
Physics 633 Exam 1

Please show all significant steps clearly in all problems.

1. In class, we applied Noether’s theorem to relativistic bosons and fermions. Let us now ap-
ply it to nonrelativistic spin 1/2 fermions, for which the field operator Ψ (x) is a 2-component
spinor and the Lagrangian density is

L = Ψ† (x)

[
ih̄

∂

∂t
− h (−→x )

]
Ψ(x) (1)

with

h (−→x ) = −
h̄2

2m
∇2 + V (−→x ) . (2)

(a) (6) By extremalizing the action S, determine the equations of motion for the quantized
fields Ψ (x) and Ψ† (x) .

(b) (6) Calculate the conjugate momentum fields π and π†.

[Note: The answers below, to (c), (d), and (e), should have a simple, physically
recognizable form.]

(c) (6) In treating Noether’s theorem, we found that the conserved four-momentum is given
by

cP µ =
∫

d3x

(
cπ

∂Ψ

∂xµ
− Lgoµ

)
. (3)

From this expression, calculate the Hamiltonian H.

(d) (6) Using Eq. (3), calculate the 3-momentum
−→
P .

(e) (6) Finally, calculate the spin angular momentum
−→
M by using the result we obtained in

conjunction with Noether’s theorem,

cM ij =
∫

d3x c πSij Ψ. (4)

You can determine the 2× 2 matrix Sij by comparing the definition of Sij,

δΨ =
1

2
εijS

ij Ψ (5)

for a rotation given by
δxi = εijx

j, (6)

with the requirement that a 2-component spinor transforms as

δΨ = −
i

4
εijσ

ij Ψ (7)

where the 2× 2 matrix σij is given by

σij = σk i,j,k=1,2,3 or cyclic permutation (8)

and the σk are the three Pauli matrices.
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2. In this problem, let us choose units such that h̄ = c = 1, in order to avoid complicating
factors of h̄c.

Consider a one-component complex bosonic or fermionic field ψ, with the equation of motion

[
i
∂

∂t
−H (−→x )

]
ψ (x) = 0, (9)

where H (−→x ) is an operator which involves only the spatial coordinates. Define ω−→k by

h̄ω−→k = e−i
−→
k ·−→x H (−→x ) ei

−→
k ·−→x . (10)

Also let

G (x) =
∫

d4k

(2π)4
e−ikxG (k) (11)

with

G (k) =
1

k0 − ω−→k + iε sgn (ω−→k )
, ε→ 0+ , sgn (u) = u/|u| (12)

and
kx = k0x

0 −
−→
k · −→x = ωt−

−→
k · −→x . (13)

(a) (10) For the case t > 0, show that G (x) can be written as

G (x) = a
∫ d3k

(2π)3
e
−iω−→

k
t
ei
−→
k ·−→x (14)

and, at the same time, evaluate a. [Do a contour integration, drawing a picture and explain-
ing each step. You will have a check on your answer when you do part (b).]

(b) (10) The Green’s function is defined in terms of the vacuum expectation value of a
time-ordered product, with

iG (x− x′) = 〈0|ψ (x)ψ† (x′) |0〉 (15)

for the case t > t′. Here we can represent the field operator as

ψ (x) =
1
√

V

∑
−→
k

[
a
(−→
k
)
e
−iω−→

k
t
ei
−→
k ·−→x + b†

(−→
k
)
e
iω−→
k
t
e−i
−→
k ·−→x

]
. (16)

Show that G (x) is again given by the same expression you obtained for (14), in the case
t > t′, so that the representation (11)-(12) is justified. (The case t < t′ clearly goes through
the same way.)

(c) (10) Show that G (x− x′) really is a Green’s function:

[
i
∂

∂t
−H (−→x )

]
G (x− x′) = δ (x− x′) (17)
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3. In obtaining the nonrelativistic limit of the Dirac equation, we had

Heff =

(
−→p − e

−→
A
)2

2m
+ eφ−

p4

8m3
−

e

2m
−→σ ·
−→
B +

e [∇2φ]

8m2
+

e

4m2
−→σ ·

([−→
∇φ

]
×−→p

)
. (18)

(a) (5) For a central potential, φ = φ (r) where r is the radial coordinate, rewrite the last
term as a product involving dφ/dr.

(b) (5) For a Coulomb potential, φ (r) = Ze/ (4πr) (in rationalized Gaussian units), simplify
the next-to-last term.

(c) (10) Give a clear physical interpretation of each of the six terms in the above expression,
after the last two terms have been replaced by the results of parts (a) and (b).

4. (20) The Kramers-Heisenberg formula is

dσ

dΩ
= r20

(
ω′

ω

) ∣∣∣∣∣∣δAB−→ε (α) · −→ε (α
′) −

1

m

∑
I



(
−→p · −→ε (α

′)
)
BI

(
−→p · −→ε (α)

)
IA

EI − EA − h̄ω
+

(
−→p · −→ε (α)

)
BI

(
−→p · −→ε (α

′)
)
IA

EI − EA + h̄ω′



∣∣∣∣∣∣
2

(19)
where the notation is taken from Sakurai.

(a) (15) Using a picture, and clear but simple arguments, show that the following is true for
Thomson scattering:

If light is scattered through 90o , it will be 100% polarized.

You do not need to do any serious mathematics in this problem, but you will need to give a
complete and rigorous argument.

(b) (5) Describe a simple experiment to observe this effect.
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