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Abstract. The brain processes information about the environment via neural codes. The neural
ideal was introduced recently as an algebraic object that can be used to better understand the
combinatorial structure of neural codes. Every neural ideal has a particular generating set, called
the canonical form, that directly encodes a minimal description of the receptive field structure
intrinsic to the neural code. On the other hand, for a given monomial order, any polynomial ideal
is also generated by its unique (reduced) Gröbner basis with respect to that monomial order. How
are these two types of generating sets – canonical forms and Gröbner bases – related? Our main
result states that if the canonical form of a neural ideal is a Gröbner basis, then it is the universal
Gröbner basis (that is, the union of all reduced Gröbner bases). Furthermore, we prove that this
situation – when the canonical form is a Gröbner basis – occurs precisely when the universal Gröbner
basis contains only pseudo-monomials (certain generalizations of monomials). Our results motivate
two questions: (1) When is the canonical form a Gröbner basis? (2) When the universal Gröbner
basis of a neural ideal is not a canonical form, what can the non-pseudo-monomial elements in the
basis tell us about the receptive fields of the code? We give partial answers to both questions. Along
the way, we develop a representation of pseudo-monomials as hypercubes in a Boolean lattice.
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1. Introduction

The brain is tasked with many important functions, but one of the least understood is how it
builds an understanding of the world. Stimuli in one’s environment are not experienced in isolation,
but in relation to other stimuli. How does the brain represent this organization? Or, to quote from
Curto, Itskov, Veliz-Cuba, and Youngs, “What can be inferred about the underlying stimulus space
from neural activity alone?” [7].

Curto et al. pursued this question for codes where each neuron has a region of stimulus space,
called its receptive field, in which it fires at a high rate. They introduced algebraic objects that
summarize neural-activity data, which are in the form of neural codes (0/1-vectors where 1 means
the corresponding neuron is active, and 0 means silence) [7]. The neural ideal of a neural code is an
ideal that contains the full combinatorial data of the code. The canonical form of a neural ideal is
a generating set that is a minimal description of the receptive-field structure. Hence, the questions
posed above have been investigated via the neural ideal or the canonical form [6, 7, 8, 10]. As
a complement to algebraic approaches, combinatorial and topological arguments are employed in
related works [5, 11, 12].

The aim of our work is to investigate, for the first time, how the canonical form is related to
other generating sets of the neural ideal, namely, its Gröbner bases. This is a natural mathematical
question, and additionally the answer could improve algorithms for computing the canonical form.
Currently, there are two distinct methods to compute the canonical form of a neural ideal: the
original method proposed in [7] and an iterative method introduced in [14]. The former method
requires the computation of primary decomposition of pseudo-monomial ideals. As a result, this
method is rather inefficient. Even in dimension 5, one can find codes for which this algorithm
takes hundreds or even thousands of seconds to terminate or halts due to lack of memory. The
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more recent iterative method relies entirely on basic polynomial arithmetic. This algorithm can
efficiently compute canonical forms for codes in up to 10 dimensions; see [14]. On the other hand,
Gröbner basis computations are generally computationally expensive. Nevertheless, we take full
advantage of tailored methods for Gröbner basis over Boolean rings [3]. As we show in Table I, for
small dimensions less or equal to 8, Gröbner basis computations are faster than canonical form ones.
For larger dimensions, we have observed that in general Gröbner basis computations are faster but
the standard deviation on computational time is much larger. In dimension 9, the average time
to compute a Gröbner basis is around 3 seconds, but there are codes for which that computation
takes close to 10 hours to finish.

Nevertheless, we believe that a thorough study of Gröbner basis of neural ideals is not only of
theoretical interest, but it can lead to better procedures able to perform computations in larger
dimensions. Indeed, among small codes, surprisingly many have canonical forms that are also
Gröbner bases. Moreover, the iterative nature of the newer canonical form algorithm hints towards
the ability to compute canonical forms and Gröbner bases of neural codes in large dimensions by
‘gluing’ those of codes on small dimensions. Such decomposition results are a common theme in
other areas of applied algebraic geometry [1, 9].

The outline of this paper is as follows. Section 2 provides background on neural ideals, canonical
forms, and Gröbner bases. In Section 3, we prove our main result: if the canonical form of a neural
ideal is a Gröbner basis, then it is the universal Gröbner basis (Theorem 3.1). We also prove a
partial converse: if the universal Gröbner basis of a neural ideal contains only so-called pseudo-
monomials, then it is the canonical form (Theorem 3.12). Our results motivate other questions:

(1) When is the canonical form a Gröbner basis?
(2) If the universal Gröbner basis of a neural ideal is not a canonical form, what can the

non-pseudo-monomial elements in the basis tell us about the receptive fields of the code?

Sections 4 and 5 provide some partial answers these questions. Finally, a discussion is in Section 6.

2. Background

This section introduces neural ideals and related topics, which were first defined by Curto, Itskov,
Veliz-Cuba, and Youngs [7], and recalls some basics about Gröbner bases. We use the notation
[n] := {1, 2, . . . , n}.

2.1. Neural codes and receptive fields. A neural code (also known as a combinatorial
code) on n neurons is a set of binary firing patterns C ⊂ {0, 1}n, that is, a set of binary strings of
neural activity. Note that neither timing nor rate of neural activity are recorded in a neural code.

An element c ∈ C of a neural code is a codeword. Equivalently, a codeword is determined by
the set of neurons that fire:

supp(c) := {i ∈ [n] | ci = 1} ⊆ [n] .

Thus, the entire code is identified with a set of subsets of co-firing neurons: supp(C) = {supp(c) |
c ∈ C} ⊆ 2[n].

In many areas of the brain, neurons are associated with receptive fields in a stimulus space. Of
particular interest are the receptive fields of place cells, which are neurons that fire in response to an
animal’s location. More specifically, each place cell is associated with a place field, a convex region
of the animal’s physical environment where the place cell has a high firing rate [13]. The discovery
of place cells and related neurons (grid cells and head direction cells) won neuroscientists John
O’Keefe, May Britt Moser, and Edvard Moser the 2014 Nobel Prize in Physiology and Medicine.
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Figure 1. Receptive fields Ui for which the code is C(U) = {∅, 1, 123, 13, 3}.

Given a collection of sets U = {U1, ..., Un} in a stimulus space X (here Ui is the receptive field
of neuron i), the receptive field code, denoted by C(U), is:

C(U) :=

c ∈ {0, 1}n :

 ⋂
i∈supp(c)

Ui

 \
 ⋃
j /∈supp(c)

Uj

 6= ∅
 .

As mentioned earlier, we often identify this code with the corresponding set of subsets of [n].

Example 2.1. Consider the sets Ui in a stimulus space X depicted in Figure 1. The corresponding
receptive field code is C(U) = {∅, 1, 123, 13, 3}.

2.2. The neural ideal and its canonical form. A pseudo-monomial in F2[x1, . . . , xn] is a
polynomial of the form

f =
∏
i∈σ

xi
∏
j∈τ

(1 + xj) ,

where σ, τ ⊆ [n] with σ ∩ τ = ∅. Every term in a pseudo-monomial f =
∏
i∈σ xi

∏
j∈τ (1 + xj)

divides its highest-degree term,
∏
i∈σ∪τ xi. We will use this fact several times in this work.

Each v ∈ {0, 1}n defines a pseudo-monomial ρv as follows:

ρv :=
n∏
i=1

(1− vi − xi) =
∏

{i|vi=1}

xi
∏

{j|vj=0}

(1 + xj) =
∏

{i∈supp(v)}

xi
∏

{j 6∈supp(v)}

(1− xj) .

Notice that ρv is the characteristic function for v, that is, ρv(x) = 1 if and only if x = v.

Definition 2.2. Let C ⊆ {0, 1}n be a neural code. The neural ideal JC is the ideal in F2[x1, . . . , xn]
generated by all ρv for v 6∈ C:

JC := 〈{ρv|v 6∈ C}〉 .

It follows that the variety of the neural ideal is the code itself: V (JC) = C. The following lemma
provides the algebraic version of the previous statement:

Lemma 2.3 (Curto, Itskov, Veliz-Cuba, and Youngs [7, Lemma 3.2]). Let C ⊂ {0, 1}n be a neural
code. Then

I(C) = JC + 〈xi(1 + xi) | i ∈ [n]〉 ,
where I(C) is the ideal of the subset C ⊂ {0, 1}n.

Note that the ideal generated by the Boolean relations 〈xi(1 +xi) : i ∈ [n]〉 is contained in I(C),
regardless of the structure of C.

A pseudo-monomial f in an ideal J in F2[x1, . . . , xn] is minimal if there does not exist another
pseudo-monomial g ∈ J , with g 6= f , such that f = gh for some h ∈ F2[x1, . . . , xn].
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Definition 2.4. The canonical form of a neural ideal JC , denoted by CF(JC), is the set of all
minimal pseudo-monomials of JC .

Algorithms for computing the canonical form were given in [7, 8, 14]. In particular, [14] describes
an iterative method to compute the canonical form that is significantly more efficient than the
original method presented in [7].

The canonical form CF(JC) is a particular generating set for the neural ideal JC [7]. The main
goal in this work is to compare CF(JC) to other generating sets of JC , namely, its Gröbner bases.

Example 2.5. Returning to Example 2.1, the codewords v that are not in C(U) = {∅, 1, 123, 13, 3}
are 2, 12, and 23, so the neural ideal is JC = 〈{x2(1 + x1)(1 + x3), x1x2(1 + x3), x2x3(1 + x1)}〉.
The canonical form is CF(JC(U)) = {x2(1+x1), x2(1+x3)}. We will interpret these canonical-form
polynomials in Example 2.7 below.

2.3. Receptive-field relationships. It turns out that we can interpret pseudo-monomials in JC
(and thus in the canonical form) in terms of relationships among receptive fields. First we need the
following notation: for any σ ⊆ [n], define:

xσ :=
∏
i∈σ

xi and Uσ :=
⋂
i∈σ

Ui ,

where, by convention, the empty intersection is the entire space X.

Lemma 2.6 (Curto, Itskov, Veliz-Cuba, and Youngs [7, Lemma 4.2]). Let X be a stimulus space,
let U = {Ui}ni=1 be a collection of sets in X, and consider the receptive field code C = C(U). Then
for any pair of subsets σ, τ ⊆ [n],

xσ
∏
i∈τ

(1 + xi) ∈ JC ⇐⇒ Uσ ⊆
⋃
i∈τ

Ui .

Thus, three types of receptive-field relationships (RF relationships) can be read off from pseudo-
monomials in a neural ideal (e.g., those in the canonical form) [7]:

Type 1: xσ ∈ JC ⇐⇒ Uσ = ∅ (where σ 6= ∅).

Type 2: xσ
∏
i∈τ (1 + xi) ∈ JC ⇐⇒ Uσ ⊆

⋃
i∈τ Ui (where σ, τ 6= ∅).

Type 3:
∏
i∈τ (1 + xi) ∈ JC ⇐⇒ X ⊆

⋃
i∈τ Ui (where τ 6= ∅), and thus X =

⋃
i∈τ Ui.

Example 2.7. The canonical form in Example 2.5, which is {x2(1 +x1), x2(1 +x3)}, encodes two
Type 2 relationships: U2 ⊆ U1 and U2 ⊆ U3. Indeed, we can verify this in Figure 1.

In this work, we reveal more types of RF relationships, which arise from non-pseudo-monomials.
They often appear in Gröbner bases of neural ideals (see Section 5).

2.4. Gröbner bases. Here we recall some basics about Gröbner bases [2, 4].
Fix a monomial ordering < of a polynomial ring R = k[x1, . . . , xn] over a field k, and let I be

an ideal in R. Let LT<(I) denote the ideal generated by all leading terms, with respect to the
monomial ordering <, of elements in I.

Definition 2.8. A Gröbner basis of I, with respect to <, is a finite subset of I whose leading
terms generate LT<(I).

One useful property of a Gröbner basis is that given a polynomial f and a Gröbner basis G, the
remainder of f when divided by the set of elements in G is uniquely determined.

A Gröbner basis is reduced if (1) every f ∈ G has leading coefficient 1, and (2) no term of
any f ∈ G is divisible by the leading term of any g ∈ G for which g 6= f . For a given monomial
ordering, the reduced Gröbner basis of an ideal is unique.
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Definition 2.9. A universal Gröbner basis of an ideal I is a Gröbner basis that is a Gröbner
basis with respect to every monomial ordering. The universal Gröbner basis of an ideal I is
the union of all the reduced Gröbner bases of I.

The set of all distinct reduced Gröbner bases of an ideal I is finite [2, pg. 515], so the universal
Gröbner basis is an instance of a universal Gröbner basis.

3. Main Result

In this section, we give the main result of our paper: if the canonical form is a Gröbner basis,
then it is the universal Gröbner basis (Theorem 3.1). Beyond being a natural expansion of some
of Curto et al.’s results [7], our theorem is also of mathematical interest since there are few classes
of ideals whose universal Gröbner bases are known. Indeed, such characterizations in general are
known to be computationally difficult.

Theorem 3.1. If the canonical form of a neural ideal JC is a Gröbner basis of JC with respect to
some monomial ordering, then it is the universal Gröbner basis of JC .

The proof of Theorem 3.1, which appears in Section 3.3, requires the following related results:

Lemma 3.2. For a pseudo-monomial f = xσ
∏
j∈τ (1 +xj) in F2[x1, . . . , xn], the leading term of f

with respect to any monomial ordering is its highest-degree term, xσ∪τ .

Proof. This follows from the fact that every term of f divides xσ∪τ , and two properties of a mono-
mial ordering [4]: it is a well-ordering (so, 1 < xi), and xα < xβ implies xα∪γ < xβ∪γ . �

Proposition 3.3. If the canonical form of a neural ideal JC is a Gröbner basis of JC with respect
to some monomial ordering, then it is a universal Gröbner basis of JC .

Proof. Let G denote the canonical form, and assume that G is a Gröbner basis with respect to
some monomial ordering <1. Let <2 denote another monomial ordering. As always, we have the
containment LT<2(G) ⊆ LT<2(JC), which we must prove is an equality. Accordingly, let f ∈ JC .
We must show that LT<2(f) ∈ LT<2(G). With respect to <1, the reduction of f by G is 0, so we
can write f as a polynomial combination of some of the gi ∈ G in the following form:

f =
LT<1(f)

LT(g1)
g1 +

LT<1(r1)

LT(g2)
g2 + · · ·+ LT<1(rt−1)

LT(gt)
gt = h1 + · · ·+ ht ,(1)

where (for i = 1, . . . , t) we have gi ∈ G, hi :=
LT<1 (ri−1)

LT(gi)
gi, r0 := f , and ri = f − h1 − · · · − hi is

the remainder after the i-th division of f by G. Note that in equation (1), the polynomial gi may
appear multiple times, but this does not affect our arguments. By Lemma 3.2, the leading term of
gi does not depend on the monomial ordering. Moreover, each hi is the product of a monomial and
a pseudo-monomial, gi, so by a straightforward generalization of Lemma 3.2, the leading term of hi
with respect to any monomial ordering is LT<1(hi). Also note that when dividing by the Gröbner
basis G, LT<1(ri) <1 LT<1(ri−1) so the LT<1(ri) are distinct. This implies that the LT<1(hi) are
distinct since LT<1(hi) = LT<1(ri−1).

Hence, among the list of monomials {LT(hi)}ti=1, there is a unique largest monomial with respect
to <2, which we denote by LT(hi∗). Next, by examining the sum in (1), and noting that every term
of hi divides the leading term of hi, we see that LT<2(f) = LT(hi∗). Thus, because gi∗ divides hi∗ ,
it follows that LT(gi∗) divides LT<2(f), and so, LT<2(f) ∈ LT<2(G).

Thus, if the canonical form is a Gröbner basis with respect to some monomial ordering, then it
is a Gröbner basis with respect to every monomial ordering. �
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3.1. Pseudo-monomials and hypercubes. To prove our main result (Theorem 3.1), we need
to develop the connection between pseudo-monomials and hypercubes in the Boolean lattice. The
Boolean lattice on [n] is the power set P ([n]) := 2[n], partially ordered by inclusion. The support
of a monomial

∏n
i=1 x

ai
i is the set {i ∈ [n] | ai > 0}.

Definition 3.4. Let f = xσ
∏
j∈τ (1+xj) be a pseudo-monomial in F2[x1, . . . , xn]. The hypercube

of f , denoted by H(f), is the sublattice of the Boolean lattice on [n] formed by the support of each
term of f .

Remark 3.5. The hypercube of f is the interval of the Boolean lattice from σ to σ ∪ τ :

H(f) = {ω | σ ⊆ ω ⊆ σ ∪ τ} ⊆ P ([n]) ,

and thus its Hasse diagram is a hypercube (this justifies its name). This is because:

f = xσ
∏
j∈τ

(1 + xj) =
∑
{θ|θ⊆τ}

xσ∪θ .

Example 3.6. Let f = x1x2(1+x3)(1+x4) = x1x2x3x4 +x1x2x3 +x1x2x4 +x1x2. Figure 2 shows
part of the Hasse diagram of P ([4]), with the hypercube of f indicated by circles and solid lines.

1234

124 134123 234

12 13 14 23 24 34

1 2 3 4

∅

Figure 2. Displayed is part of the Hasse diagram of the Boolean lattice P ([4]).
The hypercube of f = x1x2(1 + x3)(1 + x4) is indicated by circles and solid lines,
and P ([2]) is marked by dotted lines. If g is a pseudo-monomial that divides f , then
its hypercube is contained in either the hypercube of f or one of the dashed-line
squares “parallel” to the hypercube of f (see Example 3.8).

Via hypercubes, divisibility of pseudo-monomials has a nice geometric interpretation:

Lemma 3.7. For pseudo-monomials f = xσ
∏
j∈τ (1 + xj) and g = xα

∏
j∈β(1 + xj), the following

are equivalent:

(1) g|f ,
(2) α ⊆ σ and β ⊆ τ ,
(3) H(g) ⊆ P (σ ∪ τ) and H(g) ∩ P (σ) = {α}, and
(4) H(g) ⊆ P (σ ∪ τ) and |H(g) ∩ P (σ)| = 1.

Proof. The implication (1) ⇐ (2) is clear, and (1) ⇒ (2) follows from the fact that F2[x1, . . . , xn]
is a unique factorization domain. For (2) ⇒ (3), assume that α ⊆ σ and β ⊆ τ . Then H(g) ⊆
P (α ∪ β) ⊆ P (σ ∪ τ). So, we need only show that H(g) ∩ P (σ) = {α}. To see this, we first recall:

H(g) = {α ∪ θ | θ ⊆ β}(2)
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from Remark 3.5. Thus,

H(g) ∩ P (σ) = {α ∪ θ | θ ⊆ β and θ ⊆ σ} = {α} ,

where the second equality follows from hypotheses: α ⊆ σ and σ ∩ β ⊆ σ ∩ τ = ∅ (because β ⊆ τ).
(3) ⇒ (4) is clear, so we need only show (2) ⇐ (4). Accordingly, suppose H(g) ⊆ P (σ ∪ τ) and

I := H(g) ∩ P (σ) consists of only one element. We claim that this element is α. Indeed, let ω ∈ I
(i.e., ω ∈ H(g) and ω ⊆ σ); then, α also is in I (because α ∈ H(g) and α ⊆ ω ⊆ σ). So, α = ω ⊆ σ.

To complete the proof, we must show that β ⊆ τ . To this end, let k ∈ β. Then α ∪ {k} is in
H(g), by equation (2), so it is not in P (σ) (because H(g) ∩ P (σ) = {α}). So, k ∈ (β \ σ). Finally,
(β \ σ) ⊆ τ , because α ∪ β ⊆ σ ∪ τ follows from the hypothesis H(g) ⊆ P (σ ∪ τ). So, k ∈ τ . �

Example 3.8. We return to the pseudo-monomial f = x1x2(1 + x3)(1 + x4), which we rewrite as
f = xσ

∏
j∈τ (1 +xj), where σ = {1, 2} and τ = {3, 4}. In Figure 2, P (σ) = P ([2]) is marked by the

dotted line. According to Lemma 3.7, a pseudo-monomial h divides f if and only if the hypercube
of h satisfies two conditions: it includes a vertex from P (σ), and it is contained within either the
hypercube of f or one of the dashed-line squares “parallel” to the hypercube of f in Figure 2.

3.2. Multivariate division by pseudo-monomials. The following result concerns reducing a
given pseudo-monomial by a set of pseudo-monomials.

Theorem 3.9. Consider a pseudo-monomial f = xσ
∏
i∈τ (1 + xi) ∈ F2[x1, . . . , xn], and let G be a

finite set of pseudo-monomials in F2[x1, . . . , xn]. If some remainder upon division of f by G is 0
for some monomial ordering, then there exists g ∈ G such that g divides f .

Proof. Suppose that some remainder on division of f by G is 0:

f =
LT(f)

LT(g1)
g1 +

LT(r1)

LT(g2)
g2 + · · ·+ LT(rt−1)

LT(gt)
gt = h1 + · · ·+ ht ,(3)

where, as in the proof of Proposition 3.3, for i = 1, . . . , t, we have gi ∈ G, hi := LT(ri−1)
LT(gi)

gi, and

ri = f − h1 − · · · − hi is the remainder after the i-th division (and r0 := f). Also, each term of hi
divides the leading term of hi.

By construction, gi|hi. So, it suffices to show that there exists i such that hi|f .
We now claim that LT(hi)|LT(f) holds for all i. We prove this claim by induction on i. For the

i = 1 case, LT(h1) = LT(f). If i ≥ 2, then LT(hi) is the leading term of:

ri−1 = f − h1 − · · · − hi−1 .(4)

We now examine the summands in (4). As f is a pseudo-monomial, each term in f divides LT(f),
and the same holds for each remaining summand hi: as noted above, its terms divide LT(hi), and
thus (by induction hypothesis) divide LT(f). So, LT(hi) = LT(ri−1)|LT(f), proving our claim.

We now assert that hi is a pseudo-monomial. To see this, recall that hi is the product of a
monomial and a pseudo-monomial (namely, gi), so we just need to show that its leading term is
square-free. Indeed, this follows from two facts: LT(hi)|LT(f) and f is a pseudo-monomial.

Hence, H(hi) ⊆ P (σ ∪ τ) for every i, because every term in hi divides LT(hi) which in turn
divides xσ∪τ = LT(f). Thus, by Lemma 3.7, it is enough to show that |H(hi) ∩ P (σ)| = 1 for some
i (because this would imply that hi|f).

The sum in (3) is over F2, so the polynomials f, h1, . . . , ht together must contain an even number
of each term. We focus now on only those terms with support in P (σ). The pseudo-monomial f
has only one such term (namely, xσ). Thus, some hi has an odd number of terms in P (σ), i.e.,
|H(hi) ∩ P (σ)| is odd. On the other hand, both H(hi) and P (σ) are hypercubes in the Boolean
lattice, so their intersection, if nonempty, also is a hypercube and thus has size 2q for some q ≥ 0.
Hence, q = 0, so |H(hi) ∩ P (σ)| = 1. This completes our proof.

�
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3.3. Proof of Theorem 3.1. Theorem 3.9 allows us to prove that when a canonical form is a
Gröbner basis, it is reduced:

Proposition 3.10. If the canonical form of a neural ideal JC is a Gröbner basis of JC , then it is
a reduced Gröbner basis of JC .

Proof. Suppose for contradiction that CF(JC) is a Gröbner basis, but not a reduced Gröbner basis.
Then there exist f, g ∈ CF(JC), with f 6= g, such that LT(g) divides some term of f . Thus, LT(g)
divides LT(f) (because every term in a pseudo-monomial divides the leading term). Thus, CF(JC)
and CF(JC) \ {f} both generate the same ideal of leading terms, and hence CF(JC) \ {f} is also
a Gröbner basis of JC . It follows that the remainder on division of f by CF(JC) \ {f} is 0, so by
Theorem 3.9, there exists h ∈ CF(JC) \ {f} such that h|f . Hence, f is a non-minimal element of
the canonical form, which is a contradiction. �

Now we can prove Theorem 3.1, which states that a canonical form that is a Gröbner basis is
the universal Gröbner basis:

Proof of Theorem 3.1. Follows from Propositions 3.3 and 3.10. �

3.4. Every pseudo-monomial in a reduced Gröbner basis is in the canonical form. In this
subsection, we prove the following partial converse of Theorem 3.1: if the universal Gröbner basis of
a neural ideal consists of only pseudo-monomials, then it equals the canonical form (Theorem 3.12).

We first show that every pseudo-monomial in a reduced Gröbner basis is in the canonical form.

Proposition 3.11. Let JC be a neural ideal.

(1) Let G be a reduced Gröbner basis of JC . Then every pseudo-monomial in G is in the
canonical form of JC .

(2) Let Ĝ be the universal Gröbner basis of JC . Then every pseudo-monomial in Ĝ is in the
canonical form of JC .

Proof. Let f be a pseudo-monomial in G. Suppose that f is not a minimal pseudo-monomial in
JC : for some pseudo-monomial h ∈ JC such that deg(h)<deg(f), h|f . Then for some g ∈ G,
LT(g)|LT(h). Hence, LT(g)|LT(f) (because LT(h)|LT(f)) and also g 6= f (because deg(g) ≤
deg(h) < deg(f)). This is a contradiction: f and g cannot both be in a reduced Gröbner basis.

Finally, (2) follows directly from (1). �

Theorem 3.12. Let JC be a neural ideal. The following are equivalent:

(1) the canonical form of JC is a Gröbner basis of JC ,
(2) the canonical form of JC is the universal Gröbner basis of JC , and
(3) the universal Gröbner basis of JC consists of pseudo-monomials.

Proof. The implication (1)⇒(2) is Theorem 3.1, and both (1)⇐(2) and (2)⇒(3) are clear. For

(3)⇒(1), assume that the universal Gröbner basis Ĝ consists of pseudo-monomials. Then, by

Proposition 3.11(2), Ĝ is contained in the canonical form of JC . Thus, the canonical form contains

a Gröbner basis of JC (namely, Ĝ) and hence is itself a Gröbner basis. �

Remark 3.13. Suppose we want to know whether a code’s canonical form is a Gröbner basis.
Theorem 3.12 tells us how to do so without computing the canonical form: compute the universal
Gröbner basis, and then check whether it contains only pseudo-monomials. See Example 3.14.

Under certain conditions, e.g. small number of neurons, computing the Gröbner basis is more
efficient than computing the canonical form, but is there some way to avoid computations entirely
and yet still decide whether the canonical form is a Gröbner basis? In the next section, we give
conditions under which we can resolve this decision problem quickly.
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Example 3.14. Consider the neural code C = {0100, 0101, 0111}. The universal Gröbner basis of

JC is Ĝ = {x3(x4 + 1), x2 + 1, x1}, so it contains only pseudo-monomials. Thus, by Theorem 3.12,

Ĝ is the canonical form.

Example 3.15. Consider the neural code C = {0101, 1100, 1110}. The universal Gröbner basis

of JC is Ĝ = {x4x3, x3(x1 + 1), x1 + x4 + 1, x2 + 1}, which contains the non-pseudo-monomial
x1 + x4 + 1. Thus, by Theorem 3.12, the canonical form is not a universal Gröbner basis of JC .
Indeed, the canonical form is CF(JC) = {x3(x1 + 1), x2 + 1, (x4 + 1)(x1 + 1), x4x1, x4x3}, and,
for a monomial ordering where x4 > x1, the leading term of the non-pseudo-monomial x1 + x4 + 1
is x4, which is not divisible by any of the leading terms from the canonical form.

4. When is the canonical form a Gröbner basis?

In this section we present some results that partially solve the question of when is the canonical
form a Gröbner basis for the neural ideal. A complete answer to this question is not only of
theoretical interest but perhaps also of practical relevance. Extensive computations suggest that,
under certain conditions, Gröbner bases of neural ideals can be computed more efficiently than
canonical forms. This is true for small neural codes. Moreover, the iterative nature of the newer
canonical form algorithm hints towards the ability to compute canonical forms and Gröbner bases of
neural codes in large dimensions by ‘gluing’ those of codes on small dimensions. Such decomposition
results are a common theme in other areas of applied algebraic geometry such as algebraic statistics
and phylogenetic algebraic geometry [1, 9].

Table I displays a runtime comparison between the iterative canonical form algorithm described
in [14] and a specialized Gröbner basis algorithm for Boolean rings implemented in SageMath based
on the work in [3]. We report the mean time (in seconds) of 100 randomly generated codes on n
neurons for n = 4, . . . , 8. More precisely, for each code, a number m was chosen uniformly at
random from {1, . . . , 2n − 1} and then m codewords were chosen at random. These computations
were performed on SageMath 7.2 running on a Macbook Pro with a 2.8 GHz Intel Core i7 processor
and 16 GB of memory.

Dimension 4 5 6 7 8
Canonical form 0.0016 0.0076 0.108 0.621 1.964
Gröbner basis 0.00147 0.00202 0.00496 0.01604 0.16638

Table I. Runtime comparison of canonical form versus Gröbner basis computations.

For codes on a larger number of neurons, our computations indicate that in general Gröbner
bases computations are still more efficient than canonical form computations. However, even in the
case of n = 9 neurons we found codes whose Gröbner bases took over 6 hours to be computed.

Proposition 4.1. Let C be a neural code on n neurons. If |C| = 1 or |C| = 2n − 1, then the
canonical form of JC is the universal Gröbner basis of JC .

Proof. If C = {c}, then Lemma 2.3 implies that JC = 〈x1 − c1, x2 − c2, . . . , xn − cn〉. When
|C| = 2n − 1, then by definition JC = 〈ρv〉 for the unique v /∈ C. In either case, the indicated
generating set is both the canonical form and the universal Gröbner basis of JC . �

A set of subsets ∆ ⊆ 2[n] is an (abstract) simplicial complex if σ ∈ ∆ and τ ⊆ σ implies
τ ∈ ∆. A neural code C is a simplicial complex if its support supp(C) is a simplicial complex.

Proposition 4.2. If C is a simplicial complex, then the canonical form of JC is the universal
Gröbner basis of JC .
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Proof. If C is a simplicial complex, then JC is a monomial ideal generated by the minimal Type 1
relationships (indeed, it is the Stanley-Reisner ideal of the simplicial complex supp(C)) [7, Lemma
4.4]. These minimal Type-1 relationships comprise the canonical form of JC , and also form the
universal Gröbner basis of JC . �

The next result gives conditions that guarantee that the canonical form is not a Gröbner basis.

Proposition 4.3. Let U = {Ui}ni=1 be a collection of sets in a stimulus space X, and let C = C(U)
denote the corresponding receptive field code. If one of the following conditions hold, then the
canonical form of JC is not a Gröbner basis of JC :

(1) Two proper, nonempty receptive fields coincide: ∅ 6= Ui = Uj ( X for some i 6= j ∈ [n].
(2) Two nonempty receptive fields are complementary: Ui = X \ Uj for some i 6= j ∈ [n] with

Ui 6= ∅ and Uj 6= ∅.

Proof. (1) Suppose Ui, Uj ∈ U are two sets with ∅ 6= Ui = Uj ( X. By Lemma 2.6, both
f = xi(xj + 1) and g = xj(xi + 1) are in JC . In fact, f and g are minimal pseudo-monomials in JC
(because ∅ 6= Ui = Uj 6= X), so f, g ∈ CF(JC). Under any monomial ordering, LT(f) = LT(g) =
xixj (by Lemma 3.2), so the set CF(JC) is not reduced and thus cannot be a reduced Gröbner
basis. Hence, by Proposition 3.10, CF(JC) cannot be a Gröbner basis.

(2) Now assume that Ui = X \Uj for some i 6= j ∈ [n], with Ui 6= ∅ and Uj 6= ∅. Thus, Ui∩Uj = ∅
and Ui ∪ Uj = X, so Lemma 2.6 implies that f = xixj and g = (xi + 1)(xj + 1) are in JC . Now
we proceed as in the previous paragraph: f and g are minimal pseudo-monomials in CF(JC), and
LT(f) = LT(g) = xixj , so, by Proposition 3.10, CF(JC) cannot be a Gröbner basis. �

The last result in this section concerns a class of codes that we call complement-complete.

Definition 4.4. The complement of c ∈ {0, 1}n is the codeword c ∈ {0, 1}n defined by ci = 1 if
and only if ci = 0. A neural code C is complement-complete if for all c ∈ C, then c is also in C.

Example 4.5. The complement of the codeword c1 = 1000 is c1 = 0111, and the complement of
c2 = 1010 is c2 = 0101. Thus, the code C = {1000, 0111, 1010, 0101} is complement-complete.

Definition 4.6. The complement of a pseudo-monomial f = xσ
∏
i∈τ (1 + xi) is the pseudo-

monomial f = xτ
∏
j∈σ(1 + xj).

Lemma 4.7. Consider pseudo-monomials f = xσ
∏
i∈τ (1 + xi) and g = xσ′

∏
i∈τ ′(1 + xi). If f

divides g, then f divides g.

Proof. This follows from the fact that f | g if and only if σ′ ⊆ σ and τ ′ ⊆ τ (Lemma 3.7). �

Proposition 4.8. Let C be a code on n neurons, with C ( {0, 1}n. If C is complement-complete,
then the canonical form of JC is not a Gröbner basis of JC .

Proof. Note that since C 6= {0, 1}n, JC is not trivial. We make the following claim:
Claim: If h is a pseudo-monomial in JC , then h is also in JC .
To see this, let S be the set of all degree-n pseudo-monomials in F2[x1, . . . , xn] that are multiples
of h (so, S ⊆ JC). Degree-n pseudo-monomials in F2[x1, . . . , xn] are characteristic functions ρv, so,
every element of S is some ρv, where v /∈ C. Thus, every element of S := {f | f ∈ S} has the form
ρv = ρv, where v /∈ C, which is equivalent to v /∈ C, as C is complement-complete. So, S ⊆ JC .

Next, let s ∈ S, that is, s = hq for some pseudo-monomial q. Then hq is also in S. Since
gcd(q, q) = 1, it follows that h = gcd(hq, hq), so h = gcd{S}. Thus, h = gcd{S}, so h ∈ JC
(because S ⊆ JC), which proves the claim.

Now let f ∈ CF (JC). By the claim, f is in JC , and now we assert that, like f , the pseudo-
monomial f is in CF (JC). Indeed, if a pseudo-monomial d in JC divides f , then by Lemma 4.7,
the pseudo-monomial d divides f . Also, d ∈ JC (by the claim), so d = f (because f is minimal),
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and thus d = f . Hence, f is minimal, and so f is also in CF (JC). Thus, CF (JC) contains two
polynomials (f and f) with the same leading term, and so is not a reduced Gröbner basis, and thus
(by Proposition 3.10) is not a Gröbner basis of JC . �

Example 4.9. Consider again the complement-complete code C = {1000, 0111, 1010, 0101} from
Example 4.5. The canonical form is CF (JC) = {(x1 + 1)(x2 + 1), (x1 + 1)(x4 + 1), x1x2, x2(x4 +
1), x1x4, x4(x2+1)}. Note that CF (JC) is itself complement-complete; for example, f = x2(x4+1)
and f = x4(x2 + 1) are both in CF (JC). Also, we can show directly that CF (JC) is not a Gröbner
basis, which is consistent with Proposition 4.8: with respect to any monomial ordering, the leading
term of f + f = x2 + x4 is not divisible by any of the leading terms in CF (JC).

5. New receptive-field relationships

We saw earlier that if the universal Gröbner basis of a neural ideal consists of only pseudo-
monomials, then it equals the canonical form (Theorem 3.12). When this is not the case, there are
non-pseudo-monomial elements in the universal Gröbner basis, so it is natural to ask what they tell
us about the receptive fields of the code. In other words, what types of RF relationships, besides
those of Types 1–3 (Lemma 2.6), appear in Gröbner bases? Here we give a partial answer:

Theorem 5.1. Let U = {Ui}ni=1 be a collection of sets in a stimulus space X. Let C = C(U)
denote the corresponding receptive field code, and let JC denote the neural ideal. Then for any
subsets σ1, σ2, τ1, τ2 ⊆ [n], and m indices 1 ≤ i1 < i2 < · · · < im ≤ n, with m ≥ 2, we have RF
relationships as follows:

Type 4: xσ1
∏
i∈τ1(1 + xi) + xσ2

∏
j∈τ2(1 + xj) ∈ JC ⇒ Uσ1 ∩

(⋂
i∈τ1 U

c
i

)
= Uσ2 ∩

(⋂
j∈τ2 U

c
j

)
.

Type 5: xi1 + · · ·+ xim ∈ JC ⇒ Uik ⊆
⋃
j∈[m]\{k} Uij for all k = 1, . . . ,m, and if, additionally, m is

odd, then
⋂m
k=1 Uik = ∅.

Type 6: xi1 + · · ·+ xim + 1 ∈ JC ⇒
⋃m
k=1 Uik = X.

Proof. Throughout the proof, for p ∈ X, we let c(p) denote the corresponding codeword in C.
Type 4. Let f1 := xσ1

∏
i∈τ1(1 + xi), and let f2 := xσ2

∏
j∈τ2(1 + xj). Also, let W1 := Uσ1 ∩(⋂

i∈τ1 U
c
i

)
, and let W2 := Uσ2 ∩

(⋂
j∈τ2 U

c
j

)
. By symmetry, we need only show that W1 ⊆W2. To

this end, let p ∈ W1 (so, c(p) ∈ C). First, because f1 + f2 ∈ JC and V (JC) = C, it follows that
f1(c(p)) = f2(c(p)). Next, for i = 1, 2, we have p ∈Wi if and only if fi(c(p)) = 1. Thus, p ∈W2.

Type 5. Let g := xi1 + · · ·+xim . By symmetry, we need only show that Ui1 ⊆
⋃m
l=2 Uil . To this

end, let p ∈ Ui1 (so, c(p)i1 = 1). Then g ∈ JC implies the following equality in F2:

0 = g(c(p)) = c(p)i1 + c(p)i2 + · · ·+ c(p)im = 1 + c(p)i2 + · · ·+ c(p)im .(5)

Thus, for some k ≥ 2, we have c(p)ik = 1, i.e., p ∈ Uik . Hence, p ∈
⋃m
l=2 Uil .

Now assume, additionally, that m is odd. Suppose, for contradiction, that there exists q ∈⋂m
k=1 Uik . Then, like the sum (5) above, we have 0 = g(c(q)) = 1 + · · ·+ 1 = m, which contradicts

the hypothesis that m is odd. So,
⋂m
k=1 Uik = ∅.

Type 6. Let h := xi1 + · · ·+xim +1. Let p ∈ X (so, c(p) ∈ C). We must show that p ∈
⋃m
k=1 Uik .

Because h ∈ JC , we have 0 = h(c(p)) = c(p)i1 + · · ·+ c(p)im + 1. Thus, for some k ∈ [m], we have
c(p)ik = 1, i.e., p ∈ Uik . Hence, p ∈

⋃m
k=1 Uik . �

Remark 5.2. Like the earlier RF relationships (those of Types 1–3 from Lemma 2.6), some of our
new ones (Types 4–6) are containments and some are equalities.

Example 5.3. Recall the code C = {0101, 1100, 1110}, from Example 3.15, for which the universal

Gröbner basis of JC is Ĝ = {x4x3, x3(x1 + 1), x1 + x4 + 1, x2 + 1}. The polynomial x1 + x4 + 1
encodes a Type 6 relationship: U1 ∪ U4 = X. Also, the polynomial x2 + 1 encodes a Type 3
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relationship: U2 = X, which together gives us U1 ∪ U4 = U2. The canonical form also contains the
polynomial x1x4, which encodes a Type 1 relationship: U1∩U4 = ∅. We conclude that U1∪̇U4 = U2.

Example 5.4. Consider the code C = {00, 11}. The universal Gröbner basis of C is Ĝ = {x1(1 +
x1), x1 + x2, x2(1 + x2)}. The polynomial x1 + x2 encodes a Type 4 relationship: U1 = U2. (The
polynomial x1 +x2 also encodes Type 5 relationships.) This points to one of the advantages of our
new RF relationships: we can read off some set equalities more quickly than from the canonical
form. Indeed, the canonical form is CF(JC) = {x1(1 + x2), x2(1 + x1)}, in which the Type 2
relationships are U1 ⊆ U2 and U2 ⊆ U1 – and only from there do we infer the equality U1 = U2.

6. Discussion

In this work, we proved that if a code’s canonical form is a Gröbner basis of the neural ideal,
then it is the universal Gröbner basis. Additionally, we gave conditions that guarantee or preclude
this situation, and found three new types of receptive-field relationships that arise in neural ideals.
Going forward, there are natural extensions to pursue:

(1) Give a complete characterization of codes for which the canonical form is a Gröbner basis.
(2) Beyond those of Types 1–6, what other receptive-field relationships can be read off from a

Gröbner basis, and what do they tell us about a code?

Solutions to these problems would help us extract information about the receptive-field structure
directly from the neural code.

Finally, we expect that our results can be used to improve canonical-form algorithms. Indeed, our
experiments indicate that under certain conditions, Gröbner bases can be computed more efficiently
than canonical forms. Moreover, every pseudo-monomial in the universal Gröbner basis of a neural
ideal is in the canonical form – so, that subset of the canonical form can be obtained directly from
the universal Gröbner basis. And, in the case when the universal Gröbner basis contains only
pseudo-monomials, then we can conclude immediately that the basis is in fact the canonical form.
Moreover, we hope to develop decomposition results to build canonical forms and Gröbner basis of
codes in large dimensions by ‘gluing’ those of codes in smaller dimensions.
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