
5ôjuéô’ri -Physics 408 -- Exam 2 Name_________________________________________

You are graded on your work, with partial credit where it is deserved.

Please give clear, well-organized solutions.

h = 6.63 x i0’ J s {Planck’s constant] k = 1.38 x 1023 J/K [Boltzmann constant]

= 5.67 x 10-8 2W
[Stefan-Boltzmann constant} c = 3.00 x 10 rn/s [speed of light]
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1. The distance between the Earth and the Sun is R = 1.50 x 1011 m, and the radius of the Sun is

r = 6.96 x 108 m. The radiant energy flux (or intensity) of sunlight at the position of the Earth is

S=solarconstant=1.36x103---.

m

(a) (9) Calculate the total rate of energy generation of the Sun in J/s
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(b) (9) Recalling the Stefan-Boltzmann law, energy flux from perfect blackbody
= B T4, calculate the temperature at

the surface of the Sun. 2
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(c) (9) The solar spectrum peaks at about 518 nm, or 518 X iO rn According to the Wien displacement law, with the
Planck distribution written in tenns of the wavelength 2,

hc
peak

— 4.97kT
Calculate the surface temperature of the Sun from this equation. How does it compare with your answer to part (b)?

=—r (C.cx35)(.oJo1’)
]/ x11

w •

C15i5

(d) (3) If the Sun is yellow, how can we treat it as a perfect blackbody?
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2. For a quantum ideal gas of ultrarelativistic electrons, the energy e is related to the momentum p by £ = cp,
so the density of states has the form

As2
where A is a constant.

(a) (10) Obtain A in terms of the number of electrons N and the Fermi energy 5F

3 S d E =

E
(b) (10) Then show that the average energy per electron, —, is given by

E
— = constant X 8
N

while at the same time obtaining the constant. (Here E is the usual total energy of the N electrons, which we sometimes
write as (E).)
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3. In this problem we consider adsorbed atoms on a surface, which can be treated as a 2-dimensional classical
ideal gas (but with a binding energy Lo), in thermal equilibrium with the vapor above the surface, which can be
treated as a 3-dimensional classical ideal gas. You may start with the Helmholtz free energies

Fads = NadskT in [ Zads
— NadskT Zads 4eE /kT

ads th

Fgas = NgaskT in
Zg

— NgaskT Zgas = ‘ th
h

1/2Ngas j ‘2th (2irmkT)

in an obvious notation.

(a) (5) Given that the Helmholtz free energy is defined as F = (E) — TS, obtain the expression for dF in terms
of dT, dV,and dN.

— d ITS)

TdS - PV (Td -
5I

(b) (5) Using the relation between dF and dN, obtain the expression for the chemical potential ,u as a partial
derivative of F.
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(c) (5) Using the expression for ds near the top of the page, obtain as a function of T, Zads and Nad.
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(d) (5) Using the expression for 1’gas near the top of the page,, obtain ug as a function of T, Zg, and
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(e) (5) Obtain the relation between and
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(f) (5) Show that that the coverage of the surface by the adsorbed molecules, Nads IA, is proportional to the
pressure. I.e., show that

.Pi V=

p Nd -e0u1<Tgas
A

5

23.

T

5



1

4. In condensed matter physics there are various kinds of waves which can be treated in the same way as
vibrational waves, except that the dispersion relation for the particles (bosons) associated with these waves is
more generally

E(p)=ap’

Here a and n are constants, £ is the energy, and p is the magnitude of the momentum. Just as for phonons,
we have u = 0 (where i is the chemical potential in the Bose-Einstein distribution function given on the first
page). Also, there is a maximum single-particle energy £m (corresponding to a maximum momentum Pmax).

Let us consider such waves and quanta (or particles) in N dimensions, where the volume in momentum space

in dp at p is ApN_ldp. Also, the volume in momentum space per state is where V is the N -dimensional

volume occupied by these fcsn (We assume spinless particles.)

(a) (5) Calculate the density of states in the form

V/

V

D(E)= BEa

(b) (5) Write down the expression for the energy (E) associated with these particles at temperature T, in terms

of your density of states D (e) and the Bose-Einstein distribution function (nk) given on the first page (with
u=0).

while at the same time obtaining the constants B and a in terms of the original constants given above.
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(c) (5) Use the result of part (b) to obtain the heat capacity at constant volume in the limit of high temperatures
(T very large), in the form

C cTX

while at the same time obtaining the constant X. But you need not obtain the proportionality constant.
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(d) (5) Use the result of Part (b) again, this time to obtain the heat capacity in the limit of low temperatures
(T very small), in the form

CocT
while at the same time obtaining the constant Y. But you again need not obtain the proportionality
constant.
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