Physics 222, Modern Physics, Exam 2

NAME

\qquad
You are graded on your work, with partial credit where it is deserved.
Please be clear and well-organized in all your steps.

1. (15) Show that

$$
\Psi(x, t)=e^{-i p x / \hbar} e^{-i E t / \hbar}
$$

satisfies the time-dependent Schrödinger equation for a free particle

$$
i \hbar \frac{\partial \Psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}
$$

and obtain the energy E in terms of the momentum p.
(b) (5) Is this wave traveling in the positive or the negative x direction? Explain.
2. A 3d wavefunction for an electron in a hydrogen atom is

$$
\psi(r, \theta, \phi)=A_{0} r^{2} e^{-r / 3 a_{0}} \sin ^{2} \theta e^{2 i \phi}
$$

where A_{0} is a constant.
(a) (6) What are the values of the principal quantum number n, the angular momentum quantum number ℓ, and the magnetic quantum number m_{ℓ} ?

$$
n=\square \quad \ell=\square \quad m_{\ell}=
$$

(b) (14) Calculate the value of r for which the probability $4 \pi r^{2}|R(r)|^{2}$ reaches a maximum, where $R(r)$ is the radial part of this wavefunction. Is this consistent with the Bohr theory?
3. The potential for the infinite square well is

$$
V(x)=0 \text { for } 0<x<\mathrm{L} \quad, \quad V(x)=\infty \text { for } x<0 \text { or } x>\mathrm{L} .
$$

(a) (5) Show that the time-independent Schrödinger equation for $0<x<\mathrm{L}$ is satisfied by

$$
\psi(x)=A \sin (k x)+B \cos (k x)
$$

(Recall that the momentum operator is $\hat{p}=-i \hbar \frac{d}{d x}$.)
(b) (5) Use the boundary condition at $x=0$ to eliminate one of the terms in $\psi(x)$.
(c) (5) Use the boundary condition at $x=L$ to determine the allowed values of k in terms of L.
(d) (5) Using the fact that $\int_{0}^{\pi} d u \sin ^{2} u=\int_{0}^{\pi} d u \cos ^{2} u=\frac{1}{2} \pi$, obtain the final normalized wavefunction $\psi(x)$.
4. (20) The radial Schrödinger equation for the hydrogen atom is

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{2 m}{\hbar^{2}}\left[E-V(r)-\frac{\hbar^{2}}{2 m} \frac{\ell(\ell+1)}{r^{2}}\right] R=0 \quad, \quad V(r)=-k \frac{e^{2}}{r}
$$

Show that

$$
R=A r e^{-\alpha r}
$$

is a solution to the radial Schrödinger equation, and at the same time determine the values of ℓ, α, and E in terms of the various constants like m, \hbar, k, and e.
(You are supposed to calculate these values of ℓ, α, and E in doing your work. I.e., do not just assume them or quote them.)
5. The ground state wavefunction of the harmonic oscillator is

$$
\psi=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha x^{2} / 2} \quad, \quad \alpha=\frac{\sqrt{m K}}{\hbar} \quad,-\infty<x<\infty .
$$

(a) (4) Calculate $\langle x\rangle$, the expectation value of the coordinate x.
(b) (4) Calculate $\left\langle x^{2}\right\rangle$.
(c) (4) Calculate $\langle p\rangle$, the expectation value of the momentum p. Recall that the momentum operator is

$$
\hat{p}=-i \hbar \frac{d}{d x}
$$

(d) (4) Calculate $\left\langle p^{2}\right\rangle$.
(e) (4) Using the fact that $(\Delta x)^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$ and $(\Delta p)^{2}=\left\langle p^{2}\right\rangle-\langle p\rangle^{2}$, calculate the value of $\Delta p \Delta x$ in terms of \hbar. Is your result consistent with the uncertainty principle?

$$
I_{n} \equiv \int_{0}^{\infty} x^{n} e^{-a x^{2}} d x
$$

$$
\begin{array}{ll}
I_{n}=\frac{[(n-1) / 2]!}{2 a^{(n+1) / 2}} & \text { for odd } n \\
I_{n}=\frac{1 \cdot 3 \cdot 5 \cdots(n-1)}{2(n / 2)+1} \sqrt{\frac{\pi}{a}} & \text { for even } n \\
I_{0}=\frac{1}{2} \sqrt{\frac{\pi}{a}} & \\
I_{1}=\frac{1}{2 a} &
\end{array}
$$

