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Abstract

Algebraic methods for biochemical reaction network theory

by

Anne Joyce Shiu

Doctor of Philosophy in Mathematics

and the Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Bernd Sturmfels, Chair

This dissertation develops the algebraic study of chemical reaction networks endowed with mass-
action kinetics. These form a class of dynamical systems that have a wide range of applications
in the physical and biological sciences. Early results in chemical reaction network theory relied on
techniques from linear algebra, dynamical systems, and graph theory. More recently, motivated
by problems in systems biology, other areas of mathematics have contributed to this subject.
These branches of mathematics include control theory, homotopy theory, and matroid theory. As
a complement to these varied perspectives, the approach of this dissertation is algebraic.

Chapter 2 develops the basic theory of toric dynamical systems, which are those chemical
reaction systems that have the property that for any chemical complex (a product or reactant), the
amount produced of that complex at steady state is equal to the amount consumed by reactions.
Toric dynamical systems are known as complex-balancing mass-action systems in the mathematical
chemistry literature, where many of their properties have been established. Special cases of toric
dynamical systems include all zero deficiency systems and all detailed-balancing systems. One
feature is that the steady state locus of a toric dynamical system is a toric variety. Furthermore,
this variety intersects the interior of each invariant polyhedron (a polyhedron in which a trajectory
of the dynamical system is confined) in a unique point. For any chemical reaction network, there
is an associated moduli space that consists of those vectors of reaction rate constants for which the
resulting dynamical system is a toric dynamical system. The main result states that this moduli
space is a toric variety whose combinatorial structure we can characterize.

To determine the steady states on the boundaries of invariant polyhedra, the concept of a
siphon is important. Siphons in a chemical reaction system are subsets of the chemical species that
have the potential of being absent in a steady state. The main result of Chapter 3 characterizes
minimal siphons in terms of primary decomposition of binomial ideals. Further, we explore the
underlying geometry, and we demonstrate the effective computation of siphons using computer
algebra software. This leads to a new method for determining whether given initial concentrations
allow for various boundary steady states; this classification arises from a chamber decomposition.

Siphons determine which faces of an invariant polyhedron contain steady states, and a rel-
evant question is whether any trajectories of a chemical reaction system approach such a boundary
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steady state. The global attractor conjecture, which is the subject of Chapter 4, implies that no inte-
rior trajectories approach boundary steady states in the case of toric dynamical systems. Our main
result states that this conjecture holds when all of the siphons correspond to facets (codimension-
one faces), vertices (zero-dimensional faces), or empty faces of the invariant polyhedron. As a
corollary, the conjecture holds when the associated invariant polyhedra are two-dimensional.

Chapter 5 pertains to the topic of multistationarity, which refers to the capacity of a
biochemical reaction system to exhibit multiple steady states in one invariant polyhedron. Known
results from chemical reaction network theory provide sufficient conditions for the existence of bista-
bility, and on the other hand can rule out the possibility of multiple steady states. Understanding
small networks is important because the existence of multiple steady states in a subnetwork of a
biochemical model sometimes can be lifted to establish multistationarity in the larger network. The
main result establishes the smallest reversible, mass-preserving network that admits bistability and
determines the semi-algebraic set of parameters for which more than one steady state exists.

Chapter 6 focuses on mathematical methods for predicting gene expression from regulatory
sequence. The chemical reactions that underlie transcriptional regulation include the bindings of
transcription factors to cis-regulatory sequences of genes. For each such sequence, many possible
combinations of transcription factors can bind to the sequence. Accordingly, thermodynamic models
give quantitative predictions of gene expression levels that are weighted averages over the set of all
possible binding configurations. This chapter describes the implementation of such a model in the
context of early embryonic development in Drosophila melanogaster.
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Chapter 1

Introduction

1.1 From molecular biology to systems biology

This dissertation provides a mathematical bridge between a part of molecular biology and a
part of systems biology. In particular, we analyze biochemical reactions such as binding-dissociating
reactions, which are fundamental at the molecular level (for example, in gene regulation) as well as
at the systems level (for example, in metabolic processes). As increasingly complex biological data
are being collected, a rigorous study of systems biology models is imperative. This dissertation
focuses on a class of such models that arise from chemical reaction networks. Moreover, our
approach is mathematical, which allows us to prove theorems instead of relying on simulations.

The main objects of study in this dissertation are chemical reaction networks endowed with
mass-action kinetics. Mass-action kinetics has a wide range of applications in the physical sciences,
and now it plays a role in systems biology [ET89, §1.5]. Examples of reaction systems include
pharmacological models of drug interaction [GSG+07], T-cell signal transduction models [Cha03,
McK95, Son01], and enzymatic mechanisms [SM00]. Pioneered by Feinberg, Horn, and Jackson
in the 1970s [Fei79, Fei87, HJ72], chemical reaction network theory is the mathematical study of
mass-action kinetics; we will highlight many of their results in this dissertation. Early results relied
on techniques from linear algebra, dynamical systems, and graph theory. More recently, motivated
by problems in systems biology, other areas of mathematics have contributed to this subject.
These branches of mathematics include control theory [ADS07b, AS06, Cha03], homotopy theory
[CHW08], and matroid theory [BBCQ04, CFR08]. Convex geometry and differential geometry have
also played a role in chemical reactor design [Fei00a, Fei00b, FH97]. As a complement to these
varied perspectives, the approach of this dissertation is algebraic. We will reinterpret some known
results from the point of view of computational algebra and algebraic geometry, and in addition
we will prove new theorems. We remark that related work of Craciun, Pantea, and Rempala
[CPR09a, CPR09b], Dickenstein and Pérez Millán [DM10], Gatermann and Huber [GH02], Manrai,
Thomson, and Gunawardena [MG08, TG09b], and Wang and Xia [WX05] also take an algebraic
viewpoint. In fact, computed algebraic invariants of biochemical systems have begun to be used
for experimental data analysis [TG09a, §4].

The remainder of this Introduction provides an overview of the results contained in this
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dissertation (Section 1.2), establishes the notation of chemical reaction network theory (Section 1.3),
and illustrates these concepts through several examples (Section 1.4).

1.2 Overview of main results in this dissertation

Among all chemical reaction systems, toric dynamical systems are the best understood.
Chapter 2 develops the basic theory of toric dynamical systems, which are those chemical reaction
systems that have the property that for any chemical complex (a product or reactant), the amount
produced of that complex at steady state is equal to the amount consumed by reactions. Toric
dynamical systems are known as complex-balancing mass-action systems in the mathematical chem-
istry literature. Special cases of toric dynamical systems include all zero deficiency systems and all
detailed-balancing systems. One feature is that the steady state locus of a toric dynamical system
is a toric variety. Furthermore, this variety intersects the interior of each invariant polyhedron (a
polyhedron in which a trajectory of the dynamical system is confined) in a unique point. For any
chemical reaction network, there is an associated moduli space that consists of those vectors of
reaction rate constants for which the resulting dynamical system is a toric dynamical system. Our
main result states that this moduli space is a toric variety, whose combinatorial structure we can
characterize.

To determine the steady states on the boundaries of invariant polyhedra, the concept of a
siphon is important. Siphons in a chemical reaction system are subsets of the chemical species that
have the potential of being absent in a steady state. The main result of Chapter 3 characterizes
minimal siphons in terms of primary decomposition of binomial ideals. Further, we explore the
underlying geometry, and we demonstrate the effective computation of siphons using computer
algebra software. This leads to a new method for determining whether given initial concentrations
allow for various boundary steady states; this classification arises from a chamber decomposition.

Siphons determine which faces of an invariant polyhedron contain steady states, and
a relevant question is whether any trajectories of a chemical reaction system approach such a
boundary steady state. The Global Attractor Conjecture, which is the subject of Chapter 4,
implies that no interior trajectories approach boundary steady states in the case of toric dynamical
systems. Our main results state that this conjecture holds when all of the siphons correspond to
facets (codimension-one faces), vertices (zero-dimensional faces), or empty faces of the invariant
polyhedron. As a corollary, the conjecture holds when the associated invariant polyhedra are two-
dimensional.

Chapter 5 pertains to the topic of multistationarity, which refers to the capacity of a
biochemical reaction system to exhibit multiple steady states in one invariant polyhedron. Known
results from chemical reaction network theory provide sufficient conditions for the existence of bista-
bility, and on the other hand can rule out the possibility of multiple steady states. Understanding
small networks is important because the existence of multiple steady states in a subnetwork of a
biochemical model sometimes can be lifted to establish multistationarity in the larger network. The
main result establishes the smallest reversible, mass-preserving network that admits bistability and
determines the semi-algebraic set of parameters for which more than one steady state exists.

Chapter 6 examines a model for predicting gene expression levels from regulatory sequence.
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The chemical reactions that underlie transcriptional regulation include the bindings of transcription
factors to cis-regulatory sequences of genes. For each such sequence, many possible combinations
of transcription factors can bind to the sequence. Accordingly, thermodynamic models give quan-
titative predictions of gene expression levels that are weighted averages over the set of all possible
binding configurations. This chapter describes the implementation of such a model in the context
of early embryonic development in Drosophila melanogaster. Finally, Chapter 7 contains a list of
open problems in chemical reaction network theory.

1.3 Chemical reaction network theory

This section is an introduction to chemical reaction network theory. Before providing
precise definitions, we present an intuitive example that illustrates how a chemical reaction network
gives rise to a dynamical system. An example of a chemical reaction, as it usually appears in the
literature, is the following:

3A+ CA+B
κ //

In this reaction, one unit of chemical species A and one of B react (at reaction rate κ) to form three
units of A and one of C. The concentrations of these three species, denoted by cA, cB , and cC , will
change in time as the reaction occurs. Under the assumption of mass-action kinetics, species A and
B react at a rate proportional to the product of their concentrations, where the proportionality
constant is the rate constant κ. Noting that the reaction yields a net change of two units in the
amount of A, we obtain the first differential equation in the following system:

d

dt
cA = 2κcAcB ,

d

dt
cB = − κcAcB ,

d

dt
cC = κcAcB .

The other two equations arise similarly. Next we include the reverse reaction and switch from addi-
tive to multiplicative notation to highlight the monomials that appear in our differential equations;
most chemical reaction networks in this dissertation will appear with the following notation:

c3AcCcAcB
κ

κ′

//
oo (1.1)

This network defines differential equations that are each a sum of the monomial contribu-
tion from the reactant of each chemical reaction in the network:

d

dt
cA = 2κcAcB − 2κ′c3AcC , (1.2)

d

dt
cB = − κcAcB + κ′c3AcC ,

d

dt
cC = κcAcB − κ′c3AcC .
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The recipe for obtaining these differential equations from any reaction network generalizes from
this example as we will see in Section 1.3.2. However, in order to display the linearity hidden in
these non-linear equations, the equations will appear next in a different but equivalent form in
equation (1.3) below.

1.3.1 Chemical reaction systems

We now establish the notation for this dissertation. A chemical reaction network is a finite
directed graph whose vertices are labeled by distinct monomials and whose edges are labeled by
parameters. Specifically, the digraph is denoted G = (V,E), with vertex set V = {1, 2, . . . , n} and
edge set E ⊆ {(i, j) ∈ V × V : i 6= j}. This digraph is also called a reaction diagram. Throughout
this dissertation, the integer unknowns n and s denote the number of complexes and the number
of species, respectively. The vertex i of G represents the i-th chemical complex, and it is labeled
by the monomial

cyi = cyi1
1 cyi2

2 · · · cyis
s .

This yields Y = (yij), an n×s-matrix of non-negative integers. The unknowns c1, c2, . . . , cs represent
the concentrations of the s species in the network, and we regard them as functions ci(t) of time t.
The monomial labels form the entries in the following row vector:

Ψ(c) =
(
cy1 , cy2 , . . . , cyn

)
.

A directed edge (i, j) ∈ E represents a reaction from the i-th chemical complex to the j-th chemical
complex, and it is labeled by a positive parameter κij which represents the rate constant of the
reaction. It will often be fruitful to treat the rate constants κij as unknowns. A network is reversible
if the graph G is undirected, in which case each undirected edge has two labels κij and κji. Let
Aκ denote the negative of the Laplacian of the digraph G. In other words, Aκ is the n× n-matrix
whose off-diagonal entries are the κij and whose row sums are zero. Mass-action kinetics specified
by the digraph G is the dynamical system defined by the following ordinary differential equations:

dc

dt
= Ψ(c) ·Aκ · Y . (1.3)

By decomposing the mass-action equations in this way, we see that they are linear in the κij by way
of the matrix Aκ. In addition, the right-hand side of each differential equation dcl/dt is a polynomial
in the polynomial ring R[κij , ci]. A chemical reaction system refers to the dynamical system (1.3)

arising from a specific chemical reaction network G and a choice of rate parameters (κ0
ij) ∈ R|E|

>0 .
Solutions of these systems will be called trajectories. This dissertation is devoted to the study of
chemical reaction systems. Although the complexes cy of actual reaction networks typically have
small exponents, the framework of mass-action kinetics allows us to study more general networks.
For contexts other than that of modeling chemical kinetics in which these dynamical systems are
relevant, see the discussion in Érdi and Tóth [ET89, §1.5].

Looking back at the differential equations (1.2), we see that any monomials having a
negative coefficient that appear in d

dtci must be divisible by ci. Chemically, this corresponds to the
fact that any reaction that depletes a species must have that species as a reactant. In fact, this
property is the defining characteristic of our dynamical systems, as stated in the following lemma.
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Lemma 1.3.1. Let f : Rs → Rs be a polynomial function, that is, assume that fi ∈ R[c1, c2 . . . , cs]
for i = 1, 2, . . . , s. Then f can arise as the right-hand side of the differential equations (1.3) if and
only if for all i = 1, 2, . . . , s, any negative monomial in fi is divisible by the unknown ci.

Note that Lemma 1.3.1 answers the question of which polynomial differential equation
systems may arise as chemical reaction systems. For a proof of this lemma, we refer the reader to
the textbook of Érdi and Tóth [ET89, §4.7.1.1]. The discussion there also notes that two networks
G and G′ may give rise to the same differential equations (1.3). For a mathematical analysis on
when this is possible, see the recent paper of Craciun and Pantea [CP08].

Example 1.3.2. The following chemical reaction network will be called the Square:

c31 c1c
2
2

c32c21c2

κ12

κ21

κ23κ32

κ34

κ43

κ41 κ14

OO OO

�� ��

//

//

oo

oo

In the horizontal reactions, two units of species one are transformed into two of species two (or
vice-versa), while a third unit remains unchanged by the reaction. In the vertical reactions, only
one is transformed. The matrices whose product defines the dynamical system (1.3) follow:

Ψ(c) =
(
c31, c1c

2
2, c

3
2, c

2
1c2
)
,

Aκ =




−κ12 − κ14 κ12 0 κ14

κ21 −κ21 − κ23 κ23 0
0 κ32 −κ32 − κ34 κ34

κ41 0 κ43 −κ41 − κ43


 , and

Y =




3 0
1 2
0 3
2 1


 .

The Square appeared in non-reversible form as network 7-3 in [HJ72] and network 4.2 in [Fei80].
This network will be our main object of study in Chapter 5.

Remark 1.3.3. The chemical reaction system (1.3) was shown by Kurtz to be a valid mathematical
model for chemical kinetics in the setting of continuous-flow stirred-tank reactors, that is, when
chemical reactions take place in a large tank whose contents are well-stirred [Kur72, Kur81]. (See
also an informal discussion about these results in the textbook of Érdi and Tóth [ET89, §5.9.3].)
In particular, our mass-action systems are deterministic and have continuous time and continuous
species concentrations. In other settings, it may be appropriate to model chemical systems in a
different manner. Four common modifications are the following: assuming other choices of kinetics,
modeling the system stochastically, treating time as a discrete variable, and treating each species
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concentration as a discrete variable [ET89, Chapter 2]. For instance, see the recent work of Gómez-
Uribe and Verghese on a model of chemical systems as a continuous-time discrete-state Markov
process [GUV07]. For an analysis of trajectories that arise from classical reactors besides those of
continuous-flow stirred-tank reactors, for example, plug-flow reactors and distributed sidestream
reactors, see the work of Feinberg and Hildebrandt on the attainable region problem [Fei00a, Fei00b,
FH97].

1.3.2 Rate formation functions

An equivalent way to define the differential equations (1.3) is by way of a rate function
for each reaction. This point of view will be used in Chapter 4. For each reaction cyi → cyj , we
now define the following rate formation function:

Rij(c) = κijc
yi1
1 cyi2

2 · · · cyis
s = κijc

yi . (1.4)

The dynamics of the system are given by the following differential equations:

dc

dt
=

∑

(i,j)∈E

Rij(c(t))(yj − yi) =: f(c(t)) . (1.5)

It can be seen that these equations (1.5) are equal to those (1.3) defined above.
This setup via rate formation functions fits into a more general framework, which we

now discuss. Namely, we could allow for more general kinetics than those of mass-action (which
is the most common choice): for a reaction cyi → cyj we suppose the existence of a continuously
differentiable function Rij(·) = Ryi→yj

(·) that satisfies the following assumption:

Assumption 1.3.1. For all reactions (i, j) ∈ E, the function Rij(·) = Ryi→yj
(·) : Rs

≥0 → R
satisfies:

1. Ryi→yj
(·) depends explicitly upon xℓ only if ykℓ 6= 0.

2.
∂

∂xℓ
Ryk→y′

k
(c) ≥ 0 for those cl for which yil 6= 0, and equality can hold only if some coordinate

of c is zero.

3. Ryi→yj
(c) = 0 if ci = 0 for some ℓ with yil 6= 0.

4. If 1 ≤ yki < yℓi, then lim
ci→0

Rℓu(c)

Rkv(c)
= 0, where all other cj > 0 are held fixed in the limit.

The final assumption simply states that if the reaction cyℓ → cyv requires strictly more
molecules of species i as inputs than does the reaction cyk → cyu , then the rate of the first reaction
decreases to zero faster than the second reaction, as the concentration of species i goes to zero. The
functions Rk are called the kinetics of the system, and the dynamics are given by equation (1.5).
The most common kinetics is that of mass-action kinetics, which is the focus of this dissertation.
(As noted in Remark 1.3.3, other mathematical models of chemical reactions are analyzed in the
textbook of Érdi and Tóth [ET89].) It is easily verified that each rate function Rij defined via (1.4)
satisfies Assumption 1.3.1.
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1.3.3 Steady states and invariant polyhedra

A steady state of a chemical reaction system is a non-negative concentration vector c ∈ Rs
≥0

at which the equations (1.3) vanish. Steady states are sometimes called equilibria or rest points in
the literature. We distinguish between positive steady states (or interior steady states) c ∈ Rs

>0

and boundary steady states c ∈
(
Rs
≥0 \ Rs

>0

)
. By construction, the steady states of a chemical

reaction system form the non-negative part of a real algebraic variety, which hints at why algebraic
techniques will feature prominently in this dissertation. In fact, in certain cases this variety has
a rational parametrization; for instance, this is true for multisite post-translational modification
systems as analyzed by Thomson and Gunawardena [TG09a].

The stoichiometric subspace is the vector subspace spanned by the reaction vectors yj −yi

(where (i, j) is an edge of G), and we will denote this space by S and its dimension by σ:

S := R{yj − yi | (i, j) ∈ E} .

In the earlier example (1.1), we have y1 − y2 = (−2,−1, 1), which means that with the occurence
of each reaction, two units of A and one of B are consumed, while one unit of C is produced (or
vice-versa). This vector (−2,−1, 1) spans the stoichiometric subspace S for the network (1.1). We
see that integrating (1.5) yields

c(t) = c0 +
∑

(i,j)∈E

(∫ t

0
Rij(c(s))ds

)
(yj − yi) ,

so the differential equations (1.3) remain in S for all time t ≥ 0. Therefore, a trajectory c(t)
beginning at a positive vector c(0) = c0 ∈ Rs

>0 remains in the invariant polyhedron (also called the
“stoichiometric compatibility class” or “reaction simplex”), which we denote by

P := (c0 + S) ∩ Rs
≥0 , (1.6)

for all positive time; in other words, this set is forward-invariant with respect to the dynamics (1.3).
In fact, the relative interior, which we denote by int(P), is also forward-invariant. We remark that P
clearly depends upon a choice of c0 ∈ Rs

>0. Throughout this dissertation, a reference to P assumes
the existence of a positive initial condition c0 ∈ RN

>0 for which P is defined by (1.6). It follows
that any invariant polyhedron of a network has the same dimension as the stoichiometric subspace.
Two points in the same invariant polyhedron P are said to be stoichiometrically compatible. An
introduction to polyhedral geometry appears in Section 1.3.6.

Multistationarity refers to the existence of an invariant polyhedron P with two or more
steady states in its relative interior. A chemical reaction network may admit multistationarity for
all, some, or no choices of positive parameters κij , as we will see in Chapter 5 for a family of
networks related to the Square network from Example 1.3.2.

1.3.4 The deficiency of a chemical reaction network

The deficiency of a chemical reaction network is an important invariant. Its definition
and related results, notably the Deficiency Zero and Deficiency One Theorems, are due to work of
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Feinberg. For a chemical reaction network, let n denote the number of complexes, l the number
of linkage classes, and σ the dimension of the stoichiometric subspace, S. The deficiency of the
reaction network is the integer

δ := n− l − σ .

The deficiency of a reaction network is non-negative because it can be interpreted as either the
dimension of a certain linear subspace [Fei79] or the codimension of a certain ideal, as we will see in
Chapter 2. Note that the deficiency depends only on the reaction network and not on the specific
values of the rate constants.

1.3.5 Ideals, varieties, and primary decomposition

Concepts from algebraic geometry and polyhedral geometry will feature prominently in
this dissertation. For background information concerning ideals, varieties, primary decomposition,
and additional topics from algebra, we refer the reader to the introductory textbooks of Cox, Little,
and O’Shea [CLO07], Miller and Sturmfels [MS05], and Sturmfels [Stu02]. We now end this section
with a presentation of the concepts of polyhedral geometry that will be used in this dissertation.

1.3.6 Connection to polyhedral geometry

We begin with some basic terminology. For additional background, we recommend the
textbook of Ziegler [Zie95].

Definition 1.3.1. The half-space in Rm defined by a vector v ∈ Rm and a constant c ∈ R is the
set of all points lying on one side of the hyperplane defined by 〈v,−〉 = c, that is,

Hv,c := {x ∈ Rm | 〈v, x〉 ≥ c} . (1.7)

A (convex) polyhedron in Rm is an intersection of finitely many half-spaces.

For example, the non-negative orthant Rm
≥0 is a polyhedron, as it can be written as the

intersection of the m half-spaces Hei,0, where the ei’s are the canonical unit vectors of Rm. We
now give three elementary facts about polyhedra from which we will deduce the fact that invariant
polyhedra P are indeed polyhedra. First, any linear space of Rm is a polyhedron. Second, any
translation x + Q of a polyhedron Q by a vector x ∈ Rm is again a polyhedron. Third, the
intersection of two polyhedra is a polyhedron. Therefore, as any translate (x0 +S) and the orthant
Rs
≥0 are both polyhedra, it follows that any invariant polyhedron P defined by (1.6) is indeed a

polyhedron. The next definitions will allow us later to discuss boundary steady states.

Definition 1.3.2. Let Q be a polyhedron in Rm. The interior of Q, int(Q), is the largest relatively
open subset of Q. The dimension of Q, dim(Q), is the dimension of the span of any translate of Q
that contains the origin.

For example, the interior of an invariant polyhedron P is

int(P) = (c0 + S) ∩ Rs
>0 .

Also, the dimension of P equals the dimension of the stoichiometric subspace S: dim(P) = dim(S).
We now define the faces of a polyhedron.
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Definition 1.3.3. Let Q be a polyhedron in Rm. For a vector v ∈ Rm, the face of Q that it defines
is the (possibly empty) set of points of Q that minimize the linear functional 〈v, ·〉 : Rm → R.

If the minimum in Definition 1.3.3 (denoted by cmin) is attained, then we can write the
face as F = Q∩Hv,cmin

∩H−v,cmin
. Therefore any face of a polyhedron is itself a polyhedron, so we

may speak of its dimension or its interior.

Definition 1.3.4. Let Q be a polyhedron in Rm. A facet of Q is a face whose dimension is one
less than that of Q. A vertex is a nonempty zero-dimensional face (thus, it is a point).

We make some remarks. First, note that what we call the “interior” is sometimes defined
as the “relative interior” [Zie95]. Second, vertices are called “extreme points” in [And08], whose
work we build on in Chapter 4. (In fact vertices and extreme points are equivalent concepts in
the case of polyhedra.) Third, the interior of a vertex is seen to be the vertex itself. Fourth, the
boundary of Q is the disjoint union of the interiors of the proper faces of Q.

We now return to the invariant polyhedra P of our system of interest, defined via (1.6).
For a subset of the set of species W ⊂ [s], let ZW ⊂ Rs denote its zero set :

ZW = {x ∈ Rs : xi = 0 if i ∈W} .

It can be seen that for any face F of a invariant polyhedron P, there exists some (possibly non-
unique) subset W ⊂ [s] such that

F = FW := P ∩ ZW . (1.8)

In other words, each face of P consists of all points of P whose sets of zero-coordinates contain a
certain subset W ⊂ [s]. However, it is important to note that for some subsetsW , the face is empty:
FW = ∅. In this case we say that the set ZW is stoichiometrically unattainable. In Chapter 3, such
a set W will be called non-relevant for the invariant polyhedron P. We see also that FW = P if and
only if W is empty. For definiteness, if there exist subsets W1 $ W2 ⊂ [s] for which FW1 = FW2 ,
we denote the face by FW2 . Under this convention, it can be seen that the interior of a face FW is

int(FW ) = { x ∈ P | xi = 0 if and only if i ∈W } . (1.9)

We remark that Anderson [And08] and Angeli et al. [ADS07a, ADS09] denoted int(FW ) by LW ∩P.

1.4 Examples of reaction networks

We now give examples of chemical reaction networks with an eye toward biology.

Example 1.4.1. We revisit the Square network of Example 1.3.2. The stoichiometric subspace S
is spanned by the reaction vector (1,−1), so each invariant polyhedron P is a line segment whose
two vertices are (0, T ) and (T, 0) for some positive constant T .

In the previous example, the invariant polyhedra are one-dimensional. The next example
features two-dimensional polyhedra.
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Example 1.4.2. We consider the T-cell signal transduction model of McKeithan [McK95]. Its
mathematical analysis appears in work of Sontag [Son01] and in the dissertation of Chavez [Cha03,
§7.1]. The chemical reaction network is a triangle:

cAcB

cD cC

κ21
κ12

κ23

κ31

%%K
KKKKKKKKK eeKKKKKKKKKK

oo

88rrrrrrrrrr

The biochemical species are as follows: A represents a T-cell receptor, which is bound by the MHC
of an antigen-presenting cell B, and when these two bind, they form an intermediate C, and D
represents the activated form of C. The stoichiometric subspace is spanned by two reaction vectors
(1, 1,−1, 0) and (0, 0,−1, 1). One invariant polyhedron P is the set

P =
{
(cA, cB , cC , cD) ∈ R4

≥0 | cA + cC + cD = 1, cB + cC + cD = 2
}
,

which is depicted here (although not to scale):

(0, 1, 1, 0)

(0, 1, 0, 1)

(1, 2, 0, 0)WWWWWWWWWWWWWWWWW

ggggggggggggggggg

The polyhedron is a triangle in the positive orthant R4
≥0. The three facets (edges) are one-

dimensional line segments F{A}, F{C}, and F{D}, and the three vertices are F{A,D} = {(0, 1, 1, 0)},
F{C,D} = {(1, 2, 0, 0)}, and F{A,C} = {(0, 1, 0, 1)}. All other non-empty subsets of {A,B,C,D},
such as {A,B}, yield empty faces of P: for example, F{A,B} = ∅.

Our final example has three-dimensional invariant polyhedra.

Example 1.4.3. We consider a receptor-ligand dimer model, which is analyzed by Chavez in her
dissertation [Cha03, §7.2] and by Anderson [And08, Example 4.1]:

A2C AD

EBC

OO OO

�� ��

//

//

oo

oo

κ12

κ21

κ23κ32

κ34

κ43

κ41 κ14

The biochemical species are as follows: A denotes a receptor, B denotes a “dimer” state of A
(two receptors joined together), and C denotes a ligand that can bind either to A (to form D) or
to B (to form E). The stoichiometric subspace is spanned by the reaction vectors (1, 0, 1,−1, 0),
(1, 0, 0, 1,−1), and (0, 1, 1, 0,−1). Depictions of three of the five combinatorial types of the invariant
polyhedra of this network will be displayed in Figure 3.1 of Chapter 3.
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For many more examples of reaction networks, see the 17 networks listed in Table I of
[Fei80] or the 9 networks listed in Table 1 of [CTF06]. We also refer the reader to the textbook
of Beard and Qian [BQ08]. We end the chapter by noting that in practice the set of reactions
comprising a network may not be fully known. For details on the topic of network inference and
estimation of reaction rate constants, see the work of Craciun, Pantea, and Rempala and the
references contained therein [CPR09a, CPR09b]. Related work of Kuepfer, Sauer, and Parrilo
gives a semidefinite programming approach to the problems of parameter estimation and model
discrimination [KSP07a].
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Chapter 2

Toric dynamical systems

The material in this chapter is based on the paper “Toric dynamical systems” [CDSS09],
which was authored jointly with Gheorghe Craciun, Alicia Dickenstein, and Bernd Sturmfels. In
addition, we include proofs of Proposition 2.2.3 and Corollary 2.2.4, a reference to related work on
stochastic systems at the end of Section 2.3, and a reference to the connection to “formal balancing”
at the end of Section 2.6.

2.1 Introduction to toric dynamical systems

Toric dynamical systems are mass-action kinetics systems with complex-balancing states.
These systems have been studied extensively in mathematical chemistry, starting with the pio-
neering work of Feinberg, Horn, and Jackson [Fei72, HJ72, Hor72, Hor73b], and continuing with
Feinberg’s deficiency theory [Fei79, Fei87, Fei89, Fei95]. Important special cases of these dynam-
ical systems include detailed-balancing systems, recombination equations in population genetics
[Aki79], and quadratic dynamical systems in computer science [RSW92].

Karin Gatermann introduced the connection between mass-action kinetics and computa-
tional algebra. Our work drew inspiration both from her publications [Gat01, GH02, GW05] and
from her unpublished research notes on toric dynamical systems. We wholeheartedly agree with
her view that “the advantages of toric varieties are well-known” [Gat01, page 5].

We now review the set-up given in Section 1.3 of the Introduction. Let G = (V,E)
denote a chemical reaction network, with vertex set V = {1, 2, . . . , n} and edge set E ⊆ {(i, j) ∈
V × V : i 6= j}. The node i of G is labeled with the monomial cyi = cyi1

1 cyi2
2 · · · cyis

s , and
this gives rise to the n × s-matrix Y = (yij). The monomial labels are the entries in the row
vector Ψ(c) :=

(
cy1 , cy2 , . . . , cyn

)
. Each directed edge (i, j) ∈ E is labeled by a positive parameter

κij which is the rate constant in the corresponding reaction. We let Aκ denote the negative of
the Laplacian of the digraph G (so Aκ is the n × n-matrix whose off-diagonal entries are the κij

and whose row sums are zero). Mass-action kinetics specified by the digraph G is the following
dynamical system (1.3):

dc

dt
= Ψ(c) ·Aκ · Y .
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A toric dynamical system is a dynamical system (1.3) for which the algebraic equations
Ψ(c) · Aκ = 0 admit a strictly positive solution c∗ ∈ Rs

>0. Note that such a solution c∗ is a steady
state of the system, i.e., the s coordinates of Ψ(c∗) · Aκ · Y vanish. The requirement that all n
coordinates of Ψ(c∗) ·Aκ be zero is stronger. An equivalent definition of a toric dynamical system
is a chemical reaction system that has the property that for any chemical complex (a product
or reactant), the amount produced of that complex at some steady state is equal to the amount
consumed by reactions. Later we will see that in fact this property holds at all steady states of a
toric dynamical system.

The first to study toric dynamical systems, Horn and Jackson called these systems complex-
balancing mass-action systems and called c∗ a complex-balancing steady state [HJ72]. The condition
for a system (1.3) to be complex-balancing (i.e., toric) depends on both the digraph G and the rate
constants κij . The aim of Horn and Jackson in [HJ72] was to define a class of systems that
generalize detailed-balancing systems and that remain consistent with “extended thermodynam-
ics conditions.” These systems are shown to satisfy the “quasi-thermostatic” (QTS) and “quasi-
thermodynamic (QTD) conditions, which roughly mean that a Lyapunov function of a certain form
exists, for a unique interior steady state in each invariant polyhedron P. We will see this Lyapunov
function in Proposition 2.3.2.

Example 2.1.1. Let s = 2, n = 3, and let G be the complete bidirected graph on three nodes
labeled by c21, c1c2, and c22. Here the mass-action kinetics system (1.3) equals

d

dt

(
c1, c2

)
=

(
c21 c1c2 c22

)
· Aκ ·




2 0
1 1
0 2


 , (2.1)

where Aκ is the following matrix:



−κ12 − κ13 κ12 κ13

κ21 −κ21 − κ23 κ23

κ31 κ32 −κ31 − κ32


 .

This is a toric dynamical system if and only if the following algebraic identity holds:

(κ21κ31 + κ32κ21 + κ23κ31)(κ13κ23 + κ21κ13 + κ12κ23) = (κ12κ32 + κ13κ32 + κ31κ12)
2. (2.2)

The equation (2.2) appears in [Hor73b, Equation (3.12)] where it is derived from the necessary and
sufficient conditions for complex-balancing in mass-action kinetics given by [Hor72]. Our results in
Section 2.2 provide a refinement of these conditions.

Let us now replace G by the digraph with four edges (1, 3), (2, 1), (2, 3), and (3, 1). This
corresponds to setting κ12 = κ32 = 0 in (2.2). We can check that, for this new G, the system (1.3)
is not toric for any positive rate constants. Note that G is not strongly connected.

Among all chemical reaction networks, toric dynamical systems have remarkable prop-
erties. Some of these properties are explained in [Fei79], starting with Proposition 5.3; see also
[Gun03, Theorem 6.4]. We shall review them in detail in Sections 2.2 and 2.3. From our point
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of view, the foremost among these remarkable properties is that the set Z of all steady states is
a toric variety [Gat01, §3]. Recall from the Introduction that each trajectory of (1.3) is confined
to a certain invariant polyhedron, which is also known as the stoichiometric compatibility class. It
is known that each invariant polyhedron intersects the toric variety Z in precisely one point c∗.
In order to highlight the parallels between toric dynamical systems and toric models in algebraic
statistics [PS05, §1.2] (which are also known as log-linear models [DSS09, §1.1]), we shall refer to
the steady state c∗ as the Birch point; for a statement of Birch’s Theorem, see [Stu96, Theorem
8.20]. In Example 2.1.1, the steady state variety Z is a line through the origin, and the Birch point
equals

c∗ = constant ·
(
κ12κ32 + κ13κ32 + κ31κ12, κ13κ23 + κ21κ13 + κ12κ23

)
.

Here the constant is determined because c1 + c2 is conserved along trajectories of (2.1).
This chapter is organized as follows. In Section 2.2 we develop the basic theory of toric

dynamical systems within the context of computational algebraic geometry. For each directed graph
G we introduce the moduli space of toric dynamical systems on G. This space parametrizes all
rate constants κ for which (1.3) is toric. In Example 2.1.1 this space is the hypersurface (2.2). Our
first main result, Theorem 2.2.7, states that this moduli space is itself a toric variety in a suitable
system of coordinates. These coordinates are the maximal non-zero minors of the Laplacian of G,
and their explicit form as positive polynomials in the κij is given by the Matrix-Tree Theorem. Our
results in Section 2.2 furnish a two-fold justification for attaching the adjective “toric” to chemical
reaction networks with complex-balancing, namely, both the steady state variety and the moduli
space are toric. In addition, the subvariety of reaction networks with detailed-balancing is toric.

In Section 2.3 we introduce the Global Attractor Conjecture which states that the Birch
point is a global attractor for any toric dynamical system. More precisely, we conjecture that
all trajectories beginning at strictly positive vectors c0 will converge to the Birch point c∗ in the
invariant polyhedron of c0. The conjecture is currently open, even for zero deficiency systems (cf.
Theorem 2.2.9). The conjecture will be the topic of Chapter 4 of this dissertation. Section 2.5
illustrates the main results by way of several examples, and Section 2.6 discusses the special case
of detailed-balancing systems.

2.2 Ideals, varieties, and chemistry

This section concerns the connection between chemical reaction network theory and toric
geometry. We use the language of ideals and varieties as in the textbook of Cox, Little, and
O’Shea [CLO07]. Our reference on toric geometry and its relations with computational algebra
is the textbook of Sturmfels [Stu96]. With regard to the dynamical system (1.3), we use the
notation from [Fei79, §5] and [Gun03, §3] which has the virtue of separating the roles played by
the concentrations ci, the monomials cyi , and the rate constants κij .

To study the dynamical system (1.3) algebraically, we work in the polynomial ring

Q[c, κ] = Q
[
{c1, c2, . . . , cs} ∪ {κij : (i, j) ∈ E}

]
,

and we introduce various ideals in this polynomial ring. First, there is the steady state ideal

〈Ψ(c) ·Aκ · Y 〉
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which is generated by the s entries of the row vector on the right-hand side of the differential
equations (1.3). Second, we consider the ideal

〈Ψ(c) · Aκ〉

which is generated by the n entries of the row vector Ψ(c) ·Aκ. The generators of both ideals are
linear in the κij , but they are usually non-linear in the ci. Next, we define the complex-balancing
ideal of G to be the following ideal quotient whose generators are usually non-linear in the κij :

CG :=
(
〈Ψ(c) · Aκ〉 : (c1c2 · · · cs)

∞
)
.

We have thus introduced three ideals in Q[c, κ]. They are related by the inclusions

〈Ψ(c) · Aκ · Y 〉 ⊆ 〈Ψ(c) ·Aκ〉 ⊆ CG .

If I is any polynomial ideal, then we write V (I) for its complex variety. Likewise, we
define two varieties over the real numbers: the positive variety V>0(I) and the non-negative variety
V≥0(I). They consist of all points in V (I) whose coordinates are real and positive or, respectively,
non-negative. Our algebraic approach to chemical reaction network theory focuses on the study of
these varieties. The inclusions of ideals above imply the following inclusions of varieties:

V (CG) ⊆ V
(
〈Ψ(c) ·Aκ〉

)
⊆ V

(
〈Ψ(c) ·Aκ · Y 〉

)
. (2.3)

The definition of CG by means of saturation implies that the left-hand inclusion becomes equality
when we restrict to the points with all coordinates non-zero. In particular,

V>0(CG) = V>0

(
〈Ψ(c) ·Aκ〉

)
. (2.4)

Recall from [Stu96] that a toric ideal is a prime ideal which is generated by binomials.
We soon will replace CG by a subideal TG which is toric. This is possible by Proposition 5.3 (ii,iv)
in [Fei79] or Theorem 6.4 (3) in [Gun03], which essentially state that V>0(CG) is a positive toric
variety. But let us first examine the case when CG is already a toric ideal.

Example 2.2.1. Suppose that each chemical complex appears in only one reaction, and each
reaction is bi-directional. Hence the number of complexes n = 2m is even and, after relabeling,
we have the edge set E = {(1, 2), (2, 1), (3, 4), (4, 3), . . . , (n−1, n), (n, n−1)}. We start with the
binomial ideal

〈Ψ(c) ·Aκ〉 =
〈
κ12c

y1 − κ21c
y2 , κ34c

y3 − κ43c
y4, . . . , κn−1,nc

yn−1 − κn,n−1c
yn
〉
.

The complex-balancing ideal CG is a saturation of 〈Ψ(c) ·Aκ〉, and it coincides with the toric ideal
of the extended Cayley matrix which will appear in the proof of Theorem 2.2.7. There are many
programs for computing toric ideals. For instance, the methods in [Stu96, §12.A] are available
in Maple under the command ToricIdealBasis. Explicitly, the complex-balancing ideal CG is
generated by all binomials κu+cv+ − κu−cv− where

m∑

i=1

u2i−1,2i(y2i−1 − y2i) = v and (2.5)

u2i−1,2i + u2i,2i−1 = 0 for i = 1, 2, . . . ,m .
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Eliminating the unknowns c1, . . . , cs from CG, we obtain the ideal of all binomials κu+ −κu− where
u ∈ NE satisfies (2.5) with v = 0. This is the moduli ideal MG to be featured in Theorems 2.2.7
and 2.2.9 below. It is a prime binomial ideal of Lawrence type [Stu96, §7].

2.2.1 The Matrix-Tree Theorem and the toric balancing ideal

Let us next assume that G = (V,E) is an arbitrary digraph with n nodes which is strongly
connected. This means that, for any two nodes i and j, there exists a directed path from i to j. In
this case the matrix Aκ has rank n− 1, and all of its minors of size (n− 1)× (n− 1) are non-zero.
The next result gives a formula for these comaximal minors.

Consider any directed subgraph T of G whose underlying graph is a spanning tree of G,
that is, T has n− 1 edges and contains no cycle. We write κT for the product of all edge labels of
the edges in T :

κT :=
∏

(i,j)∈E(T )

κij .

This is a squarefree monomial in Q[κ]. Let i be one of the nodes of G. The directed tree T is called
an i-tree if the node i is its unique sink, i.e., all edges are directed towards node i. We introduce
the following polynomial of degree n− 1:

Ki =
∑

T an i-tree

κT . (2.6)

Example 2.2.2. We return to Example 2.2.1 above. For the first vertex of G (i = 1), which
corresponds to the complex c21, there are three 1-trees T1, T2, and T3 which we depict here:

c21

c1c2

c22

OO ffMMMMMMMMMM

c21

c1c2

c22

OO

xxqqqqqqqqqq

c21

c1c2

c22

ffMMMMMMMMMM
88qqqqqqqqqq

Each of these three 1-trees gives rise to a polynomial κT , so that we obtain the polynomial
K1 = κ21κ31 + κ23κ31 + κ21κ32, as defined in equation (2.6).

The next result is a straightforward generalization of the Matrix-Tree Theorem which
appears in the textbook of Stanley [Sta99, §5.6]. This theorem first appeared in work of Tutte
[Tut48, §3.6]. For another application of this theorem and a description of how it implies the well-
known King-Altman method for computing the reaction rate function of an enzyme [KA56], see the
recent paper of Thomson and Gunawardena [TG09a, §2]. The King-Altman method is illustrated
in detail in [BQ08, §4.4.2]. We also make note of the closely related Markov Chain Tree Theorem.
This theorem states that if the Laplacian matrix Aκ is viewed as the infinitesimal generator of a
continuous-time Markov chain, then the normalized polynomials Ki are the steady state values of
the Markov chain [AT89].
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Proposition 2.2.3. Consider a submatrix of Aκ obtained by deleting the ith row and any one of
the columns. The signed determinant of this (n−1) × (n−1)-matrix equals (−1)n−1Ki.

We denote by M(i, j) the (n − 1) × (n − 1)-matrix obtained from Aκ by removing row i
and column j. The “signed determinant” in the proposition is then equal to (−1)i+j detM(i, j).
We now prove the proposition, following the proof in Stanley [Sta99].

Proof. We first verify that the minor is independent of the choice of which column to remove. In
other words, we now check that the signed determinants of M(i, j) and M(i, 1) coincide:

(−1)i+j detM(i, j) = (−1)i+1 detM(i, 1) . (2.7)

This follows from the fact that the row sums of Aκ are 0. Namely, performing the following column
operations on the matrix M(i, j) yields the matrix M(i, 1): first add columns 2 through n − 1 to
column 1, next negate column 1, and then switch columns 1 and 2, then 2 and 3, and so on through
columns j− 2 and j− 1. The determinant of the two matrices then differ by a multiplicative factor
of (−1)1+(j−2), so equation (2.7) holds.

We next show that we may assume that i = 1 as well. Consider the graph G0 which
simply relabels nodes 1 and i by each other. The Laplacian of G0 is obtained from that of G by
switching rows 1 and i and columns 1 and i. So, letting MG0 denote a submatrix of the Laplacian
of G0, we obtain the first equality below:

detM(i, 1) = detMG0(1, i)

= (−1)i+1 detMG0(1, 1) .

The second equality follows from equation (2.7).
We now need only verify that the result holds for i = j = 1, i.e. that

detM(1, 1) = (−1)n−1K1 . (2.8)

Define G′ to be the graph obtained from G by removing all edges (1, k) that are directed from
node 1 to any node k. We proceed by induction on the number of directed edges of G′. This
number, which we denote by q, is equal to the number of nonzero κij with i 6= 1. Our base case
is when q = n − 1, that is, when G′ is a 1-tree (recall that we have assumed that G is strongly
connected). Each node k (where k 6= 1) has a unique out-neighbor which we denote by out(k); this
is the unique node k′ ∈ [n] such that (k, k′) is an edge of G. Now reorder the vertices of G so that
1 < k < out(k) for k 6= 1 which is possible because G′ is a tree. The submatrix of interest is then
MG′(1, 1), obtained by removing the first row and first column of the Laplacian of G′. The matrix
MG′(1, 1) has all zero entries below the diagonal and entries equal to −κk,out(k) along the diagonal.
Therefore its determinant is

detMG′(1, 1) = (−1)n−1
n−1∏

k=1

κk,out(k)

= (−1)n−1K1 ,
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where the second equality follows because G′ is a 1-tree. Comparing this expression to our desired
equality (2.8), we see that it remains only to show that detMG′(1, 1) = detM(1, 1). This follows
because rows two through n and columns two through n are rearranged by the same permutation
to obtain the new Laplacian; this does not affect the determinant of the submatrix obtained by
removing the first row and first column. This completes the q = n− 1 case.

Now assume that q > n− 1. Then there exists a vertex u 6= i with outdegree at least 2 in
G. Let e be one edge directed from u. Denote by D1 the graph G with e removed, and by D2 the
graph G with all other edges e′ 6= e directed from u removed. Note that D2 is a proper subgraph
of G by the outdegree assumption on u. Now by induction, we have

(−1)n−1K1(D1) = detMD1(i, 1) , and (2.9)

(−1)n−1K1(D2) = detMD2(i, 1) .

We also have

K1(G) = K1(D1) +K1(D2) , (2.10)

because a 1-tree contains some edge directed from u: either edge e or some edge e′. From equations
(2.9) and (2.10), it remains only to show that

detMG(1, 1) = detMD1(1, 1) + detMD2(1, 1) .

This equality follows from the multilinearity of the determinant: row u of MG(1, 1) is the sum of
row u of MD1(1, 1) and row u of MD2(1, 1), while all other corresponding rows are identical among
the three (n− 1) × (n− 1)-matrices.

It then follows from this proposition that all (n−1)× (n−1)-minors of the matrix Aκ are
nonzero, and thus the rank of Aκ is n− 1. Combining Proposition 2.2.3 with a little linear algebra
leads to the following corollary:

Corollary 2.2.4. The complex-balancing ideal CG contains the polynomials Kic
yj −Kjc

yi .

Proof. It is enough to prove that K1c
y2−K2c

y1 is in the ideal 〈ψ(c)·Aκ〉, because we can reorder the
complexes so that i and j are the first and second vertices. We introduce the notation M(I, J) to
denote the submatrix of Aκ obtained by removing rows I and columns J . Let V denote the (n×1)-
matrix (column vector) whose n-th entry is zero, and whose other entries are (−1)k detM(12, kn)
for k = 1, 2, . . . , n − 1. We now claim that

Aκ · V = ±(K1e2 −K2e1) , (2.11)

where the ei denote the canonical basis vectors. To see this, first note that the k-th coordinate of
Aκ · V takes the form of row-expansion along the first row of the following matrix:

B(k) :=




ak1 ak2 · · · ak,n−1

a31 a32 · · · a3,n−1

a41 a42 · · · a4,n−1
...

...
. . .

...
an1 an2 · · · an,n−1




,
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where aij := (Aκ)ij for ease of notation. In other words,

(Aκ · V )k = detB(k) .

So if k 6= 1, 2, then (Aκ · V )k = 0 because rows 1 and k − 1 of the matrix B(k) are identical. Now
if k = 1, then

(Aκ · V )1 = detM(2, n) = (−1)2+nK2 ,

where the second equality follows from Proposition 2.2.3. Similarly, for k = 2 we have

(Aκ · V )2 = detM(1, n) = (−1)1+nK1 .

Therefore, our claim in (2.11) holds. Finally by definition, the ideal 〈ψ(c) ·Aκ〉 contains the column
space of Aκ with respect to the basis cy1 , cy2 , . . . , cyn ; hence the equation (2.11) implies that
K1c

y2 −K2c
y1 is in 〈ψ(c) · Aκ〉. This completes the proof.

We now form the ideal generated by the
(n
2

)
polynomials in the previous result, and we

again saturate with respect to the product c1c2 · · · cs. The resulting ideal TG will be called the toric
balancing ideal:

TG :=
(
〈Kic

yj −Kjc
yi : 1 ≤ i < j ≤ n〉 : (c1c2 · · · cs)

∞
)
.

It is natural to consider TG as an ideal in the polynomial subring

Q[c,K] = Q[c1, . . . , cs,K1, . . . ,Kn] ⊂ Q[c, κ] .

The following lemma states that this subring is itself a polynomial ring.

Lemma 2.2.5. The polynomials K1, . . . ,Kn ∈ Q[κ] are algebraically independent over Q.

Proof. Let K ′
i ∈ Q[κ1, κ2, . . . , κn] denote the polynomial obtained from Ki by substituting the

new unknown κi for all κij . We need only verify that the new polynomials K ′
i are algebraically

independent, because an algebraic relation among the Ki would be satisfied by the new polynomials
K ′

i as well. Our polynomials are

K ′
i = (number of i-trees in G) ·

∏

t6=i

κt .

The n squarefree monomials
∏

t6=i κt (for i = 1, 2, . . . n) are algebraically independent because an al-
gebraic dependence among these monomials would specify a dependence among 1/κ1, 1/κ2, . . . , 1/κn.
Hence, the polynomials K ′

1,K
′
2, . . . ,K

′
n are algebraically independent.

The following result concerns the toric balancing ideal TG.

Proposition 2.2.6. The toric balancing ideal TG is a toric ideal in Q[c,K]. Moreover, the ideal
TG is generated by the binomials

Ku+ · c(uY )− −Ku− · c(uY )+ ,

where u is any row vector in Zn whose coordinate sum u1 + u2 + · · · + un is equal to zero.
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Proof. Let ∆ denote the edge-node incidence matrix of the complete directed graph on n nodes.
Thus ∆ is the

(n
2

)
× n-matrix whose rows are ei − ej for 1 ≤ i < j ≤ n. We also consider the

n× (n + s)-matrix
(
−Y In

)
. The binomials Kic

yj −Kjc
yi which define the ideal TG correspond

to the rows of the
(n
2

)
× (n+ s)-matrix ∆ ·

(
−Y In

)
, and the binomial Ku+ · c(uY )− −Ku− · c(uY )+

corresponds to the row vector U · ∆ ·
(
−Y In

)
, where U is any row vector of length

(n
2

)
such

that u = U · ∆. The binomial Ku+ · c(uY )− −Ku− · c(uY )+ is a Q[c±1
1 , . . . , c±1

s ,K1, . . . ,Kn]-linear
combination of the binomials Kic

yj − Kjc
yi . This shows that TG is the lattice ideal in Q[c,K]

associated with the lattice spanned by the rows of ∆ ·
(
−Y In

)
, i.e., there are no monomial zero-

divisors modulo TG. To see that TG is actually a toric ideal, i.e., TG is prime, it suffices to note
that Zn+s modulo the lattice spanned by the rows of ∆ ·

(
−Y In

)
is free abelian of rank s + 1.

Indeed, the latter matrix has rank n− 1, and its (n− 1)× (n− 1)-minors span the unit ideal in the
ring of integers Z, because each (n− 1) × (n− 1)-minor of ∆ is either +1 or −1.

The variety of TG is a toric variety in Spec Q[c,K], but we continue to regard it as a
subvariety of Cs × CE (or of Spec Q[c, κ]). In this interpretation we have

V>0(TG) = V>0(CG) = V>0

(
〈Ψ(c) ·Aκ〉

)
. (2.12)

Thus TG still correctly describes the steady state locus of the toric dynamical system. The equation
(2.12) holds because the matrix Aκ has rank n − 1 over the rational function field Q(κ), and the
vector (K1,K2, . . . ,Kn) spans its kernel under left multiplication.

2.2.2 Main results

The following elimination ideal is called the moduli ideal of the digraph G:

MG := TG ∩ Q[κ] . (2.13)

Here Q[κ] is the polynomial ring in only the edge unknowns κij . The generators of MG are obtained
from the generators of CG by eliminating the unknown concentrations ci. For instance, if G is
the complete bidirected graph on c21, c1c2, and c22 as in Example 2.1.1, then the moduli ideal
MG is the principal ideal generated by K1K3 − K2

2 . This coincides with condition (2.2) because
K1 = κ21κ31 + κ32κ21 + κ23κ31, and similarly for K2 and K3.

Suppose now that G is an arbitrary directed graph. Throughout this chapter, we will let
l denote the number of connected components of G; these components are also called the linkage
classes. If one of the components Gi fails to be strongly connected, then V>0(CGi

) is empty and
hence V>0(CG) is empty, by [Fei79, Remark 5.2] or [SM00, Theorem 2.16]. In other words, a
complex-balanced system must have strongly connected components (this property is sometimes
called weakly-reversibility), so in the case that some Gi is not strongly connected, we define TG and
MG to be the ideal generated by 1. If each connected component Gi of G is strongly connected,
then we define the toric steady state ideal as

TG :=
(
(TG1 + TG2 + · · · + TGl

) : (c1c2 · · · cs)
∞
)
.

The moduli ideal MG is defined as before in (2.13). The equality in (2.12) still holds and this
positive variety is in fact non-empty. Here is the first main result of this chapter:
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Theorem 2.2.7. The equations (1.3) specify a toric dynamical system if and only if the positive
vector of rate constants κij lies in the toric variety V (MG). In this case, the set of steady states c∗

of (1.3) with all c∗i > 0 equals the set of positive points on the toric variety V (TG).

Proof. The positive variety V>0(TG) consists of all pairs (c, κ) where κ is a strictly positive vector of
rate constants and c is a strictly positive solution of the complex balancing equations Ψ(c) ·Aκ = 0.
The elimination in (2.13) corresponds to the map of toric varieties V (TG) → V (MG) given by
(c, κ) 7→ κ. This map is a dominant morphism (by definition of MG), so its image is Zariski dense
in V (MG). The restriction to real positive points, V>0(TG) → V>0(MG), is a homomorphism of
abelian groups (R>0)

∗ whose image is dense, so it is the monomial map specified by a matrix with
maximal row rank. It follows that this restriction is surjective, and this proves our first assertion.
The second assertion follows from [Fei79, Proposition 5.3].

We now justify calling V (MG) a toric variety by writing the moduli ideal MG explicitly
as a toric ideal in Q[K]. As before, G is a directed graph with n nodes labeled by monomials
cy1 , . . . , cyn . We assume that each connected component G1, G2, . . . , Gl of G is strongly connected,
for otherwise MG = 〈1〉. Let Yi denote the matrix with s rows whose columns are the vectors yj

where j runs over the nodes of the component Gi. We define the Cayley matrix

CayG(Y ) =




Y1 Y2 · · · Yl

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




.

This is an (s + l) × n-matrix. Here 1 and 0 are appropriate row vectors with all entries 1 and 0
respectively. The term “Cayley matrix” comes from geometric combinatorics, and it refers to the
Cayley trick in elimination theory [HRS00].

Recall from the Introduction that the stoichiometric subspace S is the linear subspace of
Rs which is spanned by the reaction vectors yj − yi where (i, j) ∈ E. We write σ = dim(S) for
its dimension. Recalling that l denotes the number of connected components of G, the quantity
δ := n − l − σ is known as the deficiency of the chemical reaction network G. For instance,
δ = 3 − 1 − 1 = 1 in Example 2.1.1.

Remark 2.2.8. The rank of the Cayley matrix CayG(Y ) equals σ+ l. Hence the deficiency δ of the
reaction network coincides with the dimension of the kernel of the Cayley matrix.

The following theorem is the second main result in this chapter:

Theorem 2.2.9. The moduli ideal MG equals the toric ideal of the Cayley matrix CayG(Y ),
i.e., MG is the ideal in Q[K] generated by all binomials Ku − Kv where u, v ∈ Nn satisfy
CayG(Y ) · (u− v) = 0. The codimension of this toric ideal equals the deficiency δ.
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Proof. Let Ids denote the s× s identity matrix and consider the extended Cayley matrix




−Ids Y1 Y2 · · · Yl

0 1 0 · · · 0
0 0 1 · · · 0

0
...

...
. . .

...
0 0 0 · · · 1




.

The toric ideal of this matrix is precisely the toric balancing ideal TG, where the unknowns
c1, c2, . . . , cs correspond to the first s columns. Deleting these s columns corresponds to forming
the elimination ideal MG as in (2.13). This shows that MG is the toric ideal of the matrix CayG(Y ).
The dimension of the affine toric variety V (MG) in Cn is equal to σ + l = rank(CayG(Y )), and
hence its codimension equals the deficiency δ = n− σ − l.

We conclude that V>0(MG) is a positive toric variety of codimension δ in Rn
>0. The

moment map of toric geometry establishes a natural bijection between V>0(MG) and the interior
of the Cayley polytope, which is the convex hull of the columns of CayG(Y ).

In summary, given any chemical reaction network whose components are strongly con-
nected, we have shown that the positive toric variety of the Cayley polytope equals the moduli
space V>0(MG) of toric dynamical systems on G. The deficiency δ is precisely the codimension of
this moduli space. In particular, if the deficiency is zero then the Cayley polytope is a simplex and
the dynamical system (1.3) is toric for all rate constants κij . Moreover, the positive steady states
of a toric dynamical system form a positive toric variety V>0(TG).

2.3 The Global Attractor Conjecture

This section establishes the existence and uniqueness of the Birch point for toric dynamical
systems, and introduces the Global Attractor Conjecture. However, we postpone a discussion of
partial results for the conjecture until Chapter 4. In this section, we consider a fixed toric dynamical
system or, equivalently, a chemical reaction network G and a choice of positive rate constants κ0

in the moduli space V>0(MG). As usual, the network G = (V,E) is taken to have n nodes which
are labeled by monomials cy1 , cy2 , ... , cyn . We also fix a strictly positive vector c0 ∈ Rs

>0 which
represents the initial concentrations of the s species. The polynomial differential equations (1.3)
describe the evolution of these concentrations over time. We seek to understand the long-term
behavior of the trajectory which starts at c0, that is, c(0) = c0.

Let TG(κ0) denote the lattice ideal in R[c] obtained from TG by substituting the specific
rate constants κ0

ij ∈ R>0 for the unknowns κij . Then the positive variety V>0(TG(κ0)) coincides
with the set of all positive steady states of the toric dynamical system (1.3). The following result
is well-known:

Proposition 2.3.1. [Existence and Uniqueness of the Birch Point] The affine subspace c0 +S of
Rs intersects the positive toric variety V>0(TG(κ0)) in precisely one point c∗.
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For a proof and references in the chemistry literature see [HJ72]; a different proof can be
found in [Fei79, Proposition 5.3] or [Gun03, Proposition 6.4]. We remark that variants of Propo-
sition 2.3.1 are ubiquitous across the mathematical sciences, and the result has been rediscovered
many times. In statistics, this result is known as Birch’s Theorem; see [PS05, Theorem 1.10] or
[DSS09, §2.1]. To emphasize the link with toric models in algebraic statistics we call c∗ the Birch
point of the toric dynamical system (1.3) with starting point c0.

Recall from Section 1.3 of the Introduction that the right-hand side of (1.3) is always a
vector in the stoichiometric subspace S = R{yj − yi : (i, j) ∈ E}, so the trajectory stays in the
invariant polyhedron P := (c0+S)∩Rs

≥0. Proposition 2.3.1 says that in each invariant polyhedron
P of a toric dynamical system, there is a unique steady state in its interior and this steady state is
a complex-balancing state. The following result concerns the trajectories.

Proposition 2.3.2. The Birch point c∗ is the unique point in the invariant polyhedron P for which
the transformed entropy function

E(c) =

s∑

i=1

(
ci · log(ci) − ci · log(c∗i ) − ci + c∗i

)
(2.14)

is a strict Lyapunov function of the toric dynamical system (1.3). This means the following:

(a) For all c ∈ P we have E(c) ≥ 0 and equality holds if and only if c = c∗,

(b) we have dE(c)/dt ≤ 0 along any trajectory c(t) in P, and

(c) equality in (b) holds at a point t∗ of any trajectory c(t) in int(P) if and only if c(t∗) = c∗.

This proposition was proved by [HJ72]. A different proof can be found in [Fei79]; see
especially Proposition 5.3 and its corollaries. See also [Gun03, Theorem 6.4] and the preceding
paragraph, as well as the proof of [PS05, Theorem 1.10].

By the existence of the Lyapunov function in Proposition 2.3.2, aberrant behavior (such as
multistationarity, oscillations, and unbounded trajectories) of toric dynamical systems is forbidden.
Further, local asymptotic stability of the Birch point (relative to the invariant polyhedron) is guar-
anteed. In other words, there exists a neighborhood of the Birch point (within the polyhedron) such
that any trajectory beginning in the neighborhood will converge to the Birch point. The question
of global asymptotic stability, which asks whether this neighborhood can be taken to be the entire
interior of the invariant polyhedron, is the content of the following conjecture. This conjecture was
formulated first by Horn in 1974 [Hor74], and was given the name “Global Attractor Conjecture”
by Craciun et al. [CDSS09]. It is stated to be the main open question in the area of chemical
reaction network theory by Adleman et al. [AGH+08]. In fact, Feinberg states the more general
conjecture that all weakly-reversible systems are persistent [Fei79, §6.1]. A system is persistent if
no trajectories beginning in the interior of an invariant polyhedron P has an accumulation point
on the boundary P (see Definition 4.2.1). A steady state x in Po is called a global attractor if any
trajectory that begins in Po converges to x.

Global Attractor Conjecture. For any toric dynamical system (1.3) and any starting point c0,
the Birch point c∗ is the global attractor of the invariant set Po = (c0 + S) ∩ Rs

>0.
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An important subclass of toric dynamical systems consists of the chemical reaction net-
works of deficiency zero. If the deficiency δ = n − l − σ is zero then the moduli ideal MG is the
zero ideal by Theorem 2.2.9, and the chemical system (1.3) is toric for all choices of rate constants.
As remarked earlier, the Global Attractor Conjecture is open even for zero deficiency systems.
Chapter 4 is devoted to partial results on the conjecture.

2.4 Connections to deficiency theory

The results in this chapter show that any weakly-reversible dynamical system (1.3) whose
deficiency is zero is complex-balancing, and that this fact is independent of the choice of rate
constants κij ; see also [Fei79]. In fact, this property of being complex-balancing regardless of rate
parameters defines the space of deficiency zero systems. On the other hand, a reaction diagram with
a deficiency that is positive may give rise to a system that is both complex- and detailed-balancing,
complex- but not detailed-balancing, or neither, depending on the values of the rate constants κij

[Fei72, Fei89, Hor72]; see also Section 2.6.

2.4.1 Deficiency theorems

Propositions 2.3.1 and 2.3.2 are typically know as Feinberg’s Deficiency Zero Theorem.
We also make note of the following proposition whose statement is sometimes included in the
Deficiency Zero Theorem.

Proposition 2.4.1. Consider a chemical system (1.3) whose underlying network has zero deficiency
and is not weakly-reversible. Then the system has no strictly positive steady states.

Recall that a weakly-reversible network is one in which all linkage classes are strongly
connected. Proposition 2.4.1 essentially follows from the fact that a positive steady state of such
a system would have to be complex-balancing, but a toric dynamical system is necessarily weakly-
reversible. For a full proof, see the thesis of Guberman [Gub03, Theorem 9.3].

For completeness, we also state the Deficiency One Theorem, which concerns networks
whose components have deficiencies at most one. These two deficiency theorems form the basis
of Feinberg’s Deficiency Theory [Fei79]. We also refer the reader to the expository work on this
subject by Guberman [Gub03] and by Gunawardena [Gun03].

We first record some relevant definitions. A connected component of a reaction network is
also called a linkage class.. A terminal strong linkage class is a strongly connected component of a
network such that no reaction points out of the component (that is, there does not exist a reaction
cyi → cyj , where cyi is in the component, while cyj is not).

Theorem 2.4.2 (Deficiency One Theorem [Fei87]). Let G be a weakly-reversible chemical reac-
tion network, and let L1, . . . , Ll denote its linkage classes. Let δ and δ1, . . . , δl denote the deficiencies
of G and the linkage classes, respectively. Assume that the classes satisfy the following conditions:

1. each class Li contains a unique terminal strong linkage class,

2. δi ≤ 1 for all i = 1, . . . , l, and
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3.
∑l

i=1 δi = δ.

Then for any choice of positive rate constants for the reactions of G, each invariant polyhedron P
contains in its interior a unique steady state of the chemical reaction system (1.3).

Finally, we also make note of the related Deficiency One Algorithm and Advanced De-
ficiency Algorithm, which were implemented by Ellison and Feinberg in the Chemical Reaction
Network Theory Toolobox software [Ell98, EF, Fei95].

2.4.2 Stochastic complex-balancing chemical systems

We end this section by making note of related work on stochastic models of chemical
systems. Recall that complex-balancing is a property of a network and a choice of rate parameters.
The results in this section state that under the dynamics of mass-action, each invariant polyhedron
has a unique steady state. When such a reaction system is modeled stochastically, typically the
state vector is discrete, recording the numbers of each chemical species that are present. Also, the
integer points of invariant polyhedra further decompose into closed, irreducible subsets which are
finite or countable. The stochastic analogue of a steady state is a stationary distribution, which
describes the long-term behavior of a stochastic process. The following recent result is due to
Anderson, Craciun, and Kurtz.

Theorem 2.4.3. [Theorem 4.1 of [ACK08]] Let G be a chemical reaction network, and let κij

be a choice of complex-balancing rate constants for G. Let c∗ be a Birch point of some invariant
polyhedron arising from G. Now consider the system modeled according to stochastic mass-action
with parameters κij . Then for any closed, irreducible subset Γ of the state space, the stochastic
system has a product-form stationary distribution

π(x) = M
(c∗)x

x!
= M

s∏

i=1

(c∗i )
xi

xi!
,

which holds for all x ∈ Γ, and where M denotes a normalizing constant.

For further details, see the work of Anderson, Craciun, and Kurtz [ACK08].

2.5 Biological applications

The biological examples in this section illustrate the concepts developed so far.

Example 2.5.1. [Networks with trivial moduli] We expect that our toric approach will be
useful for parametric analyses of chemical reaction networks in systems biology. Analyses of this
kind include [CFR08, GSG+07, KSP07b, Son01]. Many of the explicit examples in the literature
have trivial toric moduli in the sense that either MG is the unit ideal or MG is the zero ideal.

If MG = 〈1〉, then (1.3) is never a toric dynamical system regardless of what values the
κij take. As discussed earlier, this happens when at least one connected component of G is not
strongly connected (in other words, the network is said to be not weakly-reversible). Examples
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include Michaelis-Menten kinetics and the covalent modification cycle in [Gun03, §5]. If MG = {0},
then the network has deficiency zero and (1.3) is always a toric dynamical system, regardless of
what the κij are. The converse holds as well. Examples include the cycle in [KSP07b, Equation
(9)], the monotone networks in [DAS07], and the following network which is taken from [GSG+07].

The ligand-receptor-antagonist-trap network has s = 8 species and n = 8 complexes. This
network G has four reversible reactions which we write in binomial notation:

κ15 · c5c6 − κ51 · c1, κ26 · c6c7 − κ62 · c2, κ37 · c7c8 − κ73 · c3, κ48 · c8c5 − κ84 · c4 . (2.15)

Here the number of components is l = 4 and the dimension of the stoichiometric subspace is σ = 4,
so the deficiency is δ = 0. In the algebraic notation of Section 2.2, the toric ideal TG equals the
complex-balancing ideal 〈Ψ(c) ·Aκ〉 and is generated by the four binomials in (2.15). Eliminating
c1, c2, . . . , c8 as prescribed by equation (2.13) yields the zero ideal MG = {0}.

Example 2.5.2. [DHFR catalysis] Here are some examples from systems biology which show
more complicated dynamical behavior. For an example of a network with several positive equilibria
for certain values of the reaction rate parameters, we refer to reader to the DHFR catalysis network
in the work of Craciun, Tang, and Feinberg [CTF06, Figure 5]; bistability is illustrated in [CTF06,
Figure 7]). One subset of these reactions (called “group A” in their work) has almost the same
structure as mechanism 6 in [CTF06, Table 1], shown below in the usual additive notation for
chemical reactions:

E + S1 ⇆ ES1, E + S2 ⇆ ES2, ES1 + S2 ⇆ ES1S2 ⇆ ES2 + S1 , (2.16)

ES1S2 → E + P, S1 ⇆ 0, S2 ⇆ 0, P → 0 .

This reaction network allows for inflow and outflow of some chemical species; in the language of
deficiency theory, we say that one of the complexes of this reaction network is the zero complex
(see [Fei79]), i.e., one of the vectors yi is the zero vector. Like the more complicated DHFR
catalysis network, the network (2.16) also has several positive steady states (within a single invariant
polyhedron) for some values of the reaction rate parameters. It is easy to compute the deficiency
of this simpler mechanism: the number of complexes is n = 12 (including the zero complex), the
number of linkage classes is l = 4 (including the linkage class that contains the inflow and outflow
reactions for the substrates S1, S2, and the product P ), and the dimension of its stoichiometric
subspace is σ = 6. Therefore the deficiency of the network (2.16) is δ = 12 − 4 − 6 = 2. This
network cannot be toric for any choice of the constant rates because it is not weakly-reversible.
If we make all reactions reversible in (2.16), then the complexes, the linkage classes, and the
stoichiometric subspace remain the same, and thus the deficiency of the reversible version of (2.16)
is also two.

Example 2.5.3. [Recombination on the 3-cube] In population genetics [Aki79, Aki82], the
evolution of a population is modeled by a dynamical system whose left-hand side is the sum of
three terms, corresponding to mutation, selection and recombination. The contribution made by
recombination alone is a quadratic dynamical system [RSW92] which can be written in the form
of our chemical systems (1.3). In our view, toric dynamical systems are particularly well-suited
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to model recombination. Here we consider a population of three-locus diploids, so the underlying
genotope of the haploid gametes is the standard three-dimensional cube [BPS07, Example 3.9]. The
eight vertices of the cube are the genotypes. They now play the role of the species in chemistry:

s = 8
genotypes [000] [001] [010] [011] [100] [101] [110] [111]
frequencies c1 c2 c3 c4 c5 c6 c7 c8

The recombination network G has n = 16 nodes which correspond to the pairs of genotypes which
are not adjacent on the cube. There are twelve bidirectional edges, representing interactions, and
we label them using the notation of [BPS07, Example 3.9]. Six of the interactions correspond to
conditional epistasis, which are displayed by additive notation and by their monomials:

[000] + [110] ⇆ [010] + [100] κ1,2 · c1c7 − κ2,1 · c3c5 K1 = κ2,1 and K2 = κ1,2

[001] + [111] ⇆ [011] + [101] κ3,4 · c2c8 − κ4,3 · c4c6 K3 = κ4,3 and K4 = κ3,4

[000] + [101] ⇆ [001] + [100] κ5,6 · c1c6 − κ6,5 · c2c5 K5 = κ6,5 and K6 = κ5,6

[010] + [111] ⇆ [011] + [110] κ7,8 · c3c8 − κ8,7 · c4c7 K7 = κ8,7 and K8 = κ7,8

[000] + [011] ⇆ [001] + [010] κ9,10 · c1c4 − κ10,9 · c2c3 K9 = κ10,9 and K10 = κ9,10

[100] + [111] ⇆ [101] + [110] κ11,12 · c5c8 − κ12,11 · c6c7 K11 = κ12,11 andK12 = κ11,12 .

Second, we have marginal epistasis, giving rise to the six pairwise interactions among

four complexes [000] + [111] [001] + [110] [010] + [101] [100] + [011]
four monomials K13 · c1c8 K14 · c2c7 K15 · c3c6 K16 · c4c5 .

Here K13,K14,K15,K16 are cubic polynomials with 16 terms indexed by trees as in (2.6). By
Proposition 2.2.3, they are the 3 × 3 minors of the Laplacian of the complete graph K4:




κ13,14+κ13,15+κ13,16 −κ13,14 −κ13,15 −κ13,16

−κ14,13 κ14,13+κ14,15+κ14,16 −κ14,15 −κ14,16

−κ15,13 −κ15,14 κ15,13+κ15,14+κ15,16 −κ15,16

−κ16,13 −κ16,14 −κ16,15 κ16,13+κ16,14+κ16,15


 .

The recombination network G has l = 7 connected components and its deficiency is δ = 5, as there
are n = 16 complexes, and the stoichiometric subspace S has dimension σ = 4. The moduli ideal
MG is minimally generated by 18 binomials. Twelve of them are cubics:

K8K11K15 −K7K12K16 K6K9K15 −K5K10K16 K4K11K14 −K3K12K16

K2K9K14 −K1K10K16 K4K7K14 −K3K8K15 K2K5K14 −K1K6K15

K6K12K13 −K5K11K14 K2K12K13 −K1K11K15 K8K10K13 −K7K9K14

K4K10K13 −K3K9K15 K2K8K13 −K1K7K16 K4K6K13 −K3K5K16 .

The remaining six generators of MG are quartics:

K9K11K14K15 −K10K12K13K16 K6K8K13K15 −K5K7K14K16

K2K4K13K14 −K1K3K15K16 K5K8K10K11 −K6K7K9K12

K1K4K10K11 −K2K3K9K12 K1K4K6K7 −K2K3K5K8 .
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The moduli space (of toric dynamical systems on G) is the toric variety V (MG) defined by these
18 binomials. It has codimension 5 and degree 56. For any recombination rates κ0 ∈ V>0(MG) and
any starting point c0 in the population simplex ∆7, the trajectory of the toric dynamical system
(1.3) stays in the 4-dimensional polytope P = (c0 + S) ∩ ∆7 and is conjectured to converge to
the Birch point c∗. Akin calls c∗ the Wright point [Aki79]. The point generalizes the classical
Hardy-Weinberg equilibrium of the two-locus system.

2.6 Detailed-balancing systems

In this section we discuss an important subclass of toric dynamical systems called detailed-
balancing systems. Here, every edge of the digraph G exists in both directions; that is, each
chemical reaction is reversible. We can thus identify G = (V,E) with the underlying undirected
graph G̃ = (V, Ẽ), where Ẽ =

{
{i, j} : (i, j) ∈ E

}
. For each undirected edge {i, j} ∈ Ẽ of the

graph G̃ we define an n×n-matrix A
{i,j}
κ as follows. In rows i, j and columns i, j the matrix A

{i,j}
κ

equals (
−κij κij

κji −κji

)
,

and all other entries of the matrix A
{i,j}
κ are 0. Then the Laplacian of G decomposes as the sum

Aκ =
∑

{i,j}∈Ẽ

A{i,j}
κ . (2.17)

A detailed-balancing system is a dynamical system (1.3) for which the algebraic equations Ψ(c) ·

A
{i,j}
κ = 0 for {i, j} ∈ Ẽ admit a strictly positive solution c∗ ∈ Rs

>0. In light of the decomposition
(2.17), every detailed-balancing system is a toric dynamical system, so the positive solution c∗

(in a fixed invariant polyhedron) is unique and coincides with the Birch point. As it is for toric
dynamical systems, the condition of being detailed-balancing depends on both the graph G̃ and the
rate constants κij . Properties of detailed-balancing systems are described by Feinberg in [Fei89]
and by Vol´pert and Khud⁀iaev in [VK85, §12.3.3].

We rewrite the condition for being detailed-balancing in terms of binomials in the poly-

nomial ring Q[c, κ]. The two non-zero entries of the row vector Ψ(c) ·A
{i,j}
κ are κijc

yi −κjic
yj and

its negative. Moreover, we find that

Ψ(c) · A{i,j}
κ · Y = (κijc

yi − κjic
yj ) · (yj − yi) ,

and hence the right-hand side of the dynamical system (1.3) can be rewritten as follows:

Ψ(c) · Aκ · Y =
∑

{i,j}∈Ẽ

Ψ(c) · A{i,j}
κ · Y =

∑

{i,j}∈Ẽ

(κijc
yi − κjic

yj ) · (yj − yi) . (2.18)

For a detailed-balancing system, each summand in (2.18) vanishes at the Birch point c∗.
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Example 2.6.1. We revisit Example 2.1.1. Let s = 2, n = 3, and let G̃ be the complete graph on
three nodes labeled by c21, c1c2, and c22. The dynamical system (2.1) is now written as

d

dt
(c1, c2) = (κ12c

2
1 − κ21c1c2) · (−1, 1) + (κ13c

2
1 − κ31c

2
2) · (−2, 2) + (κ23c1c2 − κ32c

2
2) · (−1, 1) .

This is a detailed-balancing system if and only if the following algebraic identities hold:

κ2
12κ31 − κ2

21κ13 = κ2
23κ31 − κ2

32κ13 = κ12κ32 − κ21κ23 = 0 . (2.19)

This defines a toric variety of codimension two which lies in the hypersurface (2.2).

To fit our discussion into the algebraic framework of Section 2.2, we now propose the
following definitions. The detailed-balancing ideal is the following toric ideal in Q[κ, c]:

T̃G :=
(
〈κijc

yi − κjic
yj | {i, j} ∈ Ẽ 〉 : (c1c2 · · · cs)

∞
)
. (2.20)

The corresponding elimination ideal in Q[κ] will be called the detailed moduli ideal:

M̃G := T̃G ∩ Q[κ] .

The ideal T̃G is toric, by the same reasoning as in Proposition 2.2.6. The detailed moduli ideal M̃G

is a toric ideal of Lawrence type, as was the ideal in Example 2.2.1. Note, however, that the ideals
T̃G and M̃G are toric in the original coordinates κij . Here, we did not need the transformation to
the new coordinates K1, . . . ,Kn defined in (2.6).

From the inclusion of polynomial rings Q[K, c] ⊂ Q[κ, c], we obtain the following:

TG ⊆ T̃G and MG ⊆ M̃G .

An instance for which equality holds is Example 2.2.1, in which each chemical complex appears in
only one reaction and each reaction is reversible. In fact, Feinberg proved that for any reversible
network that is a forest (has no cycles), the conditions for detailed-balancing and complex-balancing
are the same [Fei89, Remark 3.2]. A generalization of this result, that a condition called “formal
balancing” implies the equivalence of detailed- and complex-balancing, appears in recent work of
Dickenstein and Pérez Millán [DM10, Theorem 1.1]. Formal balancing is also known as Feinberg’s
“circuit conditions” or Wegscheider’s condition: for any cycle of a network G, the product of the
rate constants along one orientation of the cycle must equal the product in the opposite orientation
[Fei89]. Clearly, these conditions are vacuous for a cycle-free network. Further details on conditions
for complex- and detailed-balancing appear in work of Feinberg [Fei72, Fei89] and Horn [Hor72].

In general, as seen in Example 2.6.1 above, the corresponding inclusion of moduli spaces
will be strict:

V>0(M̃G) ⊂ V>0(MG) .

In words: every detailed-balancing system is a toric dynamical system but not vice-versa. Conver-
gence properties of detailed-balancing systems will be analyzed in Section 4.5 of Chapter 4.
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Chapter 3

Siphons and primary decomposition

The material in this chapter is based on the paper “Siphons in chemical reaction systems”
[SS09], which was authored jointly with Bernd Sturmfels.

3.1 Introduction to siphons

In systems biology, a population model or chemical reaction system is said to be “persis-
tent” if none of its species can become extinct if all species are present at the initial time. Those
subsets of the species that can be absent in steady state are called “siphons.” Angeli et al. [ADS07a]
suggested the concept of siphons to study the long-term behavior of dynamical systems that model
chemical reactions. In terms of the dynamics, a siphon is the index set of a forward-invariant face
of the positive orthant. Any boundary steady state must lie in the interior of such a face. Hence,
to investigate the trajectories, it is useful to list all minimal siphons. The present chapter offers
an algebraic characterization of siphons, and it shows how this translates into a practical tool for
computing siphons.

Recall from Section 1.3 of the Introduction that a chemical reaction network is a directed
graph G whose nodes are labeled by monomials and whose edges correspond to reactions. A siphon
of G is a non-empty subset Z of the variables such that, for every directed edge m → m′ in G,
whenever one of the variables in the monomial m′ lies in Z then so does at least one of the variables
in m. In Section 3.2 we relate this definition to the description of siphons given in [ADS07a, CFP05],
we review the underlying dynamics, and we discuss its meaning in terms of polyhedral geometry.
Our algebraic approach is presented in Section 3.3. Theorem 3.3.1 expresses the minimal siphons of
G in terms of the primary decomposition of a binomial ideal associated to G. If the directed graph
G is strongly connected then the ideal encoding the minimal siphons is generated by squarefree
monomials. In Theorem 3.3.2 and Algorithm 3.3.6, we explain how to compute the relevant (that
is, stoichiometrically compatible) siphons for any set of initial conditions. In particular, a chemical
reaction system without relevant siphons has no boundary steady states, and this property is
sufficient for proving persistence of many systems [ADS07a, SM00]. In Section 3.4, we demonstrate
that the relevant computations can be performed effectively using computer algebra software, such
as Macaulay 2 [GS02].



31

In the remainder of this section, we present three examples from the systems biology
literature, with the aim of illustrating our algebraic representation of chemical reaction networks
and the computation of siphons.

Example 3.1.1. We return to the receptor-ligand dimer model of Example 1.4.3:

A2C AD

EBC

OO OO

�� ��

//

//

oo

oo

κ12

κ21

κ23κ32

κ34

κ43

κ41 κ14

There are three minimal siphons, {A,B,E}, {A,C,E}, and {C,D,E}, which correspond to the
minimal primes of the monomial ideal of the complexes 〈A2C, AD, E, BC〉. By “minimal” we
mean with respect to inclusion. We will revisit this example in Section 3.4.

Example 3.1.2. The following enzymatic mechanism was analyzed by Siegel and MacLean [SM00],
and also by Chavez [Cha03, Example 4.6.1]:

SE ⇆ Q ⇆ PE

QI ⇆ R .

The species are S (a substrate), E (an enzyme), P (a product), I (an uncompetitive inhibitor),
and intermediate complexes Q and R. Here the graph consists of two strong components, and we
encode it in the binomial ideal 〈SE −Q, Q−PE, QI −R〉+ 〈EPQRS〉. The radical of this ideal
equals

〈E, Q, R〉 ∩ 〈I, R, ES −Q, P − S〉 ∩ 〈P, Q, R, S〉 .

By Theorem 3.3.1, the minimal siphons are the variables in these prime ideals. Thus the minimal
siphons are {E, Q, R}, {I, R}, and {P, Q, R, S}.

Example 3.1.3. Here is the network for a basic one-step conversion reaction:

S0E ⇆ X → PE

PF ⇆ Y → S0F .

The enzyme E helps convert a substrate S0 into a product P , and a second enzyme F reverts
the product P back into the original enzyme S0; these are also called “futile cycles” [AS06, MG08,
SPA05]. Such reactions include phosphorylation and de-phosphorylation events, and they take place
in MAPK cascades. This network has three minimal siphons: {E, X}, {F, Y }, and {P, S0, X, Y }.
To see this algebraically, we form the binomial ideal

〈
ES0 −X, X(EP −X), FP − Y, Y (FS0 − Y ), EFPS0XY

〉
.

This ideal corresponds to TG in Theorem 3.3.1, and it has six minimal primes:

〈E, X, FS0 − Y, P − S0〉, 〈F, Y, P − S0, S0E −X〉, 〈P, S0, X, Y 〉,

〈E, X, Y, F 〉, 〈E, X, P, Y 〉, and 〈F, S0, X, Y 〉 .

The three minimal siphons arise from the first three of these six primes.
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3.2 Reaction networks, siphons, and steady states

We now review the basic setup from Section 1.3 of the Introduction. A chemical reaction
network is defined by a finite labeled directed graph G with n vertices. The i-th vertex of G is
labeled with a monomial cyi = cyi1

1 cyi2
2 · · · cyis

s in s unknowns c1, . . . , cs, and an edge (i, j) is
labeled by a positive parameter κij . This graph defines the ordinary differential equations

dc

dt
= Ψ(c) ·Aκ · Y ,

where Ψ(c) =
(
cy1 , cy2 , . . . , cyn

)
is the row vector of the monomials, Y = (yij) is the n× s-matrix

of exponent vectors of the n monomials, and Aκ is the n× n-matrix whose off-diagonal entries are
the κij and whose row sums are zero (i.e. minus the Laplacian of G). The equations (1.3) are those
of mass-action kinetics, although the concept of a siphon is independent of the choice of kinetics. In
order for each chemical complex cyi to be a reactant or product of at least one reaction, we assume
that G has no isolated points. For a complex cyi and for a ∈ [s], we write ca|c

yi (“ca divides cyi”)
if yia > 0; in other words the i-th complex contains species a. If the i-th complex does not contain
species a, then we write ca ∤ cyi .

A non-empty subset Z of the index set [s] := {1, 2, . . . , s} is a siphon if for all z ∈ Z
and all reactions cyi −→ cyj with cz|c

yj , there exists a ∈ Z such that ca|c
yi . Siphons were called

“semilocking sets” in [And08, AS10]. Note that the set of siphons of G does not depend on the
choice of parameters κij .

With any non-empty subset Z ⊂ [s] we associate the prime ideal

PZ := 〈 ca : a ∈ Z 〉

in the polynomial ring Q[c1, c2, . . . , cs]. Recall (e.g. from [CLO07]) that the variety of PZ , denoted
by V (PZ), is the set of points x ∈ Rs such that f(x) = 0 for all polynomials f ∈ PZ . Thus, the
non-negative variety V≥0(PZ) is the face of the positive orthant Rs

≥0 defined by all Z-coordinates
being zero.

Proposition 3.2.1. A non-empty subset Z of [s] is a siphon if and only if V≥0(PZ) is forward-
invariant with respect to the dynamical system (1.3).

Proof. This is the content of Proposition 2 in Angeli et al. [ADS07a].

Related results that concern the “reachability” of species include Theorems 1 and 2 in
the textbook of Vol´pert and Khud⁀iaev [VK85, §12.2.3]. See also the recent paper of Gnacadja
concerning reachability and persistence that builds on the work of Vol´pert [Gna09a, §3].

In Example 3.1.1, the dynamical system (1.3) takes the explicit form

dA/dt = − (κ12 + 2κ14)A
2C + (κ21 − κ23)AD + κ32E + 2κ41BC

dB/dt = κ14A
2C − (κ41 + κ43)BC + κ34E

dC/dt = − κ12A
2C + κ21AD − κ43BC + κ34E

dD/dt = κ12A
2C − (κ21 + κ23)AD + κ32E

dE/dt = κ23AD + κ43BC − (κ32 + κ34)E .
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This is a dynamical system on R5
≥0. Each of the three minimal siphons {A,B,E}, {A,C,E}, and

{C,D,E} defines a two-dimensional face of R5
≥0. For example, V≥0(P{A,B,E}) is the face in which

the coordinates A, B, and E are zero and C and D are non-negative. The minimality of the three
siphons implies that no face of dimension three or four is forward-invariant.

We next collect some results relating siphons to boundary steady states, that is, non-
negative steady states of (1.3) having at least one zero-coordinate. These connections are behind
our interest in computing siphons. In addition, we refer the reader to Chapter 4, which focuses on
how siphons are related to questions of persistence (the property that positive trajectories of (1.3)
have no accumulation points on the boundary of the orthant Rs

≥0). We first show that a boundary
steady state necessarily lies in the relative interior of a face V≥0(PZ) indexed by a siphon Z.

Lemma 3.2.2. Fix a reaction network G, and let γ be a point on the boundary of the positive
orthant Rs

≥0 with zero coordinate set Z := { i ∈ [s] : γi = 0 }. If γ is a boundary steady state of
(1.3), then the index set Z is a siphon.

Proof. Assume that cz|c
yj for some species z ∈ Z and some complex cyj of G. Let I index complexes

that react to cyj but do not contain the species z:

I :=
{
i ∈ [n] : cyi −→ cyj is a reaction of G and cz 6 | cyi

}
.

Then we have

dcz
dt

∣∣∣
c=γ

=
∑

i∈I

κijyjzγ
yi = 0 , (3.1)

where the second equality holds because γ is a steady state. The summands of (3.1) are non-
negative, so we have γyi = 0 for all i ∈ I. Thus if i ∈ I there exists ai ∈ [s] with γai

= 0 (so,
ai ∈ Z) and hence cai

|cyi .

A similar result holds for boundary ω-limit points (accumulation points) of a trajectory;
see [ADS07a, And08] or [AS10, Theorem 2.13]. As usual, the following invariant polyhedron is the
forward-invariant set arising from some initial condition c(0) ∈ Rs

>0:

Pc(0) :=
(
c(0) + Lstoi

)
∩ Rs

≥0 .

Here Lstoi := span{yj − yi : cyi → cyj is a reaction} is the stoichiometric subspace in Rs. (This
chapter deviates from the usual notation S for this space.) For any index set W ⊂ [s], we have the
corresponding (possibly empty) face of Pc(0) :

FW := {x ∈ Pc(0) : xi = 0 if i ∈W} = V≥0(PW ) ∩ Pc(0) .

As we saw in Section 1.3.6, all faces of Pc(0) have this form. Lemma 3.2.2 implies the following:
Given an invariant polyhedron Pc(0) , if all siphons Z yield empty faces, FZ = ∅, then Pc(0) contains
no boundary steady states. In Theorem 3.3.5 we shall present an algebraic method for deciding
when this happens.

We now examine the case when the chemical reaction network is strongly connected, which
means that between any two complexes cyi and cyj , there is a directed sequence of reactions from
cyi to cyj .
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Lemma 3.2.3. Assume that G is strongly connected. Then a point γ ∈ Rs
≥0 is a boundary steady

state if and only if its zero set Z = {i ∈ [s] : γi = 0} is a siphon.

Proof. The forward implication is Lemma 3.2.2. Now let γ be a boundary point whose zero-
coordinate set Z is a siphon. Because G is strongly connected, all complexes cyi evaluated at γ are
zero (γyi = 0), and hence each monomial that appears on the right-hand side of (1.3) vanishes at
c = γ.

From a polyhedral geometry point of view, Lemma 3.2.3 states the following: For strongly
connected reaction networks G, any face of an invariant polyhedron Pc(0) either has no steady states
in its interior or the entire face consists of steady states. We shall see now that a similar result
holds for toric dynamical systems. Recall from Chapter 2 that (1.3) is a toric dynamical system if
the parameters κij are such that Ψ(c) · Aκ = 0 has a positive solution c ∈ Rs

>0 (which is called a
complex-balancing steady state). The following result concerns the faces of invariant polyhedra of
toric dynamical systems.

Lemma 3.2.4. Let c(0) ∈ Rs
>0 be a positive initial condition of a toric dynamical system. Then a

face FZ of the invariant polyhedron Pc(0) contains a steady state in its interior if and only if Z is
a siphon.

Proof. This result is a straightforward generalization of Theorem 2.5 of [And08], and its proof is
similar.

We end this section by noting that the results mentioned above can be reformulated in
terms of the complements of siphons, which are the “reach-closed” sets; see the recent work of
Gnacadja [Gna09a, §3].

3.3 Binomial ideals and monomial ideals

In what follows we characterize the minimal siphons of a chemical reaction network in
the language of combinatorial commutative algebra [MS05]. Namely, they arise as components in
primary decompositions. For any initial conditions c(0), we characterize those siphons that define
non-empty faces of the invariant polyhedron Pc(0) . In the next section we shall see that these results
translate into a practical new method for enumerating siphons.

Throughout this section we fix the ring R = Q[c1, . . . , cs]/〈c1c2 . . . cs〉. This is the ring of
polynomial functions with Q-coefficients on the union of the coordinate hyperplanes in Rs. All of
our ideals will live in this ring.

With a given network G we associate the following three ideals in R:

TG =
〈
cyi · (cyj − cyi) : cyi → cyj is a reaction of G

〉
,

JG =
〈
cyj − cyi : cyi → cyj is a reaction of G

〉
,

MG =
〈
Ψ(c)

〉
=
〈
cy1 , cy2 , . . . , cyn

〉
.

Thus TG encodes the directed edges, and JG encodes the underlying undirected graph. These are
pure difference binomial ideals [DMM10, ES96], while MG is the monomial ideal of the complexes.
The following is the main result of this chapter.
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Theorem 3.3.1. The minimal siphons of a chemical reaction network G are the inclusion-minimal
sets {i ∈ [s] : ci ∈ P} where P runs over the minimal primes of TG. If each connected component of
G is strongly connected then TG can be replaced in this formula by the simpler ideal JG. Moreover,
if G is strongly connected then TG can be replaced by the monomial ideal MG.

Proof. The complex variety VC(TG) consists of all points γ ∈ Cs having at least one zero coordinate
and satisfying γyi ·(γyj −γyi) = 0 for all reactions. We first claim that our assertion is equivalent to
the statement that the minimal siphons are the inclusion-minimal sets of the form {i ∈ [s] : γi = 0}
where γ runs over VC(TG). Indeed if P is a minimal associated prime of TG, let γ ∈ {0, 1}s be
defined by γi = 1 if and only if ci /∈ P. It follows that {i ∈ [s] : ci ∈ P} = {i ∈ [s] : γi = 0} and
γ ∈ VC(P) ⊂ VC(TG). Conversely, if γ ∈ VC(TG), then γ ∈ VC(P) for some minimal associated
prime P, and so we have the containment {i ∈ [s] : ci ∈ P} ⊂ {i ∈ [s] : γi = 0}. If, furthermore,
the set {i ∈ [s] : γi = 0} is minimal among those defined by γ′ ∈ VC(TG), then by above it must
follow that the containment is in fact equality.

Next, if γ is in VC(TG), then we can replace γ by the 0 − 1 vector δ defined by δi = 0 if
γi = 0 and δi = 1 if γi 6= 0. This non-negative real vector has the same support as γ and lies in the
variety of TG. Hence our claim is that the minimal siphons are the inclusion-minimal sets of the
form {i ∈ [s] : δi = 0} where δ runs over V{0,1}(TG). But this is obvious because δyi · (δyj − δyi) = 0
if and only if δyj = 0 implies δyi = 0.

Now, the minimal associated primes of TG depend only on the radical of TG, so we can
replace TG by any other ideal that has the same radical. If the components of G are strongly
connected then the complex cyi can produce cyj if and only if cyj can produce cyi , and in this
case both cyi · (cyj − cyi) and cyj · (cyi − cyj ) are in TG. Hence the radical of TG contains the
binomial cyi − cyj , and we conclude that TG and JG have the same radical.

Finally, MG is a monomial ideal, and associated primes of a monomial ideal are of the
form PZ for some subset Z ⊂ [s]. It is straightforward to see that if G is strongly connected, PZ

contains MG if and only if Z is a siphon.

When analyzing a concrete chemical reaction network G, one often is given an initial
vector c(0) ∈ Rs

>0 for the dynamical system (1.3), or at least a subset Ω of Rs
>0 that contains

c(0). A siphon Z ⊂ [s] of G is called c(0)-relevant if the face FZ of the invariant polyhedron Pc(0)

is non-empty. In other words, if Z is c(0)-relevant, then there exists a boundary point that is
stoichiometrically compatible with c(0) and has zero-coordinate set containing Z. For any subset
Ω of Rs

>0, we say that Z is Ω-relevant if it is c(0)-relevant for at least one point c(0) in Ω. Finally
we call a siphon relevant if it is Rs

>0-relevant. Relevant siphons are also called “critical” siphons
[ADS07a, ADS09], and non-relevant siphons are also called “stoichiometrically infeasible” siphons
[AS10] and “structurally non-emptiable” siphons [ADS07a]. In [Ang08], the main theorem of Angeli
gives a class of networks for which all siphons are non-relevant; these are the so-called “state machine
decomposable networks” that have a “tree structure” and satisfy a certain “overlap compatibility”
condition. We next explain how to enlarge the ideals TG, JG, and MG so that their minimal primes
encode only the siphons that are relevant.

We recall that the stoichiometric subspace Lstoi of Rs is spanned by all vectors yj−yi where
cyi → cyj is a reaction in G. (Note that we deviate in this chapter from our usual notation, S, for
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this space.) Its orthogonal complement Lcons := (Lstoi)
⊥ is the space of conservation relations. Let

Q denote the image of the non-negative orthant Rs
≥0 in the quotient space Rs/Lstoi ≃ Lcons. Thus

Q is a convex polyhedral cone and its interior points are in bijection with the invariant polyhedra
Pc(0) . Further, Q is isomorphic to the cone spanned by the columns of any matrix A whose rows
form a basis for Lcons. This isomorphism is given by the map

φA : Q →

{ s∑

i=1

αiai : α1, α2, . . . , αs ≥ 0

}
, q̄ 7→

s∑

i=1

qiai ,

where q = (q1, q2, . . . , qs) ∈ Rs
≥0 and a1, a2, . . . , as are the columns of the matrix A. For simplicity,

we identify the cone Q with the image of φA. A subset F of [s] = {1, 2, . . . , s} is called a facet of
Q if the corresponding columns of A are precisely the rays lying on a maximal proper face of Q.
Any maximal proper face of Q also is called a facet. The list of all facets of Q can be computed
using polyhedral software such as polymake [JG00].

We represent the facets of Q by the following squarefree monomial ideal:

B =
⋂

F facet of Q

〈
ci : i 6∈ F

〉
=:

⋂

F facet of Q

PF c .

Each vertex of an invariant polyhedron Pc(0) is encoded uniquely by its support V , which is a subset
of [s]. Consider the squarefree monomial ideal

Bc(0) =
〈∏

i∈V

ci : V encodes a vertex of Pc(0)
〉
.

The distinct combinatorial types of the polyhedra Pc(0) determine a natural chamber decomposition
of the cone Q into finitely many smaller cones: if two polyhedra Pc(0) and Pd(0) correspond to points
in such a chamber of the decomposition, then the polyhedra have the same set of supports V of
their vertices. For an example, see Figure 3.1. In general the face of P defined by the vanishing
of some subset W ⊂ [s] may have different dimensions in different chambers. In the context of
chemical reaction networks, such a chamber decomposition appeared in recent work of Craciun,
Pantea, and Rempala [CPR09b]. Specifically, its chambers were denoted Si in [CPR09b, §2.1].

The ideal Bc(0) depends only on the chamber that contains the image of c(0). For any
subset Ω ⊂ Rs

>0, we take the sum of the ideals corresponding to all chambers that intersect the
image of Ω in Q. That sum is the ideal

BΩ =
〈∏

i∈V

ci : V encodes a vertex of Pc(0) for some c(0) ∈ Ω
〉
.

The above ideals are considered either in the polynomial ring Q[c1, . . . , cs] or in its quotient R =
Q[c1, . . . , cs]/〈c1c2 · · · cs〉, depending on the context.

Let T1 and T2 be two arbitrary ideals in R. Recall (e.g. from [CLO07]) that the saturation
of T1 with respect to T2 is a new ideal that contains T1, namely,

Sat(T1,T2) = (T1 : T∞
2 ) =

{
f ∈ R : f · (T2)

m ⊆ T1 for somem ∈ Z>0

}
.
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Here, we shall be interested in the following nine saturation ideals:

Sat(TG,B), Sat(TG,Bc(0)), Sat(TG,BΩ) ,
Sat(JG,B), Sat(JG,Bc(0)), Sat(JG,BΩ) ,
Sat(MG,B), Sat(MG,Bc(0)), Sat(MG,BΩ) .

(3.2)

The following theorem is a refinement of Theorem 3.3.1.

Theorem 3.3.2. The relevant minimal siphons of G are the inclusion-minimal sets {i ∈ [s] : ci ∈
P} where P runs over minimal primes from the ideals (3.2). The ideals in the first, second, and
third columns yield relevant siphons, c(0)-relevant siphons, and Ω-relevant siphons, respectively.
The ideals in the first row are for all networks G, those in the third row for strongly connected
networks, and those in the middle row for networks with strongly connected components.

Proof. The variety of the ideal Sat(T1,T2) is the union of all irreducible components of the variety
V (T1) that do not lie in V (T2). The result now follows from Theorem 3.3.1 and the following
observations. The non-negative variety V≥0(B) consists of all points in Rs

≥0 whose image modulo
Lstoi lies in the boundary of the cone Q. Thus, for a minimal siphon Z, the image of the variety
V≥0(PZ) is in the boundary of Q if and only if Z is not relevant. More precisely, the image of
V≥0(PZ) is in the interior of the subcone spanned by {ai : i /∈ Z}, so there exists a facet of Q
that contains the subcone if and only if Z is not relevant. Therefore, any irreducible component
of V (JG) (or V (TG) or V (MG)) defines a non-relevant siphon Z if and only if it lies in V (PF c) for
some facet F of Q, which is equivalent to lying in V (B).

Next, the variety V≥0(Bc(0)) is the union of all faces of the orthant Rs
≥0 that are disjoint

from the invariant polyhedron Pc(0) . So, for a minimal siphon Z, the ideal PZ does not contain
Bc(0) if and only if there exists a vertex of Pc(0) whose zero-coordinate set contains Z, which is
equivalent to the condition that the face FZ of the polyhedron is non-empty. Hence, any component
of the variety V (JG) (or V (TG) or V (MG)) that defines a minimal siphon Z lies in V (Bc(0)) if and
only if Z is not relevant. Finally, the variety V≥0(BΩ) is the intersection of the varieties V≥0(Bc(0))
as c(0) runs over Ω.

Example 3.3.3. In Examples 3.1.2 and 3.1.3, Q is the cone over a triangle, and the three minimal
siphons are precisely the facets of that triangular cone. Thus, there are no relevant siphons at all.
This is seen algebraically by verifying the identities Sat(JG,B) = 〈1〉 and Sat(TG,B) = 〈1〉.

We now discuss the case when a network has no relevant siphons, by making the connection
to work of Angeli et al. [ADS07a], which focuses on chemical reaction networks whose siphons Z
all satisfy the following condition:

(⋆) there exists a non-negative conservation relation l ∈ Lcons ∩ Rs
≥0

whose support supp(l) = {i ∈ [s] : li > 0} is a subset of Z.

Recall that Angeli et al. call siphons satisfying this property “structurally non-emptiable” or “sto-
ichiometrically constrained” [ADS09, §3]. Note that the property (⋆) needs only to be checked for
minimal siphons in order for all siphons to satisfy the property [ADS07a, §8]. For some chemical
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reaction systems, such as toric dynamical systems (including Examples 3.1.1 and 3.1.2), this prop-
erty is sufficient for proving persistence [ADS07a, And08, AS10, SM00], and what was offered in
this section are elegant and efficient algebraic tools for deriving such proofs.

Lemma 3.3.4. For a chemical reaction network G, a siphon Z satisfies property (⋆) if and only
if Z is not relevant (which is equivalent to the containment B ⊆ PZ).

Proof. The “only if” direction is clear. For the “if” direction, let Z be a non-relevant siphon. As
usual, for σ := dimLstoic, we fix a matrix A ∈ R(s−σ)×s whose rows span Lcons, and we identify Q
with the cone spanned by the columns ai of A. Let F be a facet of Q that contains the image of
V≥0(PZ), and let v ∈ Rs−σ be a vector such that the linear functional 〈v,−〉 is zero on F and is
positive on points of Q outside of F . The vector l := vA is in Lcons, and we claim that this is a
non-negative vector as in (⋆). Indeed, li = 〈v, ai〉 is zero if i ∈ F and is positive if i /∈ F , and thus,
supp(l) = F c ⊆ Z.

The following result extends Theorem 2 in Angeli et al. [ADS07a].

Theorem 3.3.5. None of the siphons of the network G are relevant if and only if Sat(TG,B) = 〈1〉
if and only if all siphons satisfy property (⋆). In this case, none of the invariant polyhedra Pc(0)

has a boundary steady state.

Proof. The first claim follows from Lemma 3.3.4 above. The second claim follows from the definition
of relevant siphons and Lemma 3.2.2.

We next present a characterization of the ideals B and Bc(0) in terms of combinatorial
commutative algebra. This allows us to compute these ideals entirely within a computer algebra
system (such as Macaulay 2), without having to make any calls to polyhedral software (such as
polymake). We assume a subroutine that computes the largest monomial ideal contained in a
given binomial ideal in the polynomial ring R[c1, . . . , cs]. Let Tstoi and Tcons denote the lattice
ideals associated with the subspaces Lstoi and Lcons. These ideals are generated by the binomials
cu+ − cu− where u = u+ − u− runs over all vectors in Zs that lie in the respective subspace. Here,
u+ ∈ Zs

≥0 and u− ∈ Zs
≥0 denote the positive and negative parts of a vector u in Zs.

Algorithm 3.3.6. The ideals B and Bc(0) can be computed as follows:

1. The squarefree monomial ideal B is the radical of the largest monomial ideal contained in
Tstoi + 〈c1c2 · · · cs〉.

2. The squarefree monomial ideal Bc(0) is Alexander dual to the radical of the largest monomial
ideal contained in the initial ideal inc(0)(Tcons).

3. If c(0) is generic (i.e. the polyhedron Pc(0) is simple) then the radical of inc(0)(Tcons) is a
monomial ideal, and its Alexander dual equals Bc(0) .

The correctness of part 1 rests on the fact that the zero set of the lattice ideal Tstoi is
precisely the affine toric variety associated with the cone Q. Adding the principal ideal 〈c1c2 · · · cs〉
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to Tstoi is equivalent to taking the image of Tstoi in R. The nonnegative variety of the resulting
ideal is the union of all faces of Rs

≥0 whose image modulo Lstoi is in the boundary of Q.
For parts 2 and 3 we are using concepts and results from the textbook [MS05]. The key

idea is to use the initial concentration vector c(0) as a partial term order. Initial ideals of lattice
ideals are discussed in [MS05, §7.4]. Alexander duality of squarefree monomial ideals is introduced
in [MS05, §5.1]. The correctness of part 3 is an immediate corollary to [MS05, Theorem 7.33], and
part 2 is derived from part 3 by a perturbation argument. In the next section, we demonstrate how
to compute all these ideals in Macaulay 2.

3.4 Computing siphons in practice

We start with a network that has both relevant and non-relevant siphons. This example
serves to illustrate the various results in the previous section.

Example 3.4.1. We return to the chemical reaction network in Example 3.1.1. The sums C+D+E
and A + 2B + D + 2E are both constant along trajectories. Chemically, this says that both the
total amount of free and bound forms of the ligand and the total amount of the free and bound
forms of the receptor remain constant. Thus, the matrix A can be taken to be

A =
(
aA, aB , aC , aD, aE

)
=

(
0 0 1 1 1
1 2 0 1 2

)
. (3.3)

The two rows of A form a basis of the vector space of conservation relations Lcons. The cone Q is
spanned by the columns of A. The chamber decomposition of Q is depicted in Figure 3.1. We see
that the two facets of Q define the following ideal of Q[A,B,C,D,E]:

B = 〈C, D, E〉 ∩ 〈A, B, D, E〉 = 〈AC, BC, D, E 〉 .

The relevant siphons are derived from MG = 〈A2C,AD,E,BC〉 as follows:

Sat(MG,B) = 〈A,BC,E〉 = 〈A,B,E〉 ∩ 〈A,C,E〉 .

Thus two of three minimal siphons in Example 3.1.1 are relevant. The third siphon is not relevant
as its ideal 〈C,D,E〉 contains the ideal B. This corresponds to the fact, seen in Figure 3.1, that
the vectors aA and aB span a facet of Q.

The chamber decomposition of Q consists of three open chambers Ω(1), Ω(2), and Ω(3),
and two rays Ω(12) and Ω(23) between the three chambers. These five chambers are encoded in
the following ideals, whose generators can be read off from the vertex labels of the polyhedra PΩ

in Figure 3.1:

BΩ(1) = 〈CD, CE, AC, BC〉 ,

BΩ(12) = 〈D, CE, AC, BC〉 ,

BΩ(2) = 〈AD, BD, DE, CE, AC, BC〉 ,

BΩ(23) = 〈AD, BD, E, AC, BC〉 ,

BΩ(3) = 〈AD, BD, AE, BE, AC, BC〉 .
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Figure 3.1: The chamber decomposition of the cone Q for the network in Example 3.1.1. The
cone is spanned by the columns of the matrix A in (3.3). Each of the three maximal chambers
Ω(1), Ω(2), and Ω(3) contains a picture of the corresponding 3-dimensional polyhedron Pc(0) . The
vertices of each polyhedron are labeled by their supports. The star “⋆” indicates the unique vertex
steady state, which arises from one of the two relevant siphons {A,B,E} or {A,C,E}. For example,
a vertex labeled by BD⋆ denotes the unique point on the invariant polyhedron P for which the
coordinates A,C, and E are all equal to zero.
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For each chamber Ω, the ideal Sat(MG,BΩ) reveals the Ω-relevant siphons. We find that 〈A,B,E〉
is Ω(1)- and Ω(12)-relevant, and that 〈A,C,E〉 is Ω(12)-, Ω(2)-, Ω(23)-, and Ω(3)-relevant. These
two siphons define a unique vertex steady state on each invariant polyhedron Pc(0) . Note that the
vertices F{A,B,E} and F{A,C,E} coincide for polyhedra along the ray Ω(12).

The need for efficient algorithms for computing minimal siphons has been emphasized by
Angeli et al. [ADS07a], who argued that such an algorithm would allow quick verification of the
hypotheses of Theorem 3.3.5. Indeed, the problem of computing siphons is well-studied; for an
overview, see Chapter 5 in the textbook of Karatkevich [Kar07]. Cordone et al. introduced one
algorithm for computing minimal siphons in [CFP05]. We advocate Theorem 3.3.1 as a new method
for computing all minimal siphons, and Algorithm 3.3.6 as a direct method for identifying relevant
siphons. Rather than implementing any such algorithm from scratch, it is convenient to harness
existing tools for monomial and binomial primary decomposition [DMM10, ES96]. We recommend
the widely-used computer algebra system Macaulay 2 [GS02], and the implementations developed
by Kahle [Kah10] and Roune [Rou09].

In what follows we show some snippets of Macaulay 2 code, and we discuss how they are
used to compute (relevant) minimal siphons of small networks. Thereafter we examine two larger
examples, which illustrate the efficiency and speed of monomial and binomial primary decomposi-
tion. These examples support our view that the algebraic methods of Section 3 are competitive for
networks whose size is relevant for research in systems biology.

Example 3.4.2. The following Macaulay 2 input uses the command decompose to output the
minimal primes for the three examples in the Introduction.

-- Example 1.1

R1 = QQ[A,B,C,D,E];

M = ideal(A^2*C, A*D, E, B*C);

decompose(M)

-- Example 1.2

R2 = QQ[e,i,p,q,r,s];

I = ideal(s*e-q, q-p*e, q*i-r);

decompose (I + ideal product gens R2)

-- Example 1.3

R3 = QQ[E,F,P,S_0,X,Y];

J = ideal(E*S_0-X, X*(E*P-X), F*P-Y, Y*(F*S_0-Y));

decompose (J + ideal product gens R3)

By Theorem 3.3.1, the minimal siphons can be read off from the primes.

Example 3.4.3. We return to the chemical reaction network of Examples 3.1.1 and 3.4.1. The
following Macaulay 2 code utilizes item 2 in Algorithm 3.3.6.

-- Example 1.1: c0-relevant siphons
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c0 = {0,0,1,1,0};

R = QQ[A,B,C,D,E, Weights => c0];

IG = ideal(A^2*C-A*D, A*D-E, E-B*C, A*B*C*D*E);

ICons = ideal(C*D*E-1, A*B^2*D*E^2-1);

Bc0 = dual radical monomialIdeal leadTerm ICons;

decompose saturate(IG,Bc0)

In the first line, the vector c(0) was chosen to represent a point in the chamber Ω(1), so the output
is the unique Ω(1)-relevant minimal siphon.

The next example is of a large strongly-connected chemical reaction, and the computation
shows the power of monomial primary decomposition. For another application of monomial primary
decomposition to biology, see Jarrah et al. [JLSS07].

Example 3.4.4. Consider the following strongly connected network which is comprised of s species,
s− 1 complexes, and s− 2 reversible reactions:

c1c2 ⇆ c2c3 ⇆ c3c4 ⇆ · · · ⇆ cs−1cs .

The number of minimal siphons satisfies the recursion N(s) = N(s−2)+N(s−3), where N(2) = 2,
N(3) = 2, and N(4) = 3. For s = 50 species we obtain N(50) = 1, 221, 537. The following
Macaulay 2 code verifies this:

s = 50

R = QQ[c_1..c_s];

M = monomialIdeal apply(1..s-1,i->c_i*c_(i+1));

time betti gens dual M

We now explain the commands that are used above. First, M denotes the monomial ideal MG

generated by the complexes, and dual outputs its Alexander dual [MS05], which is the monomial
ideal whose generators are the products of the species-variables in any minimal siphon. Secondly,
betti applied to gens dual M outputs the degrees of all the generators of dual M; these degrees are
exactly the sizes of all minimal siphons. The command time allows us to see that the computation
of the minimal siphons takes only a few seconds. Displayed below is a portion the output of the
last command above; the list tells the number of minimal siphons of each possible size.

0 1

o5 = total: 1 1221537

0: 1 .

1: . .

2: . .

...

23: . .

24: . 26

25: . 2300

26: . 42504
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27: . 245157

28: . 497420

29: . 352716

30: . 77520

31: . 3876

32: . 18

The current version of dual in Macaulay 2 uses Roune’s implementation of his Slice Algorithm
[Rou09]. For background on the relation of Alexander duality and primary decomposition of mono-
mial ideals, see the textbook [MS05].

Our final example aims to illustrate the computation of minimal siphons for a larger
network with multiple strongly connected components.

Example 3.4.5. Here we consider a chemical reaction network G with s = 25 species, 16 bidi-
rectional reactions, and n = 32 complexes. The binomials representing the 16 reactions are the
adjacent 2 × 2-minors of a 5 × 5-matrix (cij), and JG is the ideal generated by these 16 minors
ci,jci+1,j+1 − ci,j+1ci+1,j . For this network, Lstoi is the 16-dimensional space consisting of all matri-
ces whose row sums and column sums are zero, and Q is a 9-dimensional convex polyhedral cone,
namely the cone over the product of simplices ∆4 × ∆4.

What follows is an extension of the results for adjacent minors of a 4×4-matrix in [DES98,
§4]. The ideal JG is not radical. Using Kahle’s software [Kah10], we found that it has 103 minimal
primes, of which precisely 26 contribute minimal siphons that are relevant. Up to symmetry, these
26 siphons fall into four symmetry classes, with representatives given by the following:

Z1 = {c14, c21, c22, c23, c24, c32, c34, c42, c43, c44, c45, c52} ,

Z2 = {c14, c21, c22, c23, c24, c33, c34, c35, c41, c42, c43, c53} ,

Z3 = {c14, c24, c31, c32, c33, c34, c42, c43, c44, c45, c52} ,

Z4 = {c14, c24, c31, c32, c33, c34, c43, c44, c45, c53} .

Under the group D8 of reflections and rotations of the matrix (cij), the orbit of Z1 consists of two
siphons, and the orbits of Z2, Z3, and Z4 each are comprised of eight siphons. The corresponding
four types of minimal primes have codimensions 13, 12, 12, and 12, and degrees 1, 2, 3, and 6.

By randomly generating chambers, we found that, for every integer r between 0 and 26,
other than 23 and 25, there is a point c(0) in Q such that the number of c(0)-relevant siphons is
precisely r. We briefly discuss this for three initial conditions. First, let c(0) be the all-ones matrix.

Then P
(0)
c is the Birkhoff polytope which consists of all non-negative 5 × 5-matrices with row and

column sums equal to five. In this case, all 26 minimal siphons are c(0)-relevant: Z1 defines a
vertex, Z2 and Z3 define edges, and Z4 defines a three-dimensional face of Pc(0) . Next, consider the
following initial conditions:

d(0) =




1 1 1 1 1
1 1 1 1 1
1 1 1 − ǫ 1 1
1 1 1 1 1
1 1 1 1 1




and e(0) =




1 1 1 1 1
1 1 1 1 1
1 1 1 + ǫ 1 1
1 1 1 1 1
1 1 1 1 1




,



44

where ǫ > 0. Again, all 26 minimal siphons are d(0)-relevant, and FZ1 is a vertex, FZ2 and FZ3 are
edges of Pd(0) , but now FZ4 is a five-dimensional face. Finally, for initial condition e(0), only two
minimal siphons are e(0)-relevant, both in the class of Z1, and they define vertices. The results of
Chapter 4 will allow us to conclude that the system (1.3) is persistent for e(0).

3.5 Siphons and persistence

In the present chapter, we gave a method that computes siphons and determines which
of them are relevant. To our knowledge, this is the first automatic procedure for checking the
relevance of a siphon. As noted by Angeli et al. [ADS07a], such a procedure is desirable for
verifying whether large biochemical reaction systems are persistent. Persistence is the property
that no species concentration tends to zero. In practice, this corresponds to the observed behavior
that a substrate that is present at the beginning of an experiment will also be present in some
amount for all time. For a toric dynamical system, the non-relevance of all siphons is a sufficient
condition for such a system to be persistent, so our procedure can be used to verify quickly that a
large network is persistent. Mathematically, the claim that toric dynamical systems are persistent
is the content of the global attractor conjecture, and we speculate that an algebraic approach to
understanding siphons may be a step toward the conjecture.
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Chapter 4

The global attractor conjecture

The material in this chapter is based partly on Sections 3–5 from the paper “Toric dynami-
cal systems” [CDSS09], which was authored jointly with Gheorghe Craciun, Alicia Dickenstein, and
Bernd Sturmfels, and also from the paper “The dynamics of weakly-reversible population processes
near facets” [AS10], which was joint with David F. Anderson. Additionally, Section 4.6.3 appears
in extended form: Lemma 4.6.8 simplifies the definition of “dynamically non-emptiable” which
subsequently shortens the proof of Corollary 4.6.9. Further, a discussion concerning the dynamic
non-emptiability of vertex-defining siphons is included.

4.1 Introduction

Chapter 3 concerned the computation of siphons. The present chapter relates siphons to
the global attractor conjecture. Namely, the relevant siphons determine which faces of an invariant
polyhedron contain steady states, and to prove the conjecture it is sufficient to verify that no positive
trajectory approaches such a steady state. This is due to two results: Theorem 4.2.2 in this chapter,
which says that only faces that arise from siphons can admit ω-limit points (accumulation points
of a trajectory), and a known result, which states that positive trajectories converge to the set of
steady states (see Corollary 2.6.4 of [Cha03] or Theorem 1 of [Son01]). The two main results of
this chapter state that if a siphon defines a vertex or a facet, then the corresponding steady states
have repelling neighborhoods of the toric dynamical system. Moreover, we prove that those siphons
that define facets are so-called “dynamically non-emptiable.” In particular, this gives the following
corollary: the global attractor conjecture holds for systems for which the invariant polyhedra are
two-dimensional. We remark that the results in this section apply more generally to deterministic
population processes that satisfy basic assumptions as stated in Section 1.3.2 of the Introduction.
A discussion concerning population processes in this context appears in [AS10, §1].

We now describe the layout of the chapter. In Section 4.2, we discuss the connection
between siphons and persistence. Section 4.3 recalls the statement of the conjecture and reviews
the known partial results. Section 4.4 provides some preliminary results, and Section 4.5 pertains
to the special case of detailed-balancing systems. Our main results are then stated and proven in
Section 4.6. We also show that siphons associated with facets are “dynamically non-emptiable”
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in the terminology of Angeli, De Leenheer, and Sontag [ADS07a], thereby providing a large class
of dynamically non-emptiable semilocking sets. Applications of this work to the global attractor
conjecture is the topic of Section 4.7. Finally, Section 4.8 provides examples that illustrate how
our results fit within the context of related results.

4.2 Boundary steady states, persistence, and siphons

In this section, we introduce the concept of persistence for chemical reaction systems and
connect this idea to the results concerning siphons in the previous chapter. Let us first recall the
notation that will be used throughout this chapter. Our chemical reaction systems are defined by
mass-action equations (1.3), and in this chapter we deviate from the usual notation, and write the
differential equations as in (1.5), but we deviate slightly by indexing reactions by k ∈ [R] rather
than by the edges (i, j) of the reaction graph:

dc

dt
=

R∑

k=1

Rk(c(t))(y
′
k − yk) =: f(c(t)) ,

where the rate formation function for the reaction yk → y′k is:

Rk(c) = κkc
yk1
1 cyk2

2 · · · cyks
s = κkc

yk .

In addition, we will denote a chemical reaction network by a triple {S, C,R}, where S = {ci},
C = {cy}, and R = {cy → cy

′

} are the sets of species, complexes, and reactions, respectively. The
reaction diagram is the usual directed graph G, whose nodes are the complexes, C, and whose edges
correspond to reactions. Each connected component of the resulting graph is termed a linkage class
of the graph. A chemical reaction network is said to be weakly-reversible if each linkage class of the
corresponding reaction diagram is strongly connected. In other words, if y → y′ ∈ R, then there
exists a sequence of directed reactions y′ → · · · → y in R. A network is said to be reversible if
y′ → y ∈ R whenever y → y′ ∈ R.

It will be convenient to view the set of species S as interchangeable with the set [s],
where σ denotes the number of species. Therefore, a subset of the species, W ⊂ S, is also a
subset of [s], and we will refer to the W -coordinates of a concentration vector c ∈ Rs, meaning the
concentrations ci for species i in W . Further, we will write i ∈ W or i ∈ [s] to represent ci ∈ W
or ci ∈ S, respectively. Similarly, we sometimes will consider subsets of the set of reactions R as
subsets of the set [R], where R denotes the number of reactions. The zero-coordinates of a vector
x ∈ Rs are the indices i for which xi = 0. The support of x is the set of indices for which xi 6= 0.
Based upon these definitions and the preceding remarks, both the set of zero-coordinates and the
support of a vector x can, and will, be viewed as subsets of the species.

Recalling that trajectories remain in their invariant polyhedra P for all time, we see that
it is appropriate to ask about the existence and stability of steady states of system (1.3) within
and relative to an invariant polyhedron P. We will take this viewpoint in Section 4.3. We are now
prepared to define persistence. Let c(t) be a solution to (1.3) with strictly positive initial condition
c0 ∈ Rs

>0. The set of ω-limit points for this trajectory is the set of accumulation points:

ω(c0) := {x ∈ Rs
≥0 | c(tn) → x for some sequence tn → ∞} . (4.1)
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Definition 4.2.1. A trajectory with initial condition c0 is said to be persistent if ω(c0) ∩ ∂Rs
≥0 =

∅. A dynamical system is persistent if each trajectory with strictly positive initial condition is
persistent.

The concept of persistence is important in the ecology and population biology literature;
for example, see [BS09]. We now make note of two variations on the concept of persistence, although
these will not be treated in this dissertation. A stronger version of persistence, called “vacuous
persistence,” which allows for trajectories beginning on the boundary of an invariant polyhedron
as well as in the interior, is considered by Gnacadja in [Gna09a]. A weaker version of persistence,
called “bounded-persistence,” which allows for only those interior trajectories that are bounded, is
considered by Angeli et al. in [ADS09, §4].

In order to show that a system is persistent, we must understand which points on the
boundary of an invariant polyhedron are capable of being ω-limit points. To this end, we recall
the definition of a siphon: a nonempty subset W of the set of species is called a siphon if for each
reaction in which there is an element of W in the product complex, there is an element of W in
the reactant complex.

The intuition behind siphons lies in the next proposition, which is due to Angeli et al.
[ADS07a]. Related results that concern the “reachability” of species include Theorems 1 and 2 in
the textbook of Vol´pert and Khud⁀iaev [VK85, §12.2.3].

By Assumption 1.3.1, the rate of the reaction y → y′ at a concentration c0 is zero if and
only if at least one species in the support of y has zero concentration at c0. Therefore W ⊂ S is
a siphon if it satisfies the following property: if all the W -coordinates of a species concentration
vector c0 are zero, then i ∈W implies that xi(t) = 0 for all t > 0 where c(t) is the trajectory with
initial condition c0. In words, this means that if no species of W is present at time zero, then this
remains the case for all positive times. This was the content of Proposition 3.2.1, which we repeat
here; it is Proposition 2 in Angeli et al. [ADS07a].

Proposition 4.2.1 ([ADS07a]). Let W ⊂ S be non-empty. Then W is a siphon if and only if the
face {x ∈ Rs | xi = 0 if i ∈W} of the positive orthant is forward-invariant for the dynamics (1.5).

If in addition the reaction network is weakly-reversible (that is, each connected component
is strongly connected), then it is straightforward to conclude the following: if a linkage class has
a complex whose support contains an element of W , then the rates of all reactions within that
linkage class will be zero for all positive time. In other words, certain linkage classes are “shut off.”

Recall from Section 1.3.6 that any face of P has the form

FW := {c ∈ P | ci = 0 if i ∈W} ,

where W ⊆ {1, . . . s}, and the boundary ∂P of P is the union of all faces FW where W is a proper
subset of {1, . . . , s}. This includes F∅ = P. In light of the characterization of the interior of a face
FW given in equation (1.9), the following theorem is proven in [And08, ADS07a]; it states that the
siphons are the possible sets of zero-coordinates of boundary ω-limit points.

Theorem 4.2.2 ([ADS07a, And08]). Let W ⊂ S be a nonempty subset of the set of species. Let
c0 ∈ Rs

>0 be a strictly positive initial condition for the system (1.3), and let P = (c0 + S) ∩ Rs
≥0
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denote the corresponding invariant polyhedron. If there exists an ω(c0)-limit point, z ∈ ω(c0), and
a subset of the species, W , such that z is contained within the interior of the face FW of P, then
W is a siphon.

This theorem will be used in conjunction with results in this chapter to prove the persis-
tence of the following class of weakly-reversible systems: those for which each siphon W satisfies
the property that the face FW is a facet or empty; see Theorem 4.6.7.

4.3 History of the conjecture

In this section, we recall the statement of the global attractor conjecture and discuss its
known results. The conjecture concerns the limiting behavior of toric dynamical systems. We
begin by recalling some properties of toric dynamical systems from Chapter 2. A steady state
c∗ ∈ Rs

≥0 of (1.3) is said to be complex-balancing if Ψ(c∗) · Aκ = 0. A toric dynamical system
is a dynamical system (1.3) that admits a strictly positive complex-balancing steady state. The
algebraic structure of toric dynamical systems was highlighted in Chapter 2. In the interior of each
invariant polyhedron P, there exists a unique steady state c∗, with strictly positive components,
and this steady state is complex-balancing. This point, c∗, is called the Birch point due to the
connection to Birch’s Theorem in algebraic statistics (see Theorem 1.10 of [PS05]). Note that a
system was defined to be a toric dynamical system if at least one such steady state exists; we have
seen that so long as at least one P contains a complex-balancing steady state, then they all do
(Proposition 2.3.1). As for the stability of the steady state within the interior of the corresponding
P, a strict Lyapunov function exists for each such point (Proposition 2.3.2). Hence local asymptotic
stability relative to P is guaranteed; see Theorem 6A of [HJ72] and the Deficiency Zero Theorem of
[Fei79]. The global attractor conjecture states that this steady state of P is globally asymptotically
stable relative to the interior of P [CDSS09]. In the following statement, a global attractor for a
set V is a point v∗ ∈ V such that any trajectory v(t) with initial condition v0 ∈ V converges to v∗,
in other words, lim

t→∞
v(t) = v∗.

The global attractor conjecture For any toric dynamical system and any strictly positive initial
condition c0, the Birch point c∗ ∈ P := (c0 + S) ∩ Rs

≥0 is the global attractor of the interior of the
invariant polyhedron, int(P).

This conjecture first appeared in a paper of Horn [Hor74], and was given the name “Global
Attractor Conjecture” by Craciun et al. [CDSS09]. It is stated to be the main open question in
the area of chemical reaction network theory by Adleman et al. [AGH+08]. In fact, Feinberg states
the more general conjecture that all weakly-reversible systems are persistent; see [Fei79, §6.1]. (A
reaction system (1.3) is weakly-reversible or reversible, if its underlying network is.) Note that
non-weakly-reversible systems can fail to be persistent; for example, consider the dynamics of the
reaction A→ B. A less trivial example is the following, which is due to Angeli:

Example 4.3.1. Consider the following network:

S0 + F
κ1→ S1 + E

κ2→ S2 + F

S2
κ3→ S1

κ4→ S0
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We write a concentration vector as c = (cS0 , cS1 , cS2 , cE , cF ). In [Ang08, §IV.A], Angeli shows that
if κ2 < κ4, then the boundary steady state c∗ := (1, 0, 0, 1, 0) is locally asymptotically stable relative
to its invariant polyhedron. Hence this non-weakly-reversible network is not persistent.

There are some persistence results for certain classes of systems. Gnacadja proves that the
class of networks of “pre-complete reversible binding reactions” are persistent; these systems include
non-toric dynamical systems [Gna09b]. Another class of systems that is known to be persistent is
the class of translation-invariant strongly monotone dynamical systems; this result is due to Angeli
and Sontag [AS06, Theorem 1]. It is important to note that persistence of a network may depend
on its specific values of reaction rate constants. We refer the reader to an apoptosis regulation
network analyzed by Angeli et al. whose persistence depends on the sign of the determinant of a
certain Jacobian matrix [ADS09, §10]. Similiarly, a MAPK cascade model with inhibitory feedback
which was shown by Arcak and Sontag to be persistent when a certain parametrized 5 × 5-matrix
is positive definite [AS08, Example 2].

We now describe known partial results regarding the global attractor conjecture. By an
interior trajectory we shall mean a solution c(t) to the dynamical system (1.3) that begins at a
strictly positive initial condition c0 ∈ Rs

>0. First, trajectories are known to be bounded [SM00,
Lemma 3.5]. Next, it is known that the set of ω-limit points of such systems is contained within
the set of steady states; Corollary 2.6.4 due to Chavez [Cha03], Proposition 3.8 due to Gnacadja
[Gna09a], and Theorem 1 due to Sontag [Son01] are special cases of this fact, and the general result
follows by similar arguments. Hence, the conjecture is equivalent to the following statement: for a
toric dynamical system, any boundary steady state is not an ω-limit point of an interior trajectory.
(See also the related results in this chapter, Proposition 4.4.1 and Lemma 4.4.2.) It clearly follows
that if an invariant polyhedron P has no boundary steady states, then the conjecture holds for
this P; see the work of Siegel and MacLean [SM00, Theorem 4.1]. Thus, sufficient conditions
for the non-existence of boundary steady states are conditions under which the global attractor
conjecture holds (see Theorem 2.9 of [And08]); a result of this type is Theorem 6.1 of Adleman
et al. [AGH+08]. Recall that, by Theorem 4.2.2, we know that the only faces FW of an invariant
polyhedron P that may contain ω-limit points in their interiors are those for which W is a siphon.
In particular, if the set ZW is stoichiometrically unattainable for all siphons W , then P has no
boundary steady states, and hence, the global attractor conjecture holds for this P; see the main
theorem of Angeli et al. [ADS07a]. Biological models in which the non-existence of boundary steady
states implies global convergence include the ligand-receptor-antagonist-trap model of Gnacadja et
al. [GSG+07], the enzymatic mechanism of Siegel and MacLean [SM00], and McKeithan’s T-
cell signal transduction model [McK95] (the mathematical analysis appears in the work of Sontag
[Son01] and in the dissertation of Chavez [Cha03, §7.1]). We remark that this type of argument
first appeared in the work of Feinberg [Fei87, §6.1].

The remaining case of the global attractor conjecture, in which steady states exist on
the boundary of P, is still open. The two main results of this chapter concern this case. The
first result states that vertices of P can not be ω-limit points even if they are steady states; see
also Theorem 3.7 in the work of Anderson [And08]. The second result states that ω-limit points
in the interior of facets of P have repelling neighborhoods. For two other classes of systems for
which the global attractor conjecture holds despite the presence of boundary steady states, see
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Proposition 7.2.1 of the work of Chavez [Cha03] and Theorem 4 due to Angeli et al. [ADS07a].
The hypotheses of Chavez’s result are that the set of boundary steady states in P is discrete,
that each boundary steady state is hyperbolic with respect to P, and that a third, more technical
condition holds.

4.4 Preliminary results

This section collects some general results on trajectories of toric dynamical systems, which
are interesting in their own right. Consider a fixed toric dynamical system (1.3) with strictly positive
starting point c(0) = c0 ∈ Rs

>0. Recall that the trajectory c(t) remains in the invariant polyhedron
P = (c0 + S)∩ Rs

≥0. For positive ε, the ε-neighborhood in P of the boundary of P will be denoted
by Vε(∂P ) in this section and the next.

We note that the transformed entropy function (2.14) from Chapter 2 can be extended
continuously to the boundary of P, because ci log ci → 0 as ci → 0+. Equivalent formulations of
the following result are well-known. For instance, see [SC94, Son01].

Proposition 4.4.1. For a toric dynamical system, suppose that the invariant polyhedron P is
bounded and the distance between the boundary of P and the set {c(t) ∈ P | t > 0} is strictly
positive. Then the global attractor conjecture holds for this system.

Proof. We assume that c(t) does not converge to c∗. Let ε > 0 be such that c(t) /∈ Vε(∂P ) for all t >
t0. The strict Lyapunov function (2.14) ensures that there exists a neighborhood Vε′(c

∗) of the Birch
point c∗ such that all trajectories that visit Vε′(c

∗) converge to c∗. Then c(t) /∈ Vε′(c
∗) for all t > t0.

Denote the complement of the two open neighborhoods by P0 := P \ (Vε(∂P ) ∪ Vε′(c
∗)). Then the

non-positive and continuous function c 7→ (∇E · dc
dt )(c) does not vanish on P0 by Proposition 2.3.2,

so it is bounded above by some −δ < 0 on P0. Therefore, the value of E(c(t)) decreases at a rate
of at least δ for all t > t0, which implies that E is unbounded on P0. This is a contradiction.

Proposition 4.4.1 says that if the trajectory c(t) does not have any ω-limit points on the
boundary of P, then it must converge to the Birch point c∗. Thus, as we noted in the previous
section, in order to prove the global attractor conjecture, it would suffice to show that no boundary
point of P is an ω-limit point. We will rule out the vertices and interior points of facets of P in
Section 4.6. The final result of this section states that a non-persistent trajectory approaches the
boundary, when the invariant polyhedron is bounded. The results in this section will be applied in
the next section to analyze detailed-balancing systems.

Lemma 4.4.2. Suppose that P is bounded and that the trajectory c(t) has an ω-limit point on the
boundary of P. Then for any ε > 0 there exists a positive number tε > 0 such that c(t) belongs to
Vε(∂P ) for all t > tε. In other words, the trajectory approaches the boundary.

Proof. Suppose that for some ε > 0 there exists a sequence tn → ∞ such that c(tn) /∈ Vε(∂P ) for
all n ∈ Z>0. As P is bounded, the trajectory c(t) has an ω-limit point p ∈ P\Vε(∂P ). On the other
hand, c(t) also has an ω-limit point on the boundary of P. Consider a ball B2δ(p) of radius 2δ
around p, whose closure lies fully in the relative interior of P. The trajectory c(t) enters and exits
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the neighborhood Bδ(p) of p infinitely many times, and also enters and exits the neighborhood
P\B2δ(p) of the boundary infinitely many times. Hence, the trajectory c(t) travels repeatedly
between these two sets which are at distance δ from each other. Note that |dc/dt| is bounded
above, and ∇E · dc/dt is bounded away from zero on the annulus B2δ(p)\Bδ(p). Then, as in the
proof of Proposition 4.4.1, each traversal between the neighborhoods decreases the value of E(c(t))
by a positive amount that is bounded away from zero. This contradicts the fact that the function
E is bounded on P.

4.5 Results for detailed-balancing systems

In this section, the global attractor conjecture is proved for detailed-balancing systems
whose invariant polyhedron is bounded and of dimension two. Recall that detailed-balancing sys-
tems, which were introduced in Section 2.6, are those systems whose steady states have the prop-
erty that the forward reaction rate is equal to the backward reaction rate for any reaction. In
particular, the reaction diagram of a detailed-balancing system is reversible, so we may identify
the network with its underlying undirected graph, which is denoted by G̃ = (V, Ẽ). Further, a
detailed-balancing steady state is a solution c∗ to the equations κijc

yi − κjic
yj . The following

characterization of detailed-balancing systems will be used in the next section. If L is any vector
in Rs and c the unknown concentration vector, then we write

L ∗ c := (L1c1, L2c2, . . . , Lscs) .

Lemma 4.5.1. A toric dynamical system is detailed-balancing if and only if all the binomials
κijc

yi−κjic
yj have the form βij ((L ∗ c)yi − (L ∗ c)yj ), for some positive vector L ∈ Rs

>0 and positive
constants βij ∈ R>0. Thus, a detailed-balancing system is a toric dynamical system of the special
form

dc

dt
=

∑

{i,j}∈Ẽ

βij

(
(L ∗ c)yi − (L ∗ c)yj

)
· (yj − yi) . (4.2)

Proof. The if-direction is easy: if our binomials have the special form βij ((L ∗ c)yi − (L ∗ c)yj ) then

c∗ = (1/L1, 1/L2, . . . , 1/Ls) is a positive solution to the equations Ψ(c) ·A
{i,j}
κ = 0. For the only-if

direction, we first define L as the reciprocal of the Birch point c∗ in some invariant polyhedron:
L = (1/c∗1, 1/c

∗
2, . . . , 1/c

∗
s). Therefore it follows that κij(c

∗)yi = κji(c
∗)yj for all (i, j) ∈ Ẽ, so we

may denote this value as βij := κij(c
∗)yi = κji(c

∗)yj . Then the binomial of interest is

κijc
yi − κjic

yj = κij

(
cyi −

κji

κij
cyj

)

= κij

(
cyi − (c∗)yi−yjcyj

)

= κij(c
∗)yi

(
cyi

(c∗)yi
−

cyj

(c∗)yj

)

= βij ((L ∗ c)yi − (L ∗ c)yj ) ,

which completes the proof.
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We now fix a detailed-balancing system (4.2) with a particular starting point c(0). Then
the trajectory c(t) evolves inside the invariant polyhedron P = (c(0) + S) ∩ Rs

≥0. Consider any

acyclic orientation E′ ⊂ Ẽ of the undirected graph G̃. This means that E′ contains one from each
pair of directed edges (i, j) and (j, i) in E, in such a way that the resulting directed subgraph of
G has no directed cycles. The acyclic orientation E′ specifies a stratum S in the interior of the
invariant polyhedron, int(P) = (c(0) + S) ∩ Rs

>0 , as follows:

S :=
{
c ∈ P | (L ∗ c)yi > (L ∗ c)yj for all (i, j) in E′

}
.

The invariant polyhedron P is partitioned into such strata and their boundaries. We are interested
in how the strata meet the boundary of P.

Lemma 4.5.2. Consider a detailed-balancing system (4.2), and fix an acyclic orientation E′ of
the graph G̃. If the closure of the stratum S corresponding to E′ intersects the relative interior of
a face FI of the invariant polyhedron P, then there exists a strictly positive vector α ∈ RI

>0 such
that

∑
k∈I(yjk − yik) · αk ≥ 0 for all directed edges (i, j) in E′.

Proof. We proceed by contradiction: assume that the inequalities
∑

k∈I(yjk − yik)αk ≥ 0 have no
strictly positive solution α ∈ RI

>0. By Linear Programming Duality (Farkas’ Lemma), there is a
non-negative linear combination v =

∑
(i,j)∈E′ λij(yj −yi) such that the following two conditions on

v hold: (a) supp(v+)∩ I = ∅, and (b) supp(v−) contains some j0 ∈ I. We shall prove the following
two claims, which give the desired contradiction:

Claim One: If c is a point in the relative interior of FI , then (L ∗ c)v+ > (L ∗ c)v− .

Since (L ∗ c)i = 0 if and only if i ∈ I, and (L ∗ c)j > 0 for all j /∈ I, (a) implies that (L ∗ c)v+ is
strictly positive, while (b) implies that (L ∗ c)v− = 0, and we are done.

Claim Two: If c is a point in the closure of the stratum S, then (L ∗ c)v+ ≤ (L ∗ c)v− .

Consider any point σ ∈ S. By the construction of v, the following equation holds:

(L ∗ σ)v = (L ∗ σ)
P

(i,j)∈E′ λij(yj−yi) =
∏

(i,j)∈E′

(
(L ∗ σ)yj−yi

)λij . (4.3)

Recall that (L ∗ σ)yj−yi ≤ 1 for each oriented edge (i, j) ∈ E′. Also, each λij is non-negative,

so ((L ∗ σ)yj−yi)
λij ≤ 1. Using the equation (4.3), this implies that (L ∗ σ)v ≤ 1, and therefore

(L ∗ σ)v+ ≤ (L ∗ σ)v− . By continuity we can replace σ by any point c in the closure of S in this
last inequality.

The vector α ∈ RI
>0 in Lemma 4.5.2 will play a special role in the proof of Theorem 4.5.4.

In Corollary 4.5.3 below we regard α as a vector in Rs
≥0 by setting αj = 0 for all j ∈ {1, . . . , σ}\I.

Corollary 4.5.3. Let c(t) be a trajectory of a detailed-balancing system (4.2) on the invariant
polyhedron P, and suppose that a point c(t0) on this trajectory lies both in the closure of a stratum S

and in the relative interior of a face FI of P. Let α ∈ Rs
≥0 be the vector obtained as in Lemma 4.5.2.

Then, the inner product 〈α, dc
dt (t0) 〉 is non-negative.
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Proof. Let E′ denote the orientation which specifies S. The velocity vector dc
dt (t0) equals

∑

(i,j)∈E′

βij

(
(L ∗ c(t0))

yi − (L ∗ c(t0))
yj
)
· (yj − yi) .

Since c(t0) is in the closure of the stratum S, we have (L ∗ c(t0))
yi − (L ∗ c(t0))

yj ≥ 0. We also
have 〈α, yj − yi〉 ≥ 0 because α comes from Lemma 4.5.2. This implies

〈α ,
dc

dt
(t0) 〉 =

∑

(i,j)∈E′

βij

(
(L ∗ c(t0))

yi − (L ∗ c(t0))
yj
)
· 〈α , yj − yi 〉 ≥ 0 .

This is the claimed inequality. It will be used in the proof of Theorem 4.5.4.

The following result concerns detailed-balancing systems; it will be generalized by Theo-
rem 4.7.2 in a later section.

Theorem 4.5.4. Consider a detailed-balancing system (4.2) whose stoichiometric subspace S =
R{yj−yi | (i, j) ∈ Ẽ} is two-dimensional, and assume that the invariant polygon P = (c0+S)∩Rs

≥0

is bounded. Then the global attractor conjecture holds for this system.

Proof. By Proposition 4.4.1, we need only rule out the possibility that the trajectory c(t) has an
ω-limit point on the boundary of P. Proposition 4.6.1 gives the existence of open neighborhoods
of the vertices such that no trajectory c(t) that starts outside them can visit them. Let V denote
the union of these neighborhoods. Suppose now that c(t) has an ω-limit point on ∂P . That limit
point lies in the relative interior of some edge F of P. Let Fε denote the set of points in P which
have distance at most ε from the edge F .

We claim that there exists ε > 0 and tε > 0, such that the trajectory c(t) remains in the
subset Fε\V for all t > tε. This is true because c(t) belongs to the neighborhood Vε(∂P ) of the
boundary for t ≫ 0, by Lemma 4.4.2, and hence c(t) belongs to Vε(∂P )\V for t ≫ 0. But this
implies that c(t) belongs to Fε\V for t ≫ 0 because Fε\V is a connected component of Vε(∂P )\V
for ε sufficiently small. This uses the dimension-two assumption.

Consider the closures of all strata S that intersect the relative interior of F . After de-
creasing ε if necessary, we may assume that the union of these closures contains the set Fε\V ,
which contains the trajectory c(t) for t > tε. To complete the proof, we will show that the distance
from c(t) to the edge F never decreases after c(t) enters Fε\V .

Any stratum S whose closure intersects the relative interior of F contributes a vector
α = α(S) which satisfies the statement of Lemma 4.5.2 for F = FI . The orthogonal projection
of α(S) into the two-dimensional stoichiometric subspace is a positive multiple of the unit inner
normal α0 ∈ S to F in P. By Corollary 4.5.3 we have 〈α(S), dc

dt (t)〉 ≥ 0 and hence 〈α0,
dc
dt (t)〉 ≥ 0

for t > tε. Therefore the distance from c(t) to F cannot decrease. This is a contradiction to the
assumption that F contains an ω-limit point.
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4.6 Main results

Our results concern the case when a face FW of an invariant polyhedron P defined by a
siphon W is a vertex or a facet. In addition, we connect our results to the concept of “dynamically
non-emptiable” siphons. Recall that if there exist subsets W1 $ W2 ⊂ S for which FW1 = FW2 ,
then we denote the face by FW2 . Under this convention, we saw in (1.9) that the interior of a face
FW is int(FW ) = { x ∈ P | xi = 0 if and only if i ∈W } .

4.6.1 Result concerning vertices of invariant polyhedra

Theorem 4.6.1. Consider a toric dynamical system with invariant polyhedron P. Let r be a vertex
of P and consider any ε > 0. Then, there exists a neighborhood W of r such that any trajectory
c(t) with starting point c(0) = c0 satisfying dist(c0, r) > ε does not visit W for any t > 0.

Proof. The following set is the intersection of a closed cone with a sphere of radius one:

V :=

{
v

‖v‖

∣∣∣∣ v ∈ S\{0} and r + v lies in P

}
.

Hence V is compact. We set I =
{
j ∈ {1, . . . , σ} : rj = 0

}
. For each v ∈ V, the ray γv(t) := r+tv

extends from the vertex γv(0) = r into the polyhedron P for small t > 0. We consider how the
transformed entropy function defined in (2.14) changes along such a ray:

d

dt
E(γv(t)) =

∑

j∈I

vj(log(0 + tvj)) +
∑

j /∈I

vj log(rj + tvj) −
s∑

i=1

log(c∗jvj)

= (Σj∈Ivj) · log(t) + w(t) ,

where the function w(t) admits a universal upper bound for t close to 0 and v ∈ V. For each j ∈ I
we have vj ≥ 0 because rj = 0 and r + tv ∈ P for small t > 0. Also, since v points into P, there
exists j ∈ I with vj > 0. Thus, the function Σj∈Ivj has a positive minimum over V. It follows
that d

dtE(γv(t)) tends to −∞ for t → 0. There exists t0 < ε such that for all v ∈ V the function
t 7→ E(r+ tv) decreases for 0 < t ≤ t0. So, E(r) > µ := maxv∈V E(r+ t0v). On the other hand, E
is continuous, so there is a neighborhood W of the vertex r (contained in {r + tv | t < t0, v ∈ V})
such that E(c) > (E(r) + µ)/2 for all c ∈ W . Since E decreases along trajectories, we conclude
that no trajectory c(t) that starts at distance ≥ ε from the vertex r can enter W .

We note that this proposition provides an alternate proof of Theorem 3.7 due to Anderson
[And08]. Namely, his result says that for a toric dynamical system, if the only possible boundary
steady states are vertices of P, then the Birch point is a global attractor. Our proposition above
proves that vertices are never ω-limit points, so Theorem 3.7 of [And08] follows from the fact that
when there are no boundary steady states, then the Birch point is globally asymptotically stable
(see [Son01, Theorem 2] or [And08, Corollary 2.10]).

Remark 4.6.2. Chemical reaction networks for which P is bounded are called conservative. For
conservative networks, there exists a positive mass assignmentmi for each species i that is conserved
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by all reactions; in other words, S⊥ meets the positive orthant [Fei79]. On the other hand, if 0 ∈ P,
then the reaction network is not conservative. Thus Proposition 4.6.1 ensures that, for a toric
dynamical system, complete depletion of all the concentrations c1, c2, ..., cs is impossible.

4.6.2 Result concerning facets of invariant polyhedra

In order to state Theorem 4.6.4, we need the following definition.

Definition 4.6.1. Let Q ⊂ P be an open set relative to P, for which ∅ 6= Q ∩ ∂P ⊂ FW , for some
face FW of P. Then the face FW is repelling in the neighborhood Q ∩ int(P) with respect to the
dynamics (1.5) if ∑

i∈W

xifi(x) ≥ 0 (4.4)

for all x ∈ Q ∩ int(P), where the fi :=
(

d
dtc
)
i
are the functions given in (1.5).

Remark 4.6.3. Note that FW is repelling in the neighborhood Q ∩ int(P) with respect to the
dynamics (1.5) if and only if d

dt dist (c(t), FW ) ≥ 0 whenever c(t) ∈ Q ∩ int(P). Thus, FW is
repelling in a neighborhood if any trajectory in the neighborhood can not get closer to the face FW

while remaining in the neighborhood.

We note also that the main theorem concerning vertices, Theorem 4.6.1, states that for
toric dynamical systems, vertices of invariant polyhedra are repelling. Theorem 4.6.4 states the
analogous result for points in the interiors of facets that arise from siphons.

Theorem 4.6.4. Let {S, C,R} be a weakly-reversible chemical reaction network with dynamics
governed by mass-action kinetics (1.5). Let W ⊂ S be such that FW is a facet of P, and take z
to be in the interior of FW . Then there exists a δ > 0 for which the facet FW is repelling in the
neighborhood Bδ(z) ∩ int(P), where Bδ(z) is the open ball of radius δ centered at the point z.

Proof. First we will assume that there is only one linkage class in the reaction diagram. The proof
of the more general case is similar and will be discussed at the end. Now, let c0, z, W , and FW be
as in the statement of the theorem. The set of zero-coordinates of z is W , and by Theorem 4.2.2,
W must be a siphon. Without loss of generality, assume that W = {1, . . . ,m} for some m ≤ s.

Letting σ := dim(S) = dim(P), the facet FW has dimension σ − 1, which, by defini-
tion, means that ZW ∩ S is an (σ − 1)-dimensional subspace of S. Let π : Rs → Rs be the
projection onto the first m coordinates. That is, it is given by π(x1, x2, . . . , xm, xm+1, . . . , xs) :=
(x1, x2, . . . , xm, 0, . . . , 0). As a shorthand we will also write x|W for π(x). Because ZW∩S = ker(π|S)
has dimension (σ − 1), it follows that the image π(S) is one-dimensional. Therefore, we may let
v ∈ S be a vector such that v|W spans the projection π(S). We also let {w2, . . . , wσ} span the
subspace ZW ∩S so that {v,w2, . . . , wσ} is a basis for the subspace S. We note for future reference
that by construction we have

y′|W − y|W ∈ span(v|W ) , (4.5)

for each reaction y → y′ ∈ R. Finally, for x ∈ Rs we define x|W c similarly to x|W : the vector x|W c

is the projection of x onto the final s−m coordinates.
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We may assume that all coordinates of v|W are non-zero, for otherwise the concentrations
of certain species j ∈W would remain unchanged under the action of each reaction (note that we
necessarily have wk i = 0 for k ∈ {2, . . . , σ} and i ∈ {1, . . . ,m}). In such a case, the concentrations
of those species j would remain constant in time, so we could simply remove them from the system
by incorporating their concentrations into the rate constants appropriately.

We will show that v|W has coordinates all of one sign and will use this fact to guarantee
the existence of a “minimal complex” (with respect to the elements of W ). We will then show that
this minimal complex corresponds with a dominating monomial that appears as a positive term in
each of the first m components of (1.5).

Suppose, in order to find a contradiction, that v|W has coordinates of both positive and
negative sign; that is, assume that vi < 0 < vj for some indices i, j ≤ m. Let u := vjei−viej ∈ Rs

≥0

(where ek denotes the k-th canonical basis vector). It follows that u ∈ S⊥ because (i) 〈u, v〉 = 0 by
construction, and (ii) 〈u,wk〉 = 0 for all k ∈ {2, . . . , σ} because these vectors have non-overlapping
support. Note also that 〈u, z〉 = 0 because the support of u is a subset of W whereas the support
of z is W c. Let c0 ∈ Rs

>0 ∩ P; such a point always exists by the definition given in (1.6). As z and
c0 both lie in P, there exist constants αk ∈ R for k ∈ [σ], such that

z = c0 + α1v +
σ∑

k=2

αkwk .

Combining all of the above, we conclude that

0 = 〈u, z〉 = 〈u, c0〉 + α1〈u, v〉 +
σ∑

k=2

αk〈u,wk〉 = 〈u, c0〉 > 0 ,

where the final inequality holds because u is non-negative and nonzero and c0 has strictly positive
components. This is a contradiction, so we conclude that v|W does not have both positive and
negative coordinates, and, without loss of generality, we now assume that all coordinates of v|W
are positive.

We recall from (4.5) that y′|W − y|W ∈ span(v|W ) for each reaction y → y′ ∈ R. For
concreteness, we let y′k|W − yk|W = γkv|W for some γk ∈ R where k ∈ R. Combining this with the
fact that vi > 0 for each i ∈ {1, . . . ,m} shows that each reaction yields either (i) a net gain of all
species of W , (ii) a net loss of all species of W , or (iii) no change in any species of W . We also see
that there exists a ỹ ∈ C such that ỹ|W ≤ y|W for all y ∈ C, where we say x ≤ y for x, y ∈ RN if
xi ≤ yi for each i. Note that it is the sign of γk that determines whether a given reaction accounts
for an increase or a decrease in the abundances of the elements of W .

We now find a neighborhood of positive radius δ around z, denoted by Bδ(z), for which
the facet FW is repelling in the neighborhood Bδ(z) ∩ int(P). The first condition we impose on
δ is that it must be less than the distance between z and any proper face of P that is not FW ,
which can be done because z is in the interior of the facet. Also, this condition ensures that for
any point x ∈ Bδ(z)∩ int(P), the coordinates xi, for i > m, are uniformly bounded both above and
below. Therefore, there exist constants Dmin and Dmax such that for all x ∈ Bδ(z)∩ int(P) and all
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complexes y, we have the inequalities

0 < Dmin < x|
y|Wc

W c < Dmax . (4.6)

The monomial x|
ỹ|W
W will dominate all other monomials for x ∈ Bδ(z) ∩ int(P) for suffi-

ciently small δ, and this will force trajectories away from the facet. To make this idea precise, let
R+ denote those reactions that result in a net gain of the species in W and R− those that result
in a net loss. We now have that for i ∈ [m] and x ∈ Bδ(z)∩ int(P) and for sufficiently small δ > 0,

fi(x) = vi

∑

yk→y′

k
∈R+

γkκkx|
yk|W
W x|

yk|Wc

W c − vi

∑

yk→y′

k
∈R−

|γk| κkx|
yk|W
W x|

yk |Wc

W c

≥ viDmin

∑

yk→y′

k
∈R+

γkκkx|
yk|W
W − viDmax

∑

yk→y′

k
∈R−

|γk|κkx|
yk|W
W .

(4.7)

Finally, by weak-reversibility (and possibly after choosing a different ỹ that still satisfies the min-
imality condition), there is a reaction ỹ → y′ ∈ R with ỹi < y′i for all i ∈ {1, . . . ,m} (i.e. the
γk associated with this reaction is strictly positive). This reaction, which belongs to R+, has a

monomial, x|
ỹ|W
W , that necessarily dominates all monomials associated with reactions in R− (which

necessarily have source complexes that contain a higher number of each element of W than ỹ
does). Combining this fact with the inequality (4.7) shows that fi(x) ≥ 0 for i ∈ [m] and for
x ∈ Bδ(z) ∩ int(P), and therefore, the facet FW is repelling in the neighborhood Bδ(z) ∩ int(P).

In the case of more than one linkage class, each linkage class will have its own minimal
complex that will dominate all other monomials associated with that linkage class. Thus the desired
result follows.

Remark 4.6.5. Note that weak-reversibility was used in the previous proof only to guarantee the
existence of the reaction ỹ → y′, where ỹ|W is minimal and ỹi < y′i for all i ∈ {1, . . . ,m}, and was
not needed to prove the existence of such a complex ỹ. If the network were not weakly-reversible,
but such a reaction nevertheless existed, then the same proof would proceed unchanged.

The previous theorem implies that a trajectory with an ω-limit point in the interior of a
facet of P must enter and exit a repelling neighborhood infinitely often. Furthermore, the set of
“entering” points of the trajectory with respect to this neighborhood must itself have a subsequence
whose distance to the facet approaches zero. This fact will be exploited in the proofs of the following
results, which assert the persistence of a class of chemical reaction systems.

Corollary 4.6.6. Let {S, C,R} be a weakly-reversible chemical reaction network with dynamics
governed by mass-action kinetics (1.5) such that all trajectories are bounded. Suppose there exist a
subset W ⊂ S, a positive initial condition c0 ∈ Rs

>0, and a point z ∈ ω(c0)∩FW such that FW is a
facet of P. Then ω(c0) ∩ ∂FW 6= ∅.

Proof. Suppose not. That is, suppose that ω(c0)∩FW ⊂ int(FW ) holds. Let Y := ω(c0)∩FW . We
claim that Y is a compact set; indeed, the trajectory c(t) is bounded so Y is as well, and Y is the
intersection of two closed sets, and therefore is itself closed.
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Combining the compactness of Y ⊂ int(FW ) with Theorem 4.6.4, we obtain that there
exists an open covering of Y consisting of a finite number of balls Bδi

(zi) of positive radius δi, each
centered around an element zi of Y, such that (i) each δi is sufficiently small so that Bδi

(zi)∩ ∂FW =
∅, and (ii) for Q := ∪iBδi

(zi), the facet FW is repelling in Q ∩ int(P). Combining these facts with
the existence of z ∈ ω(c0) ∩ int(FW ) ∩Q shows the existence of a point w ∈ ω(c0) ∩ int(FW ) ∩ ∂Q.
However, this is impossible because w ∈ ω(c0) ∩ int(FW ) = Y necessitates that w ∈ Y ⊂ int(Q).
Thus, the claim is shown.

We now present the main result of this subsection.

Theorem 4.6.7. Let {S, C,R} be a weakly-reversible chemical reaction network with dynamics
governed by mass-action kinetics (1.5) such that all trajectories are bounded. Suppose that for each
siphon W , the corresponding face FW either is a facet or is empty. Then the system is persistent.

Proof. This is an immediate consequence of Theorem 4.2.2 and Corollary 4.6.6.

4.6.3 Connection to dynamically non-emptiable siphons

In [ADS07a, §9], Angeli et al. introduced the notion of a “dynamically non-emptiable”
siphon, which we now recall. For a given chemical reaction network and a subset W ⊂ [s] of the
species, we define the following closed cones in the positive orthant:

C(W ) :=

{
α ∈ RR

≥0

∣∣∣∣w =

R∑

k=1

αk(y
′
k − yk) satisfies w|W ≤ 0

}
and

Fǫ(W ) :=
{
α ∈ RR

≥0

∣∣αj ≤ ǫαi, ∀ i, j ∈ [R] such that yi|W � yj|W
}
,

where ǫ > 0. We say that a siphon W is dynamically non-emptiable if C(W ) ∩ Fǫ(W ) = {0̄} for
some ǫ > 0. (Recall that R denotes the number of reactions.) Here the notation z ≤ z′ means
that all coordinates satisfy the inequality zi ≤ z′i, and z � z′ means that furthermore at least
one inequality is strict. Intuitively, this condition guarantees that all the concentrations of species
in a siphon can not simultaneously decrease while preserving the necessary monomial dominance.
Angeli et al. proved that if every siphon is dynamically non-emptiable and if another condition
holds, then the system is persistent; see [ADS07a, Theorem 4] for details.

Note that the family of closed cones Fǫ(W ) is order-preserving: if 0 < ǫ(1) < ǫ(2), then
Fǫ(1)(W ) ⊂ Fǫ(2)(W ). Hence, the intersection of this family, which we denote by F0(W ), is also a
closed cone:

F0(W ) : =
⋂

ǫ>0

Fǫ(W )

=
{
α ∈ RR

≥0

∣∣αj = 0 if there exists i ∈ [R] such that yi|W � yj|W
}
.

Thus, F0(W ) is the suborthant of RR
≥0 for which the coordinates corresponding to reactions that

have dominating sources are zero. We have the following lemma.
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Lemma 4.6.8. 1. For a chemical reaction network, a siphon W is dynamically non-emptiable
if and only if

C(W ) ∩ F0(W ) = {0̄} .

2. For two siphons that satisfy W ⊂W ′, if W is dynamically non-emptiable, then W ′ is dynam-
ically non-emptiable.

Proof. If a siphon W is dynamically non-emptiable, then the desired equality holds due to the
order-preserving property of the cones Fǫ(W ). Conversely, if C(W ) ∩ Fǫ(W ) % {0̄} for all ǫ > 0,
then let x1/n ∈ C(W ) ∩ F 1

n
(W ) be a point in the intersection that has norm one:

∣∣x1/n

∣∣ = 1.

As these points lie on the unit sphere, there exists a convergent subsequence with limit which we
now denote by x0. Clearly, this point x0 is a non-zero point in the intersection C(W ) ∩ F0(W ).
Finally, part 2 of this lemma follows from the fact that the containments C(W ′) ⊂ C(W ) and
F0(W

′) ⊂ F0(W ) hold whenever W ⊂W ′.

Note that the intersection C(W ) ∩ F0(W ) can be computed using polyhedral software
such as polymake [JG00]. We next prove that equation (4.7) and a slight variant of the surrounding
argument can be used to show that any siphon W associated with a facet of a weakly-reversible
system is dynamically non-emptiable. We therefore have provided a large set of examples of dy-
namically non-emptiable siphons.

Corollary 4.6.9. Let {S, C,R} be a weakly-reversible chemical reaction network with dynamics
governed by mass-action kinetics (1.5). If a siphon W defines a facet for some invariant polyhedron
P, then W is dynamically non-emptiable.

Proof. As in the proof of Theorem 4.6.4, we may assume that there is one linkage class. The case of
more than one linkage class is similar. Let W be a siphon for which FW is a facet; we may assume
that W = {1, 2, . . . ,m}. Let v ∈ Rs

≥0, which satisfies vi > 0 if i ∈ [m], be as in the proof of Theorem
4.6.4. That is, y′|W − y|W ∈ span(v|W ) for each reaction y → y′ ∈ R, and y′k|W − yk|W = γkv|W
for some γk ∈ R where k ∈ [R] indexes a reaction. Now consider R+ and R− ⊂ R defined similarly
as in the proof of Theorem 4.6.4. Hence, yk|W 	 y′k|W for all reactions yk → y′k for k ∈ R−, so
α ∈ F0(W ) satisfies αk = 0 for k ∈ R−. Thus, any vector α ∈ C(W ) ∩ F0(W ), the vector w as in
the definition of C(W ) satisfies

0 	 w|W = v|W
∑

yk→y′

k
∈R+

αkγk − v|W
∑

yk→y′

k
∈R−

αk|γk|

= v|W
∑

yk→y′

k
∈R+

αkγk − 0 ,

which implies that αk = 0 for k ∈ R+ as well; hence α = 0̄, and the result is shown.

We remark that a siphon that defines a facet of some invariant polyhedron P may in
fact define a lower-dimensional face of another invariant polyhedron P ′. Hence, the statement of
the previous corollary specifies only the existence of an invariant polyhedron of the first type. As
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an example, consider any strongly connected network comprised of the three complexes 2A + B,
A+D, and A+C. The set {A} is a siphon. Each invariant polyhedron P is defined by two positive
constants T1 and T2:

P = {(xa, xb, xc, xd) | xa + xc + x+ d = T1 and xb + xc + x+ d = T2} .

If T1 = 1 and T2 = 2, then the invariant polyhedron is a triangle with vertices (0, 1, 1, 0), (0, 1, 0, 1),
and (1, 2, 0, 0), and the face defined by {A} is a facet (an edge). For the invariant polyhedron
defined by T1 = 2 and T2 = 1, the siphon {A} defines the empty face.

We end this section by showing that the analogous result to Corollary 4.6.9 for vertices
does not hold. In fact, the following examples demonstrate that some vertex-defining siphons are
dynamically non-emptiable, while others are not.

Example 4.6.10. Consider the following reaction network:

A+B

A+ C

B + C
��

OO

&&MMMMMMMMMMMMMffMMMMMMMMMMMMM
88qqqqqqqqqqqqqxxq

qqqqqqqqqqqq

κ1

κ2

κ3
κ4

κ5κ6

The invariant polyhedra are triangles P =
{
(a, b, c) ∈ R3

≥0 | a+ b+ c = T
}

for positive total con-
centrations T > 0. The minimal siphons {A,B}, {A,B}, and {A,B} each define a vertex of P,
and we claim that they are in fact dynamically non-emptiable. It is enough to consider the siphon
W = {A,B}. By Lemma 4.6.8, the cones of interest are

C(W ) =

{
α ∈ R6

≥0

∣∣∣∣ (α1 − α2)

(
0
1

)
+ (α3 − α4)

(
−1
1

)
+ (α5 − α6)

(
1
0

)
≤ 0

}

F0(W ) =
{
α ∈ R6

≥0

∣∣ α1 = α6 = 0
}
.

Hence the intersection of these two cones is

C(W ) ∩ F0(W ) =
{
α ∈ R6

≥0 | α1 = α6 = 0, − (α3 − α4) + α5 ≤ 0, α2 + (α3 − α4) ≤ 0
}

= {0̄} .

Hence the siphon {A,B} is dynamically non-emptiable.

Other networks for which the vertex-defining siphons are dynamically non-emptiable in-
clude the receptor-ligand-dimer network (analyzed in Examples 1.4.3 and 3.1.1), the network in
Example 4.3.1 due to Angeli [Ang08], and the network depicted below, which is analyzed by An-
geli et al. in [ADS07a, §10]:

2A+B C

A+ 2BD

OO

��

//

oo
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We now present an example of a network that has a vertex-defining siphon that is not dynamically
non-emptiable.

Example 4.6.11. Consider the following network:

3A
κ1

⇆
κ3

A+B
κ2

⇄
κ4

3B .

The unique invariant polyhedron is the entire positive orthant P = R2
≥0, and the unique minimal

siphon W = {A,B} defines the origin, which is the unique vertex of P. We compute the cones of
Lemma 4.6.8 to be

C(W ) =

{
α ∈ R4

≥0

∣∣∣∣ (α1 − α3)

(
2
−1

)
+ (α2 − α4)

(
−1
2

)
≤ 0

}

F0(W ) = R4
≥0 .

Their intersection is

C(W ) ∩ F0(W ) =

{
α ∈ R4

≥0

∣∣ 1

2
(α3 − α1) ≤ (α4 − α2) ≤ 2(α3 − α1)

}
,

and one non-zero vector in the intersection is α = (1, 1, 1, 1). Hence the siphonW is not dynamically
non-emptiable.

4.7 Applications to the global attractor conjecture

In this section, we use the results of the previous section to resolve some special cases
of the global attractor conjecture. In particular, the main result of this section, Theorem 4.7.1,
establishes that the conjecture holds if all boundary steady states are confined to facets and vertices
of an invariant polyhedron. It is our main contribution to the global attractor conjecture.

Theorem 4.7.1. The global attractor conjecture holds for any toric dynamical system (and in par-
ticular, any detailed-balancing or weakly-reversible zero deficiency chemical reaction system) whose
boundary steady states are confined to facet-interior points or vertices of the invariant polyhedra.
Equivalently, if a face FW is a facet, a vertex, or an empty face whenever W is a siphon, then the
global attractor conjecture holds.

Proof. The equivalence of the two statements in the theorem follows from the fact that a face FW

contains a steady state in its interior if and only if W is a siphon; see Lemma 4.7.3 for further
clarification. As noted in the previous section, persistence is a necessary and sufficient condition
for the global attractor conjecture to hold. Further, by Proposition 4.6.1, vertices may not be
ω-limit points. The remainder of the proof is similar to that of Theorem 4.6.7 and is omitted.

We remark again that Proposition 4.6.1 and Theorem 4.7.1 provide repelling neighbor-
hoods for ω-limit points of toric dynamical systems that reside within the interiors of facets or
of vertices of P. The following corollary resolves the global attractor conjecture for systems of
dimension two; note that the one-dimensional case is straightforward.
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Corollary 4.7.2 (The global attractor conjecture for two-dimensional P). The global attractor
conjecture holds for all toric dynamical systems (and in particular, detailed-balancing or weakly-
reversible zero deficiency chemical reaction networks) whose invariant polyhedra are two-dimensional.

Proof. This follows immediately from Theorem 4.7.1 as each face of a two-dimensional polyhedron
(that is, a polygon) must be either a facet or a vertex.

We end this section with a lemma which classifies faces of P that contain steady states.
This is related to the following definition.

Definition 4.7.1. Suppose that {S, C,R} is a weakly-reversible chemical reaction network, en-
dowed with mass-action kinetics, and W ⊂ S is a siphon. Then, the W-reduced system is the
chemical reaction network, endowed with the same rate constants as the original system, composed
of only those linkage classes in which all complexes are comprised of species outside of the set W .

As noted in comments following Definition 4.2.1, for a weakly-reversible system and any
siphon W , either each complex in a given linkage class contains an element of W or each complex in
that linkage class does not contain an element of W . Therefore, W -reduced systems are themselves
weakly-reversible. Furthermore, it is easy to check that for a toric dynamical system, any W -
reduced system is itself a toric dynamical system. Indeed, boundary steady states of such systems
are also complex-balancing; see Corollary 3.7 of [SM00]. We now repeat Lemma 3.2.4.

Lemma 4.7.3 (Classification of faces containing steady states). Consider a toric dynamical system.
A face FW ′ of a invariant polyhedron P contains a steady state in its interior if and only if W ′ is
a siphon.

In the next section, we provide examples that illustrate our results, as well as a three-
dimensional example for which our results do not apply.

4.8 Examples

As discussed earlier, the global attractor conjecture previously has been shown to hold if
the invariant polyhedra P have no boundary steady states. So, the examples in this section feature
boundary steady states.

Example 4.8.1. We return to the receptor-ligand dimer model in Example 1.4.3:

A2C AD

EBC

OO OO

�� ��

//

//

oo

oo

κ12

κ21

κ23κ32

κ34

κ43

κ41 κ14

As we saw in Example 3.1.1, there are three minimal siphons, {A,B,E}, {A,C,E}, and {C,D,E}.
From Figure 3.1, we see that the corresponding non-empty faces are vertices of the invariant polyhe-
dra; namely, each polyhedron contains a unique vertex steady state. Therefore, by Theorem 4.6.1,
the global attractor conjecture holds for this system.
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The next example contains non-vertex boundary steady states.

Example 4.8.2. Consider the network given by the following reactions:

2A
κ1

⇄
κ2

A+B B
κ3

⇄
κ4

C .

The corresponding invariant polyhedra are two-dimensional simplices (triangles) of the form

P =
{

(xa, xb, xc) ∈ R3
≥0 | xa + xb + xc = T

}
, (4.8)

where T > 0. It is straightforward to check that P has a unique boundary steady state given by

z =

(
0,

κ4

κ3 + κ4
T,

κ3

κ3 + κ4
T

)
,

and that this point lies in the interior of the facet F{A}. (Note that this boundary steady state is the
Birch point of the reversible zero deficiency subnetwork B ⇆ C.) Therefore, both Theorem 4.7.1
and Corollary 4.7.2 allow us to conclude that in spite of the existence of the boundary steady state
z, the Birch point in the interior of P is globally asymptotically stable.

We remark that Theorem 4 of Angeli et al. [ADS07a] also applies to the previous example.
However, for the following example, no previously known results apply.

Example 4.8.3. Consider the reaction network depicted here:

2A

A+B

A+C

OO

&&MMMMMMMMMM

xxqqqqqqqqqq

The invariant polyhedra are the same triangles as in the previous example. For each P, the set
of boundary steady states is the entire face F{A} (one of the three edges of P), which includes
the two vertices F{A,B} and F{A,C}. Hence the results of [And08, Cha03] do not apply. This is a
weakly-reversible zero deficiency network. Both Theorem 4.7.1 and Corollary 4.7.2 imply that the
global attractor conjecture holds for all choices of rate constants and for all invariant polyhedra P
defined by this network, despite the presence of boundary steady states.

In the next example, the invariant polyhedra are three-dimensional.

Example 4.8.4. The following zero deficiency network is obtained from Example 4.8.2 by adding
a reversible reaction:

2A ⇆ A+B B ⇆ C ⇆ D .
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For this network, the invariant polyhedra are three-dimensional simplices (tetrahedra)

P =
{

(xa, xb, xc, xd) ∈ R4
≥0 | xa + xb + xc + xd = T

}
,

for positive total concentration T > 0. The unique boundary steady state in P is the Birch point of
the zero deficiency subnetwork B ⇆ C ⇆ D, and it lies in the facet F{A}. In other words, the point
is z = (0, xb, xc, xd) where (xb, xc, xd) is the Birch point for the system defined by the subnetwork

B ⇆ C ⇆ D .

We see that z lies in the interior of the facet F{A}, so by Theorem 4.7.1 the global attractor
conjecture holds for all P and all choices of rate constants for this network.

As in the previous example, the invariant polyhedra in our final example are three-
dimensional. However neither previously known results [And08, Cha03] nor those in this chapter
can resolve the question of global asymptotic stability.

Example 4.8.5. The following zero deficiency network consists of three reversible reactions:

A ⇆ B ⇆ A+B ⇆ A+C .

As there are no conservation relations, the unique positive invariant polyhedron is the entire non-
negative orthant: P = R3

≥0. The set of boundary steady states is the one-dimensional face (ray)
F{A,B}, which includes the origin F{A,B,C}. Therefore non-vertex, non-facet boundary steady states
exist, so the results in this chapter do not apply.

In our final example, the results of Section 4.6.2 apply but those of Section 4.7 do not.

Example 4.8.6. The following reversible network is obtained from Example 4.8.2 by adding an-
other reversible reaction:

A+ C
κ1

⇆
κ2

2A
κ3

⇄
κ4

A+B , B
κ5

⇄
κ6

C .

The positive stoichiometric compatibility classes are again the two-dimensional triangles given by
(4.8). One can check that the network has a deficiency of one, so there exist rate constants for
which the system is not complex-balancing (for example, κ1 = κ3, κ5 = κ6, and κ2 6= κ4). Thus
the results of Section 4.7 do not apply. It is also easy to verify that {A} and {A,B,C} are the only
siphons and that F{A} is a facet and F{A,B,C} is empty. Therefore, Theorem 4.6.7 applies and we
conclude that, independent of the choice of rate constants, the system is persistent.
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Chapter 5

The smallest multistationary

mass-preserving chemical reaction

network

This chapter is based on the paper “The smallest multistationary mass-preserving chemical
reaction network” [Shi08]. Also, we include a proof of Proposition 5.2.1, and provide additional
references for related work in Section 5.1 and for real root counting and classification in Section 5.2.

5.1 Introduction to multistationarity

Bistable biochemical models often are presented as the possible underpinnings of chemical
switches [CA00, LK99], which play an important role during development [MSG+09] and other
biological activities. As we have seen in this dissertation, systematic study of mass-action kinetics
models–which a priori may or may not admit multiple positive steady states–constitutes chemical
reaction network theory (CRNT). Recalling the results in Chapter 2, certain classes of networks,
including toric dynamical systems, do not exhibit multistationarity. Such results go back to the
work of Feinberg, Horn, Jackson, and Vol´pert [Fei79, HJ72, VK85]. The thesis of Lipson contains
an overview of recent results concerning multistationarity in chemical reaction networks [Lip07],
and includes a discussion of the work of Craciun and Feinberg which gives graphical conditions that
rule out multistationarity [CF05, CF06, CF10].

On the other hand, there are conditions that are sufficient for establishing whether a
network supports multiple steady states. The CRNT Toolbox, which was developed by Feinberg
and improved by Ellison, implements the Deficiency One and Advanced Deficiency Algorithms
[Ell98, Fei95]; this software is available online [EF]. For a large class of systems, the CRNT
Toolbox either provides a witness for multistationarity or concludes that it is impossible. For
another implementation, see the software ERNEST for Matlab [SA09]. For systems for which the
CRNT Toolbox is inconclusive, we refer the reader to the approach of Conradi et al. [CFRS07].

Another article of Conradi et al. includes an algebraic approach that determines the full
set of parameters for which a system is multistationary; a necessary and sufficient condition for
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multistationarity is the existence of a non-trivial sign vector in the intersection of two subsets of
Euclidean space [CFR08]. This method is then applied to one level of a MAPK cascade model.
For details, see the recent dissertation of Conradi [Con08]. One aim of this chapter is to perform
a similar analysis for a small network. Related work includes the analysis of multistationarity of
multisite phosphorylation systems by Wang and Sontag in [WS08] and by Gunawardena, Manrai,
and Thomson in [MG08, TG09a, TG09b]. In particular, Wang and Sontag reduce the problem of
computing the number of steady states to that of counting the number of positive roots (that lie in
certain intervals) of a parametrized family of univariate polynomials. From this formulation, they
prove bounds on the number of steady states and characterize certain regions of parameter space
as giving rise to systems with one steady state and other regions as having many steady states.
Thomson and Gunawardenan prove that a similar reduction to a system of two polynomials in two
unknowns holds in general for post-translational modification systems [TG09a, TG09b]. Similarly,
Gatermann and Xia fully characterize the parameter regions that give rise to three positive steady
states for three chemical reaction systems [GX03].

To model biological processes, one typically reverse-engineers a system of non-linear dif-
ferential equations that exhibits specific dynamical behavior, such as bistability or oscillations, ob-
served experimentally [BQ08, §5.2]. For example, Segel proposes a small immune network consisting
only two cell types, which has three stable steady states, corresponding to “normal,” “vaccinated,”
and “diseased” states [Seg98]. Similarly, the Brusselator is a mass-action kinetics network with a
stable limit cycle [AH, Fei80].

This chapter focuses on the smallest chemical reaction networks that admit multiple pos-
itive steady states. Therefore, the aim is similar to work of Wilhelm and Heinrich which identified
and analyzed the smallest chemical reaction network that has a Hopf bifurcation [WH95, WH96].
Moreover, a recent article of Wilhelm answers the same question as this chapter when the condi-
tion of reversibility is relaxed; Table 1 which appears there gives the smallest examples of chemical
systems with oscillations, limit cycles, and so on [Wil09]. For a further discussion on the smallest
networks capable of admitting periodic solutions, see the textbook of Érdi and Tóth [ET89, §4.5.3].
In Section 5.2, a special network called the Square is shown to be a smallest reversible multista-
tionary chemical reaction network. Sections 5.3 and 5.4 determine precisely which parameters of
the Square give rise to multiple steady states. Finally, Section 5.5 discusses the possible connection
of the Square to known biochemical networks.

5.2 The smallest multistationary network

Horn initiated the investigation of small chemical reaction networks by enumerating net-
works comprised of “short complexes,” those whose corresponding monomials cy have degree at
most two [Hor73a, Hor73b]. Networks that consist of at most three short complexes do not permit
multiple steady states.

The present section establishes that the Square of Example 1.3.2 is a smallest reversible
multistationary chemical reaction network. The Square appeared in non-reversible form as net-
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work 7-3 in [HJ72] and network 4.2 in [Fei80]. We depict the network again here:

c31 c1c
2
2

c32c21c2

κ12

κ21

κ23κ32

κ34

κ43

κ41 κ14

OO OO

�� ��

//

//

oo

oo

For completeness, here are the matrices whose product defines the dynamical system (1.3):

Ψ(c) =
(
c31, c1c

2
2, c

3
2, c

2
1c2
)
,

Aκ =




−κ12 − κ14 κ12 0 κ14

κ21 −κ21 − κ23 κ23 0
0 κ32 −κ32 − κ34 κ34

κ41 0 κ43 −κ41 − κ43


 , and

Y =




3 0
1 2
0 3
2 1


 . (5.1)

The differential equations (1.3) are given by the composition

dc

dt
= Ψ(c) ·Aκ · Y .

Recall that a steady state is a non-negative concentration vector c ∈ Rs
≥0 at which the

equations (1.3) vanish. In this chapter, all steady states refer to positive steady states c ∈ Rs
>0,

unless they are specified as boundary steady states, i.e., those steady states c ∈
(
Rs
≥0 \ Rs

>0

)
. We

are interested in counting the number of steady states within a single invariant polyhedron. In
our Square example, there may be two or even three steady states in each invariant polyhedron
P; Example 5.2.2 in the next section provides a choice of positive rate constants κij that give rise
to three steady states. Sections 5.3 and 5.4 determine precisely which parameters give rise to two
steady states and which yield three. Moreover, we compute this semi-algebraic parametrization for
all networks on the same four vertices as the Square, in other words, networks whose complexes
are c31, c1c

2
2, c

3
2, and c21c2. The parametrization is captured in Table 5.1 and can be computed

“by hand,” but larger systems may require techniques of computational real algebraic geometry
[BPR06]. For example, our problem of classifying parameters according to the number of steady
states is labeled as Problem P2 by Wang and Xia in [WX05], where it is addressed with computer
algebra methods. We also refer the reader to recent work of Lazard and Rouillier [LR07], Liang
and Jeffrey [LJ09], and Yang [Yan99] for an overview of recent advances in real root counting and
classification. Such algebraic techniques are harnessed by Gatermann and Xia to identify the locus
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of parameters that give rise to three steady states for each of three chemical reaction networks
[GX03].

Following equation (2.6) of Chapter 2, the Matrix-Tree Theorem defines the following four
polynomials in the rate constants of the Square:

K1 = κ23κ34κ41 + κ21κ34κ41 + κ21κ32κ41 + κ21κ32κ43 ,

K2 = κ14κ32κ43 + κ12κ34κ41 + κ12κ32κ41 + κ12κ32κ43 ,

K3 = κ14κ23κ43 + κ14κ21κ43 + κ12κ23κ41 + κ12κ23κ43 ,

K4 = κ14κ23κ34 + κ14κ21κ34 + κ14κ21κ32 + κ12κ23κ34 .

Recall that Theorem 2.2.7 of Chapter 2 provides an ideal MG that is toric in these Ki coordinates,
and the variety of MG is the moduli space of toric dynamical systems on the Square. In this case,
the ideal MG is the twisted cubic curve in the Ki coordinates, generated by the 2×2-minors of the
following matrix:

(
K1 K2 K4

K4 K3 K2

)
. (5.2)

Moreover, Theorem 2.2.7 states that for a given choice of positive rate constants κij, the equations
(1.3) define a toric dynamical system if and only if the minors of the matrix (5.2) vanish. In general
the codimension of MG is the deficiency of a network; see Theorem 2.2.9 of Chapter 2. Here the
deficiency is two. Recall that a toric dynamical system is a dynamical system (1.3) for which the
algebraic equations Ψ(c) · Aκ = 0 admit a strictly positive solution c∗ ∈ Rs

>0, and in this case
there is a unique steady state in the interior of each invariant polyhedron P, so multistationarity
is precluded.

It is no coincidence that the original monomials of the Square, namely c31, c1c
2
2, c

3
2, and c21c2,

parametrize the twisted cubic curve. In fact, the following general result follows from Theorem 2.2.9
in Chapter 2. The result concerns mass-preserving networks, those in which all monomials cyi have
the same total degree. These networks are a special type of conservative networks, as defined in
Remark 4.6.2.

Proposition 5.2.1. Assume that a chemical reaction network G is strongly connected and all of
its monomials cyi have the same total degree. Then the toric variety parametrized by the monomial
map Ψ(c) coincides with the variety of MG.

Proof. By Theorem 2.2.9 in Chapter 2, MG is generated by Ku − Kv where u, v ∈ Nn satisfy
CayG(Y ) · (u− v) = 0, where CayG(Y ) in this case is the ((s+ 1) × n)-matrix obtained by adding
an all-one row at the bottom of the matrix Y T . The columns of Y T are the exponent vectors yi, so
the sum of the first s rows of CayG(Y ) is the vector (d, d, . . . , d) of length n, where d is the shared
total degree of the monomials cyi . So the last row of CayG(Y ) is in the span of the other rows; this
implies that

ker CayG(Y ) = ker Y T .

Therefore it remains only to show that the ideal of relations that are satisfied by vectors Ψ(c) =
(cy1 , cy2 , . . . , cyn) is generated by Ku − Kv where (u − v) ∈ kerY T . This is an easy property of
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monomial maps. If (u− v) ∈ kerY T , then

Ψ(c)u = cY
T u

= cY
T (u−v)cY

T v

= 1 · cY
T v

= Ψ(c)v .

Finally, any polynomial relation over the complex numbers easily can be rewritten as a C-linear
combination of binomials Ku − Kv with (u − v) ∈ ker Y T . Therefore, there is no loss when
considering real versus complex varieties. In other words, the equality Ψ(c) = V (MG) holds when
taken over C (see the Closure Theorem of [CLO07, §3.2] and the discussion in [PS05, §3.2]), but
the fact that MG is generated by polynomials over R allows us to restrict our attention to the real
variety.

For the Square, each one-dimensional invariant polyhedron P is defined by some positive
concentration total T = c1 +c2. The positive steady states in P correspond precisely to the positive
roots of the following cubic polynomial:

pS(x) = (−2κ12 − κ14)x
3 + (κ41 − 2κ43)x

2 + (2κ21 − κ23)x+ (κ32 + 2κ34) ;

this polynomial arises by substituting x := c1/c2 into the equation dc1/dt = −dc2/dt. From this
point of view, we reach some immediate conclusions. First, the algebraic degree of this system
is three, which bounds the number of steady states. Second, the number of steady states and
their stability depend only on the rate parameters κij , and not on the invariant polyhedron P or
equivalently the choice of total concentration T . Also, by noting that pS(x) is positive at x = 0
and is negative for large x, we see that the Square admits at least one positive steady state for any
choice of rate constants. Recall that the discriminant of a univariate polynomial f is a polynomial
that vanishes precisely when f has a multiple root over the complex numbers [Stu02]. The software
Maple computes the discriminant of pS to be the following polynomial:

− 108κ2
12κ

2
32 − 432κ2

12κ32κ34 − 432κ2
12κ

2
34 − 108κ12κ14κ

2
32

− 432κ12κ14κ32κ34 − 432κ12κ14κ
2
34 + 64κ12κ

3
21 − 96κ12κ

2
21κ23 + 48κ12κ21κ

2
23

− 72κ12κ21κ32κ41 + 144κ12κ21κ32κ43 − 144κ12κ21κ34κ41 + 288κ12κ21κ34κ43

− 8κ12κ
3
23 + 36κ12κ23κ32κ41 − 72κ12κ23κ32κ43 + 72κ12κ23κ34κ41

− 144κ12κ23κ34κ43 − 27κ2
14κ

2
32 − 108κ2

14κ32κ34 − 108κ2
14κ

2
34 + 32κ14κ

3
21

− 48κ14κ
2
21κ23 + 24κ14κ21κ

2
23 − 36κ14κ21κ32κ41 + 72κ14κ21κ32κ43

− 72κ14κ21κ34κ41 + 144κ14κ21κ34κ43 − 4κ14κ
3
23 + 18κ14κ23κ32κ41

− 36κ14κ23κ32κ43 + 36κ14κ23κ34κ41 − 72κ14κ23κ34κ43 + 4κ2
21κ

2
41

− 16κ2
21κ41κ43 + 16κ2

21κ
2
43 − 4κ21κ23κ

2
41 + 16κ21κ23κ41κ43 − 16κ21κ23κ

2
43

+ κ2
23κ

2
41 − 4κ2

23κ41κ43 + 4κ2
23κ

2
43 − 4κ32κ

3
41 + 24κ32κ

2
41κ43 − 48κ32κ41κ

2
43

+ 32κ32κ
3
43 − 8κ34κ

3
41 + 48κ34κ

2
41κ43 − 96κ34κ41κ

2
43 + 64κ34κ

3
43 .
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As pS is cubic and has at least one positive root, its discriminant is negative if and only if pS has
one real root and one pair of complex conjugate roots; in this case, the Square has precisely one
positive steady state. When the discriminant of pS is non-negative, the system may admit one,
two, or three positive steady states; we analyze this case fully in the next section.

Example 5.2.2. Consider the following rate constants for the Square:

(κ12, κ14, κ21, κ23, κ32, κ34, κ41, κ43) = (1/4, 1/2, 1, 13, 1, 2, 8, 1) .

This yields the polynomial pS(x) = −x3 + 6x2 − 11x+ 6, which has three positive roots: x = 1, 2,
and 3. This is an instance of bistability; it is easy to determine that x = 1 and x = 3 correspond
to stable steady states, while the third is unstable. In the next section we determine the conditions
for an arbitrary vector of rate constants to admit one, two, or three steady states.

Recalling the definitions given in Section 1.3 of the Introduction, the Square has the
following properties: the number of complexes is n = 4, the number of connected components of
the network is l = 1, the number of species is s = 2, and the dimension of any invariant polyhedron
is σ = 1. The main result of this section states that this network is minimal with respect to each
of these four parameters.

Theorem 5.2.3. The Square is a smallest multistationary, mass-preserving, reversible chemical
reaction network with respect to each of the following parameters: the number of complexes, the
number of connected components, the number of species, and the dimension of an invariant poly-
hedron.

Proof. First l = 1 and σ = 1 are clearly minimal. Next any mass-preserving system with n ≤ 2
or s = 1 has no reactions or has deficiency zero. Finally, an n = 3 system has deficiency zero or
one; in the deficiency one case, the Deficiency One Theorem of Feinberg rules out the possibility of
multistationarity [Fei95].

Among all mass-preserving multistationary networks that share these four minimal pa-
rameters, the Square is distinguished because its monomials are of minimal degree. A connected
network of lower degree would consist of at most three of Horn’s “short” complexes [Hor73a].

The remainder of this chapter focuses on the Square and more generally, the networks
that share the same complexes as the Square. In the following section, we shall determine which of
these are bistable. The one with the fewest edges is the only one with two connected components
rather than one, and is featured in the last section.

5.3 Parametrizing multistationarity

The aim of this section is similar to that of Conradi et al. [CFR08], which determined the
full set of parameters that give rise to multistationarity for a biochemical model describing a single
layer of a MAPK cascade. However we additionally determine the precise number of steady states:
zero, one, two, or three, and determine their stability. The family of networks we consider are those
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that have the same four complexes as the Square. In other words, we classify subnetworks of the
complete network depicted here:

c31 c1c
2
2

c32c21c2

OO OO
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Again the four complexes are labeled by the entries of

Ψ(c) =
(
cy1 , cy2 , cy3 , cy4

)
=
(
c31, c1c

2
2, c

3
2, c

2
1c2
)
,

and we let κij denote the reaction rate constant for the reaction from cyi to cyj . Each of these twelve
rate constants κij is permitted to be zero, which defines the parameter space R12

≥0 of dynamical
systems. The main result of this section is summarized in Table 5.1, which is the semi-algebraic
decomposition of the twelve-dimensional parameter space according to the number of steady states
of the dynamical system. We note that this table is a refinement of classical “root classification
tables” introduced by Arnon [Arn88, §4] for our polynomial of interest; these are also called “com-
plete root classifications” by Liang and Jeffrey [LJ09]. See also the work of Lazard and Rouillier
on solving parametrized polynomial systems [LR07].

The conditions listed in the table (which form a “complete discrimination system” in the
language of Yang [Yan99]) make use of certain polynomials in the rate constants, including the
following signed coefficients of the polynomial p:

S0 = 2κ12 + 3κ13 + κ14 ,

S1 = κ41 − κ42 − 2κ43 ,

S2 = −2κ21 + κ23 − κ24 ,

S3 = 3κ31 + κ32 + 2κ34 ,

where p generalizes the polynomial pS from the Square:

p(x) = −S0x
3 + S1x

2 − S2x+ S3 . (5.3)

We now derive the entries of Table 5.1 for those networks without boundary steady states (this
includes the case of the Square). These cases are precisely the ones in which S0 > 0 and S3 > 0.
Our approach is simply to determine the conditions on the coefficients of p for the polynomial to
have one, two, or three positive roots, as we have seen that this is equivalent to our task at hand.
Recall that we already have determined that p always has at least one positive root.

In this twelve-parameter case, the discriminant of p is a homogeneous degree-four polyno-
mial with 113 terms. For the same reason as that for the Square, there is one positive steady state
when the discriminant is negative. Now assume that the discriminant is non-negative. Then p has
three real roots, counting multiplicity; recall that the positive ones correspond to the positive steady
states of the chemical reaction network. Now the constant term of a monic cubic polynomial is the
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Condition Steady states Stable states

D < 0 and S0S3 = 0 0 0
D < 0 and else 1 1

D > 0 and S0, S1, S2, S3 > 0 3 2
D > 0 and S0, S1, S2 > 0 and S3 = 0 2 1
D > 0 and S1, S2, S3 > 0 and S0 = 0 2 1
D > 0 and S0 = S3 = 0 and S1S2 < 0 0 0

D > 0 and else 1 1

D = 0 and S0, S1, S2, S3 > 0 and triple root condition 1 1
D = 0 and S0, S1, S2, S3 > 0, no triple root condition 2 1

D = 0 and S1 ≤ S0 = 0 ≤ S2 and S3 > 0 0 0
D = 0 and S1 ≤ S3 = 0 ≤ S2 and S0 > 0 0 0

D = 0 and else 2 1

Table 5.1: Classification of dynamical systems arising from non-trivial (having at least one reaction)
networks with complexes c31, c1c

2
2, c

3
2, and c21c2. Listed are the number of positive steady states

and the number of those steady states that are stable. The discriminant of p is denoted by D. The
signed coefficients of the polynomial p (5.3) are denoted by S0, S1, S2, and S3. The triple root
condition consists of the two equations (5.4).

negative of the product of its roots, so by examining the sign of the constant term of p, we conclude
that p has either one positive root and two negative roots, or three positive roots. Continuing the
sign analysis with the other coefficients of p, we conclude that there are three positive roots if and
only if S1 > 0 and S2 > 0. We proceed by distinguishing between the cases when the discriminant
is positive or zero. If the discriminant is positive, then we have derived criteria for having one or
three positive steady states; this is because the roots of p are distinct. If the discriminant is zero,
then in the case of one positive root, the two negative roots come together (one steady state). In
the case of discriminant zero and three positive roots, then at least two roots come together (at
most two steady states); a triple root occurs if and only if the following triple root condition holds:

3S0S2 = S2
1 and 27S2

0S3 = S3
1 . (5.4)

These equations are precisely what must hold in order for p to have the form p(x) = −(x − α)3.
Finally, stability analysis in this one-dimensional system is easy, and this completes the analysis
for the networks without boundary steady states. The remaining cases can be classified similarly,
and therefore we can complete the entries of Table 5.1. To parametrize the behavior of the Square,
we can simply reduce to the case when each of its parameters κ12, κ14, κ21, κ23, κ32, κ34, κ41,
and κ43 are positive and all others are zero.

Remark 5.3.1. By determining which sign vectors in (0,+)12 can be realized by a vector of param-
eters that yields multistationarity, we find a necessary and sufficient condition for a directed graph
on the four complexes of the Square to admit multistationarity. This condition for a network to be
multistationarity is that the graph must include the edges labeled by κ23 and κ41 and at least one
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edge directed from the vertex c31 or c32. In this case, for appropriate rate parameters arising from
Table 5.1, the dynamical system has multiple positive steady states. Therefore, we can enumerate
the reversible networks on the four complexes that admit multistationarity: there is one network
with all six (bi-directional) edges, four with five edges, six (including the Square) with four edges,
four with three edges, and one with two edges. These sixteen networks comprise the family of
“smallest” multistationary networks. The multistationary subnetworks of the Square network are
analyzed in the next section, and in particular the decomposition from Table 5.1 for the two-edge
network is depicted in Figure 5.1.

5.4 Multistationary subnetworks of the Square network

Subnetworks of the Square are obtained by removing edges. From the parametrization
in the previous section, we know that up to symmetry between c1 and c2, only two reversible
subnetworks of the Square exhibit multiple positive steady states. We now examine both of them.

The first network is obtained by removing the bottom edge of the Square:

c31 c1c
2
2

c32c21c2

κ12

κ21

κ23κ32κ41 κ14

OO OO

�� ��

//oo

In other words, Aκ is replaced by

Aκ =




−κ12 − κ14 κ12 0 κ14

κ21 −κ21 − κ23 κ23 0
0 κ32 −κ32 0
κ41 0 0 −κ41


 .

The other two matrices Ψ(c) and Y given in equation (5.1) remain the same.
In this subnetwork, the four parameters of Theorem 5.2.3 are the same as those of the

Square. The system is a toric dynamical system if and only if the following four binomial generators
of MG vanish:

κ14κ32 − κ23κ41 ,

κ12κ32κ41 − κ14κ21κ23 ,

κ2
14κ21 − κ12κ

2
41 ,

κ12κ
2
32 − κ21κ

2
23 .

We note that both κ23 times the third binomial and κ14 times the fourth binomial are in the
ideal generated by the first two binomials. Therefore, an assignment of positive parameters for
this network defines a toric dynamical system if and only if the following two equations hold:
κ14κ32 = κ23κ41 and κ12κ32κ41 = κ14κ21κ23.
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The second subnetwork of the Square is obtained by removing one additional edge, the
one between the vertices labeled by c31 and c1c

2
2; we depict it here:

c31 c1c
2
2

c32c21c2

κ23κ32κ41 κ14

OO OO

�� ��

The new matrix Aκ is

Aκ =




−κ14 0 0 κ14

0 −κ23 κ23 0
0 κ32 −κ32 0
κ41 0 0 −κ41


 .

The network graph G is now disconnected, and the polynomial p from (5.3) reduces to

p(x) = − κ14x
3 + κ41x

2 − κ23x+ κ32 .

The discriminant of p is

D = −27κ2
14κ

2
32 − 4κ14κ

3
23 + 18κ14κ23κ32κ41 + κ2

23κ
2
41 − 4κ32κ

3
41 .

Further, the toric condition reduces to the single equation

κ23κ41 = κ14κ32 ,

which defines the Segre variety. A single equation suffices to define the space of toric dynamical
systems; this corresponds to the fact that this subnetwork has deficiency one, while the previous
subnetwork has deficiency two. The semi-algebraic decomposition of the previous section for this
four-parameter network can be depicted in three dimensions by setting one parameter equal to one,
in other words, by scaling the equations (1.3); this is displayed in Figure 5.1.

We remark that Horn and Jackson performed the same parametrization for the following
special rate constants:

(κ12, κ14, κ21, κ23, κ32, κ34, κ41, κ43) = (ǫ, 0, 1, 0, ǫ, 0, 1, 0) ,

where ǫ > 0. Their results are summarized as Table 1 in [HJ72]. Their analysis notes that any
instance of three positive steady states can be lifted to establish the same in the (reversible) Square.
In other words, in a small neighborhood in R8

≥0 of a vector of parameters that yields three positive
steady states of the directed Square, there is a vector of parameters for the bi-directional Square
that also exhibits multistationarity. The precise criterion for when lifting of this form is possible
appears in Theorem 2 of Conradi et al. [CFRS07]. As this approach is widely applicable, further
analysis of small networks may be fruitful for illuminating the dynamics of larger biochemical
networks.
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Figure 5.1: This depicts the semi-algebraic decomposition of Section 5.3 for the subnetwork of the
Square in which only the vertical edges remain and κ41 = 1. At the left is the discriminant-zero
locus. Parameter vectors lying below this surface give rise to dynamical systems with three positive
steady states. Those above the surface yield one positive steady state; these include parameters of
the toric dynamical systems, which are the points on the Segre variety which appears on the right.
Parameters on the discriminant-zero locus correspond to systems with either one (if and only if
3κ14κ32 = κ23) or two positive steady states. This figure was created using the software Maple.

5.5 Connection to known biochemical networks

In this final section, we comment on the possible connection of the Square network to
known networks in systems biology. We first compare it to the following simple network:

cxcy ⇆ c2y (5.5)

cx ⇆ cy .

Network (5.5) is a modified version of the following molecular switch mechanism proposed by
Lisman [Lis85]:

cxcy ⇆ cxy −→ c2y

cycp ⇆ cyp −→ cxcp .
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Here x denotes a kinase in an inactive state, y is the active version, and p is a phosphatase. In
the first reactions, y catalyzes the phosphorylation of x, turning x into y; the second reactions
correspond to dephosphorylation. By skipping the binding steps, making all reactions reversible,
and noting that removing p effectively scales the second reaction rate constant, we obtain the
network (5.5). The reactions of (5.5) are similar to

c21cy ⇆ c32 and c3
1 ⇆ c3

2 ,

which are reactions in the generalization of the Square network examined in the next section; this
suggests the possible biological relevance of the reactions of the Square. For example c21c2 −→ c32
can be viewed as a reaction in which species two catalyzes the reaction c21 −→ c22. Such a positive
feedback loop–in which a high amount of some species y encourages the further production of the
same species–occurs in biological settings. For example, the recent work of Dentin et al. finds
that high glucose levels in diabetic mice promote further glucose production in the liver, which is
triggered by the binding of glucose (which we may view as species y) to the transcription factor
CREB (species x) [DHX+08].

We end by mentioning a possible “design principle” that exists in the Square network.
We have seen that the family of Square networks is the smallest class of bistable mass-action
kinetics networks. Whether nature has implemented one of these networks (perhaps with additional
components to provide robustness) in a biological setting is as yet unknown, but it is remarkable
that these networks exhibit a simple switch mechanism, which we now explain. Consider the case
of three steady states. The corresponding positive roots x1 < x2 < x3 of the polynomial p, which
is defined in equation (5.3), are the steady states for the ratio of concentrations c1/c2. To switch
from the low stable equilibrium x1 to the high stable equilibrium x3 is easy: simply increase the
concentration ratio c1/c2 above x2, and the resulting dynamics will do the rest.
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Chapter 6

Predicting gene expression from

regulatory sequence

This chapter is joint work with Lester Mackey and Lior Pachter.

6.1 Introduction

An important problem in systems biology is to understand how the biochemical processes
underlying transcriptional regulation give rise to precise patterns in space and time. Key players in
these processes are transcription factors, proteins that enhance or repress transcription by binding
to specific DNA sequences. The chemical reactions that underlie transcriptional regulation include
the bindings of transcription factors to cis-regulatory modules (CRMs) of genes. Such modules
consist of subsequences that are usually (but not always) located upstream (5’) to genes and that
control transcription via the binding of transcription factors. Recent high-throughput sequencing
technologies have allowed for the prediction and experimental verification of CRMs, and of the
transcription factors that bind to them.

At first glance, the underlying mechanisms of transcriptional regulation appear to be ex-
tremely complex. Even in well-understood model systems, such as Drosophila, there are thousands
of transcription factors regulating thousands of genes, even in very early stages of development.
Nevertheless, it is becoming increasingly apparent that there are high levels of organization of the
transcription machinery, resulting in modularity of the system. This can be exploited in order
to understand transcriptional regulation. For each such sequence, many possible combinations of
transcription factors can bind to the sequence. Such thermodynamic models give quantitative pre-
dictions of gene expression levels that are weighted averages over the set of all possible binding
configurations.

One aspect of this line of research is the development of models of transcription factor
binding that are sufficiently detailed to enable prediction of gene expression. Two recently proposed
models for these processes are the following: (1) a (spatiotemporal) ODE model of the Reinitz lab
which predicts gene expression levels based on concentrations of transcription factors and other
genes’ expression levels [MSG+09], and (2) a thermodynamic model (for a fixed time point) of the
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Segal lab which predicts gene expression level based on concentrations of transcription factors and
the gene regulatory sequence [SRSS+08]. The aim of this chapter is to describe an implementation
and mathematical analysis of the Segal et al. model. For a machine learning approach to predicting
expression, see the recent paper of Zinzen et al. [ZGG+09].

This chapter is organized in the following way. Section 6.2 defines the concept of a gene
expression function and describes the gene expression function introduced by Segal et al. Section 6.3
explains how to implement this model by means of dynamic programming. Section 6.4 provides a
recursion for computing the number of configurations.

6.2 The gene expression function of Segal et al.

Our goal is to predict the expression level of a gene G from its CRM, denoted by SG, and
the concentrations, denoted by Ri, of various transcription factors present. Accordingly, we define
a gene expression function to be a map whose inputs are a CRM and a vector of m transcription
factor concentrations and whose output is a predicted expression level (normalized to be a real
number between 0 and 1):

φ : S × Rm
+ → [0, 1]

(SG, R1, . . . , Rm) 7→ P (E);

here, S is the set of finite sequences over the nucleotide alphabet, {A,C,G, T}. We note that for
fixed concentration levels, the map φ is then a fitness landscape [BPS07].

In this section, we describe the specific gene expression function that was introduced by
Segal et al. In particular, any specification of parameters defines the gene expression function
detailed in the Supplementary Information of [SRSS+08], which predicts the expression level of a
gene based on its regulatory sequence and the concentration levels of m = 8 transcription factors:
Parameters: For each transcription factor a = 1, 2, . . . ,m, position-specific scoring matrix (PSSM)
Ma, concentration scaling parameter αa, binding cooperativity strength λa, and (positive or nega-
tive) expression contribution wa. For the gene G of interest, basal expression rate w0.
Gene expression function: The function takes as input, the cis-regulatory sequence SG of a
gene G of interest and (experimentally measured) concentrations Ra of m transcription factors.

During Drosophila embryogenesis, the precursors to the body segments are established;
related genes are expressed in stripes, delineating the segments to be formed along the anterior-
posterior spatial axis. At 100 points along this axis, concentrations of the eight transcription factors
have been measured experimentally. Then for a fixed gene of interest, the gene expression function
predicts its expression profile along the spatial axis by evaluating the gene expression function 100
times, at each of the different concentration levels of transcription factors. In [SRSS+08], this is
repeated for each of 44 genes and compared to experimental data. Further, they estimate some of
the parameters.

6.2.1 Configuration models

We now describe a more general framework, of which this model will be seen to be a
special case. Each transcription factor a = 1, 2, . . . ,m binds to sequences of a specified length,
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which we denote by L(a). For a fixed gene G, there is a CRM SG, the (predicted) region in which
transcription factors bind. So, SG is a sequence of length |SG| over the nucleotide alphabet; in
[SRSS+08], we have 500 ≤ |SG| ≤ 2500.

To define the gene expression function, we consider all possible ways for transcription
factors to bind to the regulatory sequence of a gene; we call possible combinations “configurations.”

Definition 6.2.1. For a sequence S, a pre-configuration c that involves k := k(c) transcription
factors is a choice of k transcription factors f(1), f(2), . . . , f(k) ∈ {1, 2, . . . ,m} and k positions
1 ≤ p(1) < p(2) < · · · < p(k) ≤ |S| of binding such that the binding sites

(p(i), p(i) + 1, . . . , p(i) + L(f(i)) − 1)

of adjacent transcription factors do not overlap. We say that a pre-configuration c is a configuration
if the last binding site does not extend past the end of the sequence S, in other words, if p(k) +
L(f(k)) − 1 ≤ |S|.

Letting C denote the set of all possible configurations (for a fixed CRM SG), the gene
expression function computes the gene expression level P (E) := P (SG)(E) in the following proba-
bilistic way:

P (E) :=
∑

c∈C

P (E|c)P (c) . (6.1)

We define configuration models to be the family of all gene expression functions that take the form
given in (6.1), where P (c) is the probability (under some distribution) that the configuration of
transcription factors that bind to the CRM is c, and P (E|c) is a function that predicts the level of
gene expression given that the configuration is c. In [SRSS+08], the probability of the configuration
c that consists of transcription factors f(i) at positions p(i) takes the following form:

P (c) =
∏

i

(concentration of f(i))·(probability f(i) binds at p(i))·(binding cooperativity terms).

We note that the probability that the transcription factor f(i) binds at position p(i) along the
CRM should come from the (experimentally derived) PSSM of f(i). The “binding cooperativity
terms” should depend on the distance between adjacent transcription factors; an oddity of the
model in [SRSS+08] is that binding cooperativity terms contribute only for adjacent transcription
factors that are identical, for example, two bicoids binding in adjacent positions. We note also
that their choice of P (E|c) incorporates a baseline level of expression, the length of the CRM, and
which transcription factors are in the configuration c; however, it does not weight the contribution
of binding sites nearest the promotor any differently from those far from the promotor.

6.2.2 Configuration probabilities and expression level prediction

We now define for the Segal et al. model, the probability of having a certain configuration
c of transcription factors there: P (c) := PG(c), and at the end of this section, define the predicted
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amount of expression of gene G under the assumption of having the configuration c: P (E|c) :=
PG(E|c). These two definitions will specify the configuration model as defined above in (6.1). How
to compute P (E) in practice is discussed in Section 6.3; see equation (6.14).

To describe the probability P (c) that a configuration c occurs, the model incorporates the
binding specificities of each transcription factor. This takes the form of a PSSM (position-specific
scoring matrix, also called a position-weight matrix) for each transcription factor a; in other words,
for each position j = 1 . . . L(a), we have a probability distribution on the set of nucleotides:

M j
a(−) = probability the jth nucleotide of the binding site of a is −.

Generally these PSSMs are estimated from experimental data.
From the PSSMs, we will define the probability function Pa that a transcription factor

a binds to a sequence of length L(a) (on either strand). First, recall that DNA is a double helix,
whose two strands are called the Watson and Crick strands. Now, PW

a denotes the probability of
binding to the Watson strand:

PW
a (Sp(i), Sp(i)+1, . . . , Sp(i)+L(i)−1) :=

L(a)−1∏

j=0

M j+1
a (Sp(i)+j) . (6.2)

The probability PC
a of binding to the complementary Crick strand is computed similarly:

PC
a (Sp(i), Sp(i)+1, . . . , Sp(i)+L(i)−1) :=

L(a)−1∏

j=0

M j+1
a (S′

p(i)+j) , (6.3)

where S′
p(i)+j denotes the base complementary to the base Sp(i)+j . Then to allow for binding on

both strands, we define the probability function Pa as the mean of the two probabilities PW
a and

PC
a :

Pa(Sp(i), . . . , Sp(i)+L(f(i))−1) :=
1

2
PW

a (Sp(i), . . . , Sp(i)+L(f(i))−1) (6.4)

+
1

2
PC

a (Sp(i), . . . , Sp(i)+L(f(i))−1) .

A more natural definition for Pa might be extend the definition of a configuration so that a binding
event takes place between a transcription factor, a position along the sequence, and one of the
strands, although this would be more difficult to compute. The baseline binding probability function
PB is computed as follows:

PB(a sequence of length L) :=
1

4L
. (6.5)

A second term that appears in P (c) takes into consideration the concentrations of tran-
scription factors in the configuration c; the absolute concentration of transcription factor a is given
by

τa = αaRa,
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recalling that αa is the concentration scaling parameter and Ra is the measured concentration.
The remaining term is the binding cooperativity term, for which we define for transcription

factors a and b which bind to regions T a
1 , . . . , T

a
L(a) and T b

1 , . . . , T
b
L(b) that are some positive distance

δ = T b
1 − T a

L(a) apart,

γ(a, b, δ) :=

{
exp (λa · Gaussianµ=0,σ=50 (δ)) if a = b
1 if a 6= b,

(6.6)

where Gaussianµ=0,σ=50 (δ) denotes the density function of a normal distribution with mean 0 and
standard deviation 50 which is evaluated at δ, and λa is the parameter that represents the binding
cooperativity strength. The binding cooperativity term will take the form of a product of terms:

γ ( f(i), f(i+ 1), p(i+ 1) − p(i) − L(a) ) ,

which corresponds to adjacent transcription factors a and a′ binding at positions p(i) and p(i+ 1)
in the configuration c. Note that

δ = p(i+ 1) − p(i) − L(a) (6.7)

is the number of free bases between the two bases. We view the binding cooperativity term as
introducing epistasis (transcription factor interaction) into the model.

We define W (c) to be the “statistical weight” of the configuration c :

W (c) :=

(
k∏

i=1

τf(i)

Pf(i)(Sp(i), . . . , Sp(i)+L(f(i))−1)

PB(Sp(i), . . . , Sp(i)+L(f(i))−1)

)
·

k−1∏

i=1

γ ( f(i), f(i+ 1), p(i+ 1) − p(i) − L(f(i)) ) .

We are now equipped to define

P (c) :=
W (c)∑

c′∈C W (c′)
. (6.8)

Note that by construction this defines a probability distribution on the set C of configurations.
Finally, the last ingredient for the definition of P (E) given in equation (6.1), is the follow-

ing: for the predicted gene expression under a configuration c that involves k transcription factors,
we have

P (E|c) := σ

(
w0 +

1000

|S|

k∑

i=1

wf(i)

)
(6.9)

= σ

(
w0 +

1000

|S|

m∑

a=1

za(c)wa

)

where za(c) is the number of times transcription factor a is bound in configuration c, and σ () is the

logistic function
(
σ (t) := 1

1+exp(−t)

)
. In the second equality, we see that to calculate P (E|c), the

dependence on the configuration c is only up to the multiset over {1, 2, . . . ,m} that its transcription
factors define.
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6.2.3 Parameters

In this section, we list the specific parameters used in [SRSS+08], as reported in Figure 2 of
the Supplementary Information and obtained by email from Tali Raveh-Sadka. Each transcription
factor a = 1, 2, . . . ,m has a position-specific scoring matrix (PSSM) Ma, which is available from
the Supplementary Information website1. As an example, the matrix for bicoid is listed here where
the columns correspond to the bases A, C, G, T :

0.022007100 5.15419e-01 0.263775000 1.98799e-01

0.000313491 5.26394e-01 0.181190000 2.92100e-01

0.012125800 3.67034e-04 0.005086510 9.82421e-01

0.546444000 4.44226e-01 0.006383100 2.94640e-03

0.999180000 4.68222e-05 0.000745253 2.75202e-05

0.000255355 2.22943e-02 0.418216000 5.59234e-01

0.019107700 9.28256e-01 0.000817427 5.18188e-02

0.029907400 4.40646e-01 0.293858000 2.35588e-01

0.013844600 9.14434e-01 0.006140290 6.55808e-02

0.000288269 2.29073e-01 0.466637000 3.04002e-01

0.082691400 4.52687e-01 0.393126000 7.14960e-02

Transcription factor αa λa wa

bicoid 0.003 5.73 1.85
caudal 0.001 4.20 1.03
giant 0.01 6.68 -1.98
hunchback 0.001 6.23 -0.05
knirps 0.09 1.03 -1.16
kruppel 0.004 4.45 -0.22
tailless 0.17 1.46 -0.36
torRE 0.008 7.44 2.03

Table 6.1: Parameters of the eight transcription factors in the Segal et al. model.

For each transcription factor, its concentration scaling parameters αa, binding coopera-
tivity strength λa, and (positive or negative) expression contribution wa are listed in Table 6.1.
Note that those transcription factors with positive expression contribution wa > 0 are considered
“enhancers”; all others are “repressors.” For each gene G of interest, the basal expression rate w0 is
listed in Table 6.2. Note that Segal et al. fit these parameters after computing the gene expression
function.

6.2.4 Clarifying notes on the Segal et al. gene expression function

The Segal et al. gene expression function is defined in the Supplementary Information of
[SRSS+08], but a few details need to be clarified, which were provided by the authors of the paper.

1http://genie.weizmann.ac.il/pubs/segnet08/.
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Gene Basal expression rate w0

Kr CD2 ru -1.82464637868443
cnc (+5) -3.5790481144348
gt (-6) -5.30754149756432
hb anterior actv -4.13371297543959
hkb ventral elem -3.74318844640332
kni (-5) -4.87080629961396
oc (+7) -2.907000925884
knrl (+8) -3.36136713429632
Kr AD2 ru -4.6158
kni (+1) -3.32013676583045
oc otd early -2.6049558325662
tll P2 -4.12622284224731
slp2 (-3) -3.94259094977981
gt (-10) -3.55129310232093
gt (-1) -3.34633255113909
btd head -2.78749093059981
h 15 ru -2.63368499359713
prd +4 -4.30336855597686
eve 1 ru -5.58092128934552
run stripe1 -6.2158
ftz +3 -1.86577033144262
odd (-5) -0.635179773902596
D (+4) -2.11216906913894
eve stripe2 -9.4158
hb centr & post -0.954515917746382
Kr CD1 ru -2.21843242859067
h stripe34 rev -0.585860196667668
eve 37ext ru -3.60101997673599
run -9 -4.02326700480848
run stripe3 -3.8158
odd (-3) -5.00187783049153
pdm2 (+1) -4.88402834083858
nub (-2) -4.71017748776955
eve stripe4 6 -4.6158
kni 83 ru -4.00411145489719
run -17 -4.14253008497171
eve stripe5 -5.87745912409451
run stripe5 -3.2158
gt (-3) -3.88095644802846

(continued on next page)
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(continued from previous page)

Gene Basal expression rate w0

h 6 ru -4.77716880076935
h stripe7 rev -3.8158
cad (+14) -2.05702215586585
tll K2 -3.2158
fkh (-2) -4.6158

Table 6.2: Basal expression rate of each gene in the Segal et al. model.

First, the definition of the probability function Pa in (6.4) as the sum of the bindings on both
strands does not appear in the Supplementary Information. Next, the definition of the distance δ
in (6.7) between two adjacent binding sites is slightly different in the Supplementary Information.
Additionally, the factor of 1000 in the definition of P (E|c) defined in (6.9) is missing from its
definition in the Supplementary Information. Finally, four of the parameter values appearing in
Table 6.1 deviate slightly from the values reported in the Supplementary Information.

6.3 Computing the gene expression function

This section describes how to compute P (E). First, the terms W (c) and P (E|c) are
straightforward to compute. To compute the term P (c) defined in (6.8), we must compute its
denominator

∑
c′∈CW (c′). This is performed using dynamic programming, and from this setup,

P (E) will be approximated by sampling from the probability distribution P (c) which we will see in
the estimation formula (6.14). For further details on dynamic programming in this context, see the
article of Cowley and Pachter [CP03]. In Section 6.4, we will see that the number of configurations
is prohibitively large, so the estimation of P (E) is necesary.

6.3.1 Dynamic programming

The dynamic programming approach of Section 3.1 in the Supplementary Information
of [SRSS+08] suffices only if there are no binding cooperativity terms (6.6). To handle binding
cooperativity, we must generalize in a manner which we now describe. We view configurations c as
walks in a Markov chain M which we now define. The states of M are given by locations (a, b, d)
of the following form:

• Pre-transcription factor states denoted by (0, 0, d), which is the state at time d of a walk
that has never visited a transcription factor, in other words, no transcription factors bind to
the first d nucleotides of the CRM,

• Within-transcription factor states denoted by (a, 1, d), which is the state of being at
position 1 ≤ d ≤ L(a) within the transcription factor 1 ≤ a ≤ m, and

• Post-transcription factor states denoted by (a, 2, d), which is the state of being d ≥ 1
bases past after the transcription factor 1 ≤ a ≤ m.
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Note that in the location (a, b, d), a denotes a transcription factor (or the empty one), b = 0, 1, or 2
indicates pre-, within-, or post-transcription factor, respectively, and d indicates the position along
the CRM. For example (a, b, d) = (1, 2, 5) is the state in which the previous transcription factor in
the configuration is bicoid, and after that binding site there are five unbound bases. We note that
there is a distinguished empty configuration whose walk consists entirely of pre-transcription factor
states. The edges (transitions) of M are the following:

• New transcription factor edges are of the form

(0, 0, d) −→ (a, 1, 1),

(a′, 1, L(a′)) −→ (a, 1, 1), or

(a′, 2, d′) −→ (a, 1, 1),

for 1 ≤ d and 1 ≤ a, a′ ≤ m, and these edges are labeled with the following weights (respec-
tively),

τa
Pa

PB
,

τa
Pa

PB
· γ
(
a′, a, 0

)
, or

τa
Pa

PB
· γ
(
a′, a, d′

)
.

• All remaining edges are of the form

(a, b, d) −→ (a, b, d + 1),

and have the label “1.”

The resulting graph will be called the “transition diagram” (or “transition graph”). For some
sequence S, consider a walk in the transition diagram of length |S|−1 that begins at a state (0, 0, 1)
or some beginning binding site (a, 1, 1). It follows that walks of this form in the transition graph
are in one-to-one correspondence with configurations c ∈ C, and in the remainder of this section,
we explain how we can sample a walk such that the resulting configuration c is chosen according to
the probability distribution P (c). The edge weights along a walk are the factors whose product is
W (c), where c denotes the corresponding configuration2. An example of a transition diagram for a
short sequence is shown in Figure 6.1.

For any state (a, b, d) in the Markov chain such that b = 1 implies that |S| − i ≥ L(a)− d,
and for an integer 1 ≤ i ≤ |S|, we define

fa,b,d(S, i) :=
∑

c∈C̃i,(a,b,d)

W (c) ,

2More precisely, the edge weights are labeled by functions of CRMs S and time i (the position along S), whose
evaluation is the factor that appears in W (c). More precisely, if (a, 1, 1) is the state at time i, then the probability
functions Pa and PB should be evaluated at the subsequence Si, . . . , Si+L(a)−1. That is, the random process taking
states (a, b, d, i) is a Markov chain.



86

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Pre-TF states (0, 0, i) Within-TF states (a, 1, i) Post-TF states (a, 2, i)

Figure 6.1: This depicts the transition diagram for the Markov chain M in the case of m = 2
transcription factors, which bind to sequences of length L(1) = 2 and L(2) = 3, and the sequence
S has length 6. A configuration is given by a walk of length 5 that begins at state (0, 0, 1), (1, 1, 1),
or (2, 1, 1). The walk labeled by the dashed arrows corresponds to the configuration which consists
of the first transcription factor binding at the second position of the sequence.

where the sum is taken over the set C̃i,(a,b,d) of pre-configurations on the subsequence

S1, S2, . . . , Si

whose corresponding walks in the transition diagram end precisely at location (a, b, d). Note that
the dependence on the regulatory sequence S is implicit in the definition of W (c), and this defi-
nition extends to pre-configurations c in C̃i,(a,b,d) by construction: if the state (a, b, d) is a within-
transcription factor state, then the inequality |S| − i ≥ L(a) − d ensures that the last binding
site does not extend past the end of S. With this notation, the term in the denominator in the
definition of P (c) in (6.8) is

∑

c∈C

W (c) = 1 +

m∑

a=1

fa,1,L(a) (S, |S|) +

m∑

a=1

|S|−L(a)∑

d=1

fa,2,d (S, |S|) . (6.10)

Note that the summand “1” corresponds to the empty configuration that ends at state (0, 0, |S|).
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Now it remains only to show how to compute fa,b,d(S, i) for all i ≤ |S|. This is the aim
of the remainder of this subsection. These computations will be used in the next section to sample
configurations from the probability distribution P (c). For i = 1, we have

f0,0,1(S, 1) = 1, and

fa,1,1(S, 1) = τa
Pa(1, . . . , L(a))

PB(1, . . . , L(a))
,

for 1 ≤ a ≤ m, and all others are 0. For i > 1, we will give a recursion. Note that any configuration
whose last transcription factor a begins binding at the i-th position is obtained by adding the
binding site of a to the end of a shorter configuration. Therefore if fa′,b′,d′(S, i

′) has been computed
for all 0 ≤ a′ ≤ m, b′, d′, and 1 ≤ i′ < i, then fa,b,d(S, i) can be computed. That we need only two
update rules derives from the fact that in the transition diagram, only the states that correspond
to the beginnings of a transcription factor binding site, namely those of the form (a, 1, 1), have
more than one incoming arrow. (As an illustration, see Figure 6.1.) These states we will later call
“head states”. All other states have a unique incoming arrow (labeled by the multiplicative factor
“1”), so for (b, d) 6= (1, 1), we have for i ≤ |S| − L(a) + 1:

fa,b,d(S, i) = fa,b,d−1(S, i− 1) .

For those states (a, 1, 1) that are the beginning of transcription factor binding sites, we have:

fa,1,1(S, i) = τa
Pa(Si, . . . , Si+L(a)−1)

PB(Si, . . . , Si+L(a)−1)
· (6.11)

(
1 +

m∑

a′=1

fa′,1,L(a′)(S, i − 1) γ(a, a′, 0)

+
m∑

a′=1

i−L(a′)−1∑

l=1

fa′,2,l(S, i− 1) γ(a, a′, l)
)
.

The correctness of this update rule follows from writing fa,1,1(S, i) as a sum over incoming arrows
to the state (a, 1, 1) in the transition diagram:

fa,1,1(S, i) =
∑

(a′,b,′d′)→(a,1,1)

(
ψ(a′,b,′d′)→(a,1,1)(Si, . . . , Si+L(a)−1)

)
· fa′,b′,d′(S, i− 1) .

Here ψ(a′,b,′d′)→(a,1,1) denotes the function that labels the edge (a′, b,′ d′) → (a, 1, 1) in the transition
diagram, which we evaluate at the subsequence Si, . . . , Si+L(a)−1. In the update rule, the summand
“1” corresponds to the configuration that consists of only the transcription factor a that binds at
positions i, . . . , i+L(a)− 1, and the two sums correspond to the end-of-transcription factor states
(a′, 1, L(a′)) and the post-transcription factor states (a′, 2, l), respectively.



88

6.3.2 Head state Markov chain

We now describe how to sample a configuration c from the distribution P (c) given in (6.8),
using the efficient computation of the terms fa,b,d(S, i) described in the previous subsection. Follow-
ing the backtrack algorithm, we perform a backward walk which we denote by (X|S|,X|S|−1, . . . ,X1)
in the transition diagram. That is, the walk is a path along backward edges in the transition di-
agram such as the one depicted in Figure 6.1. By sampling backward steps appropriately, the
resulting configuration c then will be sampled from the distribution P (c). As a shortcut, we will
keep track of only the beginning positions of binding, which we call the head states’. Note that
these head states (a, 1, 1) fully determine a backward walk on a given sequence S, so we can encode
a configuration by writing all head states as (a, 1, 1, i), where a is the transcription factor and i is
the initial binding position along S.

We let Yn = (an, 1, 1, in) denote the n-th head state in the backward chain, so that Y1 is
the head state of the last transcription factor that is bound to the sequence in the forward walk,
and the positions in of binding are decreasing in n. In order to specify how to sample a walk
(Y1, Y2, . . . ) of head states, we now give the transition probabilities of this backward Markov chain.
For convenience, we introduce two additional dummy states, start and end, which represent the
state after all bound transcription factors and the state before any bound transcription factors,
respectively. Letting Y0 = start, we have the following initial distribution for the first head state
Y1:

P (Y1 = end | Y0 = start) ∝ 1

P (Y1 = (a, 1, 1, i) | Y0 = start) ∝ fa,1,1(S, i) ,

where the proportionality constant is the same for all 1 ≤ a ≤ m and 1 ≤ i < |S| − L(a) + 1. For
all other transitions, the update rule is given by:

P (Yn = end | Yn−1 = (a, 1, 1, i)) ∝ 1

P
(
Yn = (a′, 1, 1, i′) | Yn−1 = (a, 1, 1, i)

)
∝

{
fa′,1,1(S, i

′) · γ(a, a′, i− i′ − L(a′)) if i′ + L(a′) ≤ i
0 else,

for 1 ≤ a′ ≤ m. For any given past head state Yn−1 = y, the proportionality constant is the same
across all transition terms P (Yn = − | Yn−1 = y), so the unnormalized transition weights above can
be used to sample the backward walk. (Recall that the previous section explained how to compute
the values of fa,b,d(S, i) efficiently.) We now prove that a walk obtained in this manner is equivalent
to sampling from a configuration from the probability distribution P (c).

Proposition 6.3.1. For a fixed sequence S, let Y = (Y0 = start, Y1, Y2, . . . , end) denote a
random walk obtained from the update rules defined above. Then the corresponding configuration
cY is sampled according to the probability distribution P (c) given in (6.8).

Proof. We begin by computing the proportionality constants in the two update rules for (Yn). First
for the initial distribution, concerning the terms P (Y1 = − | Y0 = start), the proportionality
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constant is

1 +
m∑

a=1

|S|−L(a)+1∑

i=1

fa,1,1(S, i)

= 1 +

m∑

a=1

|S|−L(a)∑

i=1

fa,1,1(S, i) +

m∑

a=1

fa,1,1 (S, |S| − L(a) + 1)

= 1 +

m∑

a=1

|S|−L(a)∑

l=1

fa,2,l(S, |S|) +

m∑

a=1

fa,1,L(a) (S, |S|)

=
∑

c∈C

W (c) .

We remark that the second equality above is due to the “1” factors on the relevant arrows in the
transition diagram, and the third equality is simply equation (6.10). Note also that this gives an
equation for

∑
c∈CW (c). Using similar techniques, we compute the proportionality constant for

the update rule concerning P (Yn = − |Yn−1 = (a, 1, 1, i)):

1 +

m∑

a′=1

i−L(a′)∑

i′=1

fa′,1,1(S, i
′) · γ

(
a, a′, i− i′ − L(a′)

)

= 1 +

m∑

a′=1

i−L(a′)−1∑

i′=1

fa′,1,1(S, i
′) · γ

(
a, a′, i− i′ − L(a′)

)

+

m∑

a′=1

fa′,1,1 (S, i− L(a)) · γ
(
a, a′, 0

)

= 1 +
m∑

a′=1

i−L(a′)−1∑

l=1

fa′,2,l(S, i − 1) · γ
(
a, a′, l

)

+

m∑

a′=1

fa′,1,L(a′) (S, i− 1)) · γ
(
a, a′, 0

)

= fa,1,1(S, i)
(
τa

Pa(Si,...,Si+L(a)−1)

PB(Si,...,Si+L(a)−1)

)−1
.

The final equality is equation (6.11).
Now fix a backward walk, which we denote by

Y = (Y0 = start, Y1 = (a1, 1, 1, i1) , Y2 = (a2, 1, 1, i2) , . . . , Yk+1 = end) ,

and let cY be the corresponding configuration (so, it consists of transcription factors an with
beginning binding positions in). First, consider the case cY is the empty configuration: Y = (Y0 =
start, Y1 = end). Having computed the proportionality constant in the first update rule above,
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the probability of obtaining the trivial walk is

P (Y0 = start, Y1 = end) =
1∑

c∈CW (c)
,

which agrees with the probability of the empty configuration given in (6.8).
In the remaining case, the configuration cY contains at least one transcription factor, so

k ≥ 1. Then we have:

P (Y ) = P (Y1 = (a1, 1, 1, i1) | Y0 = start) ·

P (Y2 = (a2, 1, 1, i2) | Y1 = (a1, 1, 1, i1)) ·

· · · · P (Yk+1 = end | Yk = (ak, 1, 1, ik))

=
fa1,1,1(S, i1)∑

c∈CW (c)
·
fa2,1,1(S, i2) · γ (a1, a2, i1 − i2 − L(a2))

fa1,1,1(S, i1)
(
τa1

Pa1(Si1
,...,Si1+L(a1)−1)

PB(Si1
,...,Si1+L(a1)−1)

)−1 ·

· · · ·
fak,1,1(S, ik) · γ (ak−1, ak, ik−1 − ik − L(ak))

fak−1,1,1(S, ik−1)

(
τak−1

Pak−1
(Sik−1

,...,Si1+L(ak−1)−1)

PB(Sik−1
,...,Sik−1+L(ak−1)−1)

)−1 ·

·
1

fak,1,1(S, ik)
(
τak

Pak
(Sik

,...,Si1+L(ak)−1)

PB(Sik
,...,Sik+L(ak)−1)

)−1

=
W (cY )∑
c∈CW (c)

.

The second equality comes from the proportionality constants computed earlier, and the third
equality comes from canceling terms and applying the definition of W (c). Therefore, we conclude
that P (Y ) equals the probability P (cY ) as given in (6.8).

Notice that the update rules of our backward walk require evaluations of fa,b,d(S, i) at
only head states (i.e., where (b, d) = (1, 1)). By computing and storing the values of f at only
head states, we can reduce our storage requirements from O(|S|2) to O(|S|). The following formula
demonstrates how to compute fa,1,1(S, i) using only terms of the form fa′,1,1(S, i

′) for positions
i′ < i:

fa,1,1(S, i) = τa
Pa(Si, . . . , Si+L(a)−1)

PB(Si, . . . , Si+L(a)−1)
· (6.12)


1 +

m∑

a′=1

i−L(a′)∑

i′=1

fa′,1,1(S, i
′) γ(a, a′, i− i′ − L(a′))


 . (6.13)

The correctness of this formula comes from recalling that fa′,1,1(S, i
′) = fa′,1,l(S, i

′ + l − 1) for
all 1 ≤ l ≤ L(a), and fa′,1,1(S, i

′) = fa′,2,l(S, i
′ + L(a′) + l − 1) for all 1 ≤ l; by making these

substitutions, it then follows that this recursion is equivalent to the one given earlier in (6.11).
Therefore, once these values of fa,1,1(S, i) are stored for all i ≤ |S| − L(a) + 1, the backward walk
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(Y0 = start, Y1, Y2, . . . , end) can be sampled easily, and this therefore establishes how to sample
from the distribution P (c) by sampling walks. We can now approximate P (E) in the following
way:

P (E) ≈
1

M

M∑

i=1

P (E|ci), (6.14)

where M is the number of samples, and the ci denote configurations sampled independently ac-
cording to P (c). Therefore, we have shown how to estimate the gene expression function.

6.3.3 Log coordinates

For numerical reasons, we perform all computations in log coordinates; for details, see the
book of Durbin et al. [DEKM98]. In this section, we record the relevant formulas. First, logW (c)
now takes the following form:

logW (c) =

(
k∑

i=1

log τf(i)

)

+




k∑

i=1

L(f(i))−1∑

j=0

logM j+1
f(i) (Sp(i)+j)




+

(
k∑

i=1

L(f(i)) · log 4

)

+

(
k−1∑

i=1

log γ ( f(i), f(i+ 1), p(i+ 1) − p(i) − L(f(i)) )

)
.

Recall that when a transcription factor a binds to a sequence S beginning at position i, this

introduces the multiplicative factor τa
Pa(Si,...,Si+L(a)−1)

PB(Si,...,Si+L(a)−1)
into W (c). The log version of this factor we

write as follows:

ψ(a, S, i) := log τa +

L(a)−1∑

j=0

(
logM j+1

a (Si+j) + log 4
)
.

Therefore, the log version of the fa,1,1,i(S, i) update rule (6.12) is:

log fa,1,1(S, i) = ψ(a, S, i) + log


1 +

m∑

a′=1

i−L(a′)∑

i′=1

fa′,1,1(S, i
′) γ(a, a′, i− i′ − L(a′))


 .

The log of a sum should be computed recursively according to the rule log(x+y) = log(x)+log(1+
exp(log(y) − log(x))) for x > y. Similarly, log

(∑
c∈CW (c)

)
should be computed according to this

rule.
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Next is the formula for logP (c):

log P (c) = logW (c) − log

(
∑

c′∈C

W (c′)

)
.

The update rule given before Proposition 6.3.1 becomes the following:

P
(
Yn = (a′, 1, 1, i′) | Yn−1 = (a, 1, 1, i)

)
∝

{
exp

(
log fa′,1,1(S, i

′) + log γ(a, a′, i− i′ − L(a′))
)

if i′ + L(a′) ≤ i
0 else,

From these equations, a backward walk can be sampled, and P (E) can be estimated
according to equation (6.14).

6.3.4 Maximum-weight configurations

We are interested in the expression levels computed from the highest-weight configura-
tions. Here we describe how these maximum-weight configurations are computed. We work in
log-coordinates. We for transcription factors a and positions i for which |S| − i ≥ L(a) − 1,

g(a, S, i) := max
c∈C̃i,(a,1,1)

(logW (c)) .

Therefore, the log of the highest weight of a configuration is equal to

max
c∈C

(logW (c)) = max


0, max

1≤a≤m
1≤i≤|S|−L(a)+1

(g(a, S, i))


 .

Note that the “0” is the log-weight of the empty configuration. Recall that any configuration
c ∈ C̃i,(a,1,1) is obtained by adjoining the final binding site to either a configuration c′ ∈ C̃i′,(a′,1,1)

for some transcription factor a′ and 1 ≤ i′ ≤ i − L(a′) + 1, or to the empty configuration. Hence,
the terms g(a, S, i) can be computed according to the following recursion:

g(a, S, i) = ψ(a, S, i) + max


0, max

1≤a′≤m
1≤i′≤|S|−L(a′)+1

(
g(a′, S, i′) + log γ(a, a′, i− L(a′) − i′)

)

 .

6.4 Computing the number of configurations

This section gives a recursion to compute the number of configurations on a sequence
of some given length. Our setup consists of transcription factors a = 1, 2, . . . ,m, which bind to
subsequences of length L(1), L(2), . . . , L(m), respectively; for the Segal et al. model, we have
m = 8 with binding lengths that range between 9 and 15. Next, note that the set of configurations
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C depends only on the length of the sequence of interest. So, we define for sequence lengths i the
following expression:

C(i) : = number of configurations on a sequence of length i

= number of configurations that end with binding of the transcription factor a at

position i+ 1 on a sequence of length > i+ L(a) . (6.15)

Note that the second equality above holds for all a = 1, 2, . . . ,m, because a configuration that ends
with binding at position i+ 1 is obtained by adjoining that final binding to a configuration on the
subsequence of length i. Also, we use the convention C(i) = 0 for i < 1. Recall that the sum in
the definition of P (E) in (6.1) is over C(|S|) configurations; the sequence lengths that Segal et al.
consider satisfy 500 ≤ |S| ≤ 2500. In order to show how to compute C(−), we define for i ∈ Z>0

and a = 1, 2, . . . ,m

B(i, a) : =

i−L(a)∑

i′=1

C(i′)

= number of configurations on a sequence of length i

that end with binding of the transcription factor a . (6.16)

The second equality (6.16) follows from (6.15) above. The next proposition gives the relationship
between the terms C(i) and B(i, a) and a recursion for computing them.

Proposition 6.4.1. The sequences C(i) and B(i, a) defined above satisfy the following relations:

C(i) = 1 +

m∑

a=1

B(i, a) for i ≥ 1

B(1, a) =

{
0 if L(a) > 1
1 if L(a) = 1

B(i, a) = B(i− 1, a) + C (i− L(a)) for i > 1 .

These can be used to compute the values of C(i) and B(i, a).

Proof. The equation for C(i) follows from equation (6.15) and the fact that a configuration is
either empty or ends with the binding of some transcription factor. Next, the equation for B(1, a)
is straightforward. As for the equation for B(i, a), recall that this term counts the configurations on
a sequence of length i that end with binding of the transcription factor a. These configurations have
two types: (i) those configurations with at least two bindings in which the last two binding sites are
directly next to each other (with no unbound bases between them), and (ii) those configurations in
which the base one position before the beginning binding position of the last transcription factor
is unbound. For i > 1, we see that C (i− L(a)) counts configurations of type (i). Also, B(i− 1, a)
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counts those of type (ii), via the following bijection:

{configurations counted by B(i− 1, a)} → {configurations of type (ii)}

c 7→ configuration obtained from c by changing

the last binding site of the transcription factor a

at some position i′ to bind instead at i′ + 1 .

This completes the proof.

Example 6.4.2. The shortest sequence considered by Segal et al. has length 500. Under their
regime (with m = 8 transcription factors of binding lengths L(i) = 9, 9, 11, 11, 12, 12, 14, 15), the
number of configurations computed according to Proposition 6.4.1 equals

C(500) ≈ 2.3 × 1066 .

We see that dynamic programming as described in Section 6.3 is necessary for estimating P (E) as
enumeration of all configurations is not feasible.
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Chapter 7

Further directions

In this chapter, we highlight some open problems in chemical reaction network theory.

7.1 Basic chemical reaction network theory questions

The following four open problems were posed by Feinberg [Fei80, §4], and they concern
chemical reaction networks taken with mass-action kinetics.

1. Describe the class of chemical reaction networks such that, regardless of the values of the
rate constants, their resulting differential equations admit at least one positive steady state
in each invariant polyhedron.

2. Describe the class of chemical reaction networks such that, regardless of the values of the rate
constants, their resulting differential equations admit precisely one positive steady state in
each invariant polyhedron.

3. Describe the class of chemical reaction networks such that, regardless of the values of the
rate constants, every positive steady state is locally asymptotically stable with respect to the
corresponding invariant polyhedron.

4. Describe the class of chemical reaction networks such that, regardless of the values of the rate
constants, there are no periodic solutions.

Question (1) above has a partial answer, which is discussed in the following section.

7.2 Existence of positive steady states

Consider the following questions: Does there exist a reversible chemical reaction network
without a positive steady state in some invariant polyhedron?

The answer is apparently “no,” according to unpublished work of Deng et al. [DFJN], and
in fact, this result holds even for weakly-reversible networks, i.e., those in which each connected
component is strongly connected. Is there a proof of a more algebraic flavor?
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7.3 Homotopy methods for multiple steady states

In recent work of Craciun, Helton, and Williams, homotopy methods are used to prove the
existence and uniqueness of positive steady states for certain chemical reaction systems [CHW08].
This applies to proving the existence of multiple positive steady states as well. What is the simplest
example of this?

7.4 Thermodynamic feasibility of toric dynamical systems

Conradi asked the following question: are toric dynamical systems automatically “ther-
modynamically feasible” in the sense of Beard et al. [BBCQ04]?

7.5 Boundary steady states without repelling neighborhoods

In Chapter 4, it is proven that boundary steady states that are vertices or facet-interior
points of an invariant polyhedron have repelling neighborhoods. Does there exist a non-vertex,
non-facet-interior point of an invariant polyhedron that does not have a repelling neighborhood?
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