You are graded on your work, with partial credit where it is deserved.
Please give clear, well-organized solutions.

1. Recall that the Gibbs free energy is defined by

$$
G=\langle E\rangle-T S+P V
$$

where $\langle E\rangle, T, S, P$, and V are (as usual) the energy, temperature, entropy, pressure, and volume.
(a) (5) What are the natural variables of G ?
(b) (5) Obtain a general expression for $d G$ in terms of $d T, d P$, and $d N$.
(c) (5) By using the appropriate second derivatives of G, relate $\left(\frac{\partial V}{\partial T}\right)_{P}$ to $\left(\frac{\partial S}{\partial P}\right)_{T}$.
(d) (5) Using the result of part (c), describe the behavior of the thermal expansion coefficient α as $T \rightarrow 0$ (and explain your reasoning).
(e) (5) For a specific system you are given that

$$
G=-N k T \ln \left(\frac{a T^{7 / 2}}{P}\right)
$$

where N is the number of particles, k is Boltzmann's constant, and a is a constant. Calculate the entropy S, and from S the heat capacity at constant pressure C_{P}.
(f) (5) Calculate the volume V in terms of N, T, and P.

$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$	[Planck's constant]	$k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	[Boltzmann's constant]
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$	[mass of electron]	$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$	

2. In class we derived the equilibrium law of mass action

$$
\prod_{i}[i]^{b_{i}}=K(T) \quad, \quad K(T)=\prod_{i}\left[\lambda_{i}^{-3} Z_{i}(\mathrm{int})\right]^{b_{i}} \quad, \quad \lambda_{i}=\frac{h}{\left(2 \pi m_{i} k T\right)^{1 / 2}}
$$

where $[i]$ is the number density of species i and the other quantities should look familiar.
(a) (10) Consider the reaction

$$
\mathrm{Ca} \rightleftarrows \mathrm{Ca}^{+}+e
$$

Given that the calcium atom Ca has $Z_{i}(\mathrm{int})=e^{-\varepsilon_{0} / k T}$, that the calcium ion Ca^{+}has $Z_{i}(\mathrm{int})=2$, and that their masses are equal to a good approximation, obtain an expression for

$$
\frac{\left[\mathrm{Ca}^{+}\right][e]}{[\mathrm{Ca}]}
$$

in terms of λ_{e} and the energy ε_{0} of the neutral atom Ca relative to the ion Ca^{+}.
(b) (10) Given that $\varepsilon_{0}=-6.113 \mathrm{eV}$, for a stellar atmosphere with $T=6000 \mathrm{~K}$ and $[e]=10^{20}$ electrons per cubic meter, calculate the ratio $\frac{\left[\mathrm{Ca}^{+}\right]}{[\mathrm{Ca}]}$.
3. (a) (5) In the canonical ensemble (i.e., for a system with a well-defined temperature T, volume V, and number of particles N), what is the probability p_{j} that a system is in a quantum state j with energy E_{j} ?

Give p_{j} in terms of E_{j}, T, and the partition function Z, of course.
(This is one of the simplest and most central expressions in our course.)
(b) (5) Solve for E_{j} in terms of $p_{j}, \ln Z$, and T.
(c) (5) Substitute your result from part (b) into $\langle E\rangle=\sum_{j} E_{j} p_{j}$ to obtain the thermodynamic energy $\langle E\rangle$ in terms of $\sum_{j} p_{j} \ln p_{j}, T$, and $\ln Z$.
(d) (5) By equating (i) the definition of the Helmholtz free energy F to (ii) the fundamental expression for F in terms of $\ln Z$, show that the entropy is given by $S=\frac{\langle E\rangle}{T}+k \ln Z$.
(e) (5) Finally, obtain the very fundamental expression for the entropy S in terms of $\sum_{j} p_{j} \ln p_{j}$.
4. There is a more general version of the equipartition theorem than the one in the textbook.

Start with the classical expression

$$
\left\langle\frac{\partial \varepsilon}{\partial x} x\right\rangle=\frac{\int d(\text { others }) e^{-E^{\prime}(\text { others }) / k T} \int_{-X}^{X} d x \frac{\partial \varepsilon(x)}{\partial x} x e^{-\varepsilon(x) / k T}}{\int d(\text { others }) e^{-E^{\prime}(\text { others }) / k T} \int_{-X}^{X} d x e^{-\varepsilon(x) / k T}}
$$

where the total energy E has been separated into the part $\varepsilon(x)$ which depends on some variable x (a coordinate or a momentum) and a remainder E^{\prime} which does not depend on x, and where $\varepsilon(x) \rightarrow \infty$ as $x \rightarrow \pm X$. (For a momentum, the limits of integration are $\pm \infty$, and for a coordinate they are the limits in space imposed by walls or other boundaries.)
(a) (15) Using integration by parts, and carefully showing all your steps, obtain the general result

$$
\left\langle\frac{\partial \varepsilon}{\partial x} x\right\rangle=\text { constant } \times T
$$

while also obtaining the constant.
(b) (10) For a polyatomic molecule, with 3 rotational degrees of freedom plus the usual 3 translational degrees of freedom, the total kinetic energy is

$$
\varepsilon_{\text {total }}=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+\frac{p_{z}^{2}}{2 m}+\frac{J_{1}^{2}}{2 I_{1}}+\frac{J_{2}^{2}}{2 I_{2}}+\frac{J_{3}^{2}}{2 I_{3}}
$$

where the J_{i} are angular momenta in a rotating frame of reference whose axes coincide with the principal axes of rotation, for which the moments of inertia are the I_{i}.

Use the result of part (a) to obtain the heat capacity at constant volume C_{V} for an ideal gas of such polyatomic molecules. Assume that $k T \ll h v_{i}$ for all the vibrational frequencies v_{i}.

