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Abstract

We consider a model of extracellular signal-regulated kinase (ERK) regulation by
dual-site phosphorylation and dephosphorylation, which exhibits bistability and oscil-
lations, but loses these properties in the limit in which the mechanisms underlying
phosphorylation and dephosphorylation become processive. Our results suggest that
anywhere along the way to becoming processive, the model remains bistable and oscil-
latory. More precisely, in simplified versions of the model, precursors to bistability and
oscillations (specifically, multistationarity and Hopf bifurcations, respectively) exist at
all “processivity levels”. Finally, we investigate whether bistability and oscillations can
exist together.

1 Introduction

We focus on the following question, posed by Rubinstein et al. [17], pertaining to a model
of extracellular signal-regulated kinase (ERK) regulation (Figure 1):

Question 1.1. For all processivity levels1 pk := kcat/(kcat + koff) and p` :=
`cat/(`cat + `off) close to 1, is the ERK network in Figure 1, bistable and oscillatory?

The motivation behind this question was given earlier [11, 15, 17], which we summarize
here. Briefly, as both pk and p` approach 1, the ERK network “limits” to a (fully processive)
network that is globally convergent to a unique steady state, and thus lacks bistability and
oscillations. As bistability and oscillations may allow networks to act as a biological switch
or clock [23], we want to know how far “along the way” to the limit, the network maintains
the capacity for these important dynamical properties.

1This level is the probability that the enzyme acts processively, that is, adds a second phosphate group
after adding the first [19]. A somewhat similar idea, from [20], is the “degree of processivity”.

1



S00 + E
k1−−→←−−
k2

S00E
k3−−→ S01E

kcat−−→ S11 + E

−−
→
←−
−kon koff

S01 + E

−−
→m3

S10E

−−
→
←−
−m2 m1

S10 + E

S11 + F
`1−−→←−−
`2

S11F
`3−−→ S10F

`cat−−→ S00 + F

−−
→
←−
−`on `off

S10 + F

−−
→n3

S01F

−−
→
←−
−n1 n2

S01 + F

1

Figure 1: The ERK network consists of ERK regulation through dual-site phosphorylation
by the kinase MEK (denoted by E) and dephosphorylation by the phosphatase MKP3 (F ).
Each Sij denotes an ERK phosphoform, with subscripts indicating at which of two sites phos-
phate groups are attached. Deleting from this network the reactions labeled k2,m1, l2, `on, n2

(in blue) yields the minimally bistable ERK subnetwork (the explanation for this name
is given before Question 1.2).

A partial result toward resolving Question 1.1 was given by Rubinstein et al., who ex-
hibited, in simulations, oscillations for pk, p` ≈ 0.97 [17]. This left open the question of
oscillations for 0.97 < pk, p` < 1. Our result in this direction is given in Theorem 5.1.

Additional prior results aimed at answering Question 1.1 appeared in work of three of
the present authors with Torres [15]. We showed that bistability is preserved when reactions
in the ERK network are made irreversible, as long at least one of the reactions labeled by kon

and `on is preserved. We therefore give the name “minimally bistable ERK subnetwork” to
the network obtained by making all reaction irreversible except the reversible-reaction pair
kon and koff (Figure 1). (By symmetry, the network preserving `on and `off , rather than kon

and koff is equivalent.) We therefore state the following version of Question 1.1 for bistability:

Question 1.2. For pk and p` close to 1, is the minimally bistable ERK subnetwork, bistable?

If yes, then by results lifting bistability from subnetworks to larger networks [13], this also
answers in the affirmative the part of Question 1.1 pertaining to bistability.

Similarly, for oscillations, we showed that when reactions are made irreversible and also
two “intermediates” (namely, S10E and S01F ) are removed, oscillations are preserved [15].
For this network, called the “reduced ERK network” (Figure 2), we now ask a variant
of Question 1.1 for oscillations (see Remark 5.3 for a discussion of the relation between
Questions 1.1 and 1.3):
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Figure 2: Reduced ERK network [15]

Question 1.3. For pk and p` close to 1, is the reduced ERK network, oscillatory?

Our answers to Questions 1.2 and 1.3 are as follows. For the first question, at all pro-
cessivity levels – not just near 1 – the minimally bistable ERK subnetwork admits multiple
steady states, a necessary condition for bistability (Theorem 4.1). Furthermore, computa-
tional evidence suggests that indeed we have bistability. Similarly, for the second question,
again at (nearly) all processivity levels, the reduced ERK network admits a Hopf bifurcation
(Theorem 5.1), a precursor to oscillations.

Finally, we pursue several more questions pertaining to ERK networks. We investigate
in the ERK network whether – for some choice of rate constants – bistability and Hopf
bifurcations can coexist (see Theorem 6.1). We also pursue a conjecture from [15] on the
maximum number of steady states in the minimally bistable ERK network.

Our results fit into related literature as follows. First, as other authors have done for their
models of interest [5, 12, 18], we analyze simplified versions of the ERK network obtained by
removing intermediate species and/or reactions (in some cases, bistability and oscillations
can be “lifted” from smaller networks to larger ones [1, 2, 4, 10, 13]). Also, our proofs
harness two results from previous work: a Hopf-bifurcation criterion for the reduced ERK
network [15], and a criterion for multistationarity arising from degree theory [6, 9].

This work proceeds as follows. Section 2 provides background on chemical reaction sys-
tems and other topics. In Section 3, we give some details about the networks we study. Next,
we present our main results on multistationarity and bistability (Section 4), Hopf bifurca-
tions and oscillations (Section 5), and coexistence of bistability and oscillations (Section 6).
In Section 7, we prove results on the maximum number of steady states in the minimally
bistable ERK network. We conclude with a Discussion in Section 8.
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2 Background

This section contains background on chemical reaction systems and their steady states. We
also recall how “steady-state parametrizations” can be used to assess whether a network is
multistationary (Proposition 3.3).

2.1 Chemical reaction systems

As in [9], our notation closely matches that of Conradi, Feliu, Mincheva, and Wiuf [6]. A
reaction network G (or, for brevity, network) consists of a set of s species {X1, X2, . . . , Xs}
and a set of m reactions:

α1jX1 + α2jX2 + · · ·+ αsjXs → β1jX1 + β2jX2 + · · ·+ βsjXs , for j = 1, 2, . . . ,m ,

where each αij and βij is a non-negative integer. The stoichiometric matrix of G, denoted
by N , is the s ×m matrix with Nij = βij − αij. Let d = s − rank(N). The image of N is
the stoichiometric subspace, denoted by S. A conservation-law matrix of G, denoted
by W , is a row-reduced d × s-matrix such that the rows form a basis of the orthogonal
complement of S. If there exists a choice of W such that each entry is nonnegative and each
column contains at least one nonzero entry (equivalently, each species occurs in at least one
nonnegative conservation law), then G is conservative.

Denote the concentrations of the species X1, X2, . . . , Xs by x1, x2, . . . , xs, respectively.
These concentrations, under the assumption of mass-action kinetics, evolve according to the
following system of ODEs:

ẋ = f(x) := N ·


κ1 x

α11
1 xα21

2 · · ·xαs1
s

κ2 x
α12
1 xα22

2 · · ·xαs2
s

...
κm x

α1m
1 xα2m

2 · · ·xαsm
s

 , (1)

where x = (x1, x2, . . . , xs), and each κj ∈ R>0 is a reaction rate constant. By considering
the rate constants as a vector of parameters κ = (κ1, κ2, . . . , κm), we have polynomials
fκ,i ∈ Q[κ, x], for i = 1, 2, . . . , s. For ease of notation, we often write fi rather than fκ,i.

A solution x(t) with nonnegative initial values x(0) = x0 ∈ Rs
≥0 remains, for all

positive time, in the following stoichiometric compatibility class with respect to the

total-constant vector c := Wx0 ∈ Rd:

Sc := {x ∈ Rs
≥0 | Wx = c} . (2)

A steady state of (1) is a nonnegative concentration vector x∗ ∈ Rs
≥0 at which the

right-hand sides of the ODEs in (1) vanish: f(x∗) = 0. We distinguish between
positive steady states x∗ ∈ Rs

>0 and boundary steady states x∗ ∈ Rs
≥0\Rs

>0. A
steady state x∗ is nondegenerate if Im (Jac(f)(x∗)|S) is the stoichiometric subspace S.
(Here, Jac(f)(x∗) is the Jacobian matrix of f , with respect to x, at x∗.) A nondegenerate
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steady state is exponentially stable if for each of the σ := dim(S) nonzero eigenvalues of
Jac(f)(x∗), the real part is negative.

A network G is multistationary (respectively, bistable) if, for some choice of positive
rate-constant vector κ ∈ Rm

>0, there exists a stoichiometric compatibility class (2) that
contains two or more positive steady states (respectively, exponentially stable positive steady
states) of (1).

We analyze steady states within a stoichiometric compatibility class, by using con-
servation laws in place of linearly dependent steady-state equations, as follows. Let
I = {i1 < i2 < · · · < id} denote the set of indices of the first nonzero coordinate of the
rows of the conservation-law matrix W . Consider the function fc,κ : Rs

≥0 → Rs defined by

fc,κ,i = fc,κ(x)i :=

{
fi(x) if i 6∈ I ,
(Wx− c)k if i = ik ∈ I .

(3)

We call system (3), the system augmented by conservation laws. By construction, pos-
itive roots of the polynomial system fc,κ = 0 coincide with the positive steady states of (1)
in the stoichiometric compatibility class (2) defined by the total-constant vector c.

2.2 Steady-state parametrizations

The parametrizations defined below form a subclass of the ones in [9, Definition 3.6] (specif-
ically, we do not use “effective parameters” here).

Definition 2.1. Let G be a network with m reactions, s species, and (row-
reduced) conservation-law matrix W . Let fc,κ arise from G and W as in (3). A
steady-state parametrization is a map φ : Rm̂

>0 × Rŝ
>0 → Rm

>0 × Rs
>0, for some m̂ ≤ m

and ŝ ≤ s, which we denote by (κ̂; x̂) 7→ φ(κ̂; x̂), such that:

(i) φ(κ̂; x̂) extends the vector (κ̂; x̂). More precisely, for the natural projection π : Rm
>0 ×

Rs
>0 → Rm̂

>0 × Rŝ
>0, the map π ◦ φ is the identity map.

(ii) The image of φ equals the following set:

{(κ∗;x∗) ∈ Rm+s
>0 | x∗ is a steady state of the system defined by G and κ = κ∗} .

For such a parametrization φ, the critical function C : Rm̂
>0 × Rŝ

>0 → R is given by:

C(κ̂; x̂) = (det Jac fc,κ) |(κ;x)=φ(κ̂;x̂) ,

where Jac(fc,κ) denotes the Jacobian matrix of fc,κ with respect to x.

The following result is implied by [9, Theorem 3.12]:

Proposition 2.2 (Multistationarity and critical functions). Let φ be a steady-state
parametrization (as in Definition 2.1) for a network G that is conservative and has no
boundary steady states in any compatibility class. Let N be the stoichiometric matrix of G.
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(A) Multistationarity. G is multistationary if there exists (κ̂∗; x̂∗) ∈ Rm̂
>0×Rŝ

>0 such that

sign(C(κ̂∗; x̂∗)) = (−1)rank(N)+1 .

(B) Witness to multistationarity. Every (κ̂∗; x̂∗) ∈ Rm̂
>0 × Rŝ

>0 with sign(C(κ̂∗, x∗)) =
(−1)rank(N)+1 yields a witness to multistationarity (κ∗, c∗) as follows. Let (κ∗, x∗) =
φ(κ̂∗, x̂∗). Let c∗ = Wx∗ (so, c∗ is the total-constant vector defined by x∗, where W
is the conservation-law matrix). Then, for the mass-action system (1) arising from G
and κ∗, there are two or more positive steady states in the stoichiometric compatibility
class (2) defined by c∗.

3 ERK networks

As mentioned in the Introduction, this work primarily concerns two networks, the minimally
bistable ERK subnetwork and the reduced ERK network. Here we recall from [15] the ODEs
arising from these networks and a Hopf-bifurcation criterion for the reduced ERK network
(Proposition 3.3). We also present a steady-state parametrization for the minimally bistable
ERK subnetwork (Proposition 3.1).

3.1 Minimally bistable ERK subnetwork

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S00 E F S11F S10F S01F S01E S10E S01 S10 S00E S11

Table 1: Assignment of variables to species for the minimally bistable ERK subnetwork.

For the minimally bistable ERK subnetwork, let x1, x2, . . . , x12 denote the concentrations
of the species in the order given in Table 1. We obtain the following ODE system (1):

ẋ1 = − k1x1x2 + `catx5 + n3x6 =: f1

ẋ2 = − k1x1x2 − konx2x9 −m2x10x2 + kcatx7 + koffx7 +m3x8 =: f2

ẋ3 = − `1x3x12 − n1x3x9 + `catx5 + `offx5 + n3x6 =: f3

ẋ4 = `1x3x12 − `3x4 =: f4

ẋ5 = `3x4 − `catx5 − `offx5 =: f5

ẋ6 = n1x3x9 − n3x6 =: f6 (4)

ẋ7 = konx2x9 + k3x11 − kcatx7 − koffx7 =: f7

ẋ8 = m2x2x10 −m3x8 =: f8

ẋ9 = − konx2x9 − n1x3x9 + koffx7 =: f9

˙x10 = −m2x2x10 + `offx5 =: f10

˙x11 = k1x1x2 − k3x11 =: f11

˙x12 = − `1x3x12 + kcatx7 +m3x8 =: f12
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The 3 conservation equations correspond to the total amounts of substrate, kinase E,
and phosphatase F , respectively:

x1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 = Stot =: c1

x2 + x7 + x8 + x11 = Etot =: c2 (5)

x3 + x4 + x5 + x6 = Ftot =: c3.

This network admits a steady-state parametrization (Proposition 3.1 below). Another
parametrization for this network was given in [15, Section 3.2], involving “effective param-
eters” (replacing, for instance, `cat/kcat by a new parameter a1). That parametrization,
however, does not give (direct) access to the rate constants kcat, `cat, koff , `off involved in
processivity levels. We therefore need a new parametrization, as follows.

Proposition 3.1 (Steady-state parametrization for minimally bistable ERK subnetwork).
For the minimally bistable ERK subnetwork, with rate-constant vector denoted by κ :=
(k1, k3, kcat, kon, koff , `1, `3, `cat, `off ,m2,m3, n1, n3), a steady-state parametrization is given by:

φ : R13
>0 × R3

>0 → R13
>0 × R12

>0

(κ; x1, x2, x3) 7→ (κ; x1, x2, . . . , x12) ,

where

x4 = k1kcat(`cat+`off)(konx2+n1x3)x1x2

`3`cat(kcatkonx2+kcatn1x3+koffn1x3)
, x5 = k1kcat(konx2+n1x3)x1x2

`cat(kcatkonx2+kcatn1x3+koffn1x3)

x6 = n1k1koffx1x2x3

n3(kcatkonx2+kcatn1x3+koffn1x3)
, x7 = k1(konx2+n1x3)x1x2

kcatkonx2+kcatn1x3+koffn1x3
,

x8 = k1kcat`off(konx2+n1x3)x1x2

`catm3(kcatkonx2+kcatn1x3+koffn1x3)
, x9 = k1koffx1x2

kcatkonx2+kcatn1x3+koffn1x3
,

x10 = k1kcat`off(konx2+n1x3)x1

`catm2(kcatkonx2+kcatn1x3+koffn1x3)
, x11 = k1x1x2

k3
,

x12 = k1kcat(`cat+`off)(konx2+n1x3)x1x2

`cat`1(kcatkonx2+kcatn1x3+koffn1x3)x3
.

(6)

Proof. Due to the conservation laws (5), it suffices to show that by solving the equations
fi = 0 from (4), for all i 6= 2, 3, 12, we obtain the expressions in (6). We accomplish this
follows. By solving for x11 in the equation f11 = 0, we obtain the desired expression for
x11. Next, we solve for x7 and x9 in f7 = f9 = 0, and use the expression for x11, plus the
fact that each xi and each rate constant is positive, to obtain the expressions for x7 and x9.
Our remaining steps proceed similarly: we use f6 = 0 to obtain x6, then f1 = 0 for x5, then
f10 = 0 for x10, then f8 = 0 for x8, then f5 = 0 for x4, and finally f4 = 0 for x12.

3.2 Reduced ERK network

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

S00 E S00E S01E S11 S01 S10 F S11F S10F

Table 2: Assignment of variables to species for the reduced ERK network in Figure 2.
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The reduced ERK network has 10 rate constants: k1, k3, kcat, koff ,m, `1, `3, `cat, `off , n.
Letting x1, x2, . . . , x10 denote the species concentrations in the order given in Table 2, the
resulting mass-action kinetics ODEs are as follows:

ẋ1 = − k1x1x2 + nx6x8 + `catx10 =: f1

ẋ2 = − k1x1x2 + kcatx4 + koffx4 =: f2

ẋ3 = k1x1x2 − k3x3 =: f3

ẋ4 = k3x3 − kcatx4 − koffx4 =: f4

ẋ5 = mx2x7 − `1x5x8 + kcatx4 =: f5 (7)

ẋ6 = − nx6x8 + koffx4 =: f6

ẋ7 = −mx2x7 + `offx10 =: f7

ẋ8 = − `1x5x8 + `offx10 + `catx10 =: f8

ẋ9 = `1x5x8 − `3x9 =: f9

˙x10 = − `offx10 + `3x9 − `catx10 =: f10.

3.3 Hopf-bifurcation criterion for the reduced ERK network

At a simple Hopf bifurcation, a single complex-conjugate pair of eigenvalues of the Jaco-
bian matrix crosses the imaginary axis at nonzero speed, while all other eigenvalues remain
with negative real parts. If such a bifurcation is supercritical, oscillations or periodic orbits
are generated [14].

Definition 3.2. The i-th Hurwitz matrix of a univariate polynomial p(λ) = b0λ
n +

b1λ
n−1 + · · ·+ bn is the following i× i matrix:

Hi =


b1 b0 0 0 0 · · · 0
b3 b2 b1 b0 0 · · · 0
...

...
...

...
...

...
b2i−1 b2i−2 b2i−3 b2i−4 b2i−5 · · · bi

 ,

where the (k, l)-th entry is b2k−l as long as 0 ≤ 2k − l ≤ 2k − l, and 0 otherwise.

The following result is [15, Proposition 4.1].

Proposition 3.3 (Hopf criterion for reduced ERK). Consider the reduced ERK network,
and let f1, f2, . . . , f10 denote the right-hand sides of the resulting ODEs, as in (7). Let κ̂ :=
(kcat, koff , `off) and x := (x1, x2, . . . , x10). Consider the map2 φ : R3+10

>0 → R10+10
>0 , denoted by

(kcat, koff , `off , x1, x2, . . . , x10) 7→ (k1, k3, kcat, koff ,m, `1, `3, `cat, `off , n, x1, x2, . . . , x10), where

k1 :=
(kcat + koff)x4

x1x2

k3 :=
(kcat + koff)x4

x3

m :=
`offx10

x2x7

`1 :=
`offx10 + kcatx4

x5x8

`3 :=
`offx10 + kcatx4

x9

`cat :=
kcatx4

x10

n :=
koffx4

x6x8

.

2The map φ is a steady-state parametrization [15].
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Then the following is a univariate, degree-7 polynomial in λ, with coefficients in Q(x)[κ̂]:

q(λ) :=
1

λ3
det (λI − Jac(f)) |(κ;x)=φ(κ̂;x) . (8)

Now let hi, for i = 4, 5, 6, denote the determinant of the i-th Hurwitz matrix of the polyno-
mial q(λ) in (8). Then the following are equivalent:

(1) there exists a rate-constant vector κ∗ ∈ R10
>0 such that the resulting system (7) exhibits

a simple Hopf bifurcation, with respect to kcat, at some x∗ ∈ R10
>0, and

(2) there exist x∗ ∈ R10
>0 and κ̂∗ ∈ R3

>0 such that

h4(κ̂∗;x∗) >0 , h5(κ̂∗;x∗) > 0 , h6(κ̂∗;x∗) = 0 ,
∂

∂kcat

h6(κ̂;x)|(κ̂;x)=(κ̂∗;x∗) 6= 0 . (9)

Moreover, given κ̂∗ and x∗ as in (2), a simple Hopf bifurcation with respect to kcat occurs at
x∗ when the rate-constant vector is κ∗ := π̃(φ(κ̂∗;x∗)). Here, π̃ : R10

>0 × R10
>0 → R10

>0 is the
natural projection to the first 10 coordinates.

4 Bistability

In this section, we show that, for every choice of processivity levels, the irreversible ERK
network is multistationary (Theorem 4.1). We also give evidence suggesting that in fact,
when we have multistationarity, we always have bistability (Section 4.2).

4.1 Multistationarity at all processivity levels

Theorem 4.1 (Multistationarity at all processivity levels). Consider the minimally bistable
ERK subnetwork. For every choice of processivity levels pk ∈ (0, 1) and p` ∈ (0, 1), there is
a rate-constant vector (k∗1, k

∗
3, k
∗
cat, k

∗
on, k

∗
off , `

∗
1, `
∗
3, `
∗
cat, `

∗
off ,m

∗
2,m

∗
3, n

∗
1, n

∗
3) ∈ R13

>0 such that

1. pk = k∗cat/(k
∗
cat + k∗off) and p` = `∗cat/(`

∗
cat + `∗off), and

2. the resulting system admits multiple positive steady states (in some compatibility class).

Proof. Let C(κ; x̂) (where x̂ = (x1, x2, x3)) denote the critical function of the steady-state
parametrization (6) in Proposition 3.1.

By setting koff = `off = 1 and allowing kcat and `cat to be arbitrary positive values,
we obtain all processivity levels pk = kcat/(kcat + koff) and p` = `cat/(`cat + `off) in (0, 1).
Also, the rank of stoichiometric matrix N for this network is 9; hence, (−1)rank(N)+1 = 1.
So, by Proposition 2.2, it suffices to show that for all k∗cat > 0 and `∗cat > 0, the following
specialization of the critical function is positive when we further specialize at some choice of
(k1, k3, kon, `1, `3,m2,m3, n1, n3) ∈ R9

>0, and x̂ ∈ R3
>0:

C(κ; x̂)|koff=`off=1, kcat=k∗cat, `cat=`∗cat
(10)
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To see that the function (10) can be positive, first note that the denominator of
C(κ; x̂)|koff=`off=1, shown here, is always positive (all rate constants and xi’s are positive):

(kcatkonx2 + kcatn1x3 + n1x3)2`catx3 .

(See the supplementary file minERK-mss-bistab.mw.) Thus, it suffices to analyze the nu-

merator of C(κ; x̂)|koff=`off=1. We denote this numerator by C̃, and specialize as follows to
obtain (see the supplementary file):

C̃|k1=t−1,k3=t−1,kon=1,`1=t,`3=t−1,m2=1,m3=1,n1=1,n3=1,x1=t,x2=t,x3=1 (11)

= (2k2
cat`

2
cat + 2k2

cat`cat)t
5 (12)

+ (−4k3
cat`

2
cat − 3k3

cat`cat + 3k2
cat`

2
cat − k3

cat + 9k2
cat`cat + 3kcat`

2
cat + 2k2

cat + 3kcat`cat)t
4

+ lower-order terms in t.

Therefore, for all kcat > 0 and `cat > 0, the leading coefficient with respect to t in (12) is

positive and so the specialization of C̃ is positive for sufficiently large t, which yields the
desired values for the rate constants shown in (11).

Remark 4.2. In the proof of Theorem 4.1, the specialization (11) was obtained by viewing C̃
as a polynomial in which each coefficient is a polynomial in kcat and `cat, and then analyzing
the resulting Newton polytope in a standard way (cf. [15, Lemma B.3]), as follows. We
first found a vertex of the polytope whose corresponding coefficient is a positive polynomial
(namely, the leading coefficient in (12)). Next, we chose a vector v in the interior of the
corresponding cone in the polytope’s outer normal fan. Hence, by substituting tv1 , tv2 , . . .
for the variables, we obtained a polynomial that is positive for sufficiently large t.

4.2 Evidence for bistability

Theorem 4.1 states that the minimally bistable ERK network is multistationary at all pro-
cessivity levels. Multistationarity is a necessary condition for bistability, which is the focus
of the original Question 1.2 from the Introduction. Accordingly, we show bistability at many
processivity levels with pk = p` (Proposition 4.4). Furthermore, we give additional evidence
for bistability at all processivity levels (Remark 4.5), which we state as Conjecture 4.6.

Remark 4.3 (Assessing bistability is difficult). Although there are many criteria for checking
whether a network is multistationary, there are relatively few for checking bistability [22].
Moreover, here we consider a more difficult question: does our network exhibit bistability
for an infinite family of parameters (rather than a single parameter vector), encompassing
all processivity levels? Thus, it is perhaps unsurprising that we obtain only partial results
in this direction. Another “infinite” analysis of bistability was performed recently by Tang
and Wang, who proved that an infinite family of sequestration networks all are bistable [21].

Proposition 4.4 (Bistability at many processivity levels). Consider the minimally bistable
ERK subnetwork. For each of the following processivity levels:

pk = p` ∈ {0.1, 0.2, . . . , 0.9, 0.91, 0.92, . . . , 0.99} , (13)
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there is a rate-constant vector (k∗1, k
∗
3, k
∗
cat, k

∗
on, k

∗
off , `

∗
1, `
∗
3, `
∗
cat, `

∗
off ,m

∗
2,m

∗
3, n

∗
1, n

∗
3) ∈ R13

>0 such
that pk = k∗cat/(k

∗
cat + k∗off) and p` = `∗cat/(`

∗
cat + `∗off), and the resulting system admits multiple

exponentially stable positive steady states (in some compatibility class).

Proof. As in the proof of Theorem 4.1, we achieve each value of p∗k = p∗` , as in (13), by
setting k∗off = `∗off = 1 and k∗cat = `∗cat = p∗k/(1− p∗k).

Next, we follow the proof of Theorem 4.1 to find a witness to multistationarity. Recall
that the specialized numerator of the critical function given in (11), which is a polynomial
in kcat, `cat, and t, is positive (indicating multistationarity) for sufficiently large t. That is,
there exists a T ∈ R>0, which depends on the value of p∗k = p∗` , at which the specialized
critical function is positive for all t ≥ T . For each value of p∗k = p∗` , we pick such a positive
number T , as follows:

p∗k = p∗` 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
T 3 3 3 3 4 5 7 10 20

p∗k = p∗` 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
T 22 25 28 33 40 50 66 100 200

It follows, from (11) and Proposition 2.2(B), that with the following rate-constant vector:

κ∗ := (k∗1, k
∗
3, k
∗
cat, k

∗
on, k

∗
off , `

∗
1, `
∗
3, `
∗
cat, `

∗
off ,m

∗
2,m

∗
3, n

∗
1, n

∗
3)

= (T−1, T−1, p∗k/(1− p∗k), 1, 1, T, T−1, p∗k/(1− p∗k), 1, 1, 1, 1, 1) ,

there are multiple steady states in the compatibility class containing x∗ := π(φ(κ∗; 1, T, 1)),
where φ : R13

>0 × R3
>0 → R13

>0 × R12
>0 is the steady-state parametrization in Proposition 3.1

and π : R13
>0 × R12

>0 → R12
>0 denotes the canonical projection to the last 12 coordinates.

Finally, for each such x∗ (one for each choice of p∗k = p∗`), the stoichiometric compatibility
class of x∗ contains exactly three positive steady states (arising from the rate-constant vector
κ∗); see minERK-mss-bistab.mw. Moreover, two of the steady states each have three zero
eigenvalues and the remaining eigenvalues having strictly negative real parts (indicating that
these two steady states are exponentially stable), and one steady state has a (single) non-
zero eigenvalue with positive real part (indicating it is unstable); see the supplementary file.
Therefore, we have bistability for each of the processivity levels in (13).

Proposition 4.4 showed bistability for certain processivity levels with pk = p`. Even when
pk 6= p` (see Remark 4.5), we found – in every instance we examined – bistability.

Remark 4.5 (Bistability at random processivity levels). For the minimally bistable ERK
subnetwork, we generated random pairs of processivity levels pk and p` between 0 and 1
(Table 3). For all such pairs, following the procedure described in the proof of Proposition 4.4,
we found bistability. For details, see the supplementary file minERK-MSS-bistab.mw.

In light of Proposition 4.4 and Remark 4.5, we conjecture that, in Theorem 4.1, multista-
tionarity can be strengthened to bistability. In other words, we conjecture that the answer
to Question 1.2 is “yes”:
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pk 0.01570 0.02229 0.06748 0.2203 0.2268 0.2576 0.2897 0.4613 0.5378
p` 0.05004 0.3476 0.6011 0.6076 0.9461 0.2263 0.9883 0.4217 0.3770

pk 0.5893 0.6613 0.6968 0.9076 0.9307 0.9598 0.9771 0.9845
p` 0.5289 0.04355 0.1351 0.2668 0.9010 0.6118 0.07128 0.9809

Table 3: Randomly generated pairs of processivity levels, rounded to four significant dig-
its. At every such pair, the minimally bistable ERK network exhibits bistability (in some
compatibility class). Computations are in the supplementary file minERK-MSS-bistab.mw.

Conjecture 4.6 (Bistability at all processivity levels). Consider the minimally bistable
ERK subnetwork. For every choice of processivity levels pk ∈ (0, 1) and p` ∈ (0, 1), there
is a rate-constant vector (k∗1, k

∗
3, k
∗
cat, k

∗
on, k

∗
off , `

∗
1, `
∗
3, `
∗
cat, `

∗
off ,m

∗
2,m

∗
3, n

∗
1, n

∗
3) ∈ R13

>0 such that
pk = k∗cat/(k

∗
cat + k∗off) and p` = `∗cat/(`

∗
cat + `∗off), and the resulting system admits multiple

exponentially stable positive steady states (in some compatibility class).

If Conjecture 4.6 holds, then [13, Theorem 3.1] implies that bistability “lifts” to the
original ERK network. In other words, this would answer in the affirmative the original
Question 1.1, for bistability.

5 Hopf bifurcations

In this section, we answer Question 1.3 in the affirmative: Theorem 5.1 asserts that a Hopf
bifurcation exists for the reduced ERK network at all processivity levels pk and p` arbitrarily
close to 1 – and in fact for all levels greater than 0.003.

Theorem 5.1 (Hopf bifurcations at all processivity levels). Consider the reduced ERK
network. For all 0.002295 < ε < 1, there exists a rate-constant vector κ∗ =
(k∗1, k

∗
3, k
∗
cat, k

∗
off ,m

∗, `∗1, `
∗
3, `
∗
cat, `

∗
off , n

∗) such that

1. pk = k∗cat/(k
∗
cat + k∗off) > ε and p` = `∗cat/(`

∗
cat + `∗off) > ε, and

2. the resulting system (7) admits a simple Hopf bifurcation (with respect to kcat).

Proof. Fix 0.002295 < ε < 1. Observe that, for every choice of rate constants for which (a)
k∗cat > ε/(1 − ε) > 0.002295/(1 − 0.002295) ≈ 0.0023, (b) `∗cat := t2k∗cat (for any choice of
t > 1), and (c) k∗off = `∗off := 1, we obtain the desired inequalities for pk and p`:

ε <
k∗cat

k∗cat + 1
= pk <

t2k∗cat

t2k∗cat + 1
= p` . (14)

Next, we show that a Hopf bifurcation exists, by verifying the conditions on h4, h5, and
h6 (as in Proposition 3.3). First, we show in the supplementary file redERK-Hopf.mw that
h4(κ̂; x) is a sum of positive terms, and thus h4(κ̂; x) > 0 for all κ̂ = (kcat, koff , `off) ∈ R3

>0

and x ∈ R10
>0.
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Next, let (κ̂; x) := (k∗cat, 1, 1; 1, 1, 1, t2, 1, t2, 1/t, 1, t2, 1). We verify (using Mathematica)
that if k∗cat > 0.0023, then h5(κ̂∗;x) > 0 for all t > 0; see the supplementary file h5pos.nb.
Fix k∗cat > 0.0023. Substituting t∗ = 1 into h6(κ̂∗;x∗) yields a positive polynomial (in k∗cat):

h6(κ̂∗;x∗)|t∗=1 = (k∗cat + 1)2

(
31824000k∗cat

18 + 713988320k∗cat
17 + 7660517072k∗cat

16 + 52115784592k∗cat
15 + 251452795392k∗cat

14

+ 912214161728k∗cat
13 + 2574990720896k∗cat

12 + 5775757031984k∗cat
11 + 10424374721840k∗cat

10

+ 15237491111424k∗cat
9 + 18065664178000k∗cat

8 + 17318286301088k∗cat
7 + 13314668410544k∗cat

6

+ 8093460125184k∗cat
5 + 3802097816832k∗cat

4 + 1331324403072k∗cat
3 + 327072356352k∗cat

2

+ 50292006912k∗cat + 3641573376

)
.

Also, as t → ∞, the limit of h6(κ̂∗;x∗) is −∞. Hence, there exists t∗ > 1 such that
h6(κ̂∗;x∗) = 0 (where x∗ =

(
1, 1, 1, t∗2, 1, t∗2, 1/t∗, 1, t∗2, 1

)
); see the supplementary file

redERK-Hopf.mw. Finally, we check that ∂h6

∂kcat
(κ̂∗;x∗) 6= 0 whenever h6(κ̂∗;x∗) = 0 – we

verified this using the Julia package HomotopyContinuation.jl [3] (see the supplementary
file nondegen-close-to-1.txt).

Thus, the reduced ERK system admits a Hopf bifurcation at

x∗ := (x∗1, x
∗
2, . . . , x

∗
10) =

(
1, 1, 1, t∗2, 1, t∗2, 1/t∗, 1, t∗2, 1

)
, (15)

when the rate-constant vector is

κ∗ : = (k∗1, k
∗
3, k
∗
cat, k

∗
off ,m

∗, `∗1, `
∗
3, `
∗
cat, `

∗
off , n

∗) (16)

=
(
(k∗cat + 1)t∗2, (k∗cat + 1)t∗2, k∗cat, 1, t

∗, k∗catt
∗2 + 1, (k∗catt

∗2 + 1)/t∗2, k∗catt
∗2, 1, 1

)
.

By construction, these rate constants satisfy the conditions (a), (b) (with t = t∗ > 1), and
(c) listed at the beginning of the proof. So, the inequalities (14) hold.

Remark 5.2. Following the proof of Theorem 5.1, we provide witnesses for the Hopf bifur-
cation for several values of pk and p` in the supplementary file redERK-Hopf.mw (under the
“First Vertex Analysis” section) for the interested reader. For instance, when ε = 0.89, then
then the choices k∗cat = 9 and t∗ ≈ 124.02 satisfy the conditions imposed in the proof, and so
we obtain, as in (14), the processivity levels pk = 0.9 and p` ≈ 0.999993. Thus, from (15),
there is a Hopf bifurcation at x∗ ≈ (1, 1, 1, 15380.68, 1, 15380.68, 0.008, 1, 15380.68, 1) when
the rate-constant vector is as in (16):

κ∗ ≈ (153806.78, 153806.78, 9, 1, 124.02, 138427.1, 9.00, 138426.11, 1, 1) .

Remark 5.3 (Relation to Question 1.1). As noted earlier, Theorem 5.1 addresses Ques-
tion 1.3, the reduced-ERK version of the original Question 1.1. We focused on the reduced
ERK network rather than the original ERK network, because analyzing the original one is
computationally challenging.

Nevertheless, we conjecture that Theorem 5.1 “lifts” to the original ERK network. In-
deed, to go from the reduced ERK network to the original ERK network, we make some
reactions reversible (which is known to preserve oscillations [1]) and add some intermediate
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complexes (which is conjectured to preserve oscillations [1]). More precisely, we hope for a
future result that states that adding intermediates preserves oscillations and Hopf bifurca-
tions, while the “old” rate constants are only slightly perturbed. Such a result would help
us to elevate Theorem 5.1 to an answer to Question 1.1 for the original ERK network.

Remark 5.4. The bounds pk, p` > 0.002295 in Theorem 5.1 arose from our choice of spe-
cialization in the proof, namely, (κ̂; x) := (k∗cat, 1, 1; 1, 1, 1, t2, 1, t2, 1/t, 1, t2, 1). Another
specialization (that admits a Hopf bifurcation) would give rise to other bounds on pk and
p`. Nevertheless, as our interest is in pk and p` close to 1, our bounds are not restrictive.

Next, we relax the hypothesis pk > 0.002295 in Theorem 5.1 to allow for all values of
pk > 0. However, we can not also control p` at the same time.

Proposition 5.5 (Hopf bifurcations at all pk). Consider the reduced ERK network. For
every choice of processivity level pk ∈ (0, 1), there exists a rate-constant vector κ∗ =
(k∗1, k

∗
3, k
∗
cat, k

∗
off ,m

∗, `∗1, `
∗
3, `
∗
cat, `

∗
off , n

∗) such that

1. pk = k∗cat/(k
∗
cat + k∗off), and

2. the resulting system admits a Hopf bifurcation.

Moreover, by symmetry of kcat and `cat in the reduced ERK network, we have the analogous
result for all choices of p`.

Proof. As in the proof of Theorem 5.1, we achieve any desired value of pk ∈ (0, 1) by setting
k∗off = 1 and k∗cat = pk/(1 − pk). Accordingly, consider any k∗cat ∈ R>0. We will show, using
Proposition 3.3, that there exists t∗ > 0 such that the reduced ERK network admits a Hopf
bifurcation at

x∗ := (x∗1, x
∗
2, . . . , x

∗
10) =

(
1, 1, 1, 1/t∗2, 1, 1, t∗, 1, 1/t∗2, 1

)
,

when the rate-constant vector is

(k∗1, k
∗
3, k
∗
cat, k

∗
off ,m

∗, `∗1, `
∗
3, `
∗
cat, `

∗
off , n

∗)

=
(
(k∗cat + 1)/t∗2, (k∗cat + 1)/t∗2, k∗cat, 1, 1/t

∗, (t∗2 + k∗cat)/t
∗2, (t∗2 + k∗cat)/t

∗4, k∗cat/t
∗2, 1, 1/t∗2

)
.

Indeed, we verify in the supplementary file redERK-Hopf-all-pk-values.mw that h4(κ̂; x) >
0 and h5(κ̂; x) > 0 for all κ̂ = (kcat, 1, 1) ∈ R3

>0 and x = (1, 1, 1, x4, 1, 1, x7, 1, x9, 1) ∈
R10
>0, and that h6(κ̂∗; x∗) = 0 for some t∗ > 0. Finally, in the supplementary file

nondegen-all-process.txt, we show that ∂h6

∂kcat
(κ̂∗;x∗) 6= 0 whenever h6(κ̂∗;x∗) = 0.

6 Coexistence of bistability and oscillations

Having shown that multistationarity and Hopf bifurcations exist in certain ERK systems
for (nearly) all possible processivity levels, we now investigate whether these two dynamical
phenomena can occur together. The first question is whether bistability and oscillations can
coexist in the same compatibility class (Section 6.1), and then we consider coexistence in
distinct compatibility classes (Section 6.2).
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6.1 Precluding coexistence in a compatibility class

The next result, which is is not specific to ERK networks, forbids bistability and Hopf
bifurcations from occurring in the same compatibility class, when there are up to 3 steady
states and certain other conditions are satisfied. These conditions allow us to apply (in the
proof) results from degree theory.

Theorem 6.1. Consider a reaction system (G, κ). Let Sc be a compatibility class such that
(1) the system is dissipative3 with respect to Sc, and (2) Sc contains at most 3 steady states
and no boundary steady states. Then Sc does not contain both a simple Hopf bifurcation and
two stable steady states.

Proof. Let W be a d × s (row-reduced) conservation-law matrix, where d is the number of
conservation laws and s is the number of species. Let fc,κ be the resulting augmented system.

We examine, for certain x∗ in Sc, the coefficient of λd in det(λI−Jacf)|x=x∗ . If x∗ is a Hopf
bifurcation, then (by Yang’s criterion [26], restated in [7, Proposition 2.3]) the coefficient is
positive. Similarly, if x∗ is a stable steady state, then (by the Routh-Hurwitz criterion) the
coefficient is positive. Finally, by a straightforward generalization of [25, Proposition 5.3],
the coefficient equals (−1)s−d det Jacfc,κ|x=x∗ .

Assume for contradiction that Sc contains a simple Hopf bifurcation x(1) and two stable
steady states x(2) and x(3) (and hence no more steady states by hypothesis). Then (by
definition [6] and by above) the Brouwer degree of fc,κ with respect to Sc is as follows:

sign det Jacfc,κ|x=x(1) + sign det Jacfc,κ|x=x(2)+sign det Jacfc,κ|x=x(3)

= (−1)s−d + (−1)s−d + (−1)s−d ,

which yields a contradiction, as the degree must be ±1 (see [6]).

For the minimally bistable ERK subnetwork, Theorem 6.1 implies that, if the following
conjecture holds, Hopf bifurcations and bistability do not coexist in compatibility classes:

Conjecture 6.2. For the minimally bistable ERK subnetwork, the maximum number of
positive steady states (in any compatibility class, for any choice of rate constants) is 3.

The maximum number of positive steady states is at most 5 [15], and a version of this
conjecture was stated earlier (see [15, Propositions 5.8–5.9 and Conjecture 5.10]). We pursue
the conjecture in Section 7.

6.2 Coexistence in distinct compatibility classes

Theorem 6.1 precludes, for certain reaction systems, the coexistence of bistability and a
simple Hopf bifurcation in a single compatibility class. Next, for ERK systems, we ask
about coexistence in distinct compatibility classes.

Question 6.3. Is it possible in one of the ERK networks (the original one or the minimally
bistable ERK subnetwork4) to have – for some choice of positive rate constants – 2 stable

3Dissipative means that there is a compact subset of Sc that every trajectory eventually enters; being
dissipative is automatic when the network is conservative [6].

4The reduced ERK network is not in this list, as it does not admit bistability [15].

15



steady states in one compatibility class and a simple Hopf bifurcation in another?

As an initial investigation, which hints at a negative answer to Question 6.3,
we examine the minimally bistable ERK network (see the supplementary file
min-bistab-ERK-Hopf-and-Bistability.mw). This network yields a Hopf bifurcation when
kon = 4.0205 and the other rate constants are as in [15, Equation (23)] (these non-kon rate
constants yield oscillations in the fully irreversible ERK network). However, for this choice
of rate constants, there is no bistability (in any compatibility class), which we determined
by computing the critical function, much like in the proof of [15, Proposition 4.5].

7 Maximum number of steady states

In this section, we pursue Conjecture 6.2, which states that the maximum number of positive
steady states of the minimally bistable ERK subnetwork is 3. The idea is first to reduce to a
system of 3 equations in 3 variables (Proposition 7.1) and then, using resultants, to further
reduce to a single univariate polynomial (Proposition 7.3).

Our methods are similar to the approach that Wang and Sontag took to analyze the fully
distributive, dual-siste phosphorylation system [24]. Namely, we substitute a steady-state
parametrization from [15] for the minimally bistable ERK subnetwork into the conservation
laws, which yields a polynomial system in only 3 variables. We then show that the maximum
number of positive roots of this family of polynomial systems is equal to the maximum
number of steady states (as in Conjecture 6.2).

Proposition 7.1. Consider the family of polynomial systems in x1, x2, x3 given by:

c1 − c2 − c3 = x1 − x2 − x3 +
a5a9a10x1x2

a8x2 + a13x3 + a4a9a13x3
+

a5a7a10x1(a8x2 + a13x3)

a1a11(a8x2 + a13x3 + a4a9a13x3)

+
a5a10x1x2(a8x2 + a2a7a8x2 + a13x3 + a2a7a13x3)

a1a3a12x3(a8x2 + a13x3 + a4a9a13x3)
, (17)

c2 = x2 +
a5a10x1x2(a8x2 + a13x3)

a8x2 + a13x3 + a4a9a13x3
+

a5a7a10x1x2(a8x2 + a13x3)

a1(a8x2 + a13x3 + a4a9a13x3)
+ a10x1x2 ,(18)

c3 = x3 +
a5a10x1x2(a8x2 + a2a7a8x2 + a13x3 + a2a7a13x3)

a1a3(a8x2 + a13x3 + a4a9a13x3)

+
a5a10x1x2(a8x2 + a13x3)

a1(a8x2 + a13x3 + a4a9a13x3)
+

a5a9a10a13x1x2x3

a8x2 + a13x3 + a4a9a13x3
, (19)

where the coefficients ai and ci are arbitrary positive real numbers. Then the maximum
number of positive roots x∗ ∈ R3

>0, among all such systems, equals the maximum number of
positive steady states of the minimally bistable ERK network.

Proof. The equations (17)–(19) are obtained as follows. Using the “effective steady-state
function” hc,a from [15, Proposition 3.1], we solve for x4, x5, . . . , x12 in terms of x1, x2, x3 (and
the ai’s), and then substitute the resulting expressions into the conservation equations (5),
except we replace the first conservation equation by the first one minus the sum of the second
and third. Now the result follows from the definition of “effective steady-state function”
[9, 15].
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Next, we go from the 3 equations (in x1, x2, x3) in (17)–(19) to 2 equations (in x2 and
x3), as follows. All 3 equations in (17) are linear in x1, so we solve each for x1, obtaining
equations of the form x1 = γ1(x2, x3), x1 = γ2(x2, x3), and x1 = γ3(x2, x3), respectively. Now,
let g1 := γ3− γ2 and g2 := γ1− γ2. These gi’s are polynomials in x2 and x3 (with coefficients
which are polynomials in the ai’s and ci’s). By construction, and by Proposition 7.1, we
immediately obtain the following result:

Proposition 7.2. Let g1, g2, and γ1 be as above. Then for the system g1 = g2 = 0 (where the
coefficients ai and ci are arbitrary positive real numbers), the maximum number of positive
roots (x∗2, x

∗
3) ∈ R2

>0 with γ1(x∗2, x
∗
3) > 0, is equal to the maximum number of (positive) steady

states of the minimally bistable ERK network.

Let R be the resultant [8] of g1 and g2, with respect to x2 (this resultant is shown in
the supplementary files maxNUMss.mw and resultant.txt). We apply a standard argument
using resultants to obtain the following result:

Proposition 7.3. Let (a∗; c∗) = (a∗1, . . . , a
∗
13, c

∗
1, c
∗
2, c
∗
3) ∈ R16

>0. Let R be as above. If the
univariate polynomial R|(a∗;c∗) has at most 3 roots in the interval (0,min{c1, c3}), and if for
every x∗3 ∈ R>0, the equation g1(x2, x

∗
3)|(a∗;c∗) = 0 has at most one positive solution for x2,

then system (17), when specialized at (a∗; c∗), has at most 3 positive roots x∗ ∈ R3
>0.

Proof. By [8, Page 163, Chapter 3, Sec. 6, Proposition 1(i)],

R ∈ 〈g1, g2〉 ∩Q[a1, a2, . . . , a13, c1, c2, c3, x3] . (20)

By [8, Page 125, Chapter 3, Sec. 2, Theorem 3(i)],

π (V (g1, g2)) = V ( 〈g1, g2〉 ∩Q[a1, a2, . . . , a13, c1, c2, c3, x3] ) , (21)

where π : C18 → C17 denotes the standard projection given by (a; c;x3, x2) 7→ (a; c;x3), V(·)
denotes zero set over C of a set of polynomials, and S denotes the Zariski closure in Cn [8,
Chapter 4] of a subset S ⊆ Cn. So, by (20) and (21),

π (V (g1, g2)) ⊆ V (R) .

Thus, for a given (a∗; c∗) ∈ R16
>0, because R|(a∗;c∗) has at most 3 positive roots x3 in the

interval (0,min{c1, c3}), it follows that the solutions of the system g1|(a∗;c∗) = g2|(a∗;c∗) = 0
have up to 3 possibilities for x3-coordinates in the interval (0,min{c1, c3}). Next, we use the
hypothesis that (for every x∗3 ∈ R>0) the equation g1(x2, x

∗
3)|(a∗;c∗) = 0 has at most 1 positive

solution for x2, to conclude that g1|(a∗;c∗) = g2|(a∗;c∗) = 0 has at most 3 positive solutions
(x2, x3) ∈ R2

>0 with x3 < min{c1, c3}. Thus, by construction of g1 and g2 (see the paragraph
before Proposition 7.2), the original system (17), when specialized at (a∗; c∗), has at most 3
positive roots x∗ ∈ R3

>0.

As an example of how we can use Proposition 7.3 to tackle Conjecture 6.2, we next give
two corollaries. We hope to pursue this direction more in future work.
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Corollary 7.4. For every choice of c∗1, c
∗
2, c
∗
3, a
∗
9 ∈ R>0, if all other a∗i ’s are equal to 1, then

the (specialized at (a∗; c∗)) original system (17) has at most 3 positive roots x∗ ∈ R3
>0.

Proof. To apply Proposition 7.3, we first show that the univariate polynomial R|(a∗;c∗) has
at most 3 positive roots x3. When all a∗i ’s except a∗9 are equal to 1, then this specialized
resultant (see the supplementary file maxNUMss.mw) is as follows:

R|(a∗;c∗) = a∗9x
2
3(a∗9x3 + 3c∗2 + 3x3)(C4x

4
3 + C3x

3
3 + C2x

2
3 + C1x3 + C0) , (22)

where
C4 = 2a∗9

2 + 12a∗9 , C0 = − 2c∗3(c∗2 − c∗3)2,

and C1, C2, C3 ∈ Q[a∗9; c∗]. By inspection, C4 > 0 and C0 ≤ 0, for all c∗1, c
∗
2, c
∗
3, a
∗
9 ∈ R>0. We

consider two cases. If C0 = 0, then x3 = 0 is solution of R|(a∗;c∗) = 0, and so (because the
“relevant” factor of R|(a∗;c∗) = 0 in (22) has degree four) R|(a∗;c∗) = 0 has at most 3 positive
roots x3. If C0 < 0, then the sequence C4, C3, C2, C1, C0 has at most 3 sign changes, and so,
by Descartes’ rule of signs, R|(a∗;c∗) = 0 has at most 3 positive roots x3.

Second, we show that for every x∗3 ∈ R>0, the equation g1(x2, x
∗
3)|(a∗;c∗) = 0 has at

most one positive solution for x2. When all a∗i ’s except a∗9 are equal to 1, we have (see the
supplementary file maxNUMss.mw):

g1(x2, x
∗
3)|(a∗;c∗) = 3x2

2 + (a∗9x
∗
3 − 3c∗2 + 3c∗3)x2 − x∗3(x∗3 + c∗2 − c∗3)(a∗9 + 3) .

Viewing g1(x2, x
∗
3)|(a∗;c∗) as a polynomial in x2, the leading coefficient is 3, which is positive.

So, by Descartes’ rule of signs, it suffices to show that either the constant term is non-positive
or the coefficient of x2 is positive. In other words, we must show that if the constant term is
positive, then the coefficient of x2 is positive. Indeed, if −x3(x3 + c∗2 − c∗3)(a∗9 + 3) > 0, then
c∗3 > c∗2, and so the coefficient of x2 is a∗9x

∗
3 − 3c∗2 + 3c∗3 = a∗9x

∗
3 + 3(c∗3 − c∗2) > 0.

By the above two steps and Proposition 7.3, we conclude that the (specialized at (a∗; c∗))
system (17) has at most 3 positive roots x∗ ∈ R3

>0.

Corollary 7.5. For every choice of c∗1, c
∗
3 ∈ R>0, if a∗9 and c∗2 are sufficiently large, all

other a∗i ’s are equal to the same value b and sufficiently large, and also b > c∗2/c
∗
3 > 1 and

c∗2 > c∗3 + 1; then the (specialized at (a∗; c∗)) original system (17) has at most 3 positive roots
x∗ ∈ R3

>0.

Proof. First, we show that the univariate polynomial R|(a∗;c∗) has at most 3 positive roots
x3. When all a∗i ’s except a∗9 are equal to b, then (see maxNUMss.mw) we have:

R|(a∗;c∗) = − Σ · (C5x
5
3 + C4x

4
3 + C3x

3
3 + C2x

2
3 + C1x3 + C0) , (23)

where Σ = b17a∗9x
2
3(2bc∗2 + c∗2 + a∗9bx3 + 2bx3 + x3) (which is positive), and

C5 = 2a∗9b
5(b− 1)(b+ 1)(a∗9b+ 2b+ 1) ,

C1 = c∗3(−a∗9c∗22 − c∗22 − 3a∗9c
∗
2c
∗
3 + 2a∗9c

∗
1c
∗
2 − 2a∗9c

∗
1c
∗
3 + 4a∗9c

∗
3

2 + c∗1c
∗
2 − 2c∗1c

∗
3 + c∗2c

∗
3 + 2c∗3

2)b7

+ lower-order terms in b ,

= c∗3(−a∗9c∗22 + [lower-order terms in a∗9 and c∗2])b7 + lower-order terms in b ,
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C0 = − c∗3(b2 + 1)(c∗2 − c∗3)(a∗9b
4c∗3 − a∗9b3c∗2 + a∗9b

3c∗3 − a∗9b2c∗3 − b3c∗2 + 2b3c∗3 − b2c∗3 − bc∗3 + c∗2)

= − b9c∗3(b2 + 1)(c∗2 − c∗3)
(
a∗9b

3(bc∗3 − c∗2) + [lower-order terms in a∗9, b, c∗2]
)
,

and C2, C3, C4 ∈ Q[a∗9; c∗]. Assume that a∗9, b, and c∗2 are sufficiently large positive numbers.
Assume also that b > c∗2/c

∗
3 > 1. Then, by inspection, C5 > 0, C1 < 0, and C0 < 0. So the

sequence C5, C4, C3, C2, C1, C0 has at most 3 sign changes. Hence, Descartes’ rule of signs
implies that R|(a∗;c∗) = 0 has at most 3 positive roots x3.

Second, we show that for every x∗3 ∈ R>0, g1(x2, x
∗
3)|(a∗;c∗) = 0 has at most 1 positive

solution for x2. When all a∗i ’s except a∗9 are equal to b, then (see maxNUMss.mw)

g1(x2, x
∗
3)|(a∗;c∗) = (b4 + b3 + b2)x2

2

+ (a∗9b
4x∗3 − b4c∗2 + 2b4c∗3 − b4x∗3 − b3c∗2 + b3c∗3 − b2c∗2 + b2x∗3)x2

− b2x∗3(a∗9b
2c∗2 − a∗9b2c∗3 + a∗9b

2x∗3 + b2c∗2 − 2b2c∗3 + 2b2x∗3 + bc∗2 − bc∗3 + bx∗3 + c∗2)

In particular, the constant term can be rewritten and bounded above as follows, where we
use the assumption that c∗2 > c∗3 + 1:

− b2x∗3
(
[a∗9b

2][c∗2 − c∗3 + x∗3 + c∗2/a
∗
9]− 2b2c∗3 + 2b2x∗3 + bc∗2 − bc∗3 + bx∗3 + c∗2

)
< − b2x∗3

(
[a∗9b

2] + [lower-order terms in a∗9, b, c∗2]
)
.

Thus, if a∗9, b, and c∗2 are sufficiently large (and c∗2 > c∗3 + 1), then the constant term of
g1(x2, x

∗
3)|(a∗;c∗) is negative. Also, the leading coefficient, b4 + b3 + b2, is positive. So, there is

exactly 1 sign change in the sequence of coefficients, and hence, by Descartes’ rule of signs,
g1(x2, x

∗
3)|(a∗;c∗) has at most 1 positive solution.

The above two steps and Proposition 7.3 together imply that the (specialized at (a∗; c∗))
system (17) has at most 3 positive roots x∗ ∈ R3

>0.

Remark 7.6. In the two above proofs, we saw the (specialized) resultants (22) and (23)
have some “irrelevant” factors (those that are always positive) and one “relevant” factor,
such that the sign of the resultant equals the sign of the relevant factor. This is true for the
resultant, even before specialization; see the supplementary file maxNUMss.mw.

8 Discussion

The motivating question for this work is Question 1.1, which pertains to the important prob-
lem of how bistability and oscillations emerge in ERK networks. We essentially answered this
question. What “essentially” means here is that we answered the question for some closely
related ERK networks, and only two conjectures (Conjecture 4.6 and see also Remark 5.3)
– which we believe to be true – stand in the way of complete answers.

We also pursued two related topics, the coexistence of oscillations and bistability, and
the maximum number of positive steady states. We showed that if another conjecture we
believe to be true (Conjecture 6.2) holds, then Hopf bifurcations and bistability do not
coexist in compatibility classes in the minimally bistable ERK subnetwork. We then pursued
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Conjecture 6.2 using resultants, achieving partial results and laying the groundwork for future
progress on this conjecture. This question of the maximum number of positive steady states
is important – it is one way to measure a network’s capacity for processing information – and
we would like in the future some easy criterion for computing this number for phosphorylation
and other signaling networks.

Finally, our interest in phosphorylation networks is due to their role in mitogen-activated
protein kinase (MAPK) cascades, which enable cells to make decisions (to differentiate, pro-
liferate, die, and so on) [16]. We therefore want to understand which types of dynamics
MAPK cascades and phosphorylation networks are capable of, as bistability and oscillations
may be used by cells to make decisions and process information [23]. For MAPK cascades,
to quote from Sun et al., “By adjusting the degree of processivity in our model, we find that
the MAPK cascade is able to switch among the ultrasensitivity, bistability, and oscillatory
dynamical states” [20]. Our results here are complementary – even while keeping the pro-
cessivity levels constant (at any amount), the ERK network can switch between a range of
dynamical behaviors, from bistability to oscillations via a Hopf bifurcation.
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A Files in the Supporting Information

Table 4 lists the files in the Supporting Information, and the result or section each file
supports. All files can be found at the online repository: https://github.com/neeedz/COST

Name File type Result or Section
minERK-MSS-bistab.mw Maple Theorem 4.1
minERK-MSS-bistab.mw Maple Section 4.2
redERK-Hopf.mw Maple Theorem 5.1
h5pos.nb Mathematica Theorem 5.1
nondegen-close-to-1.txt Text* Theorem 5.1
redERK-Hopf-all-pk-values.mw Maple Proposition 5.5
nondegen-all-process.txt Text* Proposition 5.5
min-bistab-ERK-Hopf-and-Bistability.mw Maple Section 6.2
maxNUMss.mw Maple Section 7
resultant.txt Text Section 7

Table 4: Supporting Information files and the results they support. Here, Text* indicates
an output file from using the Julia package HomotopyContinuation.jl [3].
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