5
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6. Planets

(a) (10) Pick your favorite planet (other than the Earth) and describe five of its most
interesting features.

(i)

(ii)

(iii)

(iv)

(v)

10



(b) (10) Now let us come back to the Earth. Near the poles the magnetic field lines converge,

making the magnetic field
−→
B stronger.

For an incident cosmic ray proton with mass m, the kinetic energy
(
p2‖ + p

2
⊥

)
/2m and the

“adiabatic invariant” p2⊥/B are both approximately conserved.

What does this imply about the behavior of protons (and other energetic charged particles)
that approach earth along converging magnetic field lines? Give a convincing justification
for your answer, using the facts given in the preceding paragraph.
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7. The Cosmic Distance Ladder

(15) Define and explain each of the following, and tell where it fits into the requirements of
astronomers for measuring the distances to stars and galaxies.

(a) parallax:

(b) Cepheid variables:

(c) Faber-Jackson relation for elliptical galaxies:

(d) Tully-Fisher relation for spiral galaxies:

(e) Type Ia supernovae:
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8. Effective Potential

In Problem 5, let
−→
F =

−→
F 1 +

−→
F 2 +

−→
F centrifugal (6)

and let the x-axis point from M1 to M2. In parts (a), (b), and (c) below, the small mass m
is also regarded as lying somewhere along the x-axis.

(a) (5) Referring back to Problem 5, write down the expression for Fx (the x-component of
−→
F ) in terms of x, x1, and x2 (in an obvious notation). Assume that M1 andM2 make nearly
circular orbits about the center of gravity, so that x1 and x2 can be regarded as constants.

(b) (5) Obtain the effective potential energy V (x) which satisfies

Fx = −
dV

dx
or V (x) = −

∫
Fx dx. (7)
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(c) (5) Sketch the graph of the function V (x) for the full range of relevant values of x, and
mark the positions of L1, L2, and L3 on this graph.

(d) (5) If you are really ambitious, get V (−→r ) in 3 dimensions, and try to sketch the contours
of constant V (−→r ) (or equipotential surfaces) in the plane defined by M1, M2, and m.

(e) (5) What do you think is the role of the velocity-dependent
−→
F Coriolis, and what is meant

by a stable position in the present context?

Happy Friday the 13th!

Also, Merry Christmas and a Happy Holiday Season!
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