Strong-Field Imaging of Molecular Dynamics

Wendell T. Hill, III University of Maryland Department of Physics and Institute for Physical Science and Technology

Explosion Energies

 $E_{\rm ex} = \frac{Z_1 Z_2}{R}$

Light Atoms

TABLE IV. Total kinetic-energy releases in the fragmentation channels following the multielectron dissociative ionization of N₂, CO, and O₂ in intense laser field with 100-fs pulse duration, 615-nm wavelength in the 10^{15} W/cm² range.

Molecule	N ₂	СО	0,
Fragment channel	2		-
$A^+ + B^+$	6.8	6.6	5.5
$A^+ + B^{2+}$ $A^{2+} + B^+$	13.1	11.7 11.7	11.9
$A^{2+}+B^{2+}$	22	19.9	20
$A^{2+} + B^{3+}$ $A^{3+} + B^{2+}$	32	32.7 29.8	32

Cornaggia, et al., PRA 44, 4499 (1991)

$$R_c \approx 0.38 \,\mathrm{nm}$$

~70% of E_{eq}

Heavy Atoms

Normand, et al., PRA 53, R1958 (1996)

Enhanced Ionization at R_c

Posthumus, et al. J.Phys.28; Zuo & Bandrauk, PRA 52; Seideman, et al. PRL 75

FR/2

$$1\sigma_g \rightarrow (1s_1 + 1s_2)/\sqrt{2}$$

$$1\sigma_u \rightarrow (1s_1 - 1s_2)/\sqrt{2}$$

Enhanced Ionization: Theory

Numerical Integration of SE in 3D; Zuo and Bandrauk, PRA 52, R2511 (195)

Manybody S-Matrix; J. Muth-Böhm, A. Becker and F. H. M. Faisal, ICOMP VIII (99)

H₂ Explosion Energy: Experiment

Theory \longrightarrow R_c=4/I_P (au)

FIG. 4. Ionization signal as a function of internuclear separation and the laser intensity envelope.

Gibson, et al., PRL 79, 2022 (1997)

Zuo and Bandrauk, PRA 52, R2511 (1995)

3-Atom Enhanced Ionization at R_c

$$E_{\text{mea}} \approx 66 \text{ eV} \longrightarrow V(r_{CO} = R_C) = \sum_{i < j} \frac{Z_i Z_j}{r_{ij}} \longrightarrow R_C \approx 0.22 \text{ nm (4 au)}$$

$$nhv + CO_2 \rightarrow O^{p+} + C^{q+} + O^{r+}$$

 $p, q, r = 1,2,3$
No intermediate molecular
states observed!

What about the electrons?

Dynamic Screening Explosion Model

Brewczyk, Rzążewski and Clark PRL 78, 191 (1997)

Ionization and Dissociation *Interlaced* Electrons do not leave region immediately!

Dissociation begins @ R_{eq} but slowed by electron cloud producing energies consistent with dissociation from R_c .

Hering, Brewczyk and Cornaggia, PRL 85, 2288 (2000)

Thomas-Fermi Hydrodynamic Model

$$\begin{split} \Phi(x,y) &= \frac{Ze}{[b^2 + (x - R)^2 + y^2]^{1/2}} + \frac{Z_0 e}{[b^2 + x^2 + y^2]^{1/2}} + \frac{Ze}{[b^2 + (x + R)^2 + y^2]^{1/2}} \\ &- \frac{e^2}{2Am^2} \int \int_{-\infty}^{\infty} \frac{\Phi(x',y') \, dx' \, dy'}{[c^2 + (x - x')^2 + (y - y')^2]^{1/2}}, \end{split}$$

$$\begin{split} U(R) &= -\frac{Ze^2}{2m} \int \int_{-\infty}^{\infty} \frac{\rho_{\rm at}^{Z_0}(x,y) + \rho_{\rm at}^Z(x-R,y)}{[b^2 + (x+R)^2 + y^2]^{1/2}} \, dx \, dy - \frac{Ze^2}{2m} \int \int_{-\infty}^{\infty} \frac{\rho_{\rm at}^{Z_0}(x,y) + \rho_{\rm at}^Z(x+R,y)}{[b^2 + (x-R)^2 + y^2]^{1/2}} \, dx \, dy \\ &- \frac{Z_0 e^2}{2m} \int \int_{-\infty}^{\infty} \frac{\rho_{\rm at}^Z(x+R,y) + \rho_{\rm at}^Z(x-R,y)}{(b^2 + x^2 + y^2)^{1/2}} \, dx \, dy + 2 \frac{ZZ_0 e^2}{R} + \frac{ZZe^2}{2R}, \end{split}$$

Static Screening Model

Angular Dependence of $E_{\rm C}$

$$\mathcal{E} = \frac{2Z^2}{R_C(\theta_b)} + \frac{Z^2}{2R_C(\theta_b)\sin(\theta_b/2)}$$

$$\mathcal{E} = \frac{2[Z - \sigma(\theta_b)]^2}{R_{eq}} + \frac{[Z - \sigma(\theta_b)]^2}{2R_{eq}\sin(\theta_b)}$$

Momentum & Time-of-Flight Spectra

Time-Resolved Images 128 x 128 Pixels 730 Hz Digital Acquisition 500,000 – 1,000,000 Frames Mass-Resolved Energies & Angular Distributions

Time-Resolved Waveforms Digital Scope Acquisition Mass-Resolved Energies Distributions

Scale: 5 - 8 amu/div

Correlation Imaging

AVERAGE IMAGE

SELECTIVE AVERAGE

POLARIZATION AXIS 0 1

Image labeling: a graphical interface to correlation in multiparticle ejection dynamics

K. Zhao,^{1,2} G. Zhang,³ and W. T. Hill, $III^{1,2}$

#34070 - \$15.00 US (C) 2001 OSA Received May 30, 2001; Revised June 27, 2001 2 July 2001 / Vol. 9, No. 1 / OPTICS EXPRESS 42

Symmetric Coulomb Explosion

Through Minimum

Across O-O

Enhanced Ionization at R_c

Symmetric Explosion vs. Bond Angle

Charge Density Parameters

NO₂ CO₂

Resulting Charge Distribution

Wider Distribution

Larger y₀

0.75

0.7

0.65

0.3 0.28

).26

0.24 Huff 2

0.22

Linear vs. Bent Explosions

Conclusion

- The first example of where the R_c and screening models give different results!
- Screening explains the electron dynamics and the differences between linear and bent explosions.
- We have now recovered the ability to use ultrafast pulses to examine molecular structure.

Acknowledgements

- Graduate Students
 - Harry Zhao
 - Vishal Chintawar
 - J. Zhu
- Visitors
 - G. Zhang (Tianjian)
 - F. Adameitz (France)

- Undergraduates
 - T. Colvin, Jr.
 - D. Cofield
 - D. Ellingston
- Support NSF