
Physics 633 Exam 2

Please show all significant steps clearly in all problems.

1. Consider a one-dimensional system of noninteracting fermions having the Lagrangian
density

L0 = ih̄ ψ† (x, t)
∂ψ (x, t)

∂t
− ψ† (x, t)T (x)ψ (x, t) . (1)

Here T (x) operates on functions of x, but not on state vectors in the occupation number
representation. When the field ψ (x, t) is quantized, it is replaced by the Heisenberg field
operator ψ̂ (x, t), which can be written in terms of the usual Heisenberg destruction operators
ĉk(t) and a complete orthonormal set of functions ψk (x):

ψ̂ (x, t) =
∑
k

ψk (x) ĉk (t) . (2)

Since there are both positive energy states labeled by k+, with εk+ > 0, and negative-
energy states labeled by k−, with εk− < 0, this can be written more explicitly as

ψ̂ (x, t) =
∑
k+

ψk+ (x) ĉk+ (t) +
∑
k−

ψk− (x, t) ĉk− (t) (3)

but you do not need this form until part (e).

(a) (4) Using the usual rules for canonical quantization, obtain the “canonical momen-
tum” π and the second-quantized Hamiltonian density Ĥ0.

(b) (4) Write down the standard anticommutation rules for the operators ĉk and ĉ
†
k′. (You

should just assume these.)

(c) (4) From the relations in part (b), derive the corresponding relations for the field
operators ψ̂ (x, t) and ψ̂† (x′, t).

(d) (4) The second-quantized Hamiltonian is given by

H0 =
∫
d3x Ĥ0. (4)

Let the ψk (x) be eigenfunctions of the operator T (x):

T (x)ψk (x) = εkψk (x) . (5)

From the expression for Ĥ0 in part (a), derive the expression for H0 in terms of the operators
ĉk and ĉ

†
k′ .

(e) (4) Perform a canonical transformation from the fermion operators ĉk− (t) and ĉ
†
k− (t)

for negative-energy states to operators d̂k (t) and d̂
†
k (t) for positive-energy holes or antipar-

ticles. Then show that H0 has the form

1



H0 =
∑
k

(
ĉ†kĉk −

1

2

)
εk +

∑
k

(
d̂†kd̂k −

1

2

)
εk. (6)

In this equation and below, k ranges only over positive-energy states.

(f) (4) Consider the total number of particles and the charge, as given by the operators

N =
∑
k

ĉ†kĉk +
∑
k

d̂†kd̂k. (7)

Q =
∑
k

ĉ†kĉk −
∑
k

d̂†kd̂k. (8)

Determine whether each of these quantities is conserved. I.e., determine whether dN/dt = 0
and dQ/dt = 0 hold or not. (Start with the Heisenberg equation of motion.)

(g) (4) Now introduce a model interaction between particles and antiparticles:

H = H0 +
∑
kk′

Vkk′〈ĉ
†
kd̂
†
k〉ĉk′ d̂k′ +

∑
kk′

V ∗k′kd̂
†
kĉ
†
k〈d̂k′ ĉk′〉. (9)

Determine whether this new HamiltonianH conserves N and Q, using the same approach
as in the preceding part. I.e., calculate dN/dt and dQ/dt from the Heisenberg equation of
motion.

(h) (4) In the vacuum state | 0〉, with no particles or antiparticles, determine the values
of 〈0 | d̂k′ ĉk′ | 0〉 and 〈0 | d̂

†
k′ ĉ
†
k′ | 0〉. Then discuss how we should interpret 〈d̂k′ ĉk′〉 and 〈ĉ

†
kd̂
†
k〉

in order for H in part (g) to make any sense. In doing this, make reference to the related
ideas of a (i) a coherent state and (ii) the Bogoliubov transformation in our treatment of the
BCS theory of superconductivity. Please be as specific as posible.
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2. If we have bosons with a zero-point energy (like the zero-point energy of the radiation
field), then the noninteracting Hamiltonian in Problem 1 becomes

H =
∑
r,k

(
b̂†rkb̂rk +

1

2

)
h̄ ωk +

∑
r,k

(
â†rkârk −

1

2

)
εk. (10)

Here ârk and â
†
rk represent operators for both particles and antiparticles, with r = 1 for

fermions and r = 2 for antifermions.

The bosons are assumed to have two polarizations, and the fermions only one (as is true
for massless spin one bosons and massless spin 1/2 fermions in three dimensions). Suppose
that we have a kind of “supersymmetry”, in the sense that the bosons and fermions have
the same energies. It is an interesting fact that the infinite vacuum energies of bosons and
fermions cancel in this case.

Now, however, suppose that the h̄ ωk = h̄ ck are different from the εk because the fermions
and bosons have different boundary conditions. Specifically, the boson states are forced to
go to zero at x = 0 and x = d, in a Casimir problem. (Recall that there are conducting
plates at z = 0 and z = d in the three-dimensional Casimir problem.) Then the wavenumber
is quantized:

k = n
π

d
, n = 1, 2, .... (11)

The fermion states, on the other hand, have no such boundary condition, so the fermion
energy is independent of the separation d. You can therefore forget the fermions beyond this
point.

(a) (25) Calculate the change in the zero-point energy of the boson field due to this
boundary condition, as a function of d. Use a cut-off function which goes to zero as ωk →∞.
Just as in the three-dimensional Casimir problem, you will want to use the Euler-Maclaurin
formula

∞∑
n=0

F (n)−
∫ ∞
0

F (n) dn =
1

2
F (0)−

1

12
F ′ (0) +

1

720
F ′′′ (0) + .... (12)

(b) (3) Calculate the force between the “plates” at x = 0 and x = d.

For a recent experimental measurement of the Casimir effect, see the attached paper.
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3. (17) In our long calculation of Compton scattering, we finally arrived at the results

dσ

dΩ
=
1

2
e4
ω′ 2

ω2
1

4m2

[
S1

(2k · pi)
2 +

S2

(2k′ · pi)
2 +

2S3
(2k · pi) (2k′ · pi)

]
(13)

with

S1 = 8 (k · pi)
[
pi · k

′ + 2 (k · ε′)2
]

(14)

S2 = 8 (k′ · pi)
[
pi · k − 2 (k

′ · ε)2
]

(15)

S3 = 8pi · k {2ε · ε
′ [(pi · k

′) (ε′ · ε)− (pi · ε
′) (k′ · ε) + (pi · ε) (k

′ · ε′)]− pi · k
′} (16)

−8k · ε′ {[(k · pi) (k
′ · ε′)− (k · k′) (pi · ε

′) + (k · ε′) (pi · k
′)]} (17)

+8k′ · ε {[(k′ · ε) (k · pi)− (k
′ · k) (ε · pi) + (k

′ · pi) (ε · k)]} . (18)

(Recall that we choose the Coulomb gauge and the frame in which the electron is initially
at rest. The primed quantities refer to the outgoing photon, and the corresponding unprimed
quantities to the incoming photon. Finally, pi is the initial four-momentum of the electron,
and m is its rest mass.) Show that this gives the Klein-Nishina formula

dσ

dΩ
=

e4

4m2
ω′ 2

ω2

[
ω′

ω
+

ω

ω′
+ 4 (ε · ε′)2 − 2

]
. (19)

(b) (3) Show that the Klein-Nishina cross-section reduces to the nonrelativistic Thomson
cross-section for elastic scattering.
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4. (a) (5) Write down the lowest-order Feynman diagram for the self-energy of an electron
in quantum electrodynamics. Then write down the corresponding mathematical expression
(in the momentum representation), and give the expressions for the electron Feynman prop-
agator SF (p) and the photon propagator Dµν (q

2).

(b) (15) The nonrelativistic Green’s function with interactions is

G (k) = G
(−→
k , ω

)
=

1

ω − h̄−1ε0
(−→
k
)
− Σ

(−→
k , ω

) . (20)

Show that the energy ε
(−→
k
)
and damping | γ

(−→
k
)
| of long-lived single-particle excitations

are given to lowest order by

ε
(−→
k
)
= ε0

(−→
k
)
+Re h̄Σ

(−→
k , ε

(−→
k
)
/ h̄
)

(21)

γ
(−→
k
)
=

1− ∂ReΣ
(−→
k , ω

)
∂ω

−1
ε

(−→
k
)
/ h̄

ImΣ
(−→
k , ε

(−→
k
)
/ h̄
)
. (22)
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