
Physics 633 Final Exam

Please show all significant steps clearly in all problems.

1. In class we considered two applications of Bogoliubov transformations: in the BCS
theory of superconductivity and in treating weakly-interacting excitations of a superfluid. A
third application is particle creation in a rapidly changing gravitational field, either in the
expansion of the early universe (considered by Stephen Fulling of our own Texas A&M Math
Department) or near a black hole (considered by Stephen Hawking of Cambridge University).
References are Aspects of Quantum Field Theory in Curved Space-Time, by S. A. Fulling,
and Quantum Fields in Curved Space, by N. D. Birrell and P. C. W. Davies. The treatment
of these problems involves nontrivial applications of Green’s functions etc., but the simple
ideas below are relevant.

(a) (6) Suppose that we have a simple Bogoliubov transformation for spin 1/2 fermions,
of the form

ak = ukak + vka
†
−k (1)

a†k = u∗ka
†
k + v∗ka−k (2)

where k = (k, s) is a useful notation for nonrelativistic particles in the present context. Here
h̄k represents the 3-momentum, s the spin orientation, and ak the transformed destruction
operator. What condition or conditions must the uk and vk satisfy if this is to be a canonical
transformation?

(b) (6) For scalar bosons, the transformation is

ak = ukak + vka
†
−k (3)

a†k = u∗ka
†
k + v∗ka−k. (4)

What condition or conditions must the uk and vk satisfy in this case?

(c) (6) Now consider a more general transformation for bosons, of the form

ai =
∑
j

(
uijaj + vija

†
j

)
(5)

a†i =
∑
j

(
u∗ija

†
j + v∗ijaj

)
. (6)

What is the condition on the uij and vij for this to be a canonical transformation?
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(d) (6) Suppose that there are two different vacua |0〉 and |0〉, in two different regions of
spacetime. (One might be before a period of expansion in the early universe, and one after.
Or one might be near the horizon of a black hole, and the other flat spacetime asymptotically
far away.) The respective vacua are defined by

ai|0〉 = 0 (7)

aj |0〉 = 0. (8)

Now suppose that |0〉 is the vacuum in a region far from you, and that |0〉 is your local
vacuum. An observer in the region far from you sees no particles, so that 〈0|n|0〉 = 0, where
n = N/V , N is the total number operator for all states, and V is the normalization volume.
What do you see for the number density in that region? I.e., what is 〈0|n|0〉 where n = N/V
and N is your total number operator? Give your answer in terms of the uij and vij.

(e) (6) Let V (r) be the electrostatic potential energy of a hypothetical massless fermion
with charge +e. Suppose that

V (r) = 0, r > R (9)

V (r) = V0, r < R (10)

where r = |x| is the radial coordinate and V0 > 0. (The region r < R is regarded as large
enough that it makes sense to think of it as a different vacuum.) Then let

ak = ck for εk > V0 (11)

ak = c†k for εk < V0 (12)

whereas

ak = ck for εk > 0 (13)

ak = c†k for εk < 0. (14)

Suppose that all the states with energy less than V0 in the region r < R are occupied, and
all those above V0 are unoccupied – i.e., ak|0〉 = 0. If V is the volume of the region with
a positive potential, what is the number density of particles in this region as measured by
you, an observer outside R? I.e., what is 〈0|n|0〉 ? Your answer should be a number, but it
can be left in the form of a summation over k (with a specification of the restriction on k).

This last part is a toy model of proposals to observe electron-positron pair creation
during the collision of two heavy nuclei: For a tiny fraction of a second, near the large
positive charge, the vacuum level is pulled down for electrons and pushed up for positrons.
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2. Let us consider the scattering of an electron off a proton, with the proton approximated
as a simple Dirac particle with no internal structure.

(a) (5) Show that the Lippmann-Schwinger equation holds for an electron:

Ψ (x) = ψ (x) +
∫

d4xSF (x− x′) eA/ (x′) Ψ (x′) (15)

where Ψ (x) and ψ (x) are respectively the solutions to the Dirac equation with and without
an electromagnetic field, and SF is the Feynman propagator. (Equation (26) will jog your
memory if you have forgotten the Dirac equation.)

(b) (5) Show that the analogous equation holds for the electromagnetic field:

Aµ (x) =
∫

d4xDFµν (x− x′) Jν (x′) . (16)

(c) (5) The scattering amplitude is defined by

Sfi = 〈ψf |Ψi〉. (17)

I.e., it is defined to be the amplitude that the initial state i will evolve into a particular final
state f . Take Jµ to be the transition current of the proton:

Jµ = epψ
p

fγ
µψpi . (18)

Obtain the expression for Sfi in terms of ψ
†
f , SF , γ

µ, DFµν , ψ
p

f , ψ
p
i , and Ψi.

(d) (5) With the normalization

ψ (x) =

√
m

EV
u (p, s) e−ip·x (19)

show that

S
(1)
fi =

[
(2π)4 δ4 (Pf − Pi)

∏
ext.

(
m

EV

)1/2]
M
(1)
fi (20)

M
(1)
fi = −ieep [u (pf , sf) γ

µu (pi, si)]
gµν

(pf − pi)
2 + iη

[
u
(
p′f , s

′
f

)
γµu (p′i, s

′
i)
]
. (21)

(e) (3) Draw a Feynman diagram for this process, indicating the momenta for the electron,
proton, and virtual photon.

(f) (4) Show that the above expression is consistent with the Feynman diagram rules.
I.e., describe in detail how this expression follows from the rules.
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(g) (3) Finally, let us consider electron-positron, or e+e−, scattering (historically called
Bhabha scattering after H. J. Bhabha, who considered this problem in 1935). Write down
the two Feynman diagrams for this process, labeling the momenta of the electron, positron,
and virtual photon. These diagrams respectively involve the “Mandelstam variables”

s = − (p1 + p2)
2 (22)

t = − (p1 − p′1)
2

(23)

where 1 and 2 refer to the electron and positron.

3. (20) For a Dirac field, the transformations

ψ (x) → ψ′ (x) = eiαγ5ψ (x) (24)

ψ† (x) → ψ†′ (x) = ψ† (x) e−iαγ5 (25)

are called chiral phase transformations, where α is a real parameter. Show that the La-
grangian density

L = cψ (x) [ih̄γµ∂µ −mc]ψ (x) (26)

is invariant under a chiral phase transformation when m = 0, but that the chiral symmetry
is broken when the fermions acquire a mass. (This is an important effect in the context of
the strong nuclear interaction.) Recall the properties

[
γ5, γµ

]
+
= 0 ,

(
γ5
)2
= 0 , γ5† = γ5. (27)

4. (20) From SFS
−1
F = 1 and the expression for the Feynman propagator SF , derive the

Ward identity
∂Σ(p)

∂pµ
= Λµ (p, p) (28)

where Λµ is the vertex correction.
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