You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation!

Please give clear, well-organized, understandable solutions.

$$
\begin{array}{llll}
h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} & \text { [Planck's constant] } & k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} & \text { [Boltzmann constant] } \\
c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} & \text { [speed of light] } & m_{e}=9.11 \times 10^{-31} \mathrm{~kg} & \text { [mass of electron] }
\end{array}
$$

$$
1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J} \text { and } \frac{1 \mathrm{eV}}{k}=11,600 \mathrm{~K}
$$

The variables have their usual meanings: $E=$ energy, $S=$ entropy, $V=$ volume, $N=$ number of particles, $T=$ temperature, $P=$ pressure, $\mu=$ chemical potential, $B=$ applied magnetic field, $C_{V}=$ heat capacity at constant volume, $F=$ Helmholtz free energy, $k=$ Boltzmann constant. Also, $\langle\cdots\rangle$ represents an average.

In case you have a Rick Perry moment at this early hour, let us remind you that $d E=T d S-P d V+\mu d N$!

1. The enthalpy $H(S, P, N)$ is defined by $H=E+P V$.
(a) (4) Starting with the standard expression for $d E$ in terms of $d S, d V$, and $d N$ (see above), obtain the expression for $d H$ in terms of $d S, d P$, and $d N$.

$$
\begin{aligned}
& \text { n for } d H \text { in terms of } d S, d P \text {, and } d N \text {. } \\
& d H=(T d S-P d V+\mu d N)+\langle P d V+V d P\rangle=T d S+V d P+\mu d N
\end{aligned}
$$

(b) (4) Express 3 physical quantities as derivatives of H with respect to its natural variables.

$$
T=\left(\frac{\partial H}{\partial S}\right)_{P, N} \quad V=\left(\frac{\partial H}{\partial P}\right)_{S, N} \quad \mu=\left(\frac{\partial H}{\partial N}\right)_{S, P}
$$

(c) (4) For a quasiequilibrium process, the infinitesimal heat added to a system is $T d S$ and the change in temperature is $d T$. Obtain the heat capacity at constant P (and N) as a derivative of the enthalpy.

$$
\begin{aligned}
& C_{p}=\frac{T d S}{d T} \text { at constant } P \& N \text { with } d H=T d S \\
& \Rightarrow C_{p}=\left(\frac{\partial H}{\partial T}\right)_{p, N}
\end{aligned}
$$

2. Consider a paramagnetic system of distinguishable noninteracting atoms in a magnetic field \vec{B}. Each atom has a magnetic dipole moment whose component parallel to \vec{B} is $\pm m_{B}$. Its energy is then $\mp m_{B} B$.
(a) (4) Obtain the partition function z for a single atom. Then obtain the partition function Z for the system of N atoms.

$$
z=e^{-\left(-m_{B} B\right) / k T}+e^{-m_{B} B / k T}=e^{m_{B} B / k T}+e^{-m_{B} B / k T}
$$

$$
Z=z^{N}
$$

(b) (4) If M is the magnetic dipole moment for the system (in the direction of the applied field \vec{B}), show that

$$
\langle M\rangle=k T\left(\frac{\partial \ln Z}{\partial B}\right)_{T}
$$

(with N implicitly fixed).

$$
\begin{aligned}
& N \text { implicitly fixed). } \\
& \langle M\rangle=\sum_{j} M_{i} \frac{e^{-\left(-M_{j} B / k T\right)}}{Z}=\frac{\sum_{i}}{Z} \sum_{j} M_{j} e^{M_{j} B / k T} \\
& Z=\sum_{i} e^{M_{j} B / k T} \frac{\partial \ln Z}{\partial B}=\frac{1}{Z} \sum_{j} \frac{M_{j}}{k T} e^{M_{j} B / k T} \\
& \therefore \quad\langle M\rangle=k T\left(\frac{\partial \ln Z}{\partial B}\right)_{T}
\end{aligned}
$$

(c) (4) Using the fact that $F \equiv E-T S$, where $F(T, V, N)$ is the Helmholtz free energy, obtain the expression for $d F$ in terms of $d T, d V$, and $d N$.

$$
d F=-S d T-P d V+\mu d N \text { as in Problem / } a \text {) }
$$

(d) (4) Recalling that $F=-k T \ln Z$, obtain the Maxwell relation relating $\left(\frac{\partial\langle M\rangle}{\partial T}\right)_{B}$ to $\left(\frac{\partial S}{\partial B}\right)_{T}$ (with N and V implicitly fixed).

$$
\begin{aligned}
& \text { From (B), }\langle M\rangle=-\frac{\partial F}{\partial B}, \quad \text { From (c), } S=-\frac{\partial F}{\partial T} . \\
& \text { Then }\left(\frac{\partial\langle M\rangle}{\partial T}\right)_{B}=-\frac{\partial^{2} F}{\partial T \partial B}=-\frac{\partial^{2} F}{\partial B \partial T}=\left(\frac{\partial S}{\partial B}\right)_{T} .
\end{aligned}
$$

(e) (4) Using your answer to Part (d), give a CLEAR explanation of how $\left(\frac{\partial\langle M\rangle}{\partial T}\right)_{B}$ behaves as $T \rightarrow 0$, and why. $\quad 3$ rd $12 w \Rightarrow\left(\frac{\partial 5}{\partial x}\right)_{T} \rightarrow 0$ as $T \rightarrow 0$ for any X.

$$
\left[\frac{\Delta S}{\Delta x}=\frac{S_{f}-S_{i}}{\Delta x} \text { with. } S_{f} \rightarrow 0 \text { and } S_{i} \rightarrow 0 \text { as } T \rightarrow 0\right]
$$

$$
\text { Then }\left(\frac{\partial\langle M\rangle}{\partial T}\right)_{B}=\left(\frac{\partial S}{\partial B}\right)_{T} \rightarrow 0 \quad 7 S \quad T \rightarrow 0
$$

(f) (4) Give a CONVINCING PHYSICAL explanation of why $\langle M\rangle$ shows this behavior in a paramagnetic system.

For any fixed B, as $T \rightarrow 0$ all the dipole moments line up maximally with B. Then $\langle M\rangle$ approaches 2 constant as $T \rightarrow 0$ and $\frac{\partial\langle M\rangle}{\partial T} \rightarrow 0$,
3. (a) (4) For a general system, obtain $d S$ in terms of $d E, d V$, and $d N$.

$$
d E=T d S-P d V+\mu d N \Rightarrow d S=\frac{1}{T} d E+\frac{\rho}{T} d V-\frac{\mu}{T} d N
$$

(b) (4) Two systems 1 and 2 have different temperatures T_{1} and T_{2}. They are separated by a wall which is fixed and impermeable, so that particles cannot flow from one system to the other. However, energy can flow through the wall. Let E_{1} and E_{2} be the separate energies of the systems, with

$$
E_{1}+E_{2}=E_{\text {total }}=\text { constant }
$$

Also, let S_{1} and S_{2} be the separate entropies of the systems, with

$$
S_{1}+S_{2}=S_{\text {total }}
$$

What does the second law of thermodynamics tell you about the rate of change $\frac{d S}{d t}$ of the total entropy with respect to time?

$$
\frac{d S_{t_{0} t=1}}{d t} \geq 0
$$

(c) (4) Use the chain rule for derivatives to write $\frac{d S}{d t}$ in terms of T_{1}, T_{2}, and $\frac{d E_{1}}{d t}$.

$$
\frac{d \cdot S_{t(t 21}}{d t}=\frac{\partial S_{1}}{\partial E_{1}} \frac{d E_{1}}{d t}+\frac{\partial S_{2}}{\partial E_{2}}\left(-\frac{d E_{1}}{d t}\right)=\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \frac{d E_{1}}{d t}
$$

(d) (4) If $T_{2}>T_{1}$, what can you conclude about $\frac{d E_{1}}{d t}$? (As always, please show your work and be clear.)

$$
\begin{aligned}
& T_{2}>T_{1} \Rightarrow \frac{1}{T_{1}}-\frac{1}{T_{2}}>0 \\
& \text { Then } \frac{d S_{t 0 t_{2} 1}}{d t} \geq 0 \Rightarrow \frac{d E_{1}}{d t} \geq 0
\end{aligned}
$$

[For nonzero conductivity of wall, of course,

$$
\frac{d E_{1}}{\Delta t}>0 \text { \& heat flows from hot to cold.] }
$$

4. Consider a chemical reaction of the form

$$
\sum_{i, \text { reactants }}\left|b_{i}\right| B_{i} \rightleftarrows \sum_{i, \text { products }} b_{i} B_{i}
$$

with the convention that the stoichiometic coefficients b_{i} are taken to be positive for products, on the right-hand side, and negative for reactants, on the left-hand side. (An example is $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightleftarrows 2 \mathrm{HCl}$, with $b_{\mathrm{H}_{2}}=-1$, $b_{\mathrm{Cl}_{2}}=-1, b_{H C 1}=+2$.) The criterion for chemical equilibrium is that the Helmholtz free energy F be minimized, so that $\frac{\partial F}{\partial X}=0$ or $\frac{\Delta F}{\Delta X}=0$ or $\Delta F=0$ when some unconstrained variable X is varied by an amount ΔX. Here we subtract $\left|b_{i}\right| \Delta N$ particles of each reactant species i, and add $b_{i} \Delta N$ particles of each product species i.
(a) (4) Referring back to Part (c) of Problem 2, and generalizing to the case where there are several species with different particle numbers N_{i} and chemical potentials μ_{i}, write down the expression for $d F$ in terms of the μ_{i} and $d N_{i}$. Then replace $d F$ by ΔF and each $d N_{i}$ by ΔN_{i}, to write ΔF in terms of the μ_{i} and ΔN_{i}.

$$
\begin{aligned}
& d F=-S d T-P d V+\sum_{i} \mu_{i} d d_{i} \\
& \Delta F=\sum_{i} \mu_{i} \Delta N_{i} \text { for } T \& V \text { fix } \quad \text {, } \quad
\end{aligned}
$$

(b) (4) Recalling the sign convention on the ΔN_{i}, obtain a fundamental equation involving $\sum_{i} \mu_{i} b_{i}$, where the summation is now over both reactants and products.

$$
\begin{aligned}
\Delta N_{i} & =b_{i} \Delta N \\
\text { so } & \Delta F
\end{aligned}
$$

(c) (6) Now assume that each chemical potential has the form

$$
\mu_{i}=k T \ln \left(n_{i} f_{i}(T)\right)
$$

where $f(T)$ is a function of T (generalizing the result for an ideal gas). Using your result in Part (b), obtain the law of mass action

$$
\prod_{i}[i]^{b_{i}}=K(T)
$$

where $[i] \equiv n_{i}$ and $K(T)$ is the equilibrium constant.

$$
\begin{aligned}
& \sum_{i} k T \ln \left(n_{i} f_{i}(T)\right) b_{i}=0 \\
\Rightarrow & \sum_{i} b_{i} \ln n_{i}=-\sum_{i} b_{i} \ln f_{i}(T) \\
\Rightarrow & \ln \pi_{i} n_{i}^{b_{i}}=-\ln \prod_{i} f_{i}(T)^{b_{i}} \\
\Rightarrow & \prod_{i} n_{i}^{b_{i}}=\prod_{i} f_{i}(T)^{-b_{i}} \equiv k(T) \\
\text { or } & \prod_{i}[i]^{b_{i}}=k(T)
\end{aligned}
$$

(d) (10) In thermal equilibrium, the reaction $\gamma+\gamma \rightleftarrows e^{-}+e^{+}$produces a steady-state concentration of positrons. Calculate the concentration of positrons, $\left[e^{+}\right] \equiv n_{e^{+}} \equiv \frac{N_{e^{+}}}{V}$, in a typical white dwarf. For this estimate, take the chemical potential for electrons to be

$$
\mu_{e^{-}}=m_{e} c^{2}+\varepsilon_{F}
$$

with $\varepsilon_{F} \sim 50 \mathrm{keV}$ being typical, $m_{e} c^{2}=511 \mathrm{keV}$, and $1 \mathrm{keV}=10^{3} \mathrm{eV}$. For the dilute positrons, the chemical potential can be taken to be

$$
\mu_{e^{+}}=m_{e} c^{2}+k T \ln \left(\frac{\lambda_{t h}^{3} n_{e^{+}}}{2}\right), \quad \lambda_{t h}=\frac{h}{\left(2 \pi m_{e} k T\right)^{1 / 2}}
$$

with $T \sim 10^{7} \mathrm{~K}$ being typical for a white dwarf.

$$
\begin{aligned}
& \left.\sum_{i} \mu_{i} b_{i}=0 \text { and } \mu_{\gamma}=0 \quad \sum \mu=0 \text { for photons }\right] \\
& \Rightarrow \mu_{e^{+}}+\mu_{e^{-}}=0 \\
& \Rightarrow-\frac{2 m_{e} c^{2}+\varepsilon_{F}}{k T}=\ln \left(\frac{\lambda t_{h}^{3} n e^{+}}{2}\right) \quad-\left(\frac{1072 \mathrm{KEV}}{k T}\right) \cdot \frac{1}{T} \\
& \lambda_{t h}=\frac{6.63 \times 10^{-34}}{\left((2 \pi)\left(9.11 \times 10^{-31}\right)\left(1.38 \times 10^{-23}\right)\left(10^{7}\right)\right)^{1 / 2}}=2.36 \times 10^{-11} \mathrm{~m} \\
& \text { Then } n_{e^{+}}=-\frac{2}{\left(2.36 \times 10^{-11} \mathrm{~m}\right)^{3}} 10^{-540} \\
& \sim 10^{-508} m^{-3} \approx 0
\end{aligned}
$$

[The precise number is not important here, of course.]
5. (18) The Planck distribution of radiation energy density in n dimensions has the form

$$
u_{\text {Planck }, n}=A \frac{v^{n}}{e^{h v / k T}-1}
$$

Show that the frequency $v_{\text {peak }}$ at which $u_{\text {Planck } n}$ reaches its maximum value is given by

$$
h v_{\text {peak }}=\text { constant } \times k T
$$

while at the same time obtaining this constant to one significant figure.

$$
\begin{aligned}
& \frac{\partial u_{\text {planck, } n}}{\partial \nu}=0 \\
\Rightarrow & 0=\frac{n \nu^{n-1}}{e^{h \nu / h T}-1}-\frac{\nu^{n}}{\left(e^{k \nu / k T}-1\right)^{2}} e^{h \nu / k T}\left(\frac{h}{k T}\right) \\
\Rightarrow & 0=n-\frac{h \nu / k T}{e^{h \nu / k T}-1} e^{h \nu / k T} \\
& =n-\frac{x}{1-e^{-x}} \quad, x \equiv \frac{h \nu}{k T} \\
\Rightarrow & \ln \left(1-e^{-x}\right)=x
\end{aligned}
$$

$$
\text { better: } x \approx n\left(1-e^{-n}\right)
$$

$$
\text { [E.g., for } n=3 \text { the second version gives }
$$

$$
x \approx 3\left(1-e^{-3}\right)=2.85 \text {, compared to the more exact } 2.82 \text {.] }
$$

(b) (6) Now let us specialize to our own real world with $n=3$. Sirius, the brightest star in the sky, has a surface temperature of $10,500 \mathrm{~K}$. For Sirius, use your result from Part (a) to approximately calculate $v_{\text {peak }}$, and then the wavelength that corresponds to this frequency. If sing the crudest approximation;

$$
\begin{aligned}
& \frac{h \nu_{\text {peak }}}{k T} \approx 3 \Rightarrow \nu_{\text {peak }}=\frac{(3)\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(11,500 \mathrm{~K})}{6.63 \times 10^{-34} \mathrm{~J} \cdot 5}=7.18 \times 10^{14} \mathrm{~Hz} \\
& \lambda=\frac{c}{\nu_{\text {peak }}}=\frac{3,66 \times 10^{8} \mathrm{~m} / \mathrm{s}}{7.18 \times 10^{14 \mathrm{~Hz}}=4.18 \times 10^{-7} \mathrm{~m}=448 \mathrm{~nm}}
\end{aligned}
$$

6. (5 points extra credit) Below discuss 3 substantial things that you learned from the talks last Tuesday. Please be clear and informative! (But an extremely long answer is not necessary.)
(i)
(ii)
(iii)
