
Physics 408 – Final Exam                 Name___________________________________ 
 
You are graded on your work, with partial credit where it is deserved.  
Please give clear, well-organized solutions. 
 
1. Consider the coexistence curve separating two different phases of a single substance (e.g., liquid and vapor). 
The phases are related by a first order phase transition, with a latent heat L = T!s . Here !s  is the entropy 
change per particle (with the change of phase), and !v  is the corresponding volume change. 

 
(a) (5) Using the Euler equation E = TS ! PV + µN , plus the equation for dE  that defines T , P , and µ , obtain 
a simple equation involving SdT !VdP + Ndµ  in a single phase. (Here the variables have their usual meanings: 
energy, temperature, entropy, pressure, volume, chemical potential. and number of particles.) 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
(b) (5) Let the two phases be labeled 1  and 2 , with chemical potentials µ

1
 and µ

2
. What is the relation 

between dµ
1

 and dµ
2

 along the coexistence curve? Explain clearly why this relation must hold. 
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(c) (5) Use the results of parts (a) and (b) to obtain the Clausius-Clapeyron equation for 
dP

dT
 along the 

coexistence curve (which can also be called the phase boundary) in terms of !s = s
1
" s

2
 and !v = v

1
" v

2
. 

 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

(d) (5) Explain two different reasons why the slope can be negative for P  versus T along a coexistence curve. 
For each of these two possibilities, give an example of a substance that has this property, and explain why it has 
this property.  
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(e) (5) Now consider the coexistence curve for a liquid and a vapor. Treat the vapor as an ideal gas, with a 
volume per particle vgas = V / N . Also assume 

 
v
liq
! vgas , where v

liq
 is the volume per particle in the liquid.  

Show that P = Ce
!L /kT  along the coexistence curve, where C  is a constant. 
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2. Suppose that the electrons in a 2-dimensional system (for example, a very thin metallic film) can be treated as 
an ideal quantum gas.  

 
(a) (6) Let p  be the magnitude of an electron momentum allowed by the periodic boundary conditions. Also let 
D p( )  be the density of states in momentum space, defined by  

D p( )dp = number of electron states in dp at p . 

Using the facts that (i) the area (in momentum space) in dp  at p  is 2! p dp , (ii) the area per momentum is 
h
2
/ A  (where h  is Planck’s constant and A  is the area of the system), and (iii) an electron has 2 spin states, 

calculate D p( ) . 

 

 
 

 
 

 
 

(b) (6) For nonrelativistic electrons, calculate D !( ) , the usual density of states as a function of energy, which is 
defined by 

D !( )d! = number of electron states in d!  at ! . 

[Hint: You should find that D !( )  is a constant (in the present case of nonrelativistic particles in 2 dimensions).] 
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(c) (6) Using D !( )  and the Fermi-Dirac distribution function 1

e
!"µ( )/kT

+1
, write down the expression (i.e., an 

integral over ! ) for the energy E  of the system as a function of the temperature T . 

 
 

 
 

 
 

 
 

(d) (7) It turns out that the change in the chemical potential with temperature is given by dD !( ) / d! , and is zero 
in the present case.* I.e., µ T( ) = !

F
 at all temperatures in the present case.  

Using this fact, and assuming that 
 
T ! T

F
, obtain an approximate expression for C

A
, the heat capacity at 

constant area.**  

Show that C
A

 is equal to constant ! T n , while at the same time determining n . 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

* Except for a mathematical triviality which we can ignore, due to the fact that D !( ) = 0 for ! < 0 , giving a 
discontinuity in this function and thus a nonzero derivative at ! = 0 . 

** C
A

can be treated in the same way as C
V

, the heat capacity at constant volume in 3 dimensions. 
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3. Let us model a long molecule as a 1-dimensional solid with a length L . The phonon energies (at low 
frequency) are related to the momenta by ! p( ) = vs p , where vs  is the sound velocity and  ! = !" = h#.  

(a) (10) Calculate the density of states D !( ) , defined by 

D !( )d! = number of phonon states in d!  at !

= number of vibrational modes in d"  at "

= number of momenta in dp at p

 

with the last equation holding because we assume that there is only one (longitudinal) polarization.  

[Hint: The number of momenta in dp  at p  can be obtained through the same kind of reasoning as in Problem 2, 
part (a), but now in 1 dimension.] 
 
 

 
 

 
 

 
 

(b) (15) For low temperatures, show that C
L

, the heat capacity at constant length, is given byconstant ! T n ' , 
while at the same time determining n ' . [Hint: Use the Bose-Einstein distribution function, which, if you have 
forgotten it, has a similar appearance to the Fermi-Dirac distribution function of the preceding problem.] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*** C

L
can be treated in the same way as C

V
, the heat capacity at constant volume in 3 dimensions. 
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4. A 2-state system has energies ! = 0  and ! = !
0

. Calculate the following quantities as functions of the 
temperature T . 
 
(a) (5) Canonical partition function Z . 
 
 
 
 
 
 
 
(b) (5) Average energy E . 
 
 
 
 
 
 
 
 
 
 
(c) (5) Heat capacity C . 
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(d) (5) Entropy S . [Recall that the Helmholtz free energy is defined by F = E ! TS  and that F = !kT lnZ .] 
 
 
 
 
 
 
 
 
 
 
 
 
 
(e) (5) Now demonstrate that the result for C  in part (c) follows from the result for S  in part (d), showing all 
your work.  
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5. (25) For an adsorbate treated as a 2-dimensional ideal gas, we obtained  

          µ
ads

= !kT ln
z
ads

N
ads

"

#
$

%

&
'    ,   where  z

ads
=
A

!
th

2
e
"
0
/kT  

and for a 3-dimensional ideal gas (composed of the same molecules) we obtained 

µgas = !kT ln
zgas

Ngas

"

#
$

%

&
'    ,   where  zgas =

V

!
th
3

. 

 
(Here each µ  is the chemical potential, of course.) Use these results to obtain the isotherm that gives the 
number N

ads
 of adsorbed molecules as a function of the pressure P  in the gas.  

 
I.e., obtain P  in terms of N

ads
, the area A  available to the adsorbed molecules, the Boltzmann constant k ,  

the temperature T , the thermal de Broglie wavelength !
th

, and the binding energy per adsorbed molecule !
0

. 
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6. The classical Maxwell distribution 
 
f v
!

( )  of molecular velocities  v
!

 has the form 

 

probability velocity is in d3
v at v
!

( ) ! f v
!

( )d3
v !

m

2"kT
#
$%

&
'(

3/2

e)mv
2 /2kT

d
3
v . 

 
(a) (5) Starting with 

 
f v
!

( ) , integrate out vy  and vz  to obtain just the distribution f vx( )  , defined by 

probability x-velocity is in dvx  at vx( ) ! f vx( )dvx . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) (5) Show that f vx( )  is properly normalized to unity. I.e., show that  

dvx
!"

"

# f vx( ) = 1 .
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(c) (5) Starting with 
 
f v
!

( )d3v , derive the distribution f !( )  of molecular energies ! , defined by 

probability !  is in d!  at !( ) " f !( ) d! . 

(Here !  is just the translational kinetic energy 
1

2
mv
2 , of course.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(d) (5) Calculate the average molecular energy ! . 
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(e) (5) Calculate the most probable molecular energy !mp . 
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7. (5 points extra credit)  Discuss what you learned from the 10-minute talks in class about one of the following 
topics, with some specific details (regarding the relevant thermodynamics and statistical mechanics) covered in 
these talks: (i) the early universe or (ii) Maxwell’s reasoning that led to the distribution of molecular velocities 
in Problem 6 or (iii) the subject matter of one of the other talks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Merry Christmas and Happy Holidays! 


