
Physics 408  –  Final Exam                           Name________________________________ 
 
You are graded on your work (with partial credit where it is deserved) so please do not just write down 
answers with no explanation (or skip important steps)! 
 
Please give clear, well-organized, understandable solutions. 

h = 6.63×10−34  J s              [Planck’s constant]                   k = 1.38 ×10−23  J/K            [Boltzmann constant] 
c = 3.00 ×108  m/s               [speed of light]                          me = 9.11×10−31 kg          [mass of electron]                  

 [Stefan-Boltzmann constant]           [gravitational constant]               

1  eV = 1.60 ×10−19  J and 1  eV
k

= 11,600 K                   0 °C = 273 K 

 
 

The variables have their usual meanings: E = energy, S = entropy, V = volume, N = number of particles, T =
temperature, P =pressure, µ = chemical potential, B = applied magnetic field, CV =  heat capacity at constant 
volume, k =  Boltzmann constant.   Also, ⋅ ⋅ ⋅  represents an average.  

You should know this, but: 

n εi( ) = 1

e εi−µ⎛
⎝⎜

⎞
⎠⎟ /kT ±1

; dE =TdS −PdV + µdN ; E =TS −PV + µN
 

PV γ = constant  for process in which entropy is constant

            

PV = NkT
  

  

σB = 5.67 ×10−8  W
m2 ⋅K 4 G = 6.67 ×10−11 N m2

kg2
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1. Stefan-Boltzmann law from thermodynamics alone. Here we will employ only the thermodynamics of a 
classical radiation field, with no reference to statistical mechanics. 

 
(a) (4) Use the first law of thermodynamics, 

      dE = dq− dw  , 
with dq  and dw  written in terms of dS  and dV  respectively, to obtain the familiar relation between dE , dS , 
and dV . 
 
 
 
 
 
 
(b) (4) Recall that the Helmholtz free energy is defined by F = E −TS . Use this definition and the result of part  
           (a) to obtain dF  in terms of dT and dV  . 
 
 
 
 
 
 

(c) (4) Using the result of part (b), obtain the Maxwell relation that relates  ∂S
∂V

⎛
⎝⎜

⎞
⎠⎟T

 to   ∂P
∂T

⎛
⎝⎜

⎞
⎠⎟V

 . 

 
 
 
 
 
 
 
 
 
 
(d) (4) Use the result of part (a) and the Maxwell relation in part (c) to obtain a relation between   
 
∂E
∂V

⎛
⎝⎜

⎞
⎠⎟T

 ,   ∂P
∂T

⎛
⎝⎜

⎞
⎠⎟V

 ,  and P  . 
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(e) (1)  It is conventional to write E =V u T( ) , where the energy density u T( )  is a function of only the 

temperature T . Rewrite the result of (d) in terms of u T( ) , ∂P
∂T

⎛
⎝⎜

⎞
⎠⎟V

 , and P  . 

 
 
 
 
 
 

(f) (4) From Maxwell’s equations of electromagnetism, it can be shown that P = 1
3
u  for radiation. Use this 

relation and the result of part (e) to get a relation between u  and  ∂u
∂T

⎛
⎝⎜

⎞
⎠⎟V

 .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(f) (4) Integrate this equation of part (f) (at constant volume) to obtain u = aT n  , while at the same time 
determining the constant n . This is essentially the Stefan-Boltzmann law, derived through a thermodynamic 
rather than a statistical-mechanics argument. 
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2. The Pomeranchuk refrigerator. On the right 
you will see the experimentally determined melting 
curve for 3He, in the neighborhood of its pressure 
minimum at T = 0.32 K and P = 29.3 atm.  
 
(From https://www.princeton.edu/~fhs/kcurve/kcurve.htm , adapted 
from E.R. Dobbs. Helium Three (Oxford University Press, 2002).) 
 
Let us start with general ideas and then consider this   
solid-liquid coexistence curve from 320 mK down to 
a few mK, temperatures that can be reached with the 
cooling technique below. (1 mK = 10−3  K  of course) 
 
(a) (3) Give a qualitative explanation of the fact that 3He remains a liquid at low temperature and P = 1 atm. 
How many other substances have this property? 
 
 
 
 
 
 
(b) (3) For a general system, use Euler’s theorem and the expression for dE  on the front page of this exam to 
obtain the (Gibbs-Duhem) relation between dµ , dT , and dP , or small Δµ , ΔT , and ΔP , in terms of the 
entropy s per particle and the volume v  per particle. 
 
 
 
 
 
 
 
 
(c) (3) Now consider two closely-separated points A and B along a coexistence curve like the one shown in the 
figure above, and let Δµ = µB − µA . Use the result of part (b), together with the condition for thermal 
equilibrium between two phases with the same kind of particles, to obtain the Clausius-Clapeyron equation – 
which relates the slope  dP / dT  along the coexistence curve to the differences Δs  and Δv  between the 
quantities s  and v  in the two phases. 
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(d) (4) Let us specialize to the case that the particles are 3He atoms in a SOLID, with spin ½ and thus 2  
possible spin states per atom. (We neglect other contributions to the entropy, which become negligibly small at 
the temperatures considered here, between a few mK and 320 mK.) Based on Boltzmann’s expression for the 
entropy S , what is s = S / N  in solid 3He  if each of the N  atoms independently has the 2 spin states (up and 
down)? 
 
 
 
 
 
(e) (4) On the other hand, if the particles are 3He atoms in a LIQUID, and we model this liquid as a quantum 
ideal gas of spin ½ fermions, the heat capacity at low temperatures is given by  

CV = π 2

2
Nk T

TF
  . 

Using the fact that CX = T ∂S
∂T

⎛
⎝⎜

⎞
⎠⎟ X

  (with X =V  here) and that CV → 0  as  T → 0  by the third law of 

thermodynamics, integrate to obtain S T( )  and then s T( ) = S T( )
N

 in liquid  3He. 
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(f) (4) Let Δ s = sliq − ssol  , where ssol  and sliq  are the values of s  in parts (d) and (e) respectively. For  

T
TF

<  constant  

we will have 
Δ s < 0  . 

Calculate this constant using your results from parts (d) and (e). 
 
 
 
 
 
 
 
 
 
(g) (4) Now let Δv  be the change in volume per atom when 3He goes from solid to liquid:Δv = vliq − vsol . It 
turns out that  

Δv > 0  . 
Clearly explain why the temperature will fall along the coexistence curve, for T <  constant ×TF  , as the 
pressure is increased. I.e., why does ΔP > 0  imply that ΔT < 0 at low T ? (We thus cool the system by 
squeezing it.) 
 
 
 
 
 



 7 

3. Adiabatic compression.  A Diesel engine requires no spark plug. Instead the air is compressed so much that 
the fuel ignites spontaneously. Recall that air is composed 99% of the diatomic molecules N2  and O2  and that 
we can ignore the contribution of molecular vibrations to the energy and heat capacity in a problem like the one 
below. 
 
(a) (5) In preparation, use the equipartition theorem to determine the energy E  of a diatomic ideal gas with N  
molecules at temperature T , bearing in mind that there are 3 translational and 2 relevant rotational degrees of 
freedom per molecule. 
 
 
 
 
 
(b) (5) Use the result of part (a), plus the fact that CP = CV + Nk  , to obtain CV , CP , and the approximate value 
of the ratio γ = CP /CV  for air. 
 
 
 
 
 
 
 
(c) (10) The air in a cylinder of a Diesel engine starts at a temperature of 20 °C and a pressure of 1 atm. It is 
then adiabatically compressed by a factor of 15. (I.e., the final volume is 1/15 of the initial volume.) What is the 
final pressure, in atm? 
 
 
 
 
 
 
 
 
 
 
 
(d) (5) What is the final temperature? 
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4. Minimum free energy. Let us demonstrate that the appropriate free energy is minimized in thermodynamic 
equilibrium by considering a system at constant temperature T  and pressure P , for which the Gibbs free 
energy G = E −TS + PV  is appropriate. (The proof for other cases is very similar.) 
 
(a) (5) Write down the first law of thermodynamics, relating q  to ΔE  and w , where q  is the heat added, ΔE  is 
the change in internal energy, and w  is the work done by the system. 
 
 
 
(b)  (5) Write down an inequality relating TΔS  to q , where ΔS  is the change in entropy. Why is TΔS  not 
equal to q  when an ideal gas undergoes a free expansion? 
 
 
 
 
 
 
(c) (5) Use the results of parts (a) and (b) to write down an inequality relating TΔS  to ΔE  and PΔV . 
 
 
 
 
 
 
(d) (5) Use the result of part (c) to obtain an inequality for ΔG  when the system is released out of equilibrium 
and undergoes spontaneous random changes.  
 
 
 
 
 
 
(e) (5) Explain clearly why your result in part (d) implies that the system has reached a state of thermal 
equilibrium if G  has reached a minimum.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Merry Christmas and Happy Holidays! 


