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To my parents



Preface to the Second Edition

A little more than two years have passed since the first edition. During this
time, R has gained further ground in the domain of econometrics. This is wit-
nessed by the 2006 useR! conference in Vienna, where many sessions were
devoted entirely to econometric topics, as well as the Rmetrics workshop at
Meielisalp 2007. A forthcoming special issue of the Journal of Statistical Soft-
ware will be devoted entirely to econometric methods that have been imple-
mented within R. Furthermore, numerous new packages have been contributed
to CRAN and existing ones have been improved; a total of more than 1200
are now available. To keep up with these pleasant changes, it is therefore nec-
essary not only to adjust the R code examples from the first edition but also
to enlarge the book’s content with new topics.

However, the book’s skeleton and intention stays unchanged, given the
positive feedback received from instructors and users alike. Compared with
the first edition, vector autoregressive (VARs) models and structural vector
autoregressive (SVARs) models have been included in an entire new chapter
in the first part of the book. The theoretical underpinnings, definitions, and
motivation of VAR and SVAR models are outlined, and the various methods
that are applied to these kinds of models are illustrated by artificial data sets.
In particular, it is shown how swiftly different estimation principles, inference,
diagnostic testing, impulse response analysis, forecast error variance decom-
position, and forecasting can be conducted with R. Thereby the gap to vec-
tor error-correction models (VECMs) and structural vector error-correction
(SVEC) models is bridged. The former models are now introduced more thor-
oughly in the last chapter of the first part, and an encompassing analysis in
the context of VEC/SVEC modeling is presented in the book’s last chapter.
As was the case for the first edition, all R code examples presented can be
downloaded from http://www.pfaffikus.de.

As with the first edition, I would like to thank the R Core Team for
providing such a superb piece of software to the public and to the numerous
package authors who have enriched this software environment. I would further
like to express my gratitude to the anonymous referees who have given good
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pointers for improving this second edition. Of course, all remaining errors are
mine. Last but not least, I would like to thank my editor, John Kimmel, for
his continuous encouragement and support.

Kronberg im Taunus Bernhard Pfaff
March 2008



Preface

This book’s title is the synthesis of two influential and outstanding entities.
To quote David Hendry in the Nobel Memorial Prize lecture for Clive W.
J. Granger, “[the] modeling of non-stationary macroeconomic time series |.. . ]
has now become the dominant paradigm in empirical macroeconomic research”
(Hendry [2004]). Hence, a thorough command of integration and cointegration
analysis is a must for the applied econometrician. On the other side is the
open-source statistical programming environment R. Since the mid-1990s, it
has grown steadily out of infancy and can now be considered mature, flexible,
and powerful software with more than 600 contributed packages. However, it
is fair to say that R has not yet received the attention among econometricians
it deserves. This book tries to bridge this gap by showing how easily the
methods and tools encountered in integration and cointegration analysis are
implemented in R.

This book addresses senior undergraduate and graduate students and prac-
titioners alike. Although the book’s content is not a pure theoretical exposition
of integration and cointegration analysis, it is particularly suited as an accom-
panying text in applied computer laboratory classes. Where possible, the data
sets of the original articles have been used in the examples such that the reader
can work through them step by step and thereby replicate the results. Exer-
cises are included after each chapter. These exercises are written with the aim
of fostering the reader’s command of R and applying the previously presented
tests and methods. It is assumed that the reader has already gained some ex-
perience with R by working through the relevant chapters in Dalgaard [2002]
and Venables and Ripley [2002] as well as the manual “An Introduction to R.”

This book is divided into three parts. In the first part, theoretical concepts
of time series analysis, unit root processes, and cointegration are presented.
Although the book’s aim is not a thorough theoretical exposition of these
methods, this first part serves as a unifying introduction to the notation used
and as a brief refresher of the theoretical underpinnings of the practical ex-
amples in the later chapters. The focus of the second part is the testing of
the unit root hypothesis. The common testing procedure of the augmented
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Dickey-Fuller test for detecting the order of integration is considered first. In
the later sections, other unit root tests encountered widely in applied econo-
metrics, such as the Phillips-Perron, Elliott-Rothenberg-Stock, Kwiatkowski-
Phillips-Schmidt-Shin, and Schmidt-Phillips tests, are presented, as well as the
case of seasonal unit roots and processes that are contaminated by structural
shifts. The topic of the third and last part is cointegration. As an introduc-
tion, the two-step method of Engle and Granger and the method proposed by
Phillips and Ouliaris are discussed before finally Johansen’s method is pre-
sented. The book ends with an exposition of vector error-correction models
that are affected by a one-time structural shift.

At this point, I would like to express my gratitude to the R Core Team
for making this software available to the public and to the numerous package
authors who have enriched this software environment. The anonymous referees
are owed a special thanks for the suggestions made. Of course, all remaining
errors are mine. Last but not least, I would like to thank my editor, John
Kimmel, for his continuous encouragement and support.

Kronberg im Taunus Bernhard Pfaff
September 2005
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Part 1

Theoretical Concepts



1

Univariate Analysis of Stationary Time Series

Although this book has integration and cointegration
analysis as its theme, it is nevertheless a necessity to
first introduce some concepts of stochastic processes as
well as the stationary ARMA model class. Having paved
this route, the next steps (i.e., the introduction of non-
stationary, unit root, and long-memory processes) will
follow in Chapter 3.

1.1 Characteristics of Time Series

A discrete time series! is defined as an ordered sequence of random numbers
with respect to time. More formally, such a stochastic process can be written
as

{y(s,t),s € 6,t € T}, (1.1)

where, for each ¢ € ¥, y(-,t) is a random variable on the sample space &,
and a realization of this stochastic process is given by y(s,-) for each s € &
with regard to a point in time ¢ € ¥. Hence, what we observe in reality are
realizations of an unknown stochastic process, the data-generating process

{y}$:1 = {ylay27"'ayta"'ayT—layT} (12)

witht=1,...,T € %.

One aim of time series analysis is concerned with the detection of this data-
generating process by inferring from its realization to the underlying structure.
In Figure 1.1, the path of real U.S. gross national product in billions of dollars
(GNP) is depicted.? By mere eye-spotting, a “trend” in the series is evident.
By comparing the behavior of this series with the unemployment rate for the
same time span (i.e., from 1909 until 1988), a lack of a “trend” is visible.

This artifact leads us to the first characteristic of a time series, namely
stationarity. The ameliorated form of a stationary process is termed weakly
stationary and is defined as

Ely] = p <oo,Vt €T, (1.3a)
El(ye = ) (ye—5 — )] =75, Vt,j € T. (1.3b)
! The first occurrence of a subject entry is set in italics.

2 The time series are taken from the extended Nelson and Plosser [1982] data set
(see Schotman and van Dijk [1991]).
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Because only the first two theoretical moments of the stochastic process have
to be defined and are constant and finite over time, this process is also referred
to as being second-order stationary or covariance stationary. In that sense,
the real U.S. GNP would not qualify as a realization of a stationary process
because of its trending nature. Whether this is also the case for the U.S.
unemployment rate (Figure 1.2) has to be seen.

Aside from weak stationarity, the concept of a strictly stationary process
is defined as

F{yhyQa' < Yty - "7yT} = F{y1+jay2+j7" s Yttgs - '7yT+j}a (14)

where F'{-} is the joint distribution function and V¢, j € T. Hence, if a process
is strictly stationary with finite second moments, then it must be covariance
stationary as well. A stochastic process can be covariance stationary without
being strictly stationary. This would be the case, for example, if the mean and
autocovariances were functions not of time but of higher moments instead.
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The next characteristic of a stochastic process to be introduced is ergod-
icity.® Ergodicity refers to one type of asymptotic independence. In prose,
asymptotic independence means that two realizations of a time series become
ever closer to independence the further they are apart with respect to time.
More formally, asymptotic independence can be defined as

[F(yi, s yrs Yjgts - Yjrr) — Fyr, oo yr) F (Y1, - yj+1)] — 0 (1.5)

with j — oo. The joint distribution of two sub-sequences of a stochastic
process {y; } is closer to being equal to the product of the marginal distribution
functions the more distant the two sub-sequences are from each other. A
stationary stochastic process is ergodic if

T

1

li Elys — P — =0 1.6

Jim o z; lye — wllye+s — (1.6)
j:

3 For a more detailed discussion and definition of ergodicity, the reader is referred

to Davidson and MacKinnon [1993], Spanos [1986], White [1984], and Hamilton
[1994].
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holds. This equation would be satisfied if the autocovariances tended to zero
with increasing j.
Finally, a white noise process is defined as

E(er) =0, (1.7a)
E(e?) = o2, (1.7b)
E(ete;) =0 for t#T. (1.7¢)

When necessary, €; is assumed to be normally distributed: &, «~ N(0,02). If
Equations (1.7a)—(1.7c) are amended by this assumption, then the process is
said to be a normal or Gaussian white noise process. Furthermore, sometimes
Equation (1.7¢) is replaced with the stronger assumption of independence. If
this is the case, then the process is said to be an independent white noise pro-
cess. Please note that for normally distributed random variables, uncorrelat-
edness and independence are equivalent. Otherwise, independence is sufficient
for uncorrelatedness but not vice versa.

1.2 AR(p) Time Series Process

We start by considering a simple first-order autoregressive process. The cur-
rent period’s value of {y;} is explained by its previous one, a constant ¢, and
an error process {&;},

Y = c+ dyi—1 + e, (1.8)

where {e;} obeys Equations (1.7a)—(1.7c); i.e., it is a white noise process.
Basically, Equation (1.8) is a first-order inhomogeneous difference equation.
The path of this process depends on the value of ¢. If |¢| > 1, then shocks
accumulate over time and hence the process is non-stationary. Incidentally, if
|¢| > 1, the process grows without bounds, and if |¢| = 1 is true, the process
has a unit root. The latter will be discussed in more detail in Section 3.2.
In this section, however, we will only consider the covariance-stationary case,
|¢| < 1. With the lag operator L, Equation (1.8) can be rewritten as

(1 —oL)y: = c+ey. (1.9)

The stable solution to this process is given by an infinite sum of past errors
with decaying weights:

yr=(c4er) Folcte1)+¢*(c+era)+ ¢ (c+es)+... (1.10a)

= [1 f¢] +er+ pero1 + a2+ PPerz + ... . (1.10b)

It is left to the reader as an exercise to show that the expected value and the
second-order moments of the AR(1)-process in Equation (1.8) are given by



1.2 AR(p) Time Series Process 7

p=Elyl= f¢, (L.11a)
0.2

0 =Elye—mw= )~ o (1.11b)

5= Bl = e -l = || © ] (111¢)

(see Exercise 1). By comparing Equations (1.3a)—(1.3b) with (1.11a)—(1.11c),
it is clear that the AR(1)-process {y:} is a stationary process. Furthermore,
from Equation (1.11c), the geometrically decaying pattern of the autocovari-
ances is evident.

In R code 1.1, a stable AR(1)-process with 100 observations and ¢ = 0.9
is generated as well as a time series plot and its autocorrelations and partial
autocorrelations as bar plots.* In Figure 1.3, the smooth behavior of {y;}
caused by a value of ¢ close to one is visible. Also, the slowly decaying pattern
of the autocorrelations is clearly given. The single spike at lag one in the partial
autocorrelations indicates an AR(1)-process.

R Code 1.1 Simulation of AR(1)-process with ¢ = 0.9

set.seed (123456)

1
y <— arima.sim(n = 100, list(ar = 0.9), innov=rnorm(100)) -
op <— par(no.readonly=TRUE) 3
layout (matrix(c(1, 1, 2, 3), 2, 2, byrow=TRUE)) 4
plot.ts(y, ylab="") 5
acf(y, main='Autocorrelations', ylab="", 6
ylim=c(—-1, 1), ci.col = "black"”) 7
pacf(y, main='Partial Autocorrelations', ylab="'", 8
ylim=c(—1, 1), ci.col = "black”) 9
par(op) 10
The AR(1)-process can be generalized to an AR(p)-process:
Yt =+ P1yt—1+ Q2yr—2 + ... + GpYr—p + &t (1.12)

4 In this R code example, functions contained in the standard package stats are used.
However, it should be pointed out that the same functionalities are provided in
the contributed CRAN package fArma by Wiirtz [2007a]. These functions include
the simulation (armaSim()), estimation (armaFit()), and prediction (predict())
of autoregressive integrated moving average (ARIMA) models as well as stability
evaluation (armaRoots()) and the calculation of theoretical autocorrelation and
partial autocorrelation functions (armaTrueacf()).

Furthermore, S3 methods for summaries, printing, and plotting accompany
these functions. The advantage for the user using these functions is given by a
coherent argument list across all functions.
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Fig. 1.3. Time series plot of AR(1)-process, ¢ = 0.9

As with Equation (1.8), Equation (1.12) can be rewritten as
(1—¢1L — pol? — ... — ¢pLP)y, = c + & (1.13)

It can be shown that such an AR(p)-process is stationary if all roots zg of the
polynomial

Gp(2) =1 — 12 — poz® — ... — ¢p2P (1.14)
have a modulus greater than one. The modulus of a complex number z =
21 +izy is defined as |2| = /2% 4 23. Viewing the stationarity condition

from that point, it turns out that in the case of an AR(1)-process, as in
Equation (1.8), |¢| < 1 is required because the only solution to 1 — ¢z = 0 is
given for z =1/¢ and |z| = |1/¢| > 1 when |¢| < 1.

If the error process {e;} is normally distributed, Equation (1.12) can be
consistently estimated by the ordinary least-squares (OLS) method. Further-
more, the OLS estimator for the unknown coefficient vector 8 = (c, ¢)’
is asymptotically normal. Alternatively, the model parameters can be esti-
mated by the principle of maximum likelihood. However, one problem arises
in the context of AR(p) models and this holds true for the more general
class of ARMA (p, ¢) models discussed later. For independent and identically
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distributed random variables with probability density function f(y;;0) for
t=1,...,T and parameter vector 8, the joint density function is the product
of the marginal densities,

F;0) = fyr, ..., yr:0) = [[ f(w:: 0). (1.15)
t=1

This joint density function can, in line with the maximum-likelihood principle,
be interpreted as a function of the parameters 8 given the data vector y; i.e.,
the likelihood function is given as

T

£(0ly) = £Oly1,...,yr) = [[ Fw::0). (1.16)

t=1

The log-likelihood function then has the simple form

n£(6ly) => Inf(y;6). (1.17)

Because our model assumes that the time series {y;} has been generated from
a covariance-stationary process, the i.i.d. assumption is violated and hence
the log-likelihood cannot be derived as swiftly as in Equations (1.15)—(1.17).
That is, y¢ is modeled as a function of its own history, and therefore y; is
not independent of y;_1, ..., yi—p given that {e;} is normally distributed with
expectation ;¢ = 0 and variance o2. In order to apply the ML principle, one
therefore has two options: either, estimate the full-information likelihood func-
tion or derive the likelihood function from a conditional marginal factorization.
The derivation of the log-likelihood for both options is provided, for instance,
in Hamilton [1994]. Here, we will focus on the second option. The idea is that
the joint density function can be factored as the product of the conditional
density function given all past information and the joint density function of
the initial values,

flyr, .. y1;0) = < 11 f(ytlft—h@)) SfWps -5 9150), (1.18)

t=p+1

where Z; ;1 signifies the information available at time ¢. This joint density
function can then be interpreted as the likelihood function with respect to
the parameter vector € given the sample y, and therefore the log-likelihood is
given as

T
mgOy) = > Inf(ylZi—1,6) + I f(yp,...,y1;0). (1.19)

t=p+1

The log-likelihood consists of two terms. The first term signifies the condi-
tional log-likelihood and the second term the marginal log-likelihood for the
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initial values. Whether one maximizes the exact log-likelihood as in Equa-
tion (1.19) or only the conditional log-likelihood (i.e., the first term of the
exact log-likelihood) is asymptotically equivalent. Both are consistent estima-
tors and have the same limiting normal distribution. Please bear in mind that
in small samples the two estimators might differ by a non-negligible amount,
in particular if the roots are close to unity. A derivation of the exact and
conditional log-likelihood functions can be found for instance in Hamilton
[1994]. Because a closed-form solution does not exist, numerical optimization
methods are employed for deriving optimal parameter values.
In Figure 1.4, an AR(2)-process is displayed and generated according to

Yt = 0.6yt—1 - O.28yt_2 + &¢. (120)

The stability of such a process can easily be checked with the function poly-
root (). In R code 1.2, this AR(2)-process is generated by using the function
filter () instead of arima.sim() as in R code 1.1 (see command line 2). The
advantage of using filter() is that unstable AR(p)-processes can also be
generated. Next, the AR(2)-process generated is estimated with the function
arima(). The estimates are close to their theoretical values, as could be ex-
pected with a sample size of 1000. The moduli of the characteristic polynomial
are retrieved with Mod () and the real and complex parts with the functions
Re() and Im(Q), respectively. Please note that the signs of the estimated co-
efficients have to be reversed for the calculation of the roots (see command
lines 7 and 8). The roots can be depicted in a Cartesian coordinate system
with a unit circle, as is shown in Figure 1.5 on page 13.

1.3 MA(q) Time Series Process

It was shown in Section 1.2 that a finite stable AR(p)-process can be in-
verted to a moving average of contemporaneous and past shocks (see Equa-
tions (1.10a) and (1.10b)). We consider now how a process can be modeled as
a finite moving average of its shocks. Such a process is called MA(q), where
the parameter ¢ refers to the highest lag of shocks to be included in such a
process. We do so by first analyzing an MA(1)-process,

Yo =+ ep + O, (1.21)

where {e;} is a white noise process and p, 6 can be any constants. The mo-
ments of this MA(1)-process are given by
t=Ely] = Elp + ¢ + 0g¢-1], (1.22a)
% = Bl(ye — )] = (1 +6%)0?, (1.22b)
M = El(ye — 1) (-1 — )] = 00, (1.22c)
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Fig. 1.4. Time series plot of AR(2)-process, ¢1 = 0.6 and ¢ = —0.28

It is left to the reader to show that the higher autocovariances v; with j > 1
are nil. Neither the mean nor the autocovariance are functions of time, and
hence an MA(1)-process is covariance stationary for all values of 6. Inciden-
tally, because Equation (1.6) is satisfied, this process also has the characteristic
of ergodicity.

Similar to R code 1.1, an MA(1)-process has been generated with y = 0 and
6 = 0.8 and is displayed in Figure 1.6. Let us now extend the MA(1)-process
to the general class of MA(q)-processes

ye=p+er+biei_1+ ...+ 05—y (1.23)
With the lag operator L, this process can be rewritten as

Y —p=c¢cr+6ie1+... qut—q (1.24&)
=146 L+...40,L%e; = 04(L)ey. (1.24b)

Similar to the case in which a stable AR(p)-process can be rewritten as an
infinite MA-process, an MA(q)-process can be transformed to an infinite AR~
process as long as the roots of the characteristic polynomial, the z-transform,
have modulus greater than one (i.e., are outside the unit circle):
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R Code 1.2 Estimation of AR(2)-process with ¢; = 0.6 and ¢ = —0.28

series <— rnorm(1000) 1
y.st <— filter (series, filter=c(0.6, —0.28), 2

method="'recursive ") 3
ar2.st <— arima(y.st, c(2, 0, 0), include.mean=FALSE, 4

transform. pars=FALSE, method="ML") 5
ar2.st$coef 6
polyroot(c(1l, —ar2.st$coef)) 7
Mod( polyroot(c(1l, —ar2.st$coef))) 8
root.comp <— Im(polyroot(c(l, —ar2.st$coef))) 9

root.real <— Re(polyroot(c(l, —ar2.st$coef))) 10
# Plotting the roots in a unit circle 11
x <— seq(—1, 1, length = 1000) 12
yl <— sqrt(1— x"2) 13
y2 <— —sqrt(l— x"2) 14
plot(c(x, x), c(yl, y2), xlab="Real part', 15
ylab="Complex part', type='l", 16
main="Unit Circle', ylim=c(—-2, 2), xlim=c(-2, 2)) 17
abline (h=0) 18
abline (v=0) 19
points(Re(polyroot(c(l, —ar2.st$coef))), 20
Im(polyroot(c(l, —ar2.st$coef))), pch=19) 21

legend (—1.5, —1.5, legend="Roots of AR(2)", pch=19) 22
Ogz=1+061z+ ...+ 0,2% (1.25)

The expected value of an MA(g)-process is u and hence invariant with respect
to its order. The second-order moments are given as

Y0 =Elly: — )] = 1+ 067 +...+067)0%, (1.26a)
v = E[(Et +bO1ei1+ ...+ Hth_q)
X (5t7q + 916157]'71 + ...+ Hqét,j,q)]. (126b)

Because {e;} are uncorrelated with each other by assumption, Equation (1.26b)
can be simplified to

(1 + 9j+191 + 9j+292 +...+ Hng,j)O'2 forj=1,2,...,q
- (1.27)

0 forj > q.

That is, empirically an MA(g)-process can be detected by its first g significant
autocorrelations and a slowly decaying or alternating pattern of its partial
autocorrelations. For large sample sizes T', a 95% significance band can be

calculated as ) )
P — , 0 + , 1.28
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Fig. 1.5. Unit circle and roots of stable AR(2)-process, ¢1 = 0.6 and ¢2 = —0.28

where o; refers to the jth-order autocorrelation.

It has been shown in Equation (1.10) that a finite AR-process can be
inverted to an infinite MA-process. Before we proceed further, let us first
examine the stability condition of such an MA (co)-process,

oo
ye=p+ Y Ve (1.29)

Jj=0

Now, we ascribe the coefficients for an infinite process as 1 instead of 6,
which was the case for MA (g)-processes. It can be shown that such an infinite
process is covariance stationary if the coefficient sequence {1);} is either square
summable,

D 4 < o0, (1.30)
7=0

or absolute summable,

> Il < oo, (1.31)
J=0
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Fig. 1.6. Time series plot of MA (1)-process, 8 = 0.8

where absolute summability is sufficient for square summability; i.e., the for-
mer implies the latter, but not vice versa.

1.4 ARMA(p, q) Time Series Process

It has been shown in the last two sections how a time series can be explained
either by its history or by contemporaneous and past shocks. Furthermore, the
moments of these data-generating processes have been derived and the mutual
invertibility of these model classes has been stated for parameter sets that
fulfill the stability condition. In this section, these two time series processes
are put together; hence, a more general class of ARMA(p, g)-processes is
investigated.

In practice, it is often cumbersome to detect a pure AR(p)- or MA(q)-
process by the behavior of its empirical autocorrelation and partial autocor-
relation functions because neither one tapers off with increasing lag order.
In these instances, the time series might have been generated by a mixed
autoregressive moving average process.

For a stationary time series {y;}, such a mixed process is defined as
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Ye=c+Prys—1+ ...+ dpYt—p + et +01gi 1+ .. O0geg. (1.32)

By assumption, {y;} is stationary; i.e., the roots of the characteristic polyno-
mial lie outside the unit circle. Hence, with the lag operator, Equation (1.32)
can be transformed to
c Jr1th91L+...Jr0qu
€
l—¢gL—...—¢yLP 1= L—...—p,LP "
= p+P(L)e;. (1.33b)

Yr = (1.33a)

The stated condition of absolute summability for the lag coefficients {¢;} in
Equation (1.31) must hold. Put differently, the stationarity condition depends
only on the AR parameters and not on the moving average ones.

We will now briefly touch on the Box-Jenkins approach for time series
modeling (see Box and Jenkins [1976]). This approach consists of three stages:
identification, estimation, and diagnostic checking. As a first step, the series is
visually inspected for stationarity. If an investigator has doubts that this con-
dition is met, he or she has to suitably transform the series before proceeding.
As we will see in Chapter 3, such transformations could be the removal of a
deterministic trend or taking first differences with respect to time. Further-
more, variance instability such as higher fluctuations as time proceeds can be
coped with by using the logarithmic values of the series instead. By inspecting
of the empirical autocorrelation and partial autocorrelation functions, a ten-
tative ARMA (p, ¢)-model is specified. The next stage is the estimation of a
preliminary model. The employment of the ML principle allows one to discrim-
inate between different model specifications by calculating information criteria
and/or applying likelihood-ratio tests. Hence, one has at hand a second set of
tools to determine an appropriate lag order for ARMA (p, ¢)-models compared
with the order decision that is derived from ACF and PACF. Specifically, the
Akaike [1981], Schwarz [1978], Hannan and Quinn [1979], and Quinn [1980]
information criteria are defined as

AIC(p, q) = In(62) + 2(1’; a9 (1.34)
BIC(p, q) = In(32) + th(;Jr a9 (1.35)
HQ(p,g) = In(?) + MNP (1.36)

where 62 signifies the estimated variance of an ARMA (p, q)-process. The lag
order (p,q) that minimizes the information criteria is then selected. As an
alternative, a likelihood-ratio test can be computed for an unrestricted and a
restricted model. The test statistic is defined as

202(6) — £(0)] ~ x*(m), (1.37)

where £(0) denotes the unrestricted estimate of the log-likelihood and £(0)
the one for the restricted log-likelihood. This test statistic is distributed as x?
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with m degrees of freedom, which corresponds to the number of restrictions.
Next, one should check the model’s stability as well as the significance of
its parameters. If one of these tests fails, the econometrician has to start
anew by specifying a more parsimonious model with respect to the ARMA
order. Now, let us assume that this is not the case. In the last step, diagnostic
checking, he or she should then examine the residuals for uncorrelatedness and
normality and conduct tests for correctness of the model’s order ¢.e., over- and
underfitting. Incidentally, by calculating pseudo ex ante forecasts, the model’s
suitability for prediction can be examined.

As an example, we will apply the Box-Jenkins approach to the unemploy-
ment rate of the United States (see Figure 1.2).5 Because no trending behavior
is visible, we first examine its autocorrelation functions (see command lines
8 and 9 of R code 1.3). The graphs are displayed in Figure 1.7. The autocor-
relation function tapers off, whereas the partial autocorrelation function has
two significant correlations. As a tentative order, an ARMA(2, 0)-model is
specified (see command line 13 of R code 1.3). This model is estimated with
the function arima() contained in the package stats. The values of the esti-
mated AR coefficients are ¢; = 0.9297 and ¢ = —0.2356. Their estimated
standard errors are 0.1079 and 0.1077. Both AR coefficients are significantly
different from zero, and the estimated values satisfy the stability condition.
In the next step, the model’s residuals are retrieved and stored in the object
res20. As in the unemployment series, the residuals can be inspected visu-
ally, as can their autocorrelation functions (ACF) and partial autocorrelation
functions (PACF). Furthermore, the assumption of uncorrelatedness can be
tested with the Ljung-Box Portmanteau test (see Ljung and Box [1978]). This
test is implemented in the Box.test () function of the package stats. Except
for the PACF, these tools are graphically returned by the function tsdiag()
(see Figure 1.8). The null hypothesis of uncorrelatedness up to order 20 can-
not be rejected, given a marginal significance level of 0.3452. The hypothesis
of normally distributed errors can be tested with the Jarque-Bera test for
normality (see Bera and Jarque [1980] and Bera and Jarque [1981]), jar-
que.bera.test(), contained in the contributed CRAN package tseries by
Trapletti and Hornik [2004], or with the Shapiro- Wilk test (see Shapiro and
Wilk [1965] and Shapiro, Wilk and Chen [1968]), shapiro.test (), for exam-
ple. Given a p-value of 0.9501, the normality hypothesis cannot be rejected.
It should be noted that the assumption of normality could be visually in-
spected by a normal quantiles plot (qgqnorm() ). The value of the log-likelihood
is —48.59, and the AIC takes a value of 105.18. The former value can be ob-
tained by applying the logLik method to objects with class attribute Arima,
and the latter is a list element of the returned object. In the next step, an
overparametrized ARMA (3, 0)-model is estimated. It turns out that first the
coefficient for the third lag is not significantly different from zero and that

5 We used the logarithmic values of the unemployment rate because of a changing
variance with respect to time.
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R Code 1.3 Box-Jenkins: U.S. unemployment rate

library (urca) 1
data(npext) 2
y <— ts(na.omit(npext$unemploy), start=1909, end=1988, 3

frequency=1) 4
op <— par(no.readonly=TRUE)

layout (matrix(c(1, 1, 2, 3), 2, 2, byrow=TRUE)) 6
plot(y, ylab="unemployment rate (logarithm)") 7
acf(y, main='Autocorrelations', ylab="'"', ylim=c(-1, 1)) 8
pacf(y, main='Partial Autocorrelations', ylab="'", 9

ylim=c(—-1, 1)) 10
par(op) 11
## tentative ARMA(2,0) 12
arma20 <— arima(y, order=c(2, 0, 0)) 13
[120 <— logLik (arma20) 14
aic20 <— arma20%aic 15
res20 <— residuals(arma20) 16
Box.test(res20, lag = 20, type = "Ljung—Box") 17
shapiro.test(res20) 18
## alternative specifications 19
## ARMA(3,0) 20
arma30 <— arima(y, order=c(3, 0, 0)) 21
1130 <— logLik (arma30) 22
aic30 <— arma30%aic 23
Irtest <— as.numeric(2+(1130 — 1120)) 24
chi.pval <— pchisq(Irtest, df = 1, lower.tail = FALSE) 25
#4# ARMA(1,1) 26
armall <— arima(y, order = c(1, 0, 1)) 27
[111 <— logLik (armall) 28
aicll <— armallS$aic 29
tsdiag(armall) 30
resll <— residuals(armall) 31
Box.test(resll, lag = 20, type = "Ljung—Box") 32
shapiro.test(resll) 33
tsdiag(armall) 34
## Using auto.arima() 35
library (forecast) 36
auto.arima(y, max.p = 3, max.q = 3, start.p = 1, 37

start.q = 1, ic =

second the estimates for the first- and second-order AR-coefficients remain
almost unchanged. However, the value of the log-likelihood is —47.47, and the
AIC is 104.93. Both indicate that an ARMA(3, 0)-model should be favored
compared with the ARMA(2, 0) specification, but the improvement in the
log-likelihood is not significant given a p-value of the likelihood-ratio test of
0.134. Therefore, one would prefer the more parsimonious ARMA (2, 0)-model
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Fig. 1.7. Time series plot, ACF, and PACF of U.S. unemployment rate

over the ARMA (3, 0) specification. As a second alternative, an ARMA(1, 1)-
model is specified. For this model, the values of the log-likelihood (—46.51)
and the AIC (101.01) are more favorable compared with the ARMA(2, 0)
specification. Furthermore, the diagnostic tests do not indicate any misspeci-
fication, and one would now prefer this model on the grounds of a higher value
of the log-likelihood. Incidentally, the same specification is achieved by using
the function auto.arima() contained in the package forecast (see Hyndman
[2007]). Although the model’s fit could be improved by including dummy vari-
ables to take into account the wide swings of the series during the pre-World
War II era, by now we conclude that the U.S. unemployment rate can be well
represented by an ARMA(1, 1)-model.

Once a stable (i.e., covariance-stationary) ARMA(p, ¢)-model has been
estimated, it can be used to predict future values of y;. These forecasts can
be computed recursively from the linear predictor

yr(h) =p1971h—1+ ... + OpUrrn—p+ (1.38)
et +01ee—r_1+ ...+ 0—Tr_g+ ..., (1.39)

where g, = y; for t <T and gry; = yr(j) for j =1,...,h — 1. By employing
the Wold representation of a covariance-stationary ARMA (p, ¢)-process (see
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Equations (1.33a) and (1.33b)), this predictor is equivalent to

yr(h) = 4+ Ynee + Yny160-1 + Yryoci—o + - . (1.40)

It can be shown that this predictor is minimal with respect to the mean
squared error criterion based on the information set Z; (see, for instance,
Judge, Griffiths, Hill, Liitkepohl and Lee [1985, Chapter 7] and Hamilton
[1994, Chapter 4]). Please note that when the forecast horizon h is greater
than the moving average order ¢, the forecasts are determined solely by the
autoregressive terms in Equation (1.38).

In R code 1.4, the estimated ARMA(1, 1)-model is used to obtain forecasts
10 years ahead for the logarithm of the U.S. unemployment rate. Here, the
predict methods for objects with class attribute Arima have been utilized.%
In Figure 1.9, the forecasts and an approximate 95% confidence band are de-
picted. If {e;} is assumed to be standard normally distributed, then it follows
that the h-steps-ahead forecast is distributed as

yt+h|It ~ N (yt+h\t7 0'2(1 + w% + e + wz—l)) 5 (141)

5§ Alternatively, one could have used the function forecast() and its associated
plot method contained in the package forecast.
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R Code 1.4 Box-Jenkins: Predictions of the U.S. unemployment rate

## Forecasts 1
armall.pred <— predict(armall, n.ahead = 10) 2
predict <— ts(c(rep(NA, length(y) — 1), y[length(y)], 3
armall.pred$pred), start = 1909, 4

frequency = 1) 5

upper <— ts(c(rep(NA, length(y) — 1), y[length(y)], 6
armall.pred$pred + 2 * armall.pred$se), 7

start = 1909, frequency = 1) 8

lower <— ts(c(rep(NA, length(y) — 1), y[length(y)]. 9

armall.pred$pred — 2 % armall.pred$se), 10

start = 1909, frequency = 1) 11

observed <— ts(c(y, rep(NA, 10)), start=1909, 12
frequency = 1) 13

## Plot of actual and forecasted values 14
plot (observed , type = "1", 15
ylab = "Actual and predicted values”, xlab = "") 16
lines(predict, col = "blue”, Ity = 2) 17
lines (lower, col = "red”, Ity = 5) 18
lines (upper, col = "red”, Ity = 5) 19
abline(v = 1988, col = "gray”, Ity = 3) 20

where ; for ¢ = 1,...,h — 1 signifies the coefficients from the Wold repre-
sentation of a covariance-stationary ARMA(p, g)-process. The 95% forecast
confidence band can then be computed as

Yeenl T £ 1,96 \Jo2(1+ 92 4+ 02y, (1.42)

Summary

In this first chapter, the definition of a time series and the concept of its data-
generating process have been introduced. You should now be familiar with
how to characterize a time series by its moments and distinguish the different
concepts of stationarity. Two model classes for a time series have been intro-
duced, namely the autoregressive and the moving average models, as well as a
combination thereof. You should be able to detect and distinguish the order of
these models by investigating its autocorrelation and partial auto-correlation
functions. Finally, the Box-Jenkins approach to time series analysis has been
presented. It is decomposed into three stages: specification of a tentative model
order, estimation, and diagnostic checking.

So far, we have restricted the presentation to stationary time series only.
At first sight, this focus might seem to be too myopic given that many time
series cannot be characterized by a stationary process, in particular in macroe-
conomic and financial data sets. Therefore, in Chapter 3, non-stationary time
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Fig. 1.9. Actual and forecasted values of the U.S. unemployment rate

series processes and how they can be transformed to achieve stationarity are
discussed.

Exercises

1.

2.

Derive the second-order moments of an AR(1)-process as in Equation
(1.8).

Generate stable AR(1)-, AR(2)-, and AR(3)-processes with 7' = 1000
for different error variances and plot their autocorrelations and partial
autocorrelations. How could you determine the order of an AR(p)-process
from its sample moments?

Show that the autocovariances j > ¢ of an MA(g)-process are zero.
Generate stable MA(1)-, MA(2)-, and MA(3)-processes with T" = 1000
for different error variances and plot their autocorrelations and partial
autocorrelations. How could you determine the order of an MA(q)-process
from its sample moments?



2

Multivariate Analysis of Stationary Time Series

This is the second chapter that presents models con-
fined to stationary time series, but now in the context of
multivariate analysis. Vector autoregressive models and
structural vector autoregressive models are introduced.
The analytical tools of impulse response functions, fore-
cast error variance decomposition, and Granger causal-
ity, as well as forecasting and diagnostic tests, are out-
lined. As will be shown later, these concepts can be ap-
plied to cointegrated systems, too.

2.1 Overview

Since the critique of Sims [1980] in the early 1980s, VAR analysis has evolved
as a standard instrument in econometrics for analyzing multivariate time se-
ries. Because statistical tests are highly used in determining interdependence
and dynamic relationships between variables, it soon became evident that this
methodology could be enriched by incorporating non-statistical a priori infor-
mation; hence SVAR models evolved that try to bypass these shortcomings.
These kinds of models are considered in Section 2.3. At the same time as
Sims jeopardized the paradigm of multiple structural equation models laid
out by the Cowles Foundation in the 1940s and 1950s, Granger [1981] and
Engle and Granger [1987] endowed econometricians with a powerful tool for
modeling and testing economic relationships, namely the concept of integra-
tion and cointegration. Nowadays these traces of research are unified in the
form of wvector error-correction and structural vector error-correction models.
These topics are deferred to Chapters 4 and 8.

2.2 Vector Autoregressive Models

2.2.1 Specification, Assumptions, and Estimation

In its basic form, a VAR consists of a set of K endogenous variables y; =
(Y1ty -« Ykts - - - Yie) for k =1,... K. The VAR(p)-process is then defined as

yi=A1yi1+ ...+ Apyi—p + CDs + u, (2.1)

where A; are (K x K) coefficient matrices for ¢ = 1,...,p and u; is a K-
dimensional white noise process with time-invariant positive definite covari-
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ance matrix E(upu;) = Xy. The matrix C is the coefficient matrix of poten-
tially deterministic regressors with dimension (K x M), and D, is an (M x 1)
column vector holding the appropriate deterministic regressors, such as a con-
stant, trend, and dummy and/or seasonal dummy variables.

Equation (2.1) is sometimes written in the form of a lag polynomial A(L) =
(Ix — A1 —...—Ap) as

One important characteristic of a VAR(p)-process is its stability. This
means that it generates stationary time series with time-invariant means, vari-
ances, and covariance structure, given sufficient starting values. One can check
this by evaluating the reverse characteristic polynomial,

det(Ig — A1z — ... — ApzP) #0 for |z| < 1. (2.3)

If the solution of the preceding equation has a root for z = 1, then either some
or all variables in the VAR(p)-process are integrated of order one (i.e., I(1)),
a topic of the next chapter.

In practice, the stability of an empirical VAR(p)-process can be analyzed
by considering the companion form and calculating the eigenvalues of the
coefficient matrix (see Liitkepohl [2006] for a detailed derivation). A VAR(p)-
process can be written as a VAR(1)-process as

ft = Aft,1 —+ vy (24)
with
Ay Ay o Ay A, .
Vi I 0--- 0 0 ot
gt: aA: 0 I 0 0 y Vi = . ) (25)
Vepa R |
0O 0--- I O 0

where the dimension of the stacked vectors & and v, is (Kp x 1) and that of
the matrix A is (Kp x Kp). If the moduli of the eigenvalues of A are less than
one, then the VAR(p)-process is stable. For a given sample of the endoge-
nous variables yi,...yr and sufficient presample values y_,41,...,yo, the
coefficients of a VAR(p)-process can be estimated efficiently by least squares
applied separately to each of the equations. If the error process u; is normally
distributed, then this estimator is equal to the maximum likelihood estimator
conditional on the initial values.

It was shown in the previous chapter that a stable AR(p)-process can be
represented as an infinite MA-process (see Equations (1.10a) and (1.10b)).
This result applies likewise to a stable VAR(p)-process. Its Wold moving av-
erage representation is given as

Yt = @()ut + @111,5_1 + ¢2ut_2 + ... (26)
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with @9 = Ik, and the &, matrices can be computed recursively according to
=Y . jA; for s=12,..., (2.7)
j=1

where @9 = I and A; =0 for j > p.

Before considering an artificial data set, one topic should be touched on
first, namely the empirical determination of an appropriate lag order. As in
the univariate AR(p)-models, the lag length can be determined by information
criteria such as those of Akaike [1981], Hannan and Quinn [1979], Quinn
[1980], or Schwarz [1978], or by the final prediction error (see Liitkepohl [2006]
for a detailed exposition of these criteria). These measures are defined as

AIC(p) = log det(X,(p)) + ;pKQ, (2.8a)
HQ(p) = log det(Ea (p)) + 2 1°g(1;g(T)) Pk, (2.8D)
SC(p) = log det(Z, (p)) + k’gT(T) pK2, or (2.8¢)
FPE(p) = (§+§:)Kdet(2u(p)), (2.84)

with Xy (p) = T7! Zthl u.a;, and p* is the total number of parameters in
each equation and p assigns the lag order. It is shown in Liitkepohl [2006]
that In(FPE) and AIC will indicate similar lag orders for moderate and large
sample sizes. The following relations can be further deduced:

p(SC) <=p(AIC) if T >=38, (2.9a)
p(SC) <=p(HQ) forall T, (2.9b)
H(HQ) <= p(AIC) if T >=16. (2.9¢)

These information criteria are implemented in the functions VAR () and VARs-
elect() contained in the package vars.! In the former function, an appropri-
ate VAR(p)-model will be estimated by providing the maximal lag number,
lag.max, and the desired criterion. The calculations are based upon the same
sample size. That is, lag.max values are used as starting values for each of
the estimated models. The result of the function VARselect () is a list object
with elements selection and criteria. The element selection is a vector
of optimal lag length according to the above-mentioned information criteria.
The element criteria is a matrix containing the particular values for each
of these criteria up to the maximal lag order chosen.

! The package vars can be obtained from CRAN, and it is hosted on R-
Forge as project AICTS II; see http://CRAN.r-project.org and http://r-forge.r-
project.org/projects/vars/, respectively.
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Table 2.1. VAR result for y;

Variable Estimate Std. Error  t-value Pr(>|t|)
Lagged levels
y1.11 0.4998 0.0354 14.1003 0Oe + 00
y2.11 0.1551 0.0407  3.8085 2e — 04
yl.12 —0.3291 0.0352 —9.3468 0Oe + 00
y2.12 —0.7550 0.0454 —16.6466 0Oe + 00
Deterministic
const. 5.9196 0.6197  9.5531 0Oe + 00

We will now generate an artificial two-dimensional VAR(2)-process that
obeys the following form:

Y1 5.0 0.5 0.2 Y1 —-0.3 0.7 Y1 (75}
= . (2.10
|:y2:| t |:100:| " |:02 05:| |:y2:| t71+ |:01 03 :| |:y2:| t72+ |:UQ:| t ( )

The process above is simulated in R code 2.1. This is achieved by employing
the function ARMA() and its method simulate(), contained in the package
dsel (see Gilbert [2004], [2000], [1995], and [1993]).% In the first step, the
lag polynomial A(L) as described in Equation (2.2) is created as an array
signified by Apoly. The shape of the variance-covariance matrix of the error
process is an identity matrix stored as object B, and finally the constant term
is assigned as TRD. An ARMA object is created next, and the model is simulated
for a sample size of 500 observations. The resultant series are retrieved from
the list element output and plotted in Figure 2.1. In the next step, the lag
order is empirically determined by utilizing VARselect (). Alternatively, the
VAR(p)-model could have been estimated directly by setting lag.max = 4
and type = "AIC". All criteria indicate a lag order of two. Finally, a VAR(2)
with a constant is estimated with function VAR(), and its roots are checked
for stability by applying the function roots() to the object varsimest. The
function has an argument "modulus" of type logical that returns by default the
moduli of the eigenvalues; otherwise a vector of complex numbers is returned.

The results of the VAR(2) for the variables y; and y, are presented in
Tables 2.1 and 2.2, respectively. As expected, the estimated coefficients are
close to their theoretical values, and all are significantly different from zero.
Finally, the eigenvalues of the companion form are less than one and are
provided in Table 2.3.

2 Please note that this package is part of the bundle dse. As an alternative, a VAR-
process can be simulated with the functions contained in the package mAr, too
(see Barbosa [2007]).
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Fig. 2.1. Time series plot of the simulated VAR(2)-process

Table 2.2. VAR result for ys

Variable Estimate Std. Error  t-value Pr(>|t|)
Lagged levels
y1.11 —0.1499 0.0358 —4.1920 0Oe + 00
y2.11 —0.4740 0.0411 —11.5360 0Oe 4+ 00
y1.12 —0.1184 0.0355 —3.3328 9e — 04
y2.12 0.3006 0.0458  6.5684 0Oe + 00
Deterministic
const. 9.7620 0.6253 15.6124 0Oe + 00

Table 2.3. Eigenvalues of the companion form

1 2 3 4
Eigenvalues 0.8311 0.6121 0.6121 0.6049

27
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R Code 2.1 Simulation of VAR(2)-process

## Simulate VAR(2)—data 1
library (dsel) 2
library (vars) 3
## Setting the lag—polynomial A(L) 4
Apoly  <— array(c(1.0, —-0.5, 0.3, 0,

0.2, 0.1, 0, —-0.2, 6

0.7, 1, 0.5, —-0.3) , 7

c(3, 2, 2)) 8

## Setting Covariance to identity—matrix 9
B <— diag(2) 10
## Setting constant term to 5 and 10 11
TRD <— ¢(5, 10) 12
## Generating the VAR(2) model 13
var2 <— ARMA(A = Apoly, B = B, TREND = TRD) 14
## Simulating 500 observations 15
varsim <— simulate(var2, sampleT = 500, 16
noise = list(w = matrix(rnorm(1000), 17

nrow = 500, ncol = 2)), rng = list(seed = c(123456))) 18
## Obtaining the generated series 19
vardat <— matrix(varsim$output, nrow = 500, ncol = 2) 20
colnames(vardat) <— c("yl”, "y2") 21
## Plotting the series 22
plot.ts(vardat, main = "", xlab = "") 23
## Determining an appropriate lag—order 24
infocrit <— VARselect(vardat, lag.max = 3, 25
type = "const”) 26

## Estimating the model 27
varsimest <— VAR(vardat, p = 2, type = "const”, 28
season = NULL, exogen = NULL) 29

## Alternatively , selection according to AIC 30
varsimest <— VAR(vardat, type = "const”, 31
lag.max = 3, ic = "SC") 32

## Checking the roots 33
roots <— roots(varsimest) 34

2.2.2 Diagnostic Tests

Once a VAR-model has been estimated, it is of pivotal interest to see whether
the residuals obey the model’s assumptions. That is, one should check for the
absence of serial correlation and heteroscedasticity and see if the error pro-
cess is normally distributed. In Section 1.4, these kinds of tests were briefly
introduced, and the versions will now be presented in more detail for the mul-
tivariate case. As a final check, one can conduct structural stability tests; i.e.,
CUSUM, CUSUM-of-squares, and/or fluctuation tests. The latter tests can
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be applied on a per-equation basis, whereas for the former tests multivariate
statistics exist. All tests are made available in the package vars.

For testing the lack of serial correlation in the residuals of a VAR (p)-model,
a Portmanteau test and the LM test proposed by Breusch [1978] and Godfrey
[1978] are most commonly applied. For both tests, small sample modifications
can be calculated, too, where the modification for the LM test was introduced
by Edgerton and Shukur [1999]. The Portmanteau statistic is defined as

h
Qn=TY t(CiCy'C;Ch) (2.11)

Jj=1

with C; = 2L 100, The test statistic has an approximate x*(K2h—n*)
distribution, and n* is the number of coefficients excluding deterministic terms
of a VAR(p)-model. The limiting distribution is only valid for & tending to
infinity at a suitable rate with growing sample size. Hence, the trade-off is
between a decent approximation to the x? distribution and a loss in power of
the test when h is chosen too large. The small-sample properties of the test
statistic

1 _
Qn=T">" S (efler Heollera (2.12)

may be better.
The Breusch-Godfrey LM-statistic is based upon the following auxiliary
regressions:

ﬁt = Alyt—l + ...+ Apyt—p + CDt + Blflt_l + ...+ Bhﬁt—h + &¢. (213)

The null hypothesis is Hy : By = --- = By = 0, and correspondingly the
alternative hypothesis is of the form H; : 3B; # 0 fori =1,2,...,h. The test
statistic is defined as

LM, = T(K —tr(Z5 %)), (2.14)

where Y and X, assign the residual covariance matrix of the restricted and
unrestricted models, respectively. The test statistic LM}, is distributed as
x2(hK?). Edgerton and Shukur [1999] proposed a small-sample correction,
which is defined as

1—(1—R)Y" Nr—gq

IMFv= e

(2.15)

with R?2 = 1—|%.|/|Zgl|, r = (K*m?—4)/(K?>+m?-5))"/%, ¢=1/2Km—1
and N=T - K —m—1/2(K —m + 1), where n is the number of regressors
in the original system and m = Kh. The modified test statistic is distributed
as F(hK? int(Nr — q)).
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These tests are implemented in the function serial.test(). The test
statistics are returned in the list element serial and have class attribute
htest. Per default, the asymptotic Portmanteau test is returned. The ad-
justed version is computed if the type argument is set to "PT.adjusted".
The specifiers for the Breusch and Godfrey and the Edgerton and Shukur
tests are "BG" and "ES", respectively. The residuals are contained in the first
list element. In R code 2.2, the asymptotic Portmanteau test is applied to the
object varsimest.

R Code 2.2 Diagnostic tests of VAR(2)-process

#4# testing serial correlation

1

args(serial.test) 2
## Portmanteau— Test 3
var2c.serial <— serial.test(varsimest, lags.pt = 16, 4
type = "PT.asymptotic”) 5

var2c.serial 6
plot(var2c.serial , names = "yl1") 7
plot(var2c.serial , names = "y2") 8
9

#4# testing heteroscedasticity

args(arch.test)

var2c.arch <— arch.test(varsimest, lags.multi = 5,
multivariate.only = TRUE)

[
S}

[
.

-
S

var2c.arch

## testing for normality

args(normality . test)

var2c.norm <— normality . test(varsimest,
multivariate.only = TRUE)

[ T S
o oA w

-
3

var2c.norm

## class and methods for diganostic tests
class(var2c.serial)

class(var2c.arch)

class(var2c.norm)

methods(class = "varcheck”)

## Plot of objects "varcheck”
args(vars::: plot.varcheck)
plot(var2c.serial , names = "yl")

-
3

[
©

)
=]

¥
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N
N

N
w
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=
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o

)
=

The implemented tests for heteroscedasticity are the univariate and multi-
variate ARCH tests (see Engle [1982], Hamilton [1994], and Liitkepohl [2006]).
The multivariate ARCH-LM test is based on the following regression (the uni-
variate test can be considered a special case of the exhibition below and is
skipped):

vech(dpiy') = By + Brvech(ty—10;_;)+. ..+ Byvech(ty_q0;_,)+ vy, (2.16)
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where v; assigns a spherical error process and vech is the column-stacking
operator for symmetric matrices that stacks the columns from the main diag-
onal on downward. The vech operation is easily applied to a matrix by using
lower.tri(..., diag = TRUE). The dimension of By is 5 K (K + 1), and for
the coefficient matrices B; with i = 1,...,q, yK(K 4+ 1) x 3 K(K + 1). The
null hypothesis is Hy := By = By = ... = By = 0 and the alternative is
Hy:B1 #0NBy#0N...N By #0. The test statistic is defined as

VARCH(q) = ;TK(K +1)R2, (2.17)

with 5

R =1- KK+ 1)tr((2 o), (2.18)
and 2 assigns the covariance matrix of the regression model defined above.
This test statistic is distributed as x?(¢K?(K + 1)2/4). These test statistics
are implemented in the function arch.test () contained in the package vars.
The default is to compute the multivariate test only. If multivariate.only
= FALSE, the univariate tests are computed, too. In this case, the list object
returned from arch.test () has three elements. The first element is the matrix
of residuals. The second, signified by arch.uni, is a list object itself and holds
the univariate test results for each of the series. The multivariate test result
is contained in the third list element, signified by arch.mul. In R code 2.2,
these tests are applied to the object varsimest.

The Jarque-Bera normality tests for univariate and multivariate series are
implemented and applied to the residuals of a VAR(p) as well as separate tests
for multivariate skewness and kurtosis (see Bera and Jarque [1980], [1981],
Jarque and Bera [1987], and Liitkepohl [2006]). The univariate versions of the
Jarque-Bera test are applied to the residuals of each equation. A multivariate
version of this test can be computed by using the residuals that are standard-
ized by a Choleski decomposition of the variance-covariance matrix for the
centered residuals. Please note that in this case the test result is dependent
upon the ordering of the variables. The test statistics for the multivariate case
are defined as

JBpy = 55 4 53, (2.19)

where s2 and s?2 are computed according to
52 = Tb)b,/6, (2.20a)
52 =T(by — 3x) (by — 34)/24, (2.20b)

and by and by are the third and fourth non-central moment vectors of the
standardized residuals @ = P~ ({1, — ;) and P is a lower triangular matrix
with positive diagonal such that PP’ = Xy; i.e., the Choleski decomposition
of the residual covariance matrix. The test statistic JB,,, is distributed as
x?(2K) and the multivariate skewness, s3, and kurtosis test, s, are distributed

as Y2 (K).
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These tests are implemented in the function normality.test () contained
in the package vars. Please note that the default is to compute the multivari-
ate tests only. To obtain the test statistics for the single residual series, the
argument multivariate.only has to be set to FALSE. The list elements of
this function returned are jb.uni and jb.mul, which consist of objects with
class attribute htest as for the previously introduced tests.

The three former functions return a list object with class attribute varcheck
for which plot and print methods exist. The plots — one for each equation
— include a residual plot, an empirical distribution plot, and the ACF and
PACF of the residuals and their squares. The plot method offers additional
arguments for adjusting its appearance. The residual plots as returned by
plot(var2c.norm), for instance, are provided in Figures 2.2 and 2.3 for y;
and yo, respectively. The results of the diagnostic tests are shown in Table 2.4.

Residuals of y1 Histogram and EDF
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Fig. 2.2. Diagnostic residual plot for y1 of VAR(2)-process

As expected for the simulated VAR(2)-process, none of the test outcomes in-
dicate any deviations from a spherical error process.

Finally, structural stability can be tested by investigating the empirical
fluctuation process. A detailed exposition of generalized fluctuation tests can
be found for instance in Zeileis, Leisch, Hornik and Kleiber [2005] and Kuan
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Residuals of y2 Histogram and EDF
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Fig. 2.3. Diagnostic residual plot for y2 of VAR(2)-process

Table 2.4. Diagnostic tests of VAR(2)

Test Statistic D.F. p-value

Portmanteau 52.44 56 0.61
ARCH VAR 32.58 45 0.92

JB VAR 0.54 4 0.97
Kurtosis 0.42 2 0.81
Skewness 0.12 2 0.94

and Hornik [1995]. Tests such as CUSUM, CUSUM-of-squares, MOSUM, and
the fluctuation test are implemented in the function efp() contained in the
package strucchange. The structural tests implemented in the package struc-
change are explained in its vignette. The function stability () in the package
vars is a wrapper function to efp(). The desired test is then applied to each
of the equations in a VAR(p)-model. These kinds of tests are exhibited in R
code 2.3, and their graphical results are depicted in Figures 2.4 and 2.5. In
the code, an OLS-CUSUM and a fluctuation test have been applied to the
simulated VAR/(2)-process. In order to save space, only the test outcome for
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y1 (OLS-CUSUM test) and similarly the outcome for yo (fluctuation test) are
shown. As expected, neither test indicates structural instability.

R Code 2.3 Empirical fluctuation processes

reccusum <— stability (varsimest,
type = "OLS—CUSUM™)

fluctuation <— stability (varsimest,
type = "fluctuation™)

[ SR

1.0

0.5

Empirical fluctuation process
-0.5 0.0
|

-1.0

Time

Fig. 2.4. OLS-CUSUM test for y1 of VAR(2)-process

2.2.3 Causality Analysis

Often researchers are interested in the detection of causalities between vari-
ables. The most common one is the Granger causality test (see Granger
[1969]). Incidentally, this test is not suited for testing causal relationships
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Fig. 2.5. Fluctuation test for y» of VAR(2)-process

in the strict sense because the possibility of a post hoc ergo propter hoc fallacy
cannot be excluded. This is true for any “causality test” in econometrics. It
is therefore common practice to say that variable x granger-causes variable
y if variable x helps to predict variable y. Aside from this test, a Wald-type
instantaneous causality test can be used, too. It is characterized by testing
for non-zero correlation between the error processes of the cause and effect
variables (see Liitkepohl [2006]).

For both tests, the vector of endogenous variables y; is split into two sub-
vectors y1; and yo; with dimensions (K7 x 1) and (K3 x 1) with K = K7+ K».
For the rewritten VAR(p),

[}’u} _ zp: |:all,i a12,i:| [}’mz] +CD, + [uu} 7 (2.21)
Yot 7 (@210 Q22,0 ] Y2, U
the null hypothesis that the sub-vector y;; does not Granger-cause yg; is
defined as a21; = 0 for i = 1,2,...,p. The alternative is Jao;,; # 0 for
i=1,2,...,p. The test statistic is distributed as F(pK; Ko, KT —n*), with
n* equal to the total number of parameters in the VAR(p)-process above,
including deterministic regressors. The null hypothesis for non-instantaneous
causality is defined as Hy : Co = 0, where C is an (N x K(K + 1)/2) matrix
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Table 2.5. Causality tests

Test Statistic p-value

Granger 250.07  0.00
Instant 0.00 0.99

of rank N selecting the relevant covariances of uy, and ug; & = vech(2,).
The Wald statistic is defined as

A\w =T C'[20D% (5, ® £,)Df ')~ C4, (2.22)

where the Moore-Penrose inverse of the duplication matrix Dg is assigned
by D;g and ¥, = %EtT:lﬁtﬁ;. The duplication matrix Dg has dimension
(K? x JK(K 4 1)) and is defined such that, for any symmetric (K x K)
matrix A, vec(A) = Diwvech(A) holds. The test statistic Ay is asymptotically
distributed as x2(N).

Both tests are implemented in the function causality() contained in the
package vars. The function has two arguments. The first argument, x, is an
object of class varest, and the second, cause, is a character vector of the
variable names, which are assumed to be causal to the remaining variables
in a VAR(p)-process. If this argument is unset, then the variable in the first
column of x$y is used as the cause variable and a warning is printed. In R
code 2.4, this function is applied to the simulated VAR(2)-process. The results
are provided in Table 2.5. Clearly, the null hypothesis of no Granger causality
has to be dismissed, whereas the hypothesis of no instantaneous causality
cannot be rejected.

R Code 2.4 Causality analysis of VAR(2)-process

## Causality tests 1
## Granger and instantaneous causality 2
var.causal <— causality(varsimest, cause = "y2") 3

2.2.4 Forecasting

Once a VAR-model has been estimated and passes the diagnostic tests, it can
be used for forecasting. Indeed, one of the primary purposes of VAR analy-
sis is the detection of the dynamic interaction between the variables included
in a VAR(p)-model. Aside from forecasts, other tools for investigating these
relationships are impulse response analysis and forecast error variance decom-
position, which will be covered in Subsections 2.2.5 and 2.2.6, respectively.
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For a given empirical VAR, forecasts can be calculated recursively accord-
ing to

Yranr = A1Yrh—1r + -+ ApYrspn—pr + CD71ipr (2.23)
for h =1,2,...,n. The forecast error covariance matrix is given as
[ I 0 0]
yT+1 — YT+1|T @1 I 0
Cov : = (Zu®Ip)

' : -0
YT+h — YT+h|T éh—l ®h—2 T

[ I 0 0]’
L2 I 0

: ol

_@h,1 @h,Q I_

and the matrices @; are the coefficient matrices of the Wold moving average
representation of a stable VAR(p)-process. Forecast confidence bands can then
be calculated as

[yk-,T+h|T - Cl—’y/QUk(h)a Yk, T+h|T T Cl—’y/QO—k(h)]a (2.24)

where ¢,_., /5 signifies the (1 — 7 ) percentage point of the normal distribution
and oy (h) is the standard deviation of the kth variable h steps ahead.

In the package vars, forecasting of VAR-processes is accomplished by a
predict method for objects with class attribute varest. Besides the function’s
arguments for the varest object and the n.ahead forecast steps, a value for
the forecast confidence interval can be provided, too. Its default value is 0.95.
The predict method returns a list object of class varprd with three elements.
The first element, fcst, is a list of matrices containing the predicted values,
the lower and upper bounds according to the chosen confidence interval, ci,
and its size. The second element, endog, is a matrix object containing the
endogenous variables, and the third is the submitted varest object. A plot
method for objects of class varprd exists as well as a fanchart() function
for plotting fan charts as described in Britton, Fisher and Whitley [1998].

In R code 2.5, the predict method is applied to the empirical simulated
VAR-process. The fanchart() function has colors and cis arguments, al-
lowing the user to input vectors of colors and critical values. If these arguments
are left NULL, then as defaults a gray color scheme is used and the critical val-
ues are set from 0.1 to 0.9 with a step size of 0.1. The predictions for y; are
shown in Figure 2.6, and the fan chart for variable s is depicted in Figure 2.7.

2.2.5 Impulse Response Functions

In Subsection 2.2.3, two causality tests were introduced, that are quite useful
to infer whether a variable helps predict another one. However, this analysis
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R Code 2.5 Forecasts of VAR-process

## Forecasting objects of class varest

1

args(vars::: predict.varest) 2
predictions <— predict(varsimest, n.ahead = 25, 3
ci = 0.95) )

class(predictions) 5
args(vars::: plot.varprd) 6
## Plot of predictions for yl 7
plot(predictions , names = "yl1") 8
## Fanchart for y2 9
args(fanchart) 10
fanchart(predictions , names = "y2") 1

Forecast of series y1

10

-2

0 100 200 300 400 500

Fig. 2.6. Forecasting y1 of VAR(2)-process

falls short of quantifying the impact of the impulse variable on the response
variable over time. The impulse response analysis is used to investigate these
kinds of dynamic interactions between the endogenous variables and is based
upon the Wold moving average representation of a VAR (p)-process (see Equa-
tions (2.6) and (2.7)). The (4, j)th coefficients of the matrices @ are thereby
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Fanchart for variable y2
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Fig. 2.7. Fanchart of y2 of VAR(2)-process

interpreted as the expected response of variable y; ;+s to a unit change in
variable y;;. These effects can be cumulated through time s = 1,2,..., and
hence one would obtain the cumulated impact of a unit change in variable j
on the variable 7 at time s. Rather than these impulse response coefficients,
it is often conceivable to use orthogonal impulse responses as an alternative.
This is the case if the underlying shocks are less likely to occur in isolation
but rather contemporaneous correlation between the components of the error
process u; exists; i.e., the off-diagonal elements of X, are non-zero. The or-
thogonal impulse responses are derived from a Choleski decomposition of the
error variance-covariance matrix X, = PP’ with P being lower triangular.
The moving average representation can then be transformed to

yi =Yoer +V1gi 1+ ..., (2.25)

with &, = P~'u; and ¥; = &;P for i = 0,1,2,... and ¥y = P. Incidentally,
because the matrix P is lower triangular, it follows that only a shock in the
first variable of a VAR (p)-process exerts an influence on all the remaining ones
and that the second and following variables cannot have a direct impact on
y1¢- Hence, a certain structure of the error terms is implicitly imposed. One
should bear this in mind when orthogonal impulse responses are employed.
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Please note further that a different ordering of the variables might produce
different outcomes with respect to the impulse responses. As we shall see in
Section 2.3, the non-uniqueness of the impulse responses can be circumvented
by analyzing a set of endogenous variables in the SVAR, framework.

The function for conducting impulse response analysis is irf (), contained
in the package vars. It is a method for objects with class attribute varest.
The impulse variables are set as a character vector impulse, and the responses
are provided likewise in the argument response. If either one is unset, then
all variables are considered as impulses or responses, respectively. The default
length of the impulse responses is set to 10 via argument n.ahead. The com-
putation of orthogonal and/or cumulated impulse responses is controlled by
the logical switches ortho and cumulative, respectively. Finally, confidence
bands can be returned by setting boot = TRUE (default). The pre-set values
are to run 100 replications and return 95% confidence bands. It is at the user’s
leisure to specify a seed for replicable results. The standard percentile inter-
val is calculated as CI, = [82/2,8?177)/2], where 52/2 and S?l—w/z are the
~v/2 and (1 — v)/2 quantiles of the estimated bootstrapped impulse response
coefficients &* or ¥* (see Efron and Tibshirani [1993]). The function irf ()
returns an object with class attribute varirf for which a plot and a print
method exist.

In R code 2.6, an impulse response analysis is conducted for the simulated
VAR(2)-process. For clarity, the impulse responses of y; to y2 and vice versa
have been split into two separate command lines. The results are shown in
Figures 2.8 and 2.9, respectively.

R Code 2.6 IRA of VAR-process

## Impulse response analysis

1

irf.yl <— irf(varsimest, impulse = "y1", 2
response = "y2", n.ahead = 10, 3

ortho = FALSE, cumulative = FALSE, 4

boot = FALSE, seed = 12345) 5
args(vars:::plot.varirf) 6
plot(irf.yl) 7
irf.y2 <— irf(varsimest, impulse = "y2", 8
response = "yl", n.ahead = 10, 9

[
S}

ortho = TRUE, cumulative = TRUE,
boot = FALSE, seed = 12345)

-
.

plot(irf.y2)

-
S
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Impulse Response from y1
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Fig. 2.8. Impulse responses of y1 to y2

2.2.6 Forecast Error Variance Decomposition

The forecast error variance decomposition (FEVD) is based upon the orthogo-
nal impulse response coefficient matrices ¥, (see Subsection 2.2.4). The FEVD
allows the user to analyze the contribution of variable j to the h-step fore-
cast error variance of variable k. If the element-wise squared orthogonal im-
pulse responses are divided by the variance of the forecast error variance,
o2(h), the result is a percentage figure. Formally, the forecast error variance
for yr,74n — Y, ryn|r is defined as

h—1
Ulz(h) = Z(wlzl,n .o+ wiK,n)a (2'26)
n=0
which can be written as
K
oi(h) = Z(wij,o .o+ ﬁ’ij,h—ﬂ- (2.27)
j=1

Dividing the term (1/),%10 + ..+ wijﬁ_l) by o2(h) yields the forecast error
variance decompositions in percentage terms:
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Orthogonal Impulse Response from y2 (cumulative)

1/

y1

Fig. 2.9. Impulse responses of y2 to y1

wij(h) = (7/1133‘,0 t.o Tt wij,h—l)/alz(h)'

(2.28)

The fevd method in the package vars is available for conducting FEVD.
The argument n.ahead sets the number of forecasting steps; it has a default
value of 10. In R code 2.7, an FEVD is applied to the simulated VAR(2)-

process, and its graphical output is presented in Figure 2.10.

R Code 2.7 FEVD of VAR-process

## Forecast error variance decomposition
fevd .var2 <— fevd(varsimest, n.ahead = 10)
args(vars::: plot.varfevd)

plot(fevd.var2, addbars = 2)

S
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Fig. 2.10. FEVD for VAR(2)-process

2.3 Structural Vector Autoregressive Models

2.3.1 Specification and Assumptions

Recall from Subsection 2.2.1 the definition of a VAR(p)-process, in particular
Equation (2.1). A VAR(p) can be interpreted as a reduced-form model. An
SVAR model is its structural form and is defined as

Ays = Alyi1 + ...+ Ay + Bey. (2.29)

For a textbook exposition of SVAR-models, see Amisano and Giannini [1997].
It is assumed that the structural errors, €;, are white noise and the coefficient
matrices A} for ¢ = 1,...,p, are structural coeflicients that will differ from
their reduced-form counterparts if A # I. To see this, consider the resulting
equation by left-multiplying Equation (2.29) with the inverse of A:

yi = AilATytfl + ...+ AilA;yt,p + AilBEt, (2 30)
ye=A1yi1+ ...+ Ayi—p +us.

An SVAR-model can be used to identify shocks and trace these out by em-
ploying IRA and/or FEVD through imposing restrictions on the matrices A
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and/or B. Incidentally, though an SVAR-~model is a structural model, it de-
parts from a reduced-form VAR(p)-model and only restrictions for A and B
can be added. It should be noted that the reduced-form residuals can be re-
trieved from an SVAR-model by u; = A~ !Be; and its variance-covariance
matrix by Xy = A~'BB’ A~V

Depending on the restrictions imposed, three types of SVAR-models can
be distinguished:

e A-model: B is set to I'x (minimum number of restrictions for identification
is K(K—1)/2).

e B-model: A is set to I (minimum number of restrictions to be imposed
for identification is the same as for A-model).

e AB-model: restrictions can be placed on both matrices (minimum number
of restrictions for identification is K2 + K (K — 1)/2).

2.3.2 Estimation

Depending on the SVAR type, the estimation is similar to the estimation of
a simultaneous multiple-equation model with covariance restrictions on the
error terms. In practice, the maximum-likelihood principle is applied to the
concentrated log-likelihood, which is given as

T T .
5 In|B?| — Qtr(A’B’_lB_lAEu), (2.31)

T
InL.(A, B) = const + 5 In|A?| -
where %, signifies the estimated residual covariance matrix of the VAR(p)-

model. The negative of Equation (2.31) is minimized subject to the imposed
restrictions on A and B, which can be compactly written as

vecA Ra 0] [va A
] = [ ] [+ 5] e
Two approaches for numerically estimating the unknown coefficients are
implemented within the R package vars. The first method applies the optim()
function for direct minimization of the negative log-likelihood, whereas the
second method makes use of the scoring algorithm proposed by Amisano and
Giannini [1997]. Either method is selected by providing "direct" or "scor-
ing" as the value for the argument estmethod in the function SVAR(). In
addition, the first argument in a call to SVAR() must be an object of class
varest. Whether an A-, B-, or AB-model will be estimated is dependent on
the setting for Amat and Bmat. If a restriction matrix for Amat with dimen-
sion (K x K) is provided and the argument Bmat is left NULL, an A-model is
estimated. In this case, Bmat is set to an identity matrix Ix. Alternatively, if
only a matrix object for Bmat is provided and Amat is left unchanged, then a
B-model will be estimated and internally Amat is set to an identity matrix I .
Finally, if matrix objects for both arguments are provided, then an AB-model
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will be estimated. In all cases, the matrix elements to be estimated are marked
by NA entries at the relevant positions. Depending on the chosen model, the
list elements A, Ase, B, Bse contain the estimated coefficient matrices with
the numerical standard errors, if applicable. In case estmethod = "direct",
the standard errors are returned only if SVAR() has been called with hessian
= TRUE. The returned list element Sigma.U is the variance-covariance matrix
of the reduced-form residuals times 100; i.e., ¥y = A~'BB’ A~ x 100. Please
note that this estimated variance-covariance matrix only corresponds to the
reduced-form counterpart if the SVAR-model is exactly identified. The valid-
ity of the overidentifying restrictions can be tested with an LR test defined
as

LR=T(n |, —1n|2,]), (2.33)

where ¥, is the implied variance-covariance matrix of the SVAR and >
signifies the reduced-form counterpart. The statistic is distributed as x? with
degrees of freedom equal to the number of overidentifying restrictions. This
test statistic is returned as list element LR with class attribute htest. The
element opt is the object returned from function optim(). The remaining
four list items are the vector of starting values, the SVAR-model type, the
varest object, and the call to SVARQ).

In R code 2.8, the function SVAR() is applied to a generated A-model of
the form

L —07) [m] _[05 02][wm]  [-03-0.7] [u
0.8 1 |l[y2], [-02-05] |yp), , " [-01 03] |2), ,

<2l

€2 t

In the call to SVAR(), the argument hessian = TRUE has been used, which

is passed to optim(). Hence, the empirical standard errors are returned in

the list element Ase of the object svar.A. The result is shown in Table 2.6.

The coefficients are close to their theoretical counterparts and statistically

significant different from zero. As expected, the likelihood-ratio statistic for
overidentification does not indicate the rejection of the null.

(2.34)

Table 2.6. SVAR A-model: estimated coefficients

Variable Y1 Y2

Y1 1.0000 —0.6975

(—13.67)

Y2 0.8571 1.0000
(14.96)

Note: t statistics in parentheses.
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R Code 2.8 SVAR: A-model

library (dsel) 1
library (vars) 2
## A—model 3
Apoly  <— array(c(1.0, —-0.5, 0.3, 0.8, 4
0.2, 0.1, -0.7, —-0.2, 5
0.7, 1, 0.5, —-0.3) , 6

c(3, 2, 2)) 7

## Setting covariance to identity—matrix 8
B <— diag(2) 9

## Generating the VAR(2) model 10
svarA  <— ARMA(A = Apoly, B = B) 11
## Simulating 500 observations 12
svarsim <— simulate (svarA, sampleT = 500, 13
rng = list (seed = c(123456))) 14

## Obtaining the generated series 15
svardat <— matrix(svarsim$output, nrow = 500, ncol = 2) 16
colnames(svardat) <— c("yl", "y2") 17
## Estimating the VAR 18
varest <— VAR(svardat, p = 2, type = "none") 19
## Setting up matrices for A-model 20
Amat <— diag(2) 21
Amat[2, 1] <— NA 22
Amat[l, 2] <— NA 23
## Estimating the SVAR A-type by direct maximisation 24
## of the log—Ilikelihood 25
args (SVAR) 26
svar .A <— SVAR(varest, estmethod = "direct"”, 27
Amat = Amat, hessian = TRUE) 28

A B-type SVAR is first simulated and then estimated with the alternative
method estmethod = "scoring" inR code 2.9. The scoring algorithm is based
upon the updating equation

D) s(m]) ew

where £ signifies the step length, Z is the information matrix for the unknown
coefficients contained in 44 and 4p, and S is the scoring vector. The iteration
step is assigned by 1.

The covariance for the error terms has been set to —0.8. The values of the
coefficient matrices A; for ¢ = 1,2 are the same as in the previous example.
The result is provided in Table 2.7.

In addition to an object with class attribute varest, the other arguments
of SVAR() if estmethod = "scoring" are max.iter for defining the maximal
number of iterations, conv. crit for providing a value for defining convergence,
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R Code 2.9 SVAR: B-model

library (dsel)
library (vars)
## B—model

Apoly  <— array(c(1.0, —-0.5, 0.3, 0,
0.2, 0.1, 0, —-0.2,
0.7, 1, 0.5, —0.3) ,
c(3, 2, 2)

## Setting covariance to identity—matrix
B <— diag(2)

B[2, 1] <- —0.8

## Generating the VAR(2) model

svarB  <— ARMA(A = Apoly, B = B)

## Simulating 500 observations

svarsim <— simulate (svarB, sampleT = 500,

rng = list (seed = c(123456)))
svardat <— matrix(svarsim$output, nrow = 500, ncol = 2)
colnames(svardat) <— c("yl", "y2")
varest <— VAR(svardat, p = 2, type = "none")

## Estimating the SVAR B-type by scoring algorithm
## Setting up the restriction matrix and vector
## for B-model
Bmat <— diag(2)
Bmat[2, 1] <— NA
svar .B <— SVAR(varest, estmethod = "scoring",

Bmat = Bmat, max.iter = 200)

Table 2.7. SVAR B-model: estimated coefficients

Variable Y1 Y2

Y1 1.0000 0.0000

Y2 —0.8439 1.0000
(—18.83)

Note: t statistics in parentheses.
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and maxls for determining the maximal step length. As in the estimation
method direct, the alternative method returns an object with class attribute
svarest. For objects of this class, methods for computing impulse responses
and forecast error variance decomposition exist. These methods will be the

subjects of the following two subsections.

2.3.3 Impulse Response Functions

Just as impulse response analysis can be conducted for objects with class
attribute varest, it can also be done for objects with class attribute svarest
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(see Subsection 2.2.5 on page 37 following). In fact, the irf methods for classes
varest and svarest are at hand with the same set of arguments, except ortho
is missing for objects of class svarest due to the nature and interpretation of
the error terms in an SVAR. The impulse response coefficients for an SVAR
are calculated as ©; = $;A"'B fori=1,...,n.

In R code 2.10, IRA is exhibited for the estimated A-type SVAR from the
previous section. The impulses from y1 to y2 are calculated. In program line
3, the method is applied to the object svar.A. In line 6, these orthogonal
impulse responses are plotted. The result is provided in Figure 2.11.

R Code 2.10 SVAR: Impulse response analysis

## Impulse response analysis of SVAR A-type model

1

args(vars:::irf.svarest) 2
irf.svara <— irf(svar.A, impulse = "y1", 3
response = "y2", boot = FALSE) 4
args(vars:::plot.varirf) 5
plot(irf.svara) 6

2.3.4 Forecast Error Variance Decomposition

A forecast error variance decomposition can be applied to objects of class
svarest. Here the forecast errors of y7, 1 are derived from the impulse re-
sponses of an SVAR, and the derivation for the forecast error variance decom-
position is similar to the one outlined for the VAR-model (see Subsection 2.2.6
on page 41 following).

R Code 2.11 SVAR: Forecast error variance decomposition

## FEVD analysis of SVAR B-type model

1
args(vars :::fevd.svarest) 2
fevd .svarb <— fevd(svar.B, n.ahead = 5) 3
class(fevd.svarb) 4
methods(class = "varfevd") 5
plot(fevd.svarb) 6

An application for the SVAR B-model is provided in R code 2.11. As for
the FEVD for VAR-models, print and plot methods exist for SVAR-models.
The outcome of the FEVD for the variable y2 is provided in Table 2.8.
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SVAR Impulse Response from y1
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Fig. 2.11. IRA from y; to y2 of SVAR A-model
Table 2.8. SVAR B-model: FEVD for y2
Period Y1 Y2
1 0.4160 0.5840
2 0.4021 0.5979
3 0.4385 0.5615
4 0.4342 0.5658
5 0.4350 0.5650
Summary

In this chapter, the analysis of stationary time series has been extended to
multivariate models and their associated statistical tests and methods. In
particular, VAR~ and SVAR-models have been introduced, where the former
can be interpreted as the reduced-form counterparts of SVAR-models. Both
model classes have been illustrated by artificial data sets.

It has been outlined how a suitable lag length can be empirically deter-
mined and what kind of diagnostic tests are at hand for checking the assump-
tions about the multivariate error process. The different concepts of causality
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analysis and forecasting with VAR-models have been shown. For investigat-
ing the dynamic interactions between variables, the impulse response functions
and forecast error variance decomposition have been introduced. These tools
are implemented as methods for VAR~ and SVAR-models alike. The results
can be obtained and plotted swiftly with the functions included in package
vars. An overview of the package’s structure is presented in Table 2.9.

Exercises

1. Set up a three-dimensional VAR(2) model where the third variable does

not Granger-cause the first variable.
2. Simulate 250 observations of your model from Exercise 1.

3. Estimate a VAR(2)-model with the simulated data from Exercise 2 and

check its stability.
4. Conduct the diagnostic tests outlined in Subsection 2.2.2.

5. Perform Granger-causality tests for y3, Granger-causing yo and y;.
6. Calculate the impulse response functions (orthogonal and non-orthogonal)

and forecast error variance decomposition for ys.

Table 2.9. Overview of package vars

function or method class

VAR

SVAR
SVEC

vec2var

fevd

irf
predict
summary

arch.test
normality.test
serial.test
stability

varest

svarest
svecest

vec2var

varfevd
varirf
varprd
varsum,
svarsum,
svecsum
varcheck
varcheck
varcheck
varstabil

methods for class

coef, fevd, fitted, irf, logLik,
Phi, plot, predict, print, Psi,
resid, summary

fevd, irf, loglLik, Phi, print,
summary

fevd, irf, logLik, Phi, print,
summary

fevd, fitted, irf, logLik, Phi,
predict, print, Psi, resid

plot, print
plot, print
plot, print
print

plot, print
plot, print
plot, print
plot, print

functions for class

Acoef, arch.test,
Beoef, BQ, causality,
normality.test,
restrict, roots,
serial.test, stability

arch.test,

normality.test,

serial.test

fanchart



2.3 Structural Vector Autoregressive Models 51

7. Set up an SVAR-model of type AB with three variables and two lags,
which are just identified and overidentified, respectively.

8. Simulate 250 observations of your model from Exercise 7 and estimate it
with function SVAR2.

9. Perform impulse response analysis and forecast error variance decomposi-
tion of your estimated SVAR AB-model.
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Non-stationary Time Series

In this chapter, models for non-stationary time series
are introduced. Before the characteristics of unit pro-
cesses are presented, the differences between trend- and
difference-stationary models are outlined. In the last
section, long-memory processes (i.e., fractionally inte-
grated processes) are presented as a bridge between sta-
tionary and unit root processes.

3.1 Trend- versus Difference-Stationary Series

In the first chapter, a model class for univariate, stationary time series was in-
troduced. For instance, it has been shown that a stable autoregressive process
(AR(p)) can be inverted to an infinite moving average process with a constant
mean. However, most macroeconomic time series seem not to adhere to such
a data-generating process (see Figure 1.1). In this section, we will consider a
more encompassing data-generating process that was presented by Campbell
and Perron [1991].

Now, it is assumed that a time series {y;} is a realization of a deterministic
trend and a stochastic component,

Yt :TDt—I—zt, (31)

where T D, assigns a deterministic trend, T'D; = 31+ (2t, and z; represents the
stochastic component ¢(L)z; = 8(L)e; with &, ~ i.i.d.; i.e., an autoregressive
moving average process. We distinguish two cases. First, if all roots of the
autoregressive polynomial lie outside the unit circle (see Equation (1.14)),
then {y.} is stationary around a deterministic trend. In this instance, one
could remove the trend from the original series {y:} and fit an ARMA(p, q)
to the residuals.?

This trend-stationary model is also termed an integrated model of order
zero, or more compactly, the 7(0)-model. Second, assume now that one root
of the autoregressive polynomial lies on the unit circle and the remaining
ones are all outside. Here, Az; = (1 — L)z, is stationary around a constant
mean. The series {y;:} is difference-stationary because one has to apply the
first difference filter with respect to time to obtain a stationary process. As in

1 A deterministic trend is most easily subtracted from a series (i.e., a vector y) by
issuing the following command: detrended <- residuals(lm(y ~ seq(along =

y»).
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the trend-stationary model, this difference-stationary model is referred to as
an integrated model of order one, or the I(1)-model for short. The meaning
of “integrated” should now be obvious: Once the series has been differenced
to obtain a stationary process, it must be integrated once (i.e., the reversal)
to achieve the original series, hence the I(1)-model. An ARMA (p, ¢)-model
could then be fitted to the differenced series. This model class is termed the
autoregressive integrated moving average (ARIMA)(p, d, q), where d refers
to the order of integration; i.e., how many times the original series must be
differenced until a stationary one is obtained. It should be noted that unit
roots (i.e., roots of the autoregressive polynomial that lie on the unit circle)
refer solely to the stochastic component in Equation (3.1).

The distinction between a trend- and a difference-stationary process is
illustrated by the two processes

Yt = Ye—1 + 1 = yo + pt, (3.2a)
t
Yo =Yi—1+ & =Yo + Z&, (3.2b)
s=1

where 1 is a fixed constant and e, is a white noise process. In Equation (3.2a),
{y+} is represented by a deterministic trend, whereas in Equation (3.2b) the
series is explained by its cumulated shocks (i.e., a stochastic trend).

So far, the stochastic component z; has been modeled as an ARIMA(p,
d, g)-model. To foster the understanding of unit roots, we will decompose
the stochastic component into a cyclical component ¢; and a stochastic trend
TS;. It is assumed that the cyclical component is a mean-stationary pro-
cess, whereas all random shocks are captured by the stochastic component.
Now, the data-generating process for {y;} is decomposed into a deterministic
trend, a stochastic trend, and a cyclical component. For the trend-stationary
model, the stochastic trend is zero and the cyclical component is equal to
the ARMA(p, q)-model: ¢(L)z; = 6(I)e;. In the case of a difference-stationary
model, the autoregressive polynomial contains a unit root that can be factored
out, (L) = (1—L)¢p*(L), where the roots of the polynomial ¢*(L) are outside
the unit circle. It is then possible to express Az; as a moving average process
(for comparison, see Equations (1.33a) and (1.33b)):

¢"(L)Az = O(L)ey, (3-3a)
Az = ¢ (L)O(L)e, (3.3b)
AZt = ’l/)(L)Et (330)

Beveridge and Nelson [1981] have shown that Equation (3.3¢c) can be trans-
formed to
Zt = TSt +cp = ’I/J(].)St + 'll)*(L)gt, (34)

where the sum of the moving average coefficients is denoted by (1), S; is
the sum of the past and present random shocks, Zizl €s, and the polynomial
*(L) is equal to (1 — L)~ 1[sp(L) —1(1)] (Beveridge-Nelson decomposition).
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The time series {y;} is now explained by a trend function that consists of a
deterministic trend as well as a stochastic component, namely T'Sy = ¢(1).S;.
The latter affects the absolute term in each period. Because the stochastic
trend is defined as the sum of the moving average coefficients of Az, it can
be interpreted as the long-run impact of a shock to the level of z;. In contrast,
the cyclical component, ¢; = ¥*(L)e;, exerts no long-run impact on the level
of z;. Now, we can distinguish the following four cases: (1) 1(1) > 1: the long-
run impact of the shocks is greater than for the intermediate ones, and hence
the series is characterized by an explosive path; (2) ¥(1) < 1: the impact of
the shocks diminishes as time passes; (3) (1) = 0: the time series {y;} is a
trend-stationary process; and (4) ¥(1) = 1: the data-generating process is a
random walk. The fourth case will be a subject in the next section.

3.2 Unit Root Processes

As stated in the last section, if the sum of the moving average coefficients (1)
equals one, a random walk process results. This data-generating process has
attracted much interest in the empirical literature, in particular in the field
of financial econometrics. Hence, a random walk is not only a prototype for a
unit root process but is implied by economic and financial hypotheses as well
(i.e., the efficient market hypothesis). Therefore, we will begin this section by
analyzing random walk processes in more detail before statistical tests and
strategies for detecting unit roots are presented.
A pure random walk without a drift is defined as

t
Yt =Yt—1 T =Yo+ Zf‘?t, (3.5)

s=1

where {e:} is an ii.d. process; i.e., white noise. For the sake of simplicity,
assume that the expected value of yg is zero and that the white noise process
{e¢} is independent of yo. Then it is trivial to show that (1) Efy] = 0 and
var(y;) = to?. Clearly, a random walk is a non-stationary time series process
because its variance grows with time. Second, the best forecast of a random
walk is its value one period earlier; i.e., Ay; = &;. Incidentally, it should be
noted that the i.i.d. assumption for the error process {e;} is important with
respect to the conclusions drawn above. Suppose that the data-generating
process for {y;} is

Y¢ = Y1+ &1, €6 = per—1 + &, (3.6)

where |p| < 1 and & is a white noise process instead. Then, {y:} is not a
random walk process, but it still has a unit root and is a first-order non-
stationary process.

Let us now consider the case of a random walk with drift,
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t
Y= pA Y te =yo+ut+ Y e, (3.7)

s=1

where, as in the pure random walk process, {e:} is white noise. For p # 0,
{y+} contains a deterministic trend with drift parameter p. The sign of this
drift parameter causes the series to wander upward if positive and downward
if negative, whereas the size of the absolute value affects the steepness.

R Code 3.1 Stochastic and deterministic trends

set.seed (123456)

e <— rnorm (500)

## pure random walk

rw.nd <— cumsum(e)

## trend

trd <— 1:500

## random walk with drift

rw.wd <— 0.5%trd + cumsum(e)

## deterministic trend and noise
dt <— e + 0.5x%trd
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## plotting 11
par(mar=rep(5,4)) 12
plot.ts(dt, lty=1, ylab="", xlab="") 13
lines (rw.wd, Ity=2) 14
par(new=T) 15

plot.ts(rw.nd, Ity=3, axes=FALSE)
axis (4, pretty(range(rw.nd)))
lines (rw.nd, Ity=3)
legend (10, 18.7, legend=c('det. trend + noise (Is)"',
"rw drift (Is)', 'rw (rs)'),
lty=c(1, 2, 3))
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In R code 3.1, three time series have been generated. For a better compa-
rability between them, all series have been calculated with the same sequence
of random numbers drawn from a standard normal distribution. First, a pure
random walk has been generated by calculating the cumulated sum of 500
random numbers stored in the vector object e. A deterministic trend has
been set with the short form of the seq() function; i.e., the colon operator.
As a second time series model, a random walk with drift can now be easily
created according to Equation (3.7). Last, the deterministic trend has been
overlaid with the stationary series of normally distributed errors. All three
series are plotted in Figure 3.1. By ocular econometrics, it should be evident
that the statistical discrimination between a deterministic trend contaminated
with noise and a random walk with drift is not easy. Likewise, it is difficult
to distinguish between a random walk process and a stable AR(1)-process in
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which the autoregressive coefficient is close to unity. The latter two time series
processes are displayed in Figure 3.2.

250
|

— det. trend + noise (Is)
- - - rw drift (Is)
< 1w (rs)

15

200
|
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| |

50

0 100 200 300 400 500

Time

Fig. 3.1. Time series plot of deterministic and stochastic trends

Before a testing procedure for the underlying data-generating process is
outlined, we will introduce a formal definition of integrated series and briefly
touch on the concept of seasonal integration, which will be presented in more
detail in Section 6.2.

In the seminal paper by Engle and Granger [1987], an integrated series is
defined as follows.

Definition 3.1. A series with no deterministic component that has a station-
ary, invertible ARMA representation after differencing d times is said to be
integrated of order d, which is denoted as x ~ I(d).

That is, a stationary series is simply written as an I(0)-process, whereas a
random walk is said to follow an I(1)-process because it has to be differenced
once before stationarity is achieved. It should be noted at this point that
some macroeconomic series are already differenced. For example, the real net
investment in an economy is the difference of its capital stock. If investment
is an I(1)-process, then the capital stock must behave like an I(2)-process.
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Fig. 3.2. Plot of a random walk and a stable AR(1)-process, ¢ = 0.99

Similarly, if the inflation rate, measured as the difference of the logarithmic
price index, is integrated of order one, then the price index follows an I(2)-
process. Therefore, stationarity of y; ~ I(2) is achieved by taking the first
differences of the first differences:

AAy: = Ays —yi-1) = We —ye-1) — We—1 = Ye—2) = Yt —2Yt—1 +Yi—2. (3.8)

If a series is already stationary I(0), then no further differencing is necessary.
When a series {y;} is a linear combination of z1; ~ I(0) and xg; ~ I(1), then
{y¢} will be an I(1)-process. Likewise, a linear transformation of an I(d)-
process conserves the order of integration, y; ~ I(d), so it will be a + fy; ~
I(d), where o and (3 are constants.

Until now, we have only considered data-generating processes in which the
unit root occurs for its own values lagged by one period. One can generalize
these processes to

Yt = Yi—s + &t (3.9)

where s > 1. If s equals a seasonal frequency of the series, then {y:} is deter-
mined by its prior seasonal values plus noise. As for the concept of a stochastic
trend, this data-generating process is termed stochastic seasonality. In prac-
tice, seasonality is often accounted for by the inclusion of seasonal dummy
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variables or the use of seasonally adjusted data. However, there might be
instances where allowing a seasonal component to drift over time is neces-
sary. Analogously to the presentation of the unit root processes at the zero
frequency, we can define the lag operator for seasonal unit roots as

A, =(1-L% (3.10a)
=(1-L)Y(1+L+L*+...+ L") =AS(L). (3.10b)

In Equation (3.10b), the unit root at the zero frequency has been factored
out. Hence, a seasonally integrated series can be represented as the product
of the first difference operator and the moving average seasonal filter S(L).
According to Engle, Granger and Hallman [1988], a seasonally integrated series
can be defined as follows.

Definition 3.2. A variable {y.} is said to be seasonally integrated of orders
d and D, which are denoted as SI(d, D), if AYS(L)Py, is stationary.

Therefore, if a quarterly series A4y, is stationary, then {y:} is SI(1,1). Testing
for seasonal unit roots is similar, although a bit more complicated than testing
for unit roots at the zero frequency, which will be presented in the following
paragraphs. Probably the simplest test was proposed by Hasza and Fuller
[1982] and Dickey, Hasza and Fuller [1984], and a modification of it by Os-
born, Chui, Smith and Birchenhall [1988]. However, a more complicated test-
ing procedure that allows for cyclical movements at different frequencies was
introduced into the literature by Hylleberg, Engle, Granger and Yoo [1990].
In R, seasonal unit root tests are implemented in the CRAN-package uroot
(see Lépez-de Lacalle and Diaz-Emparanza [2004]).

Recall the decomposition of a time series {y;} as in Equation (3.1). Now
we want to investigate if the process {z;} does contain a unit root,

Zt = Yt *T.Dt (311)

Hence, a deterministic trend is removed from the original series first and the
residuals are tested for a unit root. Dickey and Fuller [1979] proposed the
following test regression that is delineated from an assumed AR(1)-process of
{z:} (the DF test):

2t = 0zi_1 + €y, (3.12a)

2 — 241 =02z,_1 — 241 + &4, (3.12b)
Azp = (0 — 1)zi—1 + &4, (3.12¢)

Azy = T2e_1 + &4 (3.12d)

Under the null hypothesis of a unit root, 7 = 0, which is equivalent to § = 1
and the alternative is a trend stationary process; i.e., m < 0 or § < 1. Please
note that an explosive path for {z:}, 7 > 0, is excluded. Equation (3.12d) can
be estimated by the ordinary least-squares method. The significance of 7 can
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be tested by the usual Student ¢ ratio. However, this test statistic does not
have the familiar Student ¢ distribution. Under the null hypothesis, an 7(0)-
variable is regressed on an I(1)-variable in Equation (3.12d). In this case, the
limiting distribution of the Student ¢ ratio is not normal. Fortunately, critical
values have been calculated by simulation and are publicized in Fuller [1976],
Dickey and Fuller [1981], and MacKinnon [1991], for instance.

So far, we have only stated that a deterministic trend is removed before
testing for a unit root. In reality, neither the existence nor the form of the
deterministic component is known a priori. Hence, we have to choose from the
set of deterministic variables DV; the one that best suits the data-generating
process. The most obvious candidates such as DV, are simply a constant, a
linear trend, or higher polynomials in the trend function; i.e., square or cu-
bic. In general, only the first two are considered. The aim of characterizing
the noise function {z;} is still the same, but now we have to take the various
DV, as deterministic regressors DR; into account, too. The two-step proce-
dure described above (Equations (3.11) and (3.12)) can be carried out in one
equation,

Ay; = T'DR; + mys_1 + us, (3.13)

where 7 is the coefficient vector of the deterministic part and {u;} assigns
an error term. For the one-step procedure, a difficulty now arises because,
under the validity of the null hypothesis, the deterministic trend coefficient
7 is null, whereas under the alternative it is not. Hence, the distribution of
the Student ¢ ratio of # now depends on these nuisance parameters, too. The
reason for this is that the true deterministic component is unknown and must
be estimated. Critical values for different deterministic components can be
found in the literature cited above as well as in Ouliaris, Park and Phillips
[1989].

A weakness of the original DF test is that it does not take a possible serial
correlation of the error process {u;} into account. Dickey and Fuller [1981]
have suggested replacing the AR(1)-process for {z;} in Equation (3.12a) with
an ARMA (p, q)-process, ¢(L)z; = 0(L)e;. If the noise component is an AR(p)-
process, it can be shown that the test regression

k
Ay :TIDRt+7Tyt—1 —l—Z'yjAyt_j—l-ut withk=p—1 (314)
j=1

ensures that the serial correlation in the error is removed. This test regres-
sion is called the augmented Dickey-Fuller (ADF) test. Several methods for
selecting k£ have been suggested in the literature. The most prominent one is
the general-to-specific method. Here, one starts with an a priori chosen upper
bound knax and then drops the last lagged regressor if it is insignificant. In
this case, the Student ¢ distribution is applicable. You repeat these steps until
the last lagged regressor is significant; otherwise you drop it each time the
equation is reestimated. If no endogenously lagged regressor turns out to be
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significant, you choose k = 0; hence the DF test results. This procedure will
asymptotically yield the correct or greater lag order to the true order with
probability one. Other methods for selecting an appropriate order k are based
on information criteria, such as Akaike [1981] (AIC) or Schwarz [1978] (SC).
Alternatively, the lag order can be determined by testing the residuals for a
lack of serial correlation, as can be tested via the Ljung-Box Portmanteau test
(LB) or a Lagrange multiplier (LM) test. In general, the SC, LB, or LM tests
coincide with respect to selecting an optimal lag length k, whereas the AIC
and the general-to-specific method will mostly imply a lag length at least as
large as those of the former methods.

Once the lag order k is empirically determined, the following steps in-
volve a testing procedure, as illustrated graphically in Figure 3.3. First, the
encompassing ADF-test equation

k
Ayy = p1 + Pt + Tyr—1 +Z'YjAyt—j + uy (3.15)

j=1

is estimated. The further steps to be taken are dependent on this result until
one can conclude that the series is

) stationary around a zero mean,
) stationary around a non-zero mean,
iii) stationary around a linear trend,
) contains a unit root with zero drift, or
) contains a unit root with non-zero drift.

To be more concrete, the testing strategy starts by testing if 7 = 0 using
the t statistic 7.. This statistic is not standard Student ¢ distributed, but
critical values can be found in Fuller [1976]. If this test is rejected, then there
is no need to proceed further. The testing sequence is continued by an F type
test @3 with Hy : B2 = m = 0 using the critical values tabulated in Dickey
and Fuller [1981]. If it is significant, then test again for a unit root using the
standardized normal. Otherwise, if the hypothesis 2 = 0 cannot be rejected,
reestimate Equation (3.15) but without a trend. The corresponding ¢ and F'
statistics for testing if Hy : m = 0 and Hy : 81 = m = 0 are denoted by 7,(7)
and @;. Again, the critical values for these test statistics are provided in the
literature cited above. If the null hypothesis of 7,(7) is rejected, then there
is again no need to go further. If it is not, then employ the F' statistic ¢, for
testing the presence of a constant and a unit root.

However, the testing procedure does not end here. If the hypothesis 7 = 0
cannot be rejected in Equation (3.15), then the series might be integrated of
a higher order than zero. Therefore, one has to test whether the series is 1(1)
or possibly I(2), or even integrated to a higher degree. A natural approach
would be to apply the DF or ADF tests to

AAy = TAY—1 + uy. (3.16)
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If the null hypothesis 7 = 0 is rejected, then Ay; ~ I(0) and y ~ I(1); other-
wise one subsequently must test whether y; ~ I(2). This testing procedure is
termed bottom-up. However, two possibilities arise from using this bottom-up
approach. First, the series cannot be transformed to stationarity regardless of
how many times the difference operator is applied. Second, the danger of over-
differencing exists; that is, one falsely concludes an integration order higher
than the true one. This can be detected by high positive values of the DF-test
statistic. This risk can be circumvented by a general-to-specific testing strat-
egy proposed by Dickey and Pantula [1987]. They recommend starting from
the highest sensible order of integration, say I(2), and then testing downward
to the stationary case.

So far, we have only considered the DF and the ADF tests as means
to detect the presence of unit roots. Since the early 1980s, numerous other
statistical tests have been proposed in the literature. The most important and
widely used ones will be presented in the second part of the book.

3.3 Long-Memory Processes

So far, we have considered data-generating processes that are either stationary
or integrated of an integer order higher than zero (for example, the random
walk as a prototype of an I(1)-series). Hence, it is a knife-edge decision if a
series is I(1) or I(0) or is integrated at an even higher integer order. Fur-
thermore, it has been shown that, for a y; ~ I(1)-series, the ACF declines
linearly, and for a stationary y; ~ I(0)-process, the ACF declines exponen-
tially so that observations separated by a long time span may be regarded
as independent. However, some empirically observed time series share nei-
ther of these characteristics, even though they are transformed to stationarity
by suitable differencing. These time series still exhibit a dependency between
distant observations. They occur in many disciplines, such as finance, geophys-
ical sciences, hydrology, and macroeconomics. Although arguing heuristically,
Granger [1980] provides a theoretical justification for these processes. To cope
with such time series, our current model class has to be enlarged by so-called
fractionally integrated processes (i.e., long-memory processes). The literature
about fractionally integrated processes has grown steadily since their detection
in the early 1950s. Baillie [1996] cites in his survey about these processes 138
articles and 38 background references.

Before the more encompassing class of autoregressive fractionally integrated
moving average (ARFIMA) processes is introduced, it is noteworthy to define
a long-memory process and the filter for transforming fractionally integrated
series.

First, we draw on the definition of McLeod and Hipel [1978].

Definition 3.3. A process is said to possess a long memory if
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T
Jim j;Tm (3.17)
18 mon-finite.

This is equivalent to stating that the spectral density of a long-memory process
becomes unbounded at low frequencies.?
Second, recall that an integrated process of order d can be written as

(1= L)%y = (L), (3.18)

where absolute or square summability of ¢; is given; i.e., Z;io [¢] < oo or
Z?io 1/1? < 00. Pre-multiplying Equation (3.18) by (1 — L)~ yields

ye = (1- L) (L)e. (3.19)

Now, define the function f(z) = (1 — z)~¢ for the scalar z. The derivatives of
this function are

jjzt =d(l -2, (3.20a)
(i]; = (d+1d(1 = =), (3.20b)
VI (g m D+ -2 @ 0da— L (a200)

Therefore, the fractional difference operator for d € (—é, %] can be expressed

as o N
1-L)7=>" < ) (—=1)7L7 (3.21)
— \J
=
by making use of a power series expansion around z = 0 and the binomial
theorem. The coefficient sequence (‘;)(—1)] is square summable and can be
expressed in terms of the Gamma function I'() as

d ;o I'(=d+7)
(.7)(1) T D(—d)r(+1) (3.22)

2 For an exposition on frequency domain analysis, the reader is referred to G. G.
Judge, W. E. Griffiths, R. C. Hill, H. Liitkepohl, and T. Lee, The Theory and
Practice of Econometrics, John Wiley and Sons, New York, 2nd ed., 1985, and P.
Bloomfield, Fourier Analysis of Time Series: An Introduction, John Wiley and
Sons, New York, 2nd ed., 2000. The spectral density of a series can be estimated
by the function spectrum() in R. For more information on how this is imple-
mented, the reader is referred to Venables and Ripley [2002] and the function’s
documentation.
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Two points are worth noting. When d > %, an integer difference operator can
be applied first. Incidentally, in this case, the process becomes non-stationary
with unbounded variance. Robinson [1994] calls such a process “less non-
stationary” than a unit root process, smoothly bridging the gulf between I(0)-
and I(1)-processes. Second, because in practice no series with infinite obser-
vations are at hand, one truncates the expression in Equation (3.21) for values
yt—; outside the sample range and sets y;—; = 0,

Yy = ; I(—d)(G+1) Yt—js (3.23)
where y; assigns the fractional differenced series.

The now to be introduced ARFIMA(p, d, q) class was developed indepen-
dently by Granger and Joyeux [1980] and Hosking [1981]. The estimation and
simulation of these models is implemented in R within the contributed package
fracdiff (see Fraley, Leisch and Maechler [2004]). Formally, an ARFIMA(p,
d, q)-model is defined as follows.

Definition 3.4. The series {y;} is an invertible and stationary ARFIMA (p,
d, q)-process if it can be written as

Ay = 2z, (3.24)

where {z:}7°_ . is an ARMA(p, q)-process such that z = ¢,(L)"'0,(L)e;
and both lag polynomials have their roots outside the unit circle, where ¢ is a
zero-mean i.i.d. random variable with variance o* and d € (—0.5,0.5].

For parameter values 0 < d < 0.5, the process is long-memory, and for the
range —0.5 < d < 0, the sum of absolute values of its autocorrelations tends
to a constant. In this case, the process exhibits negative dependency between
distant observations and is therefore termed “anti-persistent” or to have “in-
termediate memory.” Regardless of whether the process {y;} is long-memory
or intermediate memory, as long as d > —0.5, it has an invertible moving av-
erage representation. How is the long-memory behavior incorporated in such
a process? It can be shown that the autocorrelation function (ACF) of long-
memory processes declines hyperbolically instead of exponentially as would
be the case for stable ARMA(p, ¢)-models. The speed of the decay depends
on the parameter value d. For instance, given a fractional white noise process
ARFIMA(O0, d, 0), Granger and Joyeux [1980] and Hosking [1981] have proved
that the autocorrelations are given by

I+ d)I(1—d)

PI= @ —d+1)I(d) (8:25)

The counterpart of this behavior in the frequency domain analysis is an un-
bounded spectral density as the frequency w tends to zero. In R code 3.2, an
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ARIMA(0.4, 0.0, 0.0) and an ARFIMA(0.4, 0.4, 0.0) have been generated,
and their ACF as well as spectral densities are displayed in Figure 3.4.

R Code 3.2 ARMA versus ARFIMA model

library (fracdiff)
set.seed (123456)
# ARFIMA (0.4,0.4,0.0)
yl <— fracdiff.sim(n=1000, ar=0.4, ma=0.0, d=0.4)
# ARIMA (0.4,0.0,0.0)
y2 <— arima.sim(model=list (ar=0.4), n=1000)
# Graphics
op <— par(no.readonly=TRUE)
layout (matrix (1:6, 3, 2, byrow=FALSE))
plot.ts(yl$series,
main='Time series plot of long memory',
ylab="'")
acf(yl$series, lag.max=100,
main="'Autocorrelations of long memory"')
spectrum(ylS$series ,
main="'Spectral density of long memory"')
plot.ts(y2,
main='Time series plot of short memory', ylab="")
acf(y2, lag.max=100,
main='Autocorrelations of short memory'")
spectrum(y2, main='Spectral density of short memory'")
par (op)
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A long-memory series with 1000 observations has been generated with the
function fracdiff.sim() contained in the package fracdiff, whereas the short
memory series has been calculated with the function arima.sim() (see com-
mand lines 4 and 6).% As can be clearly seen in Figure 3.4, the autocorrelations
decline much more slowly compared with the stationary AR(1)-model, and its
spectral density is higher by about a factor of 100 as w — 0.

Up to now, the question of how to estimate the fractional difference pa-
rameter d or to detect the presence of long-memory behavior in a time series
has been unanswered. We will now present three approaches to do so, where
the last one deals with the simultaneous estimation of all parameters in an
ARFIMA(p, d, q)-model.

The classic approach for detecting the presence of long-term memory can
be found in Hurst [1951]. He proposed the rescaled range statistic, or for short
the R/S statistic. This descriptive measure is defined as

3 Functions for generating and modeling long-memory series can also be found in
the contributed CRAN package fArma (see Wiirtz [2007a]).
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Fig. 3.4. Graphical display: ARIMA versus ARFIMA
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where sp is the usual maximum likelihood standard deviation estimator,
st = [ Z]T:l(yj — 7)?]2. This measure is always non-negative because the
deviations from the sample mean ¢ sum up to zero. Hence, the maximum of
the partial sums will always be positive, and likewise the minimum will always
be negative. Hurst [1951] showed that the probability limit

plim {TH <R/S>} = const. (3.27)

T—o0 St

is a constant and H assigns the Hurst coefficient. The Hurst coefficient is then
estimated as
~ log(R/S)
H =
log(T)
A short-memory process is associated with a value of H = é, and estimated
values greater than é are taken as hindsight for long-memory behavior. There-

fore, the differencing parameter d can be estimated as d=H— é The R/S
statistic can fairly easily be calculated in R, as shown in R code 3.3.

(3.28)
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R Code 3.3 R/S statistic

library (fracdiff) 1
set.seed (123456) 2
# ARFIMA(0.0,0.3,0.0) 5
y <— fracdiff.sim(n=1000, ar=0.0, ma=0.0, d=0.3) 4
# Get the data series, demean this if necessary 5
y.dm <— y$series 6
max.y <— max(cumsum(y.dm)) 7
min.y <— min(cumsum(y.dm)) 8
sd.y <— sd(y$series) 9

RS <— (max.y — min.y)/sd.y 10
H <— Iog(RS)/Iog(1000) 11
d<—H- 0.5 12

Because the default mean in the function fracdiff is zero, no demeaning
has to be done. The estimated Hurst coefficient is 0.7821, which implies an
estimated value for d of 0.2821 that is close to its simulated value of 0.3.

Since the seminal paper of Hurst, the rescaled range statistic has received
further intensive research.* Although it is long established that the R /S statis-
tic has the ability to detect long-range dependence, it is, however, sensitive to
short-range dependence and heteroscedasticity.® Hence, any incompatibility
between the data and the predicted behavior of the R/S statistic under the
null hypothesis of no long-run dependence need not come from long-term mem-
ory but may merely be a symptom of short-term autocorrelation. Lo [1991]
proposes a modified rescaled range statistic to cope with this deficiency. The
modified R/S,,0q is defined as

k k

1 ) _ .
B Smot = o | 5 j=1(yj —7) - @%;(w -9, (3.29)

where

sT(q) = st JrQij(q)fij ,wilg) =1—

j=1

ith T. .
g1 with ¢ < (3.30)

The maximum-likelihood standard deviation estimator is denoted by sp and
the jth-order sample autocorrelation by 4;. The sample autocorrelations are

* For instance, see Mandelbrot and Wallis [1968], Mandelbrot and Wallis [1969],
and Davies and Harte [1987], who discuss alternative methods for estimating H.
Anis and Lloyd [1976] determine the small-sample bias.

® For instance, see Mandelbrot [1972], Mandelbrot [1975], Mandelbrot and Wallis
[1968], Davies and Harte [1987], Aydogan and Booth [1988], and Lo [1991].
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weighted by the function w;(¢) proposed in Newey and West [1987]. However,
the choice of an appropriate order ¢ is an unresolved issue.

A popular method for estimating d was proposed by Geweke and Porter-
Hudak [1983]. They suggested a semi-parametric estimator of d in the fre-
quency domain. They consider as a data-generating process (1 — L)%y, = z,
where z; ~ I(0). This process can be represented in the frequency domain

fy(w) =1 = exp(—iw)| 7! f.(w), (3.31)

where f(w), and f(w), assign the spectral densities of y; and z;, respectively.
Equation (3.31) can be transformed to

tog{f,()} = {asin? (£} +log{ £+ @), (3.32)
log{ fy(w;)} = log{/.(0)} — dlog { 4sin? (‘*;J )} +1og { f ;2%3) } . (3.32b)

The test regression is then a regression of the ordinates of the log spectral
density on a trigonometric function of frequencies,

log{I,(w;)} = B1 + B log {4sin2 (“‘;J )} +u, (3.33)

where v; = 1og{f;z%’))} and j = 1,...,m. The error term is assumed to

s
5
differencing is equal to d = —f3s. Its significance can be tested with either the
usual ¢ ratio distributed as Student ¢ or one can set the residual variance equal
to §. An example of this method is shown in R code 3.4, where a fractionally

differenced series has been generated first with d = 0.3.

be i.i.d. with zero mean and variance The estimated order of fractional

R Code 3.4 Geweke and Porter-Hudak method

library (fracdiff)

set.seed (123456)

y <— fracdiff.sim(n=1000, ar=0.0, ma=0.0, d=0.3)
y.spec <— spectrum(y$series, plot=FALSE)

Ihs <— log(y.spec$spec)

rhs <— log(4x*(sin(y.spec$freq/2))"2)

gph.reg <— Im(lhs ~ rhs)

gph .sum <— summary(gph.reg)

sqrt (gph.sum$cov.unscaledxpi/6)[2,2]

© o N o ;oA W N e

The results for the simulated fractionally differenced series are given in
Table 3.1. The negative of the estimated coefficient 35 is 0.2968, which is close
to its true value of d = 0.3 and highly significant on both accounts; i.e., its ¢
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Table 3.1. Results of Geweke and Porter-Hudak method
Variable  Estimate Std. Error  ¢-value Pr(>|t|)

(Intercept) —1.6173 0.1144 —14.1370  0.0000
rhs —0.2968 0.0294 —10.1109  0.0000

value, as well as the computed standard error with residual variance equal §.
Please note that a major issue with this approach is the selection of the range
of frequencies to include in the regression. In R code 3.4, all frequencies have
been included (i.e., 500). Diebold and Rudebusch [1989] have set m = /T,
and Sowell [1992] has suggested setting m to the shortest cycle associated
with long-run behavior. A third possibility would be to choose m such that
the estimated standard error of the regression is approximately equal to \/ 7 /6.

Finally, the estimation of an ARFIMA (p, d, ¢)-model is implemented in the
contributed package fracdiff as function fracdiff (). The parameters are esti-
mated by an approximated maximum likelihood using the method of Haslett
and Raftery [1989]. To lessen the computational burden, a range for the pa-
rameter d can be supplied as the functional argument. In the case of a “less
non-stationary” series (i.e., d > é), the estimation fails and the series must be
integer differenced first. In this case, the fractional differencing filter (1 — L)%
is a combination of Equation (3.21) and integer differencing.

Summary

In this chapter, a more encompassing data-generating process that was intro-
duced into the literature by Campbell and Perron [1991] has been presented.
You should now be familiar with the concepts of trend- versus difference-
stationary and the decomposition of a time series into a deterministic trend, a
stochastic trend, and a cyclical component. Furthermore, unit root processes
have been introduced as a subclass of random walk processes. How one applies
a sequential testing strategy to detect the underlying data-generating process
of a possible non-stationary time series was discussed. The important defi-
nitions of integrated, seasonally integrated, and fractionally integrated time
series processes have been presented, too, where the latter can be viewed as a
bridge between stationary and unit root processes, thereby closing the circle
of the exposition in the first two chapters.

So far, we have addressed univariate time series analysis and multivariate
analysis in the context of stationary VAR and SVAR models only. The obsta-
cles and solutions for multivariate models with non-stationary data are the
subject of the next and last chapter of Part I.
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Exercises

1. Write a function in R that returns the critical values given in Fuller [1976].
Function arguments should include the test type, the significance level,
and the sample size.

2. Write a function in R that implements the ADF-test regression as shown
in Equation (3.14). The series; the inclusion of a constant, trend, both,
or none; and the order of lagged differenced series should be included as
functional arguments. The function should return a summary object of
class 1m.

3. Now include the function of Exercise 1 in the function of Exercise 2 such
that the relevant critical values are returned aside from the summary
object of class 1m.

4. Generate various long and intermediate processes for different values of d
and AR(p) and MA(q) orders and analyze their autocorrelation functions.

5. Write a function that estimates the Hurst coefficient (i.e., the R/S statis-
tic) and its modified version by Lo [1991] and the order of the difference
operator d.

6. Write a function for the single-equation estimation of d as proposed by
Geweke and Porter-Hudak [1983].

7. Apply the functions of Exercises 5 and 6 to the absolute logarithmic re-
turns of the stock indices contained in the data set EuStockMarkets. Can
you detect long-memory behavior in any of these series?
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Cointegration

In the previous chapters, a brief explanation of univari-
ate and multivariate time series models and their char-
acteristics was presented. The focus of this chapter is
on the simultaneous modeling of time series and infer-
ences of the relationships between them if some or all
of them are integrated processes of order one. As will
be shown, the degree of integration and a careful exam-
ination of the data-generating processes are of utmost
importance. We will begin by briefly reviewing the case
of a spurious regression before we proceed by providing a
definition of cointegration and its error-correction rep-
resentation. In the last section, the more encompassing
vector error-correction models are presented.

4.1 Spurious Regression

Regression analysis plays a pivotal role in applied economics. It is widely used
to test the validity of economic theories. Furthermore, the classic linear regres-
sion models as in Equation (4.1) form the basis of macroeconomic forecasting
and simulation models.

ytZﬂlxtJ+ﬁ2$t,2+...+ﬁth7K+Et , fOI‘tZL...,T7 (41)

where y; assigns the endogenous variable (i.e., the regressand), the exoge-
nous variables (i.e., the regressors) are included in the row vector x; =
(x¢1,2e2,.-., %K), and & is a white noise random error. One important
assumption of this model class is the stationarity of the variables; that is,
lim X'X =9 and I3M~". (4.2)
T—o0
The product moment matrix of the regressors converges to the fixed and
invertible matrix 9. This assumption is employed, for example, in the consis-
tency proof of the ordinary least-squares (OLS) estimator. Clearly, for trend-
ing variables, as are most often encountered in the field of empirical longitudi-
nal macroeconomic data, this assumption is not met. Incidentally, if only de-
terministic trends are present in the data-generating processes of the variables
in question, then these can be removed before estimation of Equation (4.1)
or can be included in the regression. The inference on the coefficients is the
same regardless of which method is employed; i.e., the Frisch-Waugh theorem
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(see Frisch and Waugh [1933]). However, matters are different in the case of
difference-stationary data. In this case, the error term is often highly corre-
lated and the ¢ and F statistics are distorted such that the null hypothesis
is rejected too often for a given critical value; hence, the risk of a “spurious
regression” or “nonsense regression” exists.! Furthermore, such regressions are
characterized by a high R2. This fact arises because the endogenous variable
contains a stochastic trend and the total variation is computed as Zthl (y:—7);
i.e., it is erroneously assumed that the series has a fixed mean. Hence, given
the formula for calculating the unadjusted R2,

T R
1o = (4.3)
ZtT:1(Z/t —7)?

the goodness-of-fit measure tends to unity as the denominator becomes very
large because a large weight is placed on extreme observations on either side
of the mean .

As a rule of thumb, Granger and Newbold [1974] suggested that one
should be suspicious if the R? is greater than the Durbin- Watson statistic
(see Durbin and Watson [1950], Durbin and Watson [1951], and Durbin and
Watson [1971]). A theoretical basis for their finding was provided by Phillips
[1986].

In R code 4.1, two unrelated random walk processes with drift have been
generated and regressed on each other (see command line 8). The results are
provided in Table 4.1.

R Code 4.1 Spurious regression

library (Imtest)

set.seed (123456)

el <— rnorm(500)

e2 <— rnorm(500)

trd <— 1:500

yl <— 0.8%trd + cumsum(el)

y2 <— 0.6xtrd + cumsum(e2)

sr.reg <— Im(yl = y2)

sr.dw <— dwtest(sr.reg)$statistic

S N
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As can be seen, the coeflicient of the regressor is significant, the adjusted
R? of 0.9866 is close to one, and the Durbin-Watson statistic of 0.0172 is

! The spurious regression problem can be traced back to Yule [1926] and Hooker
[1901]. For a historic background of nonsense regressions, see Hendry [2004] and
Hendry [1986]. Hendry [1980] has provided a pretty famous example of how easy
it is to create a spurious regression by regressing the logarithm of the consumer
price level on the cumulative rainfall in the United Kingdom.
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Table 4.1. Results of spurious regression

Variable  Estimate Std. Error  ¢-value Pr(>|t|)

(Intercept) —29.3270 1.3672 —21.4511  0.0000
y2 1.4408 0.0075 191.6175  0.0000

close to zero, as expected. For the sake of completeness, the Durbin-Watson
statistic implemented in the contributed package lmtest has been used (see
Zeileis and Hothorn [2002]). An alternative is the durbin.watson() function
in the contributed package car (see Fox [2007]).

From a statistical point of view, the spurious regression problem could be
circumvented by taking first differences of the I(1)-variables in the regression
equation and using these instead. However, by applying this procedure, two
new problems are incurred. First, differencing greatly attenuates large posi-
tive residual autocorrelation; hence, false inferences upon the coefficients in
the regression equation could be drawn. Second, most economic theories are
expressed in levels; and the implications of the long-run relationships between
variables are deduced. Therefore, being obliged to use regression approaches
with differenced variables would be a great obstacle in the testing of economic
theories. Other means of transforming non-stationary data into stationary
ones (e.g., by building logarithmic ratios) have been pursued with success;
for example, by Sargan [1964] and Hendry and Anderson [1977]. The reason
why such a transformation is suitable in achieving stationarity is that the
non-stationarities are “canceling” each other out, although this must not be
true in all cases and all circumstances. All in all, a new approach is called for
to deal with trending variables in the context of regression analysis.

4.2 Concept of Cointegration and Error-Correction
Models

In 1981, Granger [1981] introduced the concept of cointegration into the lit-
erature, and the general case was publicized by Engle and Granger [1987] in
their seminal paper. The idea behind cointegration is to find a linear combi-
nation between two I(d)-variables that yields a variable with a lower order of
integration. More formally, cointegration is defined as follows.

Definition 4.1. The components of the vector x; are said to be cointegrated
of order d, b, denoted xy ~ CI(d,b), if (a) all components of x; are I(d) and
(b) a vector a(# 0) exists so that zz = o’xy ~ I(d —b), b > 0. The vector o
is called the cointegrating vector.

The great interest in this path-breaking development among economists is
mostly explained by the fact that it is now possible to detect stable long-run
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relationships among non-stationary variables. Consider the case of d = 1,0 =
1; i.e., the components in the vector x; are all integrated of order one, but if a
linear combination « of these exists, then the resultant series z; is stationary.
Although the individual series are non-stationary, they are tied to each other
by the cointegrating vector. In the parlance of economics, deviations from a
long-run equilibrium path are possible, but these errors are characterized by
a mean reversion to its stable long-run equilibrium.

Now, the question is how to estimate the cointegrating vector a and how
to model the dynamic behavior of I(d)-variables in general and for exposition
purposes of I(1)-variables in particular?

Engle and Granger [1987] proposed a two-step estimation technique to do
so. In the first step, a regression of the variables in the set of I(1) is run,

Yt = Q1T + oo+ ... agt gtz fort=1,...T, (4.4)

where z; assigns the error term. The estimated (K + 1) cointegrating vector
& is given by & = (1, —&*)’, where &* = (&1,...,4k) . Hence, the cointe-
grating vector is normalized to the regressand. Engle and Granger showed
that in this static regression the cointegrating vector can be consistently esti-
mated but with a finite sample bias of magnitude O, (T~!). Because the usual
convergence rate in the 1(0) case is only O,(T~'/2), Stock [1987] termed the
OLS estimation of the cointegrating vector as “superconsistent.” Incidentally,
although the cointegrating vector can be superconsistently estimated, Stock
has shown that the limiting distribution is non-normal; hence, as in the case
of spurious regressions, the typical ¢t and F statistics are not applicable. How-
ever, what has been gained is first a resurrection of the applicability of the
OLS method in the case of trending variables, and second the residuals from
this static regression (i.e., 2;) are in the case of cointegration integrated of
order zero. These residuals are the errors from the long-run equilibrium path
of the set of I(1)-variables. Whether this series is stationary (i.e., the variables
are cointegrated) can be tested for example with the Dickey-Fuller (DF) test
or the augmented Dickey-Fuller (ADF) test. Please note that now the critical
values provided in Engle and Yoo [1987] or Phillips and Ouliaris [1990] have
to be considered because the series 2; is an estimated one.? As a rough check,
the so-called cointegrating regression Durbin- Watson (CRDW) test proposed
by Sargan and Bhargava [1983] can be calculated with the null hypothesis
CRDW = 0. The test statistic is the same as the usual Durbin-Watson test,
but the prefix “cointegrating” has been added to emphasize its utilization in
the context of cointegration testing. Once the null hypothesis of a unit root
in the series Z; has been rejected, the second step of the two-step procedure
follows. In this second step, an error-correction model (ECM) is specified, the

? MacKinnon [1991] has calculated critical values for the Dickey-Fuller (DF) and
augmented DF (ADF) tests based on critical surface regressions. These values
are readily available in the function unitrootTable() contained in the package
fUnitRoots (see Wiirtz [20070]).
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Engle-Granger representation theorem. We restrict ourselves to the bivariate
case first, in which two cointegrated variables y; and z;, each I(1), are con-
sidered. In Section 4.3, systems of cointegrated variables are then presented.
The general specification of an ECM is as follows:

K L

Ayr = o+ 721+ Y Uiz + Y ey + €1y, (4.5a)
i=1 i=1
K L

Azxy = o+ v28i—1 + Z §1,1Ayt—i + Z §2,1Axt_i + €24, (4.5b)
i—1 i—1

where Z; is the error from the static regression in Equation (4.4), and &1,
and ez, signify white noise processes. The ECM in Equation (4.5a) states
that changes in y; are explained by their own history, lagged changes of x;,
and the error from the long-run equilibrium in the previous period. The value
of the coefficient v; determines the speed of adjustment and should always
be negative in sign. Otherwise the system would diverge from its long-run
equilibrium path. Incidentally, one is not restricted to including the error from
the previous period only. It can be any lagged value because Equations (4.5a)
and (4.5b) are still balanced because Z;_1 is stationary and so is Z;_j with
k > 1. Furthermore, as can be concluded from these equations and the static
regression, in the case of two cointegrated I(1)-variables, Granger causality
must exist in at least one direction. That is, at least one variable can help
forecast the other.

In addition to the empirical examples of this method exhibited in Section
7.1, an artificial one is presented in R code 4.2.3

R Code 4.2 Engle-Granger procedure with generated data

set.seed (123456)

el <— rnorm(100)

e2 <— rnorm(100)

yl <— cumsum(el)

y2 <— 0.6xyl + e2

Ir.reg <— Im(y2 ~ yl)

error <— residuals(lr.reg)

error.lagged <— error[—c(99, 100)]

dyl <— diff(yl)

dy2 <— diff(y2)

diff.dat <— data.frame(embed(cbind(dyl, dy2), 2))

colnames(diff.dat) <— c('dyl', 'dy2', 'dyl.1', 'dy2.1")

ecm.reg <— Im(dy2 ~ error.lagged + dyl.1 4 dy2.1,
data=diff.dat)

© N O oA W N e
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3 In the package’s vignette of strucchange, an absolute consumption function for
the United States is specified as an ECM.
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Table 4.2. Results of Engle-Granger procedure with generated data

Variable  Estimate Std. Error ¢-value Pr(>|t|)

(Intercept) 0.0034 0.1036  0.0328 0.9739
error.lagged —0.9688 0.1586 —6.1102  0.0000
dyl.1 0.8086 0.1120 7.2172 0.0000
dy2.1 —1.0589 0.1084 —9.7708 0.0000

First, two random walks were created, in which the latter one, y2, has
been set to 0.6xyl + e2, where e2 is a white noise process (see command
lines 2 to 5). Hence, the cointegrating vector is (1, —0.6). First, the long-run
equation 1r.reg has been estimated by OLS. Given a sample size of 100, as
expected, the estimated coefficient of the regressor y1 is close to its theoretical
counterpart by having a value of 0.5811. In the following command lines, the
equilibrium error is stored as error, and its lagged version has been created by
simply dropping the last two entries (see command line 8). Because differences
and first lagged differences of y1 and y2 are generated with the commands
diff () and embed (), subtracting the last two entries of the series error is
equivalent with lagging the error term once in the ensuing ECM regression
(see command line 13).% The results of the ECM are displayed in Table 4.2.
To no surprise, the equilibrium error of the last period is almost completely
worked off. Its coefficient is significant and close to negative one.

So far, we have restricted the exposition to the bivariate case and hence
to only one cointegrating vector. However, if the dimension n of the vector @}
is greater than two, up to n — 1 distinct linear combinations could exist that
would each produce a series with a lower order of integration. Therefore, by
applying the Engle-Granger two-step procedure presented above in a case in
which n > 2, one estimates a single cointegrating vector only, which would
represent an average of up to n — 1 distinct cointegrating relationships. How
to cope with multiple long-run relationships is the subject of the next section.

4.3 Systems of Cointegrated Variables

Before the vector error-correction model (VECM) is presented, the time se-
ries decomposition in a deterministic and a stochastic component as in Equa-
tion (3.1) is extended to the multivariate case and the broader concept of
cointegration is defined.

We now assume that each component of the (K x 1) vector y;, for t =
1,...,T, can be represented as

4 ECM models can be conveniently set up and estimated by utilizing the function
dynlm() in the contributed package dynlm (see Zeileis [2006]) or with the function
dyn() contained in the package dyn (see Grothendieck [2005]). The reader is
encouraged to try out these functions as a supplemental exercise.
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Yit=TD;++ 2z for i=1,...,K and t=1,...,T, (4.6)

where T'D;; assigns the deterministic component of the ith variable and
z;+ represents the stochastic component as an autoregressive moving aver-
age (ARMA) process, ¢;(L)z;; = 6;(L)e;. It is further assumed that y;,
contains a maximum of one unit root and all remaining ones are outside the
unit circle. Campbell and Perron [1991] have then defined cointegration in a
broader sense as follows.

Definition 4.2. An (n x 1) vector of variables y; is said to be cointegrated
if at least one nonzero n-element vector (B3; exists such that Bly, is trend-
stationary. B; is called a cointegrating vector. If v such linearly independent
vectors B;(i = 1,...,r) exist, we say that {y:} is cointegrated with cointe-
grating rank r. We then define the (n X r) matriz of cointegrating vectors
B = (B,...,B). Ther elements of the vector By, are trend-stationary, and
B is called the cointegrating matriz.

This definition is broader than the one by Engle and Granger (see Defini-
tion 4.1) in the sense that now it is no longer required that each individual
series be integrated of the same order. For example, some or all series can
be trend-stationary. If y; contains a trend-stationary variable, then it is triv-
ially cointegrated and the cointegrating vector is the unit vector that selects
the stationary variable. On the other hand, if all series are trend-stationary,
then the system is again trivially cointegrated because any linear combination
of trend-stationary variables yields a trend-stationary variable. Furthermore,
non-zero linear trends in the data are also included per Equation (4.6).

Reconsider now the vector autoregression model of order p

ye=Ihyi1+...+ gy, p+p+PD; + e, for t=1,...,T, (4.7)

where y; assigns the (K X 1) vector of series at period t, the matrices
IT;(i = 1,...,p) are the (K x K) coefficient matrices of the lagged endoge-
nous variables, p is a (K x 1) vector of constants, and D; is a vector of
non-stochastic variables such as seasonal dummies or intervention dummies.
The (K x 1) error term g, is assumed to be i.i.d. as e; ~ N(0, X).

From Equation (4.7), two versions of a VECM can be delineated. In the
first form, the levels of y; enter with lag ¢t — p:

Ayt = FlAyt—l + ...+ Fp—lAyt—p-l—l + Hyt—p + jv + @Dt + &4, (48&)
ri=—I-I,-...-II;), fori=1,...,p— 1, (4.8b)
o=—(I-I - —IT,), (4.8¢)

where I is the (K x K) identity matrix. As can be seen from Equation (4.8b),
the I(i = 1,...,p — 1) matrices contain the cumulative long-run impacts;
hence, this specification is termed the long-run form. Please note that the
levels of y; enter with lag ¢t — p.

The other VECM specification is of the form
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Ayt = FlAyt—l +...+ Fp—lAyt—p-l—l + Hyt—l + ¥ + @Dt + &, (49&)
Fi 7(Hi+1+...+ﬂp), fOI'Z‘:].,...,pf]., (49b)
O=—(I-I,— - —II,). (4.9¢)

The IT matrix is the same as in the first specification. However, the I'; ma-
trices now differ in the sense that they measure transitory effects; hence, this
form of the VECM is termed the transitory form. Furthermore, the levels of
the components in y; enter lagged by one period. Incidentally, as will be-
come evident, inferences drawn on IT will be the same regardless of which
specification is chosen, and the explanatory power is the same.

Per assumption, the individual components of y; are at most I(1)-variables
(see Definition 4.2). Therefore, the left-hand side of the VECM is stationary.
Besides lagged differences of y;, the error-correction term ITy,_, or, depend-
ing on the specification of the VECM, ITy;_; appears. This term must be
stationary, too; otherwise the VECM will not balance. The question now is,
what kind of conditions must be given for the matrix IT such that the right-
hand side is stationary? Three cases must be considered,

(i) rk(IT) = K,
(i) rk(IT) =0,
(iii) 0 < rk(II) =7 < K,

where rk() assigns the rank of a matrix. In the first case, all K linearly in-
dependent combinations must be stationary. This can only be the case if the
deviations of y; around the deterministic components are stationary. Equa-
tions (4.8) and (4.9) represent a standard VAR-model in levels of y;. In the
second case, in which the rank of IT is zero, no linear combination exists to
make ITy; stationary except for the trivial solution. Hence, this case would
correspond to a VAR-model in first differences. The interesting case is the
third one, in which 0 < rk(IT) = r < K. Because the matrix does not have
full rank, two (K X r) matrices e and 3 exist such that IT = a3’. Hence,
af'y,_, is stationary, and therefore the matrix-vector product 3'y;_, is sta-
tionary. The r linear independent columns of 3 are the cointegrating vectors,
and the rank of IT is equal to the cointegration rank of the system y;. That
is, each column represents one long-run relationship between the individual
series of y;. However, the parameters of the matrices a and 3 are undefined
because any non-singular matrix = would yield aZ(3Z~!)" = IT. It implies
that only the cointegration space spanned by B can be determined. The ob-
vious solution is to normalize one element of 3 to one. The elements of a
determine the speed of adjustment to the long-run equilibrium. It is referred
to as the loading or adjustment matrix.

Johansen [1988], Johansen [1991], and Johansen and Juselius [1990] de-
veloped maximum-likelihood estimators of these cointegration vectors for an
autoregressive process as in Equations (4.7) through (4.9). A thorough and
concise presentation of this approach is given in a monograph by Johansen
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[1995]. Their approach uses canonical correlation analysis as a means to re-
duce the information content of T' observations in the K-dimensional space
to a lower-dimensional one of r cointegrating vectors. Hence, the canonical
correlations determine the extent to which the multicollinearity in the data
will allow such a smaller r-dimensional space. To do so, 2K auxiliary regres-
sions are estimated by OLS: Ay, is regressed on lagged differences of y;. The
residuals are termed Rg;. In the second set of auxiliary regressions, y:—p is
regressed on the same set of regressors. Here, the residuals are assigned as Ry;.
The 2K residual series of these regressions are used to compute the product
moment matrices as

T
: 1 e
Sij = T ;RitR;t with 4,7 =0, 1. (4.10)

Johansen showed that the likelihood-ratio test statistic of the null hypothesis
that there are at most r cointegrating vectors is

—2In(Q)=-T > (1-X), (4.11)

i=r+1
where 5\,«4_1, cee 5\,) are the n — r smallest eigenvalues of the equation
IAS11 — 810855 S01| = 0. (4.12)

For ease of computation, the (K x K) matrix 5'11 can be decomposed into
the product of a non-singular (K x K) matrix C such that S1; = CC'.
Equation (4.12) would then accordingly be written as

A — C 181058 C' | =0, 4.13
00

where I assigns the identity matrix.

Johansen [1988] has tabulated critical values for the test statistic in Equa-
tion (4.11) for various quantiles and up to five cointegration relations; i.e.,
r=1,...,5. This statistic has been named the trace statistic.

Besides the trace statistic, Johansen and Juselius [1990] have suggested
the mazimal eigenvalue statistic defined as

—2In(Q;rlr+1)=—-TIn(l — A\r41) (4.14)

for testing the existence of r versus r + 1 cointegration relationships. Critical
values for both test statistics and different specifications with respect to the
inclusion of deterministic regressors are provided in the appendix of Johansen
and Juselius [1990].

Once the cointegration rank r has been determined, the cointegrating vec-
tors can be estimated as

B=(01,...,0.), (4.15)
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where ©; are given by ©; = C''e; and e; are the eigenvectors to the cor-
responding eigenvalues in Equation (4.13). Equivalent to this are the first
r eigenvectors of X in Equation (4.12) if they are normalized such that
V'SV =1 with V = (¢4,...,0k).

The adjustment matrix o is estimated as

a=-8nB(BS1B) " = -Sup. (4.16)

The estimator for « is dependent on the choice of the optimizing 8. The
estimator for the matrix IT is given as

IT = -8,,8(8'81:8) '8 = —Sn1B8'. (4.17)

Finally, the variance-covariance matrix of the K-dimensional error process e;
is given as

z‘i‘ = SOO — gol,é,é’SlO = SOO —adl. (4.18)

The first part ends with a three-dimensional example of the Johansen proce-
dure briefly exhibited above. The estimation and testing of the cointegration
rank in a VECM is implemented in the package urca as ca.jo().? Besides
these two functionalities, the testing of restrictions based on «, 3, or both, as
well as the validity of deterministic regressors, will be presented in Section 8.1.

In R code 4.3, a system of three variables with cointegration relations have
been generated with a size of 250. The series are depicted in Figure 4.1. The
VECM has been estimated with the function ca.jo() (see command line 14).
The default value for the test statistic is the maximum eigenvalue test. The
results are provided in Table 4.3.

5 Incidentally, a graphical user interface for the package urca is shipped in the inst
subdirectory of the package as an add-in to the graphical user interface Remdr by
Fox [2004]. It is particularly suited for teaching purposes, as the apprentice can
concentrate on the methodology and is not distracted at the beginning by the
function’s syntax. The package can be downloaded from CRAN and is hosted as
project AICTS I on R-Forge.
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Table 4.3. Cointegration rank: Maximum eigenvalue statistic

Hypothesis Statistic 10% 5% 1%

r<=2 4.7170 6.50 8.18 11.65
r<=1 41.6943 12.91 14.90 19.19
r=20 78.1715 18.90 21.07 25.75

Table 4.4. Cointegration vectors

Variable y1.12 y2.12 y3.12

y1.12 1.0000 1.0000 1.0000
y2.12 —4.7324 0.2274 0.1514
y3.12 —2.1299 —0.6657 2.3153

R Code 4.3 Johansen method with artificially generated data

library (urca)

1

set.seed (12345) 2
el <— rnorm (250, 0, 0.5) 3
e2 <— rnorm (250, 0, 0.5) 4
e3 <— rnorm (250, 0, 0.5) 5
ul.arl <— arima.sim(model = list(ar = 0.75), 6
innov = el, n = 250) 7

u2.arl <— arima.sim(model = list(ar = 0.3), 8
innov = e2, n = 250) 9

y3 <— cumsum(e3)

yl <— 0.8 % y3 + ul.arl

y2 <— —0.3 % y3 + u2.arl

y.mat <— data.frame(yl, y2, y3)
vecm <— ca.jo(y.mat)

jo.results <— summary(vecm)
vecm.r2 <— cajorls(vecm, r = 2)
class(jo.results)
slotNames(jo.results)

[ e e ~ S S S S SR
S e N = <)

-
©

Clearly, the hypothesis of two cointegrating vectors cannot be rejected for
all significance levels. The estimated cointegrating vectors are displayed in
Table 4.4. In the first column, the cointegration vector associated with the
largest eigenvalue is displayed.

It should be noted, however, that these cointegrating vectors are all nor-
malized to the first variable, and the loading matrix & is adjusted accord-
ingly. Hence, econometric identification restrictions are by now not imposed,
but rather only the cointegration rank is determined. Johansen [1995] pro-
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Fig. 4.1. Three I(1)-series with two cointegration relations

Table 4.5. Normalized cointegration vectors

Variable ectl ect2

y1.12 1.0000 0.0000
y2.12 0.0000 1.0000
y3.12 —0.7329 0.2952

posed restricting 3’ in the form where the first part is an identity matrix; i.e.,
B = [I : B], where 8; has dimension ((K — r) x r). These identifying re-
strictions as well as the estimation of the VECM coefficients are implemented
in the function cajorls() contained in the package urca. The normalized
cointegration vectors are returned in the list element beta, and the estimated
VECM of cointegration rank r is returned as the list the element rlm. Both
results are provided in Tables 4.5 and 4.6, respectively.

It has been shown that the VECM-model can be delineated from a VAR-
model in levels. It is therefore possible to express an estimated VECM in its
level-VAR form. Thereby, the estimated coefficient matrices of the VECM are
retransformed according to Equations (4.8) and (4.9).
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Table 4.6. VECM with » = 2

Variable yl.d y2.d y3.d
Error-correction terms
ectl —0.3313 0.0646 0.0127
ect2 0.0945 —0.7094 —0.0092
Deterministic
constant 0.1684 —0.0270 0.0253
Lagged differences
y1.dll —0.2277 0.0270 0.0682
y2.dl1 0.1445 —0.7156  0.0405
y3.dl1 0.1235 —0.2908 —0.0753

This transformation is available in the package vars as function vec2var ().
The function’s arguments are an object of formal class ca. jo and the cointe-
gration rank r. In R code 4.4, the previously used vecm.r2 is transformed to its
level-VAR representation. The resulting object has class attribute vec2var.
For objects of this kind, the available methods and diagnostic tests outlined
in Subsections 2.2.2-2.2.6 are available, too, except for the stability () func-
tion.

R Code 4.4 VECM as VAR in levels

library (vars)

vecm. level <— vec2var(vecm, r
arch . test(vecm. level)
normality . test (vecm. level)
serial .test(vecm. level)
predict (vecm. level)
irf(vecm.level , boot = FALSE)
fevd (vecm . level)

class(vecm. level)
methods(class = "vec2var”) 10

I
N
=
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This section ends with some R technicalities about the package urca. In
this package, S4 classes are employed, in contrast to the older S3 classes. The
main difference for the user is that “slots” of an object that belong to a certain
class cannot be retrieved with object$slot as usual, but one has to use the
@ sign instead. Furthermore, the slots of an S4-class object cannot be shown
with names(object) as is the case with S3-class objects, but as shown in R
code 4.3 with the command slotNames (). The name of the class an object
belongs to can be retrieved by class(object). This brief explanation should
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be sufficient for using functions in the package urca. Further documentation
of the methods package can be found in R Development Core Team [2008]
and Chambers [2000].

Summary

By outlining the spurious regression problem in the first section, you should
have been alerted to the pitfalls when integrated time series are modeled in
a multivariate context; recall the rule of thumb for detecting such nonsense
regressions. In Section 4.2, the solution to this problem was presented, namely
the definition of cointegration as a linear combination with a degree of lower
integratedness than the two integrated processes to be investigated. In this
respect, it was pointed out first that if two time series are cointegrated, then an
error-correction mechanism exists and vice versa and, second, that in the case
of two cointegrated I(1)-variables, Granger causality must exist in at least one
direction. An empirical example of these issues is presented in Section 7.1. The
shortcoming of the Engle-Granger procedure is that in the case of more than
two integrated variables not only one cointegrating vector can exist. In fact, by
applying the Engle-Granger two-step procedure in cases with more than one
cointegrating vector, one would estimate a linear combination of these vectors.
An encompassing definition of cointegration and the model class of VECM has
been introduced to cope adequately with such instances. It has been shown
that two forms of a VECM exist and that the inference with regard to the
order of the space spanned by the linearly independent cointegrating vectors
is the same. You should recall that neither the cointegrating vectors nor the
adjustment matrix can uniquely be determined. Instead a normalization of
one element of B to one is applied.

Up to now, the likelihood-based inference in cointegrated vector autore-
gressive models has been confined to determining the cointegration rank only.
Testing various restrictions placed on the cointegration vectors and the load-
ing matrix as well as a combination thereof are presented in Subsections 8.1.3
and 8.1.4.

Exercises

1. Write a function in R that returns the critical values for the cointegration
unit root tests as given in Engle and Yoo [1987], Ouliaris et al. [1989],
and MacKinnon [1991]. As functional arguments, the relevant tables, the
sample size, and where applicable the number of variables in the long-run
relationships should be supplied.

2. Write a function in R that implements the Engle-Granger two-step method
as shown in Equations (4.4) and (4.5). The series, and the order of lagged
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differenced series, should be included as functional arguments. The func-
tion should return a summary object of class 1m.

. Now include the function of Exercise 1 in the function of Exercise 2 such
that the relevant critical value is returned besides a summary object of
class 1m.



Part 11

Unit Root Tests



5

Testing for the Order of Integration

This chapter is the first in which the theoretical aspects
laid out in Part I of the book are put into “practice.”
We begin by introducing the most commonly employed
unit root tests in ecomometrics: the Dickey-Fuller test
and its extensions. To discriminate between trend- and
difference-stationary time series processes, a sequential
testing strategy is described. Other unit root tests en-
countered in applied research are presented in the ensu-
ing sections.

5.1 Dickey-Fuller Test

We now apply the augmented Dickey-Fuller (ADF) test to the data sample
used by Holden and Perman [1994]. The authors applied an integration/coin-
tegration analysis to a consumption function for the United Kingdom using
quarterly data for the period 1966:Q4-1991:Q2. This data set is included in
the contributed package urca as Raotbl3. The consumption series is seasonally
adjusted real consumer expenditures in 1985 prices. The seasonally adjusted
personal disposable income series has been deflated by the implicit consump-
tion price index; likewise the wealth series is defined as seasonally adjusted
gross personal financial wealth. All variables are expressed in their natural log-
arithms. Recall from Section 3.2 the test regression (3.15), which is reprinted
here with the three different combinations of the deterministic part:

k
Ay = B1+ ot + Ty +Z')/jAyt—j + u1e, (5.1a)
j=1
k
Ay = b1+ mye—1 + Z 'YjAyt_j + uat, (5.1b)
j=1
k
Ay = yp—1 + Z ’yjAytfj —+ usg. (5.1C)
j=1

The ADF test has been implemented in the contributed packages fUnitRoots,
tseries, urca, and uroot as functions adftest (), adf.test(), ur.df (), and
ADF .test (), respectively. For determining the integration order as outlined
in Section 3.2, we will use the function ur.df () for the consumption series.
The reason for this is twofold. First, the three different specifications as in
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Table 5.1. ADF test: Regression for consumption with constant and trend.

Variable  Estimate Std. Error t-value Pr(>|¢|)

(Intercept)  0.7977 0.3548 2.2483 0.0270
zlag.1 —0.0759 0.0339 —2.2389 0.0277
tt 0.0005 0.0002 2.2771 0.0252
z.diff.lagl  —0.1064 0.1007 —1.0568 0.2934
z.diff lag2 0.2011 0.1012 1.9868 0.0500
z.diff .lag3 0.2999 0.1021 2.9382 0.0042

Equations (5.1a)—(5.1c) can be modeled, which is not the case for the function
adf.test (), and second, besides the 7 statistics, the F' type statistics are
returned in the slot object@teststat, with their critical values in the slot
object@cval, as we will see shortly.

In R code 5.1, the test regressions for Models (5.1a) and (5.1b) are esti-
mated.

R Code 5.1 ADF test: Integration order for consumption in the United King-
dom

library (urca)

1
data(Raotbl3) 2
attach (Raotbl3) 3
lc <— ts(lc, start=c(1966,4), end=c(1991,2), frequency=4) 4
lc.ct <— ur.df(lc, lags=3, type='trend') 5
plot(lc.ct) 6
lc.co <— ur.df(lc, lags=3, type='drift') 7
lc2 <— diff(lc) 8
l[c2.ct <— ur.df(lc2, type='trend', lags=3) 9

As a first step, a regression with a constant and a trend has been estimated
(see command line 5). Three lagged endogenous variables have been included
to assure a spherical error process, as is witnessed by the autocorrelations
and partial autocorrelations in Figure 5.1. Including a fourth lag turns out to
be insignificant, whereas specifying the test regression with only two lagged
endogenous variables does not suffice to achieve serially uncorrelated errors.
The summary output of this test regression is provided in Table 5.1. Next,
the hypothesis ¢3 = (61, B2, 7) = (61,0,0) is tested by a usual F type test.
That is, zero restrictions are placed on the time trend and the lagged value
of 1c. The result is displayed in Table 5.2. The test statistic has a value of
2.60. Please note that one must consult the critical values in Dickey and Fuller
[1981, Table VI]. The critical value for a sample size of 100 and significance
levels of 10%, 5%, and 1% are 5.47, 6.49, and 8.73, respectively. Hence, the
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Fig. 5.1. ADF test: Diagram of fit and residual diagnostics

Table 5.2. ADF test: 73, ¢2, and ¢3 tests
Test Statistic 1% 5% 10%

T3 —2.24 —4.04 —3.45 —-3.15
®2 3.74 6.50 4.88 4.16
b3 2.60 8.73 6.49 547

null hypothesis cannot be rejected, which implies that real consumption does
contain a unit root. This finding is reiterated by a t ratio of —2.24 for the
lagged endogenous variable in levels. The relevant critical values now have to
be taken from Fuller [1976, Table 8.5.2], which is given for a sample size of
100 and a significance level of 5% equal to —3.45.1

! Instead of using the critical values in Fuller [1976], one can employ the same ones
provided in Hamilton [1994] or the ones calculated by critical surface regressions
in MacKinnon [1991]. In the function ur.df(), the critical values provided in
Hamilton [1994] have been implemented for the 7 statistics and the ones pro-
vided in Dickey and Fuller [1981] for the ¢ statistics. These are stored in the slot
object@cval.
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Table 5.3. ADF test: Regression for consumption with constant only

Variable  Estimate Std. Error t-value Pr(>|¢|)

(Intercept)  0.0123 0.0851 0.1448 0.8852
zlag.1 —0.0007 0.0079 —0.0931 0.9261
z.diff.lagl  —0.1433 0.1016 —1.4098 0.1620
z.diff.lag2 0.1615 0.1020 1.5832 0.1169
z.diff lag3 0.2585 0.1027 2.5164 0.0136

Table 5.4. ADF test: 72 and ¢ tests

Test Statistic 1% 5% 10%

T2 —0.09 —3.51 —2.89 —2.58
1 2.88 6.70 4.71 3.86

Therefore, a unit root cannot be rejected. Next, it is tested whether the
consumption series is a random walk with or without drift (see command line
7). The relevant test statistic is ¢o, which is provided in Table 5.2. The value
of this test is 3.74 and has to be compared with the critical values provided in
Dickey and Fuller [1981, Table V]. For a sample size of 100, these values are
4.16, 4.88, and 6.50 for significance levels of 10%, 5%, and 1%, respectively.
The conclusion is that the consumption series behaves like a pure random
walk.

One proceeds next by estimating Equation (5.1b) based on the result of
the ¢3 test. The results are depicted in Table 5.3. For the sake of completeness,
it is now tested whether in this model a drift term is absent. The test results
are provided in Table 5.4. The test statistic is 2.88, which turns out to be
insignificant compared with the critical values of Table IV in Dickey and
Fuller [1981]. Therefore, the conclusion is that the quarterly real consumption
series does contain a unit root, but neither a linear trend nor a drift is present
in the data-generating process.

Finally, whether differencing the series once suffices to achieve stationarity
is tested; i.e., whether the series is possible 1(2) is tested. This test is achieved
by supplying the differenced series as argument y in the function ur.df as is
done in the last two command lines of R code 5.1. The results are displayed in
Table 5.5. The hypothesis that the consumption series is I(2) must be clearly
dismissed given a t ratio of —4.39.

5.2 Phillips-Perron Test

Phillips and Perron [1988] and Perron [1988] suggested non-parametric test
statistics for the null hypothesis of a unit root that explicitly allows for weak
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Table 5.5. ADF test: Regression for testing 1(2)

Variable  Estimate Std. Error t-value Pr(>|¢|)

(Intercept)  0.0039 0.0031 1.2664 0.2087
zlag.1 —0.8826 0.2013 —4.3853 0.0000
tt 0.0000 0.0001 0.6232 0.5348
z.diff.lagl  —0.2253 0.1873 —1.2031 0.2321
z.diff lag2  —0.0467 0.1600 —0.2918 0.7711
z.diff .lag3 0.1775 0.1057 1.6791 0.0967

dependence and heterogeneity of the error process (the PP test). The authors
consider the following two test regressions:

Yt = P+ ayi—1 + &, (5.2a)
1
yw=pu+ps (f, — 2T> + ayi—1 + &¢. (52b)

They define the following test statistics for Equation (5.2a):

Z(&) = T(& — 1) — Mgy, (5.3a)
Z(7a) = (8/610)ta — Ném /iy, (5.3b)
Z(r3) = (8/6m0)ts + Nomumy imiymsy, (5.30)

with My, = T2 (g — §)%, myy = T2 y2, my = T-3/23 y;, and A=
0.5(62, — §?), where 32 is the sample variance of the residuals, N = 5\/&%1,
and t4, t; are the t ratios of & and fi, respectively. The long-run variance Ef%l
is estimated as

6%, = Z +27° 1211131 Z Ett—s, (5.4)

t=s+1

where wg =1—s/(l+1).
Similarly, the following test statistics are defined for the test regression
with a linear time trend included as in Equation (5.2b):

Z(@)=T(@a—-1) - M, (5.5a)
Z(ts) = (3/61)ta — Nom /M?, (5.5b)
Z(tp) = (3/6m)ta — Nomimy /M2 (M +m?)?, (5.5¢)
Z(tz) = (3/6r)ts — Nom (;my - mty) J(M/12) i, (5.5d)

where my, Mgy, A, X', and &7 are defined as in Equatlons (5.3a)=(5.3¢c) and
=T-5/2 Yoty ta, t3 and tg are the ¢ ratios of fi, &, and 8, respectively.
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The scalar M is defined as M = (1—=T"2)my, —12m7, +12(14+T~)ymym, —
(44 6T~ + 2T 2)m.

The critical values of these Z statistics are identical to those of the DF
type tests. The advantage is that these modified tests eliminate the nuisance
parameters that are present in the DF statistic if the error process does not
satisfy the i.i.d. assumption. However, one problem with these tests is that it is
at the researcher’s discretion to choose an optimal lag number [ for computing
the long-run variances 6%, or 6%, as in Equation (5.4).

The PP test is implemented as function pp.test() in the contributed
package tseries and as function ur.pp() in the contributed package urca.? The
advantage of the latter is that all test statistics are computed and returned,
as well as the test regression, by applying the summary method to an object
of class ur.pp. Furthermore, the lags to be included in the computation of
the long-run variance can be set either manually via the argument use.lag
or chosen automatically via the argument lags to be short or long, which
corresponds to the integer values 4(7/100)4 and 12(T/100)4, respectively.

In R code 5.2, the PP test is applied to the consumption series used in R
code 5.1.

R Code 5.2 PP test: Integration order for consumption in the United King-
dom

library (urca)

1

data(Raotbl3) 2
attach (Raotbl3) 3
lc <— ts(lc, start=c(1966,4), end=c(1991,2), 4
frequency=4) 5

lc.ct <— ur.pp(lc, type='Z—tau', model="trend"', 6
lags='long") 7

lc.co <— ur.pp(lc, type='Z—tau', model='constant', 8
lags='long") 9

-
o

lc2 <— diff(lc)
lc2.ct <— ur.pp(lc2, type='Z—tau', model="trend"',
lags='long")

[
.

-
S

First, the test is applied to Equation (5.2b), and the results are stored
in the object lc.ct (see command line 6). The result of the test regression
is displayed in Table 5.6. The value of the Z(t5) statistic is —1.92, which is
insignificant. The relevant Z statistics for the deterministic regressors are 0.72
and 2.57. Both of these are insignificant if compared with the critical values
of Tables IT and III in Dickey and Fuller [1981] at the 5% level. These results
are summarized in Table 5.7. In the next step, the trend is dropped from the

2 The latter function has been ported into the package fUnitRoots as function
urppTest ().
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Table 5.6. PP test: Regression for consumption with constant and trend

Variable  Estimate Std. Error t-value Pr(>|t|)

(Intercept)  0.5792 0.3622 1.5992 0.1131
y.l1 0.9469 0.0336 28.1945 0.0000
trend 0.0003 0.0002 1.6108 0.1105

Table 5.7. PP test: Z(ta), Z(tz), and Z(t3) tests

Test Statistic 1% 5% 10%

Z(ta) —1.92 —4.05 —3.46 —3.15
Z(ty) 072 3.78 3.11 273
Z(t;) 257 353 279 2.38

Table 5.8. PP test: Regression for consumption with constant only

Variable  Estimate Std. Error t-value Pr(>|t])

(Intercept)  0.0109 0.0825 0.1318 0.8954
y.11 0.9996 0.0076 130.7793  0.0000

Table 5.9. PP test: Z(ts) and Z(t;) tests

Test Statistic 1% 5% 10%

Z(ta) —0.13 —3.50 —2.89 —2.58
Z(t;) 020 322 254 217

test regression and the results are stored in the object 1c.co (see command
line 8). The regression results are summarized in Table 5.8. Again, the null
hypothesis of a unit root cannot be rejected, and the drift term is insignificant
given the test statistics and critical values reported in Table 5.9. The critical
values for the drift term now correspond to the ones provided for a sample
size of 100 in Table I of Dickey and Fuller [1981]. So far, the conclusion about
the integration order for the consumption series is the same as that obtained
by applying the sequential testing procedure of the ADF test. Finally, it is
checked whether differencing the series once suffices to achieve stationarity
(see command lines 10 and 11). The test regression is reported in Table 5.10.
The value of the test statistic Z(t5) is —10.96, which is highly significant,
and therefore it is concluded according to the results of the PP test that the
consumption series behaves like a pure random walk.
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Table 5.10. PP test: Regression for testing 1(2)

Variable  Estimate Std. Error t-value Pr(>|¢|)

(Intercept)  0.0073 0.0016 4.7276 0.0000
y.l1 —0.1253 0.1025 —1.2215 0.2249
trend 0.0000 0.0000 0.3606 0.7192

5.3 Elliott-Rothenberg-Stock Test

A shortcoming of the two previously introduced unit root tests is their low
power if the true data-generating process is an AR(1)-process with a coefficient
close to one. To improve the power of the unit root test, Elliott, Rothenberg
and Stock [1996] proposed a local to unity detrending of the time series (ERS
tests). The authors developed feasible point-optimal tests, denoted as P4. and
P7, which take serial correlation of the error term into account. The second
test type is denoted as the DF-GLS test, which is a modified ADF-type test
applied to the detrended data without the intercept. The following model is

entertained as the data-generating process for the series y1,...,yr:
Yr = de + uy, (5.6a)
Ut = QUg—1 + Vg, (56b)

where d; = (3'z; is a deterministic component; i.e., a constant or a linear
trend is included in the (¢ x 1) vector z;, and v; is a stationary zero-mean
error process. In the case of a = 1, Equations (5.6a) and (5.6b) imply an
integration order I(1) for y;, whereas |a| < 1 yields a stationary process for
the series.

Let us first focus on the feasible point-optimal test statistic, which is de-
fined as o

P — S(a=a) AQaS(a—l), (5.7)
w

where S(a = @) and S(a = 1) are the sums of squared residuals from a least-
squares regression of y, on Z, with

Yo = (Y1,Y2 — ay1, ..., yr — ayr—1), (5.8a)
Z, = (21,22 —az1,...,2r — azr-1); (5.8b)

hence, y, is a T-dimensional column vector and Z, defines a (T’ X ¢) matrix.
The estimator for the variance of the error process v; can be estimated with

6'2

w= Y (5.9)
(1 =200 @)?
where 62 and &; for i = 1,...,p are taken from the auxiliary ordinary least-

squares (OLS) regression
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Ay =ap + 1Ay + ...+ Ays—p + apr1 + 1. (5.10)

Finally, the scalar a is set to a = 1 + ¢/T, where ¢ denotes a constant. De-
pending on the deterministic components in z;, ¢ is set either to —7 in the
case of a constant or to —13.5 in the case of a linear trend. These values have
been derived from the asymptotic power functions and its envelope. Critical
values of the P4, and P7. tests are provided in Table I of Elliott et al. [1996].

Next, these authors propose a modified ADF-type test, which is the ¢
statistic for testing g = 0 in the homogeneous regression

Aytd = aoyf_l + alAyf_l +...+ apAytd_p + €, (5.11)

where y¢ are the residuals in the auxiliary regression y! = y; — B'z;. When
there is no intercept, one can apply the critical values of the typical DF-type
t tests; in the other instances, critical values are provided in Table I of Elliott
et al. [1996].

Both test types have been implemented as function ur.ers() in the con-
tributed package urca. The function allows the provision of the number of
lags to be included in the test regression for the DF-GLS test via its argu-
ment lag.max. The optimal number of lags for estimating @ is determined by
the Bayesian information criterion (BIC). A summary method for objects of
class ur . ers exists that returns the test regression in the case of the DF-GLS
test and the value of the test statistic with the relevant critical values for the
1%, 5%, and 10% significance levels for both tests. In R code 5.3, both test
types are applied to the logarithm of real gross national product (GNP) used
in the seminal paper of Nelson and Plosser [1982].

R Code 5.3 ERS tests: Integration order for real GNP in the United States

library (urca)

1

data(nporg) 2
gnp <— log(na.omit(nporg[, "gnp.r"])) 3
gnp.d <— diff(gnp) 4
gnp.ct.df <— ur.ers(gnp, type = "DF-GLS", 5
model = "trend”, lag.max = 4) 6

gnp.ct.pt <— ur.ers(gnp, type = "P—test”, 7
model = "trend") 8

gnp.d.ct.df <— ur.ers(gnp.d, type = "DF-GLS", 9
model = "trend”, lag.max = 4) 10

gnp.d.ct.pt <— ur.ers(gnp.d, type = "P—test”, 11
model = "trend") 12

First, the P7. and DF-GLS" are applied to the series, where in the case
of the DF-GLS", four lags have been added (see command lines 5 and 6).
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Table 5.11. ERS tests: P7 and DF-GLS” for real GNP of the United States

Test Statistic 1% 5% 10%

PT 6.65 4.26 5.64 6.79
DF-GLS™ —2.08 —3.58 —3.03 —2.74

Table 5.12. ERS tests: P} and DF-GLS” for testing 1(2)

Test Statistic 1% 5% 10%

Pr 2.68 4.26 5.64 6.79
DF-GLS™ —4.13 —3.58 —3.03 —2.74

The test results are displayed in Table 5.11. Both tests imply a unit root for
the data-generating process. In the second step, both tests are applied to the
differenced series. As the results summarized in Table 5.12 imply, differencing
the series once suffices to achieve stationarity.

5.4 Schmidt-Phillips Test

In Section 5.3, unit root tests have been described that are more powerful
than the usual DF-type tests. Another drawback of the DF-type tests is that
the nuisance parameters (i.e., the coefficients of the deterministic regressors)
are either not defined or have a different interpretation under the alternative
hypothesis of stationarity. To elucidate this point, consider the test regres-
sions as in Equations (5.1a)-(5.1¢) again. Equation (5.1c) allows neither a
non-zero level nor a trend under both the null and the alternative hypothe-
ses. Whereas in Equations (5.1a) and (5.1b) these regressors are taken into
account, now these coefficients have a different interpretation under the null
and the alternative hypotheses. The constant term (31 in Equation (5.1b) has
the interpretation of a deterministic trend under the null hypothesis (i.e.,
m = 1), but it has to be considered as a level regressor under the alternative.
Likewise, in Equation (5.1a), (1 represents a linear trend and (35 represents a
quadratic trend under the null hypothesis of integratedness, but these coeffi-
cients have the interpretation of a level and linear trend regressor under the
alternative hypothesis of stationarity. Schmidt and Phillips [1992] proposed
a Lagrange multiplier (LM)-type test statistic that defines the same set of
nuisance parameters under both the null and the alternative hypotheses. Fur-
thermore, they consider higher polynomials than a linear trend. The authors
consider the model

Yt = Oé+Zt6+l‘t, (512&)
Ty = TT¢—1 + &g, (512b)
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where g, are i.i.d. N(0,0%) and Z; = (¢,t2,...,t?). The test statistic p is then
constructed by running the regression

first and calculating wx =y — Z1(5 where § is the OLS estimate of § in
Equation (5.13). Next, a series S, is defined as Sy = y; — ¥y — Z;0. Finally,
the test regression is then given by

Ay = AZyy + ¢Si_1 + vy, (5.14)

where vt assigns an error term. The test statistic is then defined as Z(p) =

jz = w2 ¢ with ¢ as the OLS estimate of ¢ in Equation (5.14), and an estimator
2 is given by

for w
-1
de Zz 1 t

T- IZ’L 1 t+2T 123 IZt s+1€t€t s

where €, are the residuals from Equation (5.12). Depending on the sample size
and the order of the polynomial Z, critical values are provided in Schmidt and
Phillips [1992]. Aside from this test statistic, one can also apply the ¢ ratio
statistic Z(1) = ;2 for testing ¢ = 0. As shown by a Monte Carlo simulation,
these tests fare better in terms of power compared with the corresponding
DF-type test statistic.

These two tests have been implemented as function ur.sp() in the con-
tributed package urca. As arguments, the series name, the test type (either
tau for 7 or rho for p), the polynomial degree, and the significance level have
to be entered in ur.sp(). In R code 5.4, these tests have been applied to the
nominal GNP series of the United States expressed in millions of current U.S.
dollars as used by Nelson and Plosser [1982]. By eyeball inspection of the
series as displayed in Figure 5.2, a quadratic trend is assumed.

, (5.15)

R Code 5.4 SP test: Integration order for nominal GNP of the United States

library (urca)

1

data(nporg) 2
gnp <— na.omit(nporg[, "gnp.n"]) 3
gnp.tau.sp <— ur.sp(gnp, type = "tau”, pol.deg=2, 4
signif=0.05) 5

gnp.rho.sp <— ur.sp(gnp, type = "rho"”, pol.deg=2, 6
signif=0.05) 7

This setting is evidenced by a significant coefficient of the quadratic trend
regressor in the unconstrained model (5.12a) as displayed in Table 5.13. The
results of the two tests are displayed in Table 5.14. Both tests indicate an
integration order of at least I(1) for a significance level of 5%.
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Fig. 5.2. Nominal GNP of the United States

Table 5.13. SP test: Result of level regression with polynomial of order two.

Variable Estimate Std. Error ¢-value Pr(>|t|)

(Intercept) 9355.4016 7395.3026 1.2650 0.2110
y.lagged 0.9881 0.0411 24.0328 0.0000
trend.expl —982.3230 610.1348 —1.6100 0.1129
trend.exp2  30.2762  16.1573 1.8738 0.0661

Table 5.14. SP tests: 7 and p for nominal GNP of the United States

Test Statistic 1% 5%  10%

T —-2.03 —4.16 —-3.65 —3.34
p —8.51 —30.40 —23.70 —20.40
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5.5 Kwiatkowski-Phillips-Schmidt-Shin Test

Kwiatkowski, Phillips, Schmidt and Shin [1992] proposed an LM test for test-
ing trend and/or level stationarity (the KPSS test). That is, now the null
hypothesis is a stationary process, whereas in the former tests it was a unit
root process. Taking the null hypothesis as a stationary process and the unit
root as an alternative is in accordance with a conservative testing strategy.
One should always seek tests that place the hypothesis we are interested in
as the alternative one. Hence, if we then reject the null hypothesis, we can
be pretty confident that the series indeed has a unit root. Therefore, if the
results of the tests above indicate a unit root but the result of the KPSS test
indicates a stationary process, one should be cautious and opt for the latter
result. Kwiatkowski et al. consider the following model:

Yy =&+t ey, (5.16a)
Ty = Ti—1 + Ug, (516b)

where 7, is a random walk and the error process is assumed to be i.i.d. (0,02).
The initial value rg is fixed and corresponds to the level. If £ = 0, then this
model is in terms of a constant only as deterministic regressor. Under the null
hypothesis, €; is stationary and therefore ¥, is either trend-stationary or in the
case of £ = 0 level-stationary. The test statistic is constructed as follows. First,
regress y; on a constant or on a constant and a trend, depending on whether
one wants to test level- or trend-stationarity. Then, calculate the partial sums
of the residuals &; from this regression as

Se=) éi,t=12,... T (5.17)
i=1
The test statistic is then defined as
T
52
LM = thl L (5.18)
2
JE

with 62 being an estimate of the error variance from step one. The authors
suggest using a Bartlett window w(s,l) = 1—s/(I+1) as an optimal weighting
function to estimate the long-run variance 62; that is,

T l T
62=s2()=T'> e +ar-1) 1- lil 3 aé. (5.19)
t=1 s=1 t=s+1
The upper tail critical values of the level- and trend-stationarity versions are
given in Kwiatkowski et al. [1992].
The two test types are implemented as function ur.kpss() in the con-
tributed package urca and as function kpss.test () in the contributed pack-
age tseries.®> The implementation as in the package urca will be applied to

3 The former function has been ported into the contributed package fUnitRoots as
urkpssTest ().
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Table 5.15. KPSS tests for interest rates and nominal wages of the United States

Test Statistic 1% 5% 10%

Ny 0.13 0.35 0.46 0.74
Nr 0.10 0.12 0.15 0.22

the Nelson and Plosser [1982] data set and thereby replicates some results in
Kwiatkowski et al. [1992]. Besides the test type mu or tau for level-stationarity
or trend-stationarity, the user has the option to set the Bartlett window pa-
rameter [ via the argument lags either to short, which corresponds to the
integer value 4 x (T/100)'/4, to 1ong, which is equivalent to the integer value
12 x (T/100)*/4, or to nil. Alternatively, one can specify an integer value by
providing the desired lag length via the argument use.lag. In R code 5.5, the
level-stationary version is applied to the interest rate data, and the trend-
stationary version of the test is applied to the logarithm of nominal wages. A
lag length [ of eight has been used by setting the functional argument use.lag
accordingly.

R Code 5.5 KPSS test: Integration order for interest rates and nominal wages
in the United States

library (urca)

1
data(nporg) 2
ir <— na.omit(nporg[, "bnd"]) 3
wg <— log(na.omit(nporg[, "wg.n"])) 4
ir.kpss <— ur.kpss(ir, type = "mu”, use.lag=8) 5
wg. kpss <— ur.kpss(wg, type = "tau”, use.lag=8) 6

The null hypotheses of level- and trend-stationarity, respectively, cannot
be rejected for both series, as shown in Table 5.15.

Summary

In this first chapter of Part II, various unit root tests have been applied to
real data sets. The sequential testing strategy of the ADF test outlined in Sec-
tion 3.2 has been applied to U.K. consumption. Because the data-generating
process is unknown, it is recommended to go through these steps rather than
merely apply one-test regressions as in Equations (5.1a)—(5.1¢). Furthermore,
a spherical error term should always be ensured by supplying sufficient lagged
endogenous variables. Next, the Phillips-Perron test has been applied to the
same data set. In principle, the difference between the two tests is that the
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latter uses a non-parametric correction that captures weak dependence and
heterogeneity of the error process. As pointed out in Section 5.3, the relatively
low power of both tests due to the fact that a unit root process is specified
as the null hypothesis must be considered as a shortcoming. The ERS tests
ameliorate this problem and should therefore be preferred. Furthermore, the
nuisance parameters have different interpretations if either the null or the
alternative hypothesis is true. The SP test addresses this problem explicitly
and allows inclusion of higher polynomials in the deterministic part. How-
ever, all tests suffer from an ill-specified null hypothesis. The KPSS test, as a
test for stationarity, correctly addresses the hypothesis specification from the
viewpoint of conservative testing. Anyway, unfortunately there is no clear-cut
answer to the question of which test should be applied to a data set. A com-
bination of some of the above-mentioned tests with the inclusion of opposing
null hypotheses therefore seems to be a pragmatic approach in practice.

Exercises

1. Determine the order of integration for the income and wealth series con-
tained in the data set Raotbl3 with the ADF and the PP tests.

2. Apply the ERS tests to the Nelson and Plosser data set contained in
nporg, and compare your findings with the ones in Nelson and Plosser
[1982].

3. Replicate the results in Kwiatkowski et al. [1992], and again compare them
with the results in Nelson and Plosser [1982].

4. For response surface regression for the ERS tests P4 and P7:

(a) First, write a function that displays the critical values of the P/, and
P7 statistics as provided in Table I of Elliott et al. [1996].

(b) Next, write a function for conducting a Monte Carlo simulation of the
P% and P7 statistics for finite samples.

(c¢) Fit a response surface regression to your results from Exercise 4(b).

(d) Finally, compare the critical values implied from the response surface
regression with the ones provided in Table I of Elliott et al. [1996] for
selected significance levels and sample sizes.

5. Complete the following table:

Data Set ADF PP ERS SP KPSS
(Raotbl3) lc (1) I(1)

(nporg) gnp.r I(1)

(aporg) gup.n 1)

(nporg) bnd 1(0)
(nporg) wg.n 1(0)
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Further Considerations

In Chapter 5, various unit root tests were introduced
and compared with each other. This chapter deals with
two further topics. First, the case of structural breaks
in a time series and how this affects the inference about
the degree of integratedness is considered. Second, the
issue of seasonal unit roots is discussed, as it was only
briefly touched on in Section 3.2.

6.1 Stable Autoregressive Processes
with Structural Breaks

Recall from Section 3.2 the random walk with drift model as in Equation (3.7).
It has been argued that the drift parameter p can be viewed as a deterministic
trend given the final form

t
Ye=pt+yo+ Y e (6.1)

i=1

Now suppose that the series is contaminated by a structural break. Such an
occurrence can be caused by new legislation that affects the economy or by
a redefinition of the data series; e.g., a new definition for counting the unem-
ployed has been decreed. One can distinguish two different ways for how such
a structural shift impacts a series. Either the break occurs at only one point
in time and then lasts for the remaining periods of the sample or it influences
the series only in one particular period. In practice, such structural shifts are
modeled by introducing dummy variables. In the former case, the structural
shift is modeled as a step dummy variable that is zero before the break date
and unity afterward. The latter is referred to as a pulse intervention, and the
dummy variable is only unity at the break date and zero otherwise. Either
way, if the series is I(1), such a structural shift will have a lasting effect on
the series. Consider the data-generating process

Yo =p+ 0D +yi—1 + €, (6.2)

where D; assigns a pulse dummy variable that is defined as

1 t=
D, = .
0 otherwise,
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where 7 assigns the break date. Even though the break occurs in only one
period, it will have a lasting effect on the series, as can be seen by calculating
the final form of Equation (6.2), which is given by

t
Y =pn+0Si+yo+ Y e, (6.3)
=1

1 t>r,
St_{ =T

and S; is

0 otherwise.

In R code 6.1, two random walks with drift have been generated from the same
sequence of disturbances with size 500. The second process has been affected
at observation 250 with a pulse dummy, defined as object S (see command
lines 5 and 9). The two series are plotted in Figure 6.1.

R Code 6.1 Random walk with drift and structural break

set.seed (123456)

e <— rnorm (500)

## trend

trd <— 1:500

S <— c(rep(0, 249), rep(1l, 251))
## random walk with drift

yl <— 0.1xtrd + cumsum(e)

## random walk with drift and shift
y2 <— 0.1xtrd + 10%S + cumsum(e)

© w N o ;oA W N e

The difficulty in statistically distinguishing an I(1)-series from a stable
I(0) one develops if the latter is contaminated by a structural shift. Hence,
the inference drawn from a Dickey-Fuller-type test becomes unreliable in the
case of a potential structural break. This has been shown by Perron [1989],
Perron [1990], Perron [1993], and Perron and Vogelsang [1992]. In Perron
[1989], three different kinds of models are considered, where the structural
break point is assumed to be known:

Model (A):  yr = p+dD(T;) + yi—1 + €, (6.4a)
Model (B):  y: = p1 + (2 — p1) DUt + yi—1 + &, (6.4b)
Model (C):  yr = p1 +dD(T7) + (pp2 — 1) DU + y1—1 + €4, (6.4c)

where 1 < T, < T assigns the a priori known break point, D(T;) = 1 if
t = T> + 1 and 0 otherwise, and DU; = 1 for ¢t > T, and 0 otherwise. It is
further assumed that the error process can be represented as ¢(L)er = 0(L)&;
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Fig. 6.1. Time series plot of random walk with drift and structural break

with £ i.i.d., where ¢(L) and 0(L) assign lag polynomials. In model (A), a one-
time shift in the levels of the series is taken into account, whereas in model
(B) a change in the rate of growth is allowed and model (C) is a combination
of both. The model specifications for the trend-stationary alternative are

Model (A):  yr = p1 + Bt + (2 — 1) DU + €, (6.5a)

Model (B):  y¢ = p+ it + (B2 — B1) DT} + e, (6.5b)

Model (C):  yr = p+ Bit + (o2 — p1) DU + (B2 — p1) DT} + ¢,  (6.5¢)
where DT} =t — T, for t > T and 0 otherwise.

The author proposed an adjusted, augmented Dickey-Fuller (ADF)-type
test for the three models that is based on the following test regressions:



110 6 Further Considerations

k
ye = (it + 02 DU, + B+ d*D(T,)e + 6 ye 1 + > 6 Ay_i + €, (6.6a)

=1
k
yo = B + BBt + 4P DT + 6Py + > P Ay + €, (6.6b)
=1
y = 0€ 4+ 6°DU, + Bt + 4° DT} + d° D(T, )y + 6 yi—1
k
+ Z & Ayi—i + €. (6.6¢)
=1

The test statistic is the Student ¢ ratio t4:(\) for i« = A, B,C. Please note
that this test statistic is now dependent on the fraction of the structural break
point with respect to the total sample; i.e., A = 7;* . The critical values of this
test statistic are provided in Perron [1989] and/or Perron [1993]. The author
applied these models to the data series used in Nelson and Plosser [1982] and
concluded that most of the series no longer contains a unit root if the presence
of a structural break is taken into account.

Zivot and Andrews [1992] pointed out that the risk of data mining exists
if the break point is set exogenously by the researcher. They propose a test
that circumvents this possibility by endogenously determining the most likely
occurrence of a structural shift. By reanalyzing the data set used in Perron
[1989], they found less evidence for rejecting the assumption of a unit root
process. The estimation procedure they proposed is to choose the date of the
structural shift for that point in time that gives the least favorable result for
the null hypothesis of a random walk with drift. The test statistic is as in
Perron [1989] the Student ¢ ratio

tai [N ] = inf ta:(N) for i=A,B,C, (6.7)

where A is a closed subset of (0,1). Depending on which model is selected,
the test statistic is inferred from one of the test regressions

k

ye = i + 0ADUA) + B + aty 1 + ) e Ay + 4y, (6.8a)

ye = (1% + BPt+ APDTF(N) + 6Py 1 + D ePAyi+ 4y, (6.8b)
=1

yr = A€ + 6°DU,(N) + Bt +3° DTy (N) + 6%y,

k
+Y Ay + (6.8¢)
=1

where DU(A) = 1if t > T\ and 0 otherwise, and DT (\) =t—TAfort > TA
and 0 otherwise. Because now A is estimated, one can no longer use the critical
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Table 6.1. Zivot-Andrews: Test regression for nominal wages

Variable  Estimate Std. Error t-value Pr(>|¢|)
(Intercept)  1.9878 0.3724 5.3375 0.0000

y.11 0.6600 0.0641 10.2950 0.0000
trend 0.0173 0.0033 5.3190 0.0000
y.dll 0.4979 0.1121 4.4411 0.0000
y.dl2 0.0557 0.1308 0.4262 0.6717
y.dl3 0.1494 0.1278 1.1691 0.2477
y.dl4 0.0611 0.1266 0.4826 0.6314
y.dlb 0.0061 0.1264 0.0484 0.9616
y.dl6 0.1419 0.1249 1.1364 0.2610
y.dl7 0.2671 0.1195 2.2358 0.0297
du —0.1608 0.0387 —4.1577  0.0001

values as in Perron [1989] or Perron [1993], but the values published in Zivot
and Andrews [1992] have to be used instead.

The Zivot and Andrews test is implemented as function ur.za() in the
contributed package urca. In R code 6.2, this test is applied to the nominal
and real wage series of the Nelson and Plosser data set. The test is applied to
the natural logarithm of the two series. With the functional argument model,
the type can be specified, in which intercept stands for model specification
(A), trend corresponds to model type (B), and both is model type (C). The
integer value of lag determines the number of lagged endogenous variables to
be included in the test regression.

R Code 6.2 Unit roots and structural break: Zivot-Andrews test

library (urca)

data(nporg)

wg.n <— log(na.omit(nporg[, "wg.n"]))

za.wg.n <— ur.za(wg.n, model = "intercept”, lag = 7)
## plot(za.wg.n)

wg.r <— log(na.omit(nporg[, "wg.r"]))

za.wg.r <— ur.za(wg.r, model = "both”, lag = 8)

## plot(za.wg.r)

o N e A W N e

The regression output (i.e., the contents of the slot testreg) is displayed
in Tables 6.1 and 6.2, respectively. The results of the test statistic are provided
in Table 6.3. The unit root hypothesis must be rejected for the nominal wage
series, given a significance level of 5%, whereas the unit root hypothesis cannot
be rejected for the real wage series. The structural shift for the nominal wage
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Table 6.2. Zivot-Andrews: Test regression for real wages

Variable  Estimate Std. Error t-value Pr(>|t|)
(Intercept)  2.5671 0.5327 4.8191 0.0000

y.11 0.1146 0.1866 0.6141 0.5420
trend 0.0124 0.0028 4.4875 0.0000
y.dll 0.6111 0.1662 3.6759 0.0006
y.dl2 0.3516 0.1686 2.0852 0.0423
y.dl3 0.4413 0.1568 2.8151 0.0070
y.dl4 0.2564 0.1453 1.7648 0.0838
y.dl5 0.1381 0.1346 1.0258 0.3100
y.dl6 0.0591 0.1262 0.4683 0.6416
y.dl7 0.1673 0.1201 1.3937 0.1697
y.dl8 0.1486 0.1210 1.2277 0.2254
du 0.0849 0.0196 4.3285 0.0001
dt 0.0081 0.0022 3.6819 0.0006

Table 6.3. Zivot-Andrews: Test statistics for real and nominal wages

Variable Test Statistic 1% 5% 10%
wages, nominal —5.30 —5.34 —4.80 —4.58
wages, real —4.74 —5.57 —5.08 —4.82

series most likely occurred in period 30, which corresponds to the year 1929.
The estimated break point is stored in the slot bpoint.

Finally, besides a summary method for objects of class ur.za, a plot
method exists that depicts the path of the test statistic. The significance
levels are drawn as separate lines, and in the case of a structural break, the
break point is highlighted by a dashed vertical line. The graphs are displayed
in Figures 6.2 and 6.3, respectively.

6.2 Seasonal Unit Roots

In Section 3.2, the topic of seasonal unit roots was briefly discussed. We will
now investigate the issue of seasonal integration more thoroughly. This need
originates because applied economists often need to construct models for sea-
sonally unadjusted data. The reason for this is twofold. First, some data might
be obviously seasonal in nature, and second, sometimes the utilization of sea-
sonally adjusted data might distort the dynamics of an estimated model, as
has been pointed out by Wallis [1974].

Recall the seasonal difference operator and its factorization, as shown in
Equations (3.10a) and (3.10b). For quarterly data, this factorization would
yield
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Zivot and Andrews Unit Root Test

= 1%cv. -+ 25%cv. = 5%cCVv.

t statistics for lagged endogenous variable

Time
Model type: intercept

Fig. 6.2. Zivot-Andrews test statistic for nominal wages

(1-LYH=0~-L)(1+ L)1 —iL)(1+iL), (6.9)

where +i are complex roots.! A seasonal quarterly process therefore has four
possible roots, namely 1, —1, and +i. These roots correspond to different cy-
cles in the time domain. The root 1 has a single-period cycle and is the zero-
frequency root. The root —1 has a two-period cycle that implies for quarterly
data a biannual cycle. Finally, the complex roots have a cycle of four periods
that is equivalent to one cycle per year in quarterly data. The problem caused
by the complex roots for quarterly data is that their effects are indistinguish-
able from each other. In Table 6.4, the cycles are summarized by the roots of
the seasonal difference operator.

As mentioned in Section 3.2, the first attempts to test for seasonal unit
roots, and probably the simplest, were suggested by Hasza and Fuller [1982]
and Dickey et al. [1984]. The latter authors suggested the following test re-
gression:

k
Agzp = 002e—1 + Z 0;Asyr—i + &¢. (610)

=1

! For brevity, we consider quarterly data only. The factorizations for the other
seasonal frequencies are provided in Franses and Hobijn [1997], for example.
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Zivot and Andrews Unit Root Test
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Fig. 6.3. Zivot-Andrews test statistic for real wages

Table 6.4. Cycles implied by the roots of the seasonal difference operator

Root +1 Root —1 Root +i Root —i
Factor (1 — L) Factor (1+ L) Factor (1 —iL) Factor (14 iL)
Yt+1 = Yt Yt41 = —Yt Ye+1 = iyt Yer1 = —iYs

Ye+2 = —(Yet1) = Yt Ye+2 = W(Ye+1) = =Y Y2 = —i(Ye+1) = —
Yirs = H(Yer2) = =y Y3 = —i(Yea2) = W
Yira = 1(Yt+3) = Y¢  Yera = —i(Ye+3) = Yt

The variable z; is constructed by estimating the auxiliary regression

h
Asyr = Z NiAsyi—i + €1, (6.11)
i=1
which yields the coefficient estimates 5\1, ceey An. The variable z; is then con-
structed as .
Rt =Yt — Zj\iyt—i- (6-12)
i=1

The test for seasonal integration is then based on the Student ¢ ratio for
the ordinary least-squares estimate of the coefficient dp in Equation (6.10).
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Osborn et al. [1988] suggested replacing Agz; with Agy; as the dependent
variable in Equation (6.10). Incidentally, if ~ = 0, this is equivalent with an
ADF regression for the seasonal differences; i.e.,

k
Asye = doyi—s + Z 0iAsyi—i + €t (6.13)

i=1
The lag orders k£ and h should be determined similarly to the procedures
proposed for the ADF test in Section 3.2. Furthermore, it should be noted
that deterministic seasonal dummy variables can also be included in the test
regression. The relevant critical values are provided in Osborn et al. [1988]
and are dependent on the inclusion of such deterministic dummy variables
and whether the data have been demeaned at the seasonal frequency. If the
null hypothesis of the existence of a seasonal unit root is rejected for a large
enough absolute ¢ ratio, then one might conclude that stochastic seasonality
is not present or that stochastic seasonality, which can be removed by using
s-differences, does not exist. On the other hand, if the null hypothesis cannot
be rejected, it is common practice to consider the order of non-seasonal differ-
encing required to achieve stationarity instead of considering higher orders of
seasonal differencing. Hence, one might consider as a data-generating process
SI(0,0) or SI(0,1), or SI(d,1) at most. To discriminate between SI(0,1) and
SI(1,1), where the former is the new null hypothesis, one can estimate the

ADF-type test regression

k
AAsyt = 5OAsyt—1 + Z 5iAAsyt—i + &t (614)

i=1

and consider the ¢ ratio for the hypothesis o = 0. If this test statistic is
insignificant, one takes into account SI(2,1) as the new null hypothesis by

estimating
k

AAA Y = 60AAy—1 + Z 0iAAA Y —; + & (6.15)
i=1
and so forth.

The deficiency of the test regression proposed by Osborn et al. [1988] is
that it does not test all possible unit roots in a seasonal process (see Table 6.4).
Hylleberg et al. [1990] suggested a test that allows for cyclical movements at
different frequencies and takes the factorization of the seasonal lag polynomial
as in Table 6.4 explicitly into account (the HEGY test). For quarterly data,
they propose the test regression

4
Agyr = miYii i +et, (6.16)
=1

where the regressors Y;; for i = 1,...,4 are constructed as
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Yig=(14+L)1+ Ly =y + g1 + Y2 + Yi—3, (6.17a)
You=—(1—L)(14 L)y =~y + ye—1 — Ye—2 + Y13, (6.17b)
Ysp=—(1— L)1+ L)yt = =yt + Y2, (6.17c)
Yie=—(L) 1= L)1+ L)y =Ya -1 = —yt—1 + Yi—3. (6.17d)

The null hypothesis of seasonal integration implies that the coefficients 7; for
i=1,...,4 are equal to zero. As outlined, each m; has a different interpreta-
tion. If only 7 is significantly negative, then there is no non-seasonal stochas-
tic stationary component in the data-generating process. Likewise, if only o
is significant, then there is no evidence of a biannual cycle in the data. Finally,
the significance of w3 and m4 can be tested jointly with a Lagrange-multiplier
F test. To put it differently, the existence of unit roots at the zero, biannual,
and annual frequencies correspond to m; = 0, 1o = 0, and 73 = w4 = 0, re-
spectively. It should be noted that deterministic terms, such as an intercept, a
trend, seasonal dummy variables, or a combination of these, as well as lagged
seasonal differences, can be added to the test regression (6.16). That is, the
general test regression is given by

4 3 k
Agyr=mo+ > mYir 1+ BiDSis+ Y Gilagr 1+t +e,  (6.18)

i=1 i=1 i=1

where DS, ; assign the seasonal dummy variables, 7y the constant term, and
t a time trend. The critical values are provided in Hylleberg et al. [1990] and
are dependent on the specification chosen and the sample size.

The HEGY test is implemented as function HEGY.test() in the con-
tributed package uroot.? The specification of the test regression is determined
by the functional argument itsd, which is a three-element vector. If the first
element of this vector is set to one, a constant is included. A zero as the
first element of itsd refers to a regression without an intercept. Analogously,
if the second element of itsd is set to one, a linear trend is included, and
a zero indicates its omission. The inclusion of seasonal dummy variables is
controlled by the third element of itsd, which itself is a vector containing
the dummy variables to be included in the test regression. The inclusion of
lagged seasonal differences is set by the argument selectlags, which can be
a specific order or an automatic selection and is done according to either the

2 Incidentally, the package is shipped with a graphical user interface that is launched
by executing urootgui() from the console. Besides the HEGY function, it should
be noted at this point that the ADF test with the option to include determin-
istic seasonal dummy variables is available as function ADF.test() as well as
the tests proposed by Canova and Hansen [1995] as functions CH.test() and
CH.rectest (). Other features of the package are the generation of a I#TEX table
containing the test results and a panel function for graphical inspection of the
time series characteristics.
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Akaike information criterion (AIC), Bayesian information criterion (BIC), or
a Ljung-Box test, or only the significant lags are retained. Finally, additional
regressors can be included by the argument regvar. This argument enables
the researcher to model explicitly structural breaks in the seasonal means
and increasing seasonal variation, as was suggested as an amendment to the
HEGY test by Franses and Hobijn [1997]. The function returns an object of
formal class hegystat-class. The test statistics are contained in the slots
hegycoefs and stats, respectively.

In R code 6.3, the HEGY test is applied to the logarithm of real disposable
income in the United Kingdom from 1955:Q1 until 1984:Q4. This series is
contained in the data set UKconinc in the contributed package urca and was
used in Hylleberg et al. [1990]. The authors have chosen the lags 1, 4, 5
in the augmented test regression (6.18) and have run a combination of the
deterministic regressors (see command lines 5 to 9). The ¢ ratios of m; for
i =1,...,4 can be retrieved by object@hegycoefs, and the F' statistics of the
Lagrange-multiplier test are stored in object@stats. Finally, the significance
of the deterministic regressors can be checked by inspecting object@lmhegy.

R Code 6.3 HEGY test for seasonal unit roots

library (urca)

1

library (uroot) 2
data(UKconinc) 3
incl <— ts(UKconinc$incl, start = c(1955,1), 4
end = c(1984,4), frequency = 4) 5

HEGY000 <— HEGY. test(wts = incl, itsd = c(0, 0, c(0)), 6
selectlags = list(mode = c(1,4,5))) ~

HEGY100 <— HEGY. test (wts = incl, itsd = c(1, 0, c(0)), s
selectlags = list(mode = ¢(1,4,5))) o

HEGY110 <— HEGY. test(wts = incl, itsd = c(1, 1, c(0)), 10
selectlags = list(mode = c(1,4,5))) 11

HEGY101 <— HEGY. test(wts = incl, 12
itsd = c(1, 0, c(1, 2, 3)), 13

selectlags = list(mode = c(1,4,5))) 14

HEGY111 <— HEGY. test (wts = incl , 15
itsd = c(1, 1, c(1, 2, 3)), 16

selectlags = list(mode = c(1,4,5))) 17

The test results are provided in Table 6.5, where in the first column the
specification is given as I for the inclusion of an intercept, SD for the inclusion
of seasonal dummies, and Tr abbreviates a linear trend. The reported ¢ ratios
for m3 and w4 as well as the F' statistic m3 N 74 are all significant at the 5%
level. Hence, the authors conclude that the null hypothesis of a unit root at
the zero frequency cannot be rejected. However, the null hypothesis for the
conjugate complex roots must be rejected.
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Table 6.5. HEGY test: Real disposable income in the United Kingdom

Regression t:m1 time i tima Fims Nma

None 2.61 —1.44 —2.35 —2.51 5.68
I —1.50 —1.46 —2.38 —2.51 5.75
I, SD —1.56 —2.38 —4.19 —3.89 14.73
I, Tr —2.73 —1.46 —2.52 —2.24 5.46

I, SD, TR —2.48 —2.30 —4.28 —3.46 13.74

Summary

In this chapter, the analysis of integrated time series has been amended in
two important ways. First, it has been shown that in the case of a structural
break the test conclusion about the presence of a unit root in a time series can
be biased toward accepting it. Therefore, if a priori knowledge of a structural
shift exists or a break in the series is evident by eye-spotting, one should
either use the Perron or the Zivot and Andrews test, respectively. Second, if
the correlogram gives hindsight of seasonality in the time series, one should
apply a seasonal unit root test. A complete analysis of a possibly integrated
time series would therefore begin by testing whether breaks and/or stochastic
seasonality exist, and depending on this outcome, unit root tests should be
applied as shown in Chapter 5. After all, when the null hypothesis of a unit
root must be rejected, it should be checked whether long-memory behavior is
present as shown in Section 3.3.

Exercises

1. Write a function that displays the critical values for models of types (A),
(B), and (C) as in Perron [1989].

2. Write a function that estimates the models of types (A), (B), and (C) as
in Equations (6.5a)—(6.5¢).

3. Combine your functions from Exercises 1 and 2 so that now the functions
return the relevant critical values for a prior specified significance level.

4. Write a function for the seasonal unit root test proposed by Osborn et al.
[1988].

5. Apply this function to the log of real disposable income in the United
Kingdom as contained in the data set UKconinc and compare this with
the results reported in Table 6.5.
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Cointegration



7

Single-Equation Methods

This is the first chapter of the third and last part of
this book. The cointegration methodology is first pre-
sented for the case of single-equation models. The Engle-
Granger two-step procedure is demonstrated by esti-
mating a consumption function and its error-correction
form for the United Kingdom as in Holden and Per-
man [1994]. In the Section 7.2, the method proposed by
Phillips and Ouliaris [1990] is applied to the same data
set. The application and inferences of a vector error-
correction model are saved for Chapter 8.

7.1 Engle-Granger Two-Step Procedure

Recall from Section 4.2 that the first step of the Engle-Granger two-step pro-
cedure consists of estimating the long-run relationship as in Equation (4.4).
Holden and Perman [1994] applied this procedure to the estimation of a con-
sumption function for the United Kingdom. The integration order of the con-
sumption series was already discussed in Section 5.1, and the determination
of the integration order of the income and wealth series was given as Exercise
1 in Chapter 5. In the following discussion, we will treat all series as I(1),
although the result for the wealth series is ambiguous.! The authors regressed
consumption on income and wealth for the sample period from 1967:Q2 un-
til 1991:Q2. In R code 7.1, the data set Raotbl3 is loaded and the series are
transformed into time series objects (see command lines 3 to 9). The selection
of the sample period is easily achieved by the function window () in command
line 11. By slightly diverging from the analysis as in Holden and Perman, the
long-run relationships for each of the series (i.e., consumption, income, and
wealth), entered separately as endogenous variables, are simply estimated by
ordinary least-squares (OLS) (see command lines 13 to 15).

The residuals of these three long-run relationships are stored as objects er-
ror.lc, error.li, and error.lw, respectively. An augmented Dickey-Fuller
(ADF)-type test is applied to the residuals of each equation for testing whether

! When a broken trend is allowed in the data-generating process for the wealth
series, the authors concluded that the unit root hypothesis must be rejected on
the basis of the test proposed by Perron [1989]. This finding is confirmed by
applying the Zivot and Andrews [1992] test for a model with a constant, trend,
and four lags (see Section 6.1 for a discussion of both tests).
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the variables are cointegrated or not (see command lines 22 to 24). Please note
that one must now use the critical values found in MacKinnon [1991] or Engle
and Yoo [1987]. The test statistics imply cointegration for the consumption
and income functions that are significant at the 5% level, given a critical value
of —3.83, but not for the wealth equation, thereby stressing the finding that
this series should be considered as stationary with a broken trend. Further-
more, the Jarque-Bera test indicates that the null hypothesis of normality
cannot be rejected for all equations.

R Code 7.1 Engle-Granger: Long-run relationship of consumption, income,
and wealth in the United Kingdom

library (tseries) 1
library (urca) 2
data(Raotbl3) 3
attach (Raotbl3) 4
lc <— ts(lc, start=c(1966,4), end=c(1991,2), 5

frequency=4) 6
li <— ts(li, start=c(1966,4), end=c(1991,2), 7

frequency=4) 8
lw <— ts(lw, start=c(1966,4), end=c(1991,2), 9

frequency=4) 10

ukcons <— window (cbind(lc, i, Iw), start=c(1967, 2), 11
end=c(1991,2)) 12

lc.eq <— summary(Im(lc ~ li + lw, data=ukcons)) 13
li.eq <— summary(Im(1li ~ lc + lw, data=ukcons)) 14
Iw.eq <— summary(Im(lw ~ 1i + lc, data=ukcons)) 15
error.lc <— ts(resid(lc.eq), start=c(1967,2), 16
end= c(1991 2), frequency=4) 17

error. li <— ts(resid(li.eq), start=c(1967,2), 18
end= c(1991 2), frequency=4) 19

error.lw <— ts(resid(lw.eq), start=c(1967,2), 20
end=c(1991,2), frequency=4) 21

ci.lc <— ur.df(error.lc, lags=1, type='none') 22
ci.li <— ur.df(error.li, lags=1, type='none') 23
ci.lw <— ur.df(error.lw, lags=1, type='none') 24
jb. Ic <— jarque.bera.test(error.lc) 25
jb . <— jarque.bera.test(error.li) 26
Jb.|W <— jarque.bera.test(error.lw) 27

In the next step, the error-correction models (ECMs) for the consumption
and income functions are specified as in Equations (4.5a) and (4.5b). In R
code 7.2, the necessary first differences of the series and its lagged values are
created, as well as the series for the error term lagged by one period.
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Table 7.1. Engle-Granger: Cointegration test

Variable ADF JB p-value
Consumption —4.14 0.66  0.72
Income —4.06 0.07 0.97
Wealth —2.71 3.25 0.20

R Code 7.2 Engle-Granger: ECM for consumption and income of the United
Kingdom

ukcons2 <— ts(embed(diff(ukcons), dim=2), 1
start=c(1967,4), freq=4) 2
colnames(ukcons2) <— c('lc.d', '"li.d'", 'lw.d', 3
"le.dl', '"li.dl', '"lw.dl") 4

error .ecml <— window(lag(error.lc, k=-1), 5
start=c(1967,4), end=c(1991, 2)) 6

error.ecm2 <— window(lag(error.li, k=-1), 7
start=c(1967,4), end=c(1991, 2)) 8

ecm.eql <— Im(lc.d ~ error.ecml 4+ lc.dl 4+ li.dl 4+ lw.dl, 9
data=ukcons2) 10

ecm.eq2 <— Im(li.d ~ error.ecm2 4+ lc.dl 4+ li.dl 4+ lw.dl, 11
data=ukcons2) 12

The regression results for both ECMs are depicted in Tables 7.2 and 7.3.
It should be restressed at this point that if two series are cointegrated, then
there should be Granger-causation in at least one direction. That is, at least
one coeflicient of the error term should enter Equations (4.5a) or (4.5b) sig-
nificantly and with the correct sign (i.e., negative). Hence, even if the lagged
differences of the income and consumption regressors do not enter significantly,
the levels might through the residuals and hence Granger-cause consumption
and/or income. The coefficient of the error-correction term in the consumption
function does not enter significantly and has the wrong sign (see Table 7.2).
On the contrary, the error-correction term does enter significantly and has
the correct sign in the income equation (see Table 7.3). The error of the last
period is worked off by one half, although the lagged differences of the remain-
ing regressors do not enter significantly into the ECM. These results imply
Granger-causation from consumption to income.

7.2 Phillips-Ouliaris Method

In Section 7.1 and Section 4.2, it has been shown that the second step of the
Engle-Granger method is an ADF-type test applied to the residuals of the
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Table 7.2. Engle-Granger: ECM for the consumption function

Variable Estimate Std. Error t-value Pr(>|¢|)

(Intercept)  0.0058 0.0015 3.8556 0.0002
error.ecml 0.0625 0.0984 0.6354 0.5268

le.d1 —0.2856 0.1158 —2.4655 0.0156
li.d1l 0.2614 0.0864 3.0270 0.0032
lw.d1 0.0827 0.0317 2.6097 0.0106

Table 7.3. Engle-Granger: ECM for the income function

Variable Estimate Std. Error ¢-value Pr(>|t|)

(Intercept)  0.0066 0.0019 3.5346 0.0006
error.ecm2 —0.5395 0.1142 —4.7236  0.0000

le.dl —0.1496 0.1464 —1.0218 0.3096
li.d1l —0.0060 0.1085 —0.0556  0.9558
lw.d1 0.0627 0.0398 1.5753 0.1187

long-run equation. Phillips and Ouliaris [1990] introduced two residual-based
tests, namely a variance ratio and a multivariate trace statistic. The latter of
these tests has the advantage that it is invariant to normalization (i.e., which
variable is taken as endogenous). Both tests are based on the residuals of the
first-order vector autoregression

zZt = ﬁzt_l + mA?:t, (71)

where z; is partitioned as z; = (yt,Aa:;) with a dimension of x; equal to m =
n + 1. The variance ratio statistic P, is then defined as

. T
= o2 . (7.2)
T=1 30 0
where 4; are the residuals of the long-run equation y; = ,é' x¢ + . The

conditional covariance wiy.o is derived from the covariance matrix {2 of &
(i.e., the residuals of Equation (7.1)) and is defined as

A~ N Al A—1~
wi1.2 = W11 — w21922 w1, (73)

where the covariance matrix 2 has been partitioned as

- w11 War
2=, A , 7.4
|:W21 -922] ( )

and is estimated as
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T 1 T
QT EE T Y wi Y EE ). (1)

t=1 s=1 t=1
with weighting function wy = 1—s/({+1). Therefore, the variance ratio statis-
tic measures the size of the residual variance from the cointegrating regression
of y; on x4 against that of the conditional variance of y; given x;. In the case
of cointegration, the test statistic should stabilize to a constant, whereas if a
spurious relationship is present, this would be reflected in a divergent vari-
ance of the long-run equation residuals from the conditional variance. Critical
values of this test statistic have been tabulated in Phillips and Ouliaris [1990].

The multivariate trace statistic, denoted as 132, is defined as

P, = Ttr(2M2}), (7.6)

with M,, = t7! ZtT:l 21z and £2 estimated as in Equation (7.5). Critical
values for this test statistic are provided in Phillips and Ouliaris [1990], too.
The null hypothesis is that no cointegration relationship exists.

Both tests are implemented in the function ca.po() in the contributed
package urca. Besides the specification of the test type, the inclusion of de-
terministic regressors can be set via the argument demean, and the lag length
for estimating the long-run variance-covariance matrix £2 can be set with the
argument lag. Because a matrix inversion is needed in the calculation of the
test statistics, one can pass a tolerance level to the implicitly used function
solve() via the argument tol. The default value is NULL.

In R code 7.3, both test types are applied to the same data set as before.
The results are provided in Table 7.4. The variance ratio test statistic does not
indicate a spurious relationship. This should be no surprise because the first
column of the data set ukcons is the consumption series. Therefore, the test
conclusion is the same as when using the two-step Engle-Granger procedure.

However, matters are different if one uses the P, statistic. From the in-
clusion of the wealth series, which is considered as stationary around a bro-
ken trend line, the statistic indicates a spurious relationship at the 5% level.
Please note that normalization of the long-run equation does not affect this
test statistic.

Up to now we have only discussed single-equation methods and how such
methods can be fairly easily applied in R. One deficiency of these methods is
that one can only estimate a single cointegration relationship. However, if one
deals with more than two time series, it is possible that more than only one
cointegrating relationship exists, as has been pointed out in Section 4.3. The
estimation and inference of VECMSs are the subject of the next chapter.
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Table 7.4. Phillips-Ouliaris: Cointegration test
Variable Test Statistic 10% 5% 1%

P, 58.91 33.70 40.53 53.87
P, 88.03 80.20 89.76 109.45

R Code 7.3 Phillips-Ouliaris: Long-run relationship of consumption, income,
and wealth in the United Kingdom

library (urca)

data(Raotbl3)

attach (Raotbl3)

lc <— ts(lc, start=c(1966,4), end=c(1991,2),
frequency=4)

li <— ts(li, start=c(1966,4), end=c(1991,2),
frequency=4)

lw <— ts(lw, start=c(1966,4), end=c(1991,2),
frequency=4)

ukcons <— window (cbind(lc, li, Iw), start=c(1967, 2),

end=c(1991,2))
pu.test <— summary(ca.po(ukcons, demean='const',
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type='Pu')) 13
pz.test <— summary(ca . po(ukcons , demean='const', 14
type:’Pz')) 15

Summary

In this first chapter of Part III, two single-equation methods have been pre-
sented. The advantage of the Engle-Granger two-step procedure is its ease
of implementation. However, the results are dependent on how the long-run
equation is specified. In most cases, it might be obvious which variable enters
on the left-hand side of the equation; i.e., to which variable the cointegrating
vector should be normalized. Unfortunately, this is only true in most cases,
and, as anecdotal evidence, an income function rather than a consumption
function could have been specified as an ECM in R code 7.2. It is therefore
advisable to employ the cointegration test of Phillips and Ouliaris, which is
irrelevant to normalization.

As mentioned, the insights gained with respect to the cointegrating rela-
tionship are limited in the case of more than two variables. The next chapter
is therefore dedicated to the inference in cointegrated systems.
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Exercises

1. Consider the data sets Raotbll and Raotbl2 in the contributed package
urca. Your goal is to specify the ECM for real money demand functions
by using different monetary aggregates.

(a) Determine the integration order of the series first.

(b) Estimate the long-run equations.

(¢) Can you find cointegration relations for the different money demand
functions?

(d) Specify the ECM and interpret your results with respect to the error-
correction term.

2. Consider the data set Raotbl6 in the contributed package urca. Specify a
Phillips-curve model in error-correction form as in Mehra [1994].

(a) Determine the integration order of the price level, unit labor cost, and
output gap variable first.

(b) Estimate the long-run equation and test for cointegration. Employ
the Phillips-Ouliaris tests, too.

(¢) Specify an ECM, and discuss your findings.
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In this chapter, the powerful tool of likelihood-based
inference in cointegrated vector autoregressive models
(VECMs) is discussed. In the first section, the specifica-
tion and assumptions of a VECM are introduced. In the
following sections, the problems of determining the coin-
tegration rank, testing for weak exogenity, and testing of
various restrictions placed on the cointegrating vectors
are discussed. The topic of VECMs that are contami-
nated by a one-time structural shift and how this kind
of model can be estimated are presented. This chapter
concludes with an exposition of structural vector error-
correction models.

8.1 The Vector Error-Correction Model

8.1.1 Specification and Assumptions

In this section, the results in Johansen and Juselius [1992] are replicated. In
this article, the authors test structural hypotheses in a multivariate cointe-
gration contex t of the purchasing power parity and the uncovered interest
parity for the United Kingdom. They use quarterly data spanning a range
from 1972:Q1 to 1987:Q2. As variables, p;, the U.K. wholesale price index;
p2, the trade-weighted foreign wholesale price index; e;s, the U.K. effective ex-
change rate; i1, the three-month treasury bill rate in the United Kingdom; and
i3, the three-month Eurodollar interest rate, enter into the VECM. To cope
with the oil crisis at the beginning of the sample period, the world oil price
(contemporaneously and lagged once), denoted as doilpy and doilp;, respec-
tively, is included as an exogenous regressor, too. These variables, expressed
in natural logarithms, are included in the data set UKpppuip contained in the
package urca and are depicted in Figure 8.1.

As a preliminary model, Johansen and Juselius settled on the specification

Yt = FlAyt—l + C()Al‘t + clet—l + Hyt_g + v + @Dt + Et, (81)

where the vector y; contains as elements (pi,p2,€12,%1,i2)" and x; assigns
the model exogenous world oil price doilpg. In the matrix Dy, centered sea-
sonal dummy variables are included, and the vector w is a vector of constants.
The five-dimensional error process €; is assumed to be i.i.d. as N(0,X) for
t = 1,...,T. This specification is the long-run form of a VECM (see Equa-
tion (4.8)).
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Fig. 8.1. Graphical display of purchasing power parity and uncovered interest rate
parity for the United Kingdom

8.1.2 Determining the Cointegration Rank

Johansen and Juselius start by determining the cointegration rank. Because
inferences on the cointegration space spanned by its vectors are dependent
on whether or not linear trends exist in the data, they argued by ocular
econometrics and logical reasoning that the price series have a linear trend
that is consistent with the steady-state assumption of constant nominal price
growth as implied by economic theory, and therefore the vector pu can be
estimated without imposing any restrictions.!

! In the case of linear trends, the constant vector g can be partitioned as g =
afBo+a 1y, where (B is an 7 x 1 vector of intercepts in the cointegration relations,
o is a K X (K —r) matrix of full rank perpendicular to the columns of «, and ~
is a (K —7) x 1 vector of linear trend slopes. Therefore, the alternative hypothesis
is a1y = 0 and can be tested as shown in Johansen and Juselius [1990]. This
linear trend test is implemented in the package urca as function 1ttest().
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In R code 8.1, the hypothesis Hi(r) : I = aB’ (i.e., that IT is of re-
duced rank) is tested with the trace and the maximal eigenvalue statistic (see
Equations (4.11) and (4.14)).2

R Code 8.1 Johansen-Juselius: Unrestricted cointegration

library (urca)

1

data(UKpppuip) 2
names(UKpppuip) 3
attach (UKpppuip) 4
datl <— cbind(pl, p2, el2, i1, i2) 5
dat2 <— cbind(doilp0, doilpl) 6
args('ca.jo') 7
Hl <— ca.jo(datl, type = 'trace',K K = 2, season = 4, 8
dumvar = dat2) 9

Hl.trace <— summary(ca.jo(datl, type = 'trace', K= 2, 10
season = 4, dumvar = dat2)) 11

Hl.eigen <— summary(ca.jo(datl, type = 'eigen', K= 2, 12
season = 4, dumvar = dat2)) 13

Before the results of these tests are discussed, the arguments of the func-
tion ca.jo() should be presented briefly. The data set is provided by x, and
the test type is either eigen or trace for the maximal eigenvalue statistic
or the trace statistic, respectively, where the default is the former. Whether
no deterministic term, a constant, or a trend should be included in the coin-
tegration relations can be set by the argument ecdet. The decision as to
whether the long-run or transitory form of the VECM should be estimated
is determined by the argument spec. The default is spec="longrun". The
inclusion of centered seasonal dummy variables can be set by providing the
corresponding seasonality as an integer; e.g., season = 4 for quarterly data.
Model exogenous regressors can be provided by setting dumvar accordingly.

In Tables 8.1 and 8.2, the results of the two tests are given. If considering
the maximal eigenvalue statistic, the hypothesis of no cointegration cannot be
rejected at the 5% level.® However, the trace statistic indicates a cointegration

2 Incidentally, the internal examples of the functions for estimating and testing a
VECM in the package urca are a replication of Johansen and Juselius [1990]; i.e.,
the analysis of money demand functions for Denmark and Finland. For example,
by typing example(ca.jo()), the results of determining the cointegration rank in
this study are displayed. The reader is encouraged to work through these examples
to foster understanding and comprehension of the method and the tools available.
It is of course best accomplished by having a copy of the above-cited article at
hand.

3 The critical values in the article differ slightly from the ones that are returned by
the summary method of ca.jo(). In function ca.jo (), the critical values provided
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Table 8.1. Cointegration rank: Maximal eigenvalue statistic

Rank Test Statistic 10% 5% 1%

5.19 6.50 8.18 11.65
6.48 12.91 14.90 19.19
17.59 18.90 21.07 25.75
20.16 24.78 27.14 32.14
31.33 30.84 33.32 38.78
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space of r = 2, given a 5% significance level. Hence, the two tests yield con-
tradictary conclusions about the cointegration rank. The decision about the
cointegration rank is complicated even more by the fact that the estimated
second and third eigenvalues are approximately equal (0.407, 0.285, 0.254,
0.102, 0.083) and therefore suggest a third stationary linear combination. The
eigenvalues are in the slot lambda of an object adhering to class ca.jo. To
settle for a working assumption about the cointegration rank, Johansen and
Juselius investigated the ,é and & matrices as well as the estimated cointe-
gration relations ,é{yt and those that are corrected for short-term influences,
,égth. The ,é and & matrices are stored in the slots V and W, respectively, and
the matrix R; in the slot RK of a class ca. jo object. For ease of comparison
with Table 3 in Johansen and Juselius [1992], the elements in the cointegra-
tion and loadings matrix have been normalized accordingly and are displayed
in Tables 8.3 and 8.4.

In R code 8.2, the commands for calculating the above-mentioned figures
are displayed. The authors argued that the values of &; 5 for i = 1,2, 3 are close
to zero for the second cointegration vector, and therefore the low estimated
value of the second eigenvalue A2 can be attributed to this fact. Furthermore,
the power of the test is low in cases where the cointegration relation is close to
the non-stationary boundary. This artifact can be the result of a slow speed
of adjustment, as is often the case in empirical work because of transaction
costs and other obstacles that place a hindrance on a quick equilibrium ad-
justment. Johansen and Juselius investigated the cointegration relationships
visually. The first two of them are depicted in Figure 8.2. In the case of r = 2,
the first two cointegration relationships should behave like stationary pro-
cesses. However, because of short-run influences that overlay the adjustment
process, this picture can be camouflaged. Hence, the authors also analyze
the adjustment paths ﬁgth that take the short-run dynamics into account.
Based on the test results, the elements in the & matrix, and the shape of the
cointegration relation paths, Johansen and Juselius decided to stick with a
cointegration order of r = 2.

by Osterwald-Lenum [1992] are used. Osterwald-Lenum [1992] provides values for
models of higher dimension and also for VECM specifications that allow the
inclusion of a trend in the cointegration relations, for instance.
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Table 8.2. Cointegration rank: Trace statistic

Rank Test Statistic 10% 5% 1%

r<=4 5.19 6.50 8.18 11.65
r <=3 11.67 15.66 17.95 23.52
r <=2 29.26 28.71 31.52 37.22
r<=1 49.42 45.23 48.28 55.43
r=20 80.75 66.49 70.60 78.87

R Code 8.2 H; model: Transformations and cointegration relations

beta <— H1QV

beta[,2] <— beta[,2]/beta[4,2]

beta[,3] <— beta[,3]/beta[4 3]

alpha <— H1@PI%+%solve (t(beta))

betal <— cbind(beta[,1:2], H1@V[,3:5])

ci.l <— ts((H1@%+%betal)[—c(1,2),], start=c(1972, 3),
end=c (1987, 2), frequency=4)

ci.2 <— ts(H1ORK%+%betal, start=c(1972, 3),
end=c (1987, 2), frequency=4)

© W N o ;oA W N e

Table 8.3. Hi model: Eigenvectors

Variable Bo1  Bo.2 D3 V4 U5

pl.l2 1.00 0.03 0.36 1.00 1.00
p2.12 —0.91 —0.03 —0.46 —2.40 —1.45
el2.]2 —-0.93 -0.10 0.41 1.12 -0.48
i1.12 —-3.37 1.00 1.00 —0.41 2.28
i2.12 —-1.89 —0.93 —1.03 2.99 0.76

Table 8.4. H; model: Weights

Variable &o.1  &o.2 w3 Wy  Ws

pld -0.07 0.04 -0.01 0.00 —0.01
p2.d —0.02 0.00 -0.04 0.01 0.01
el2.d 0.10 —0.01 —0.15 —0.04 —0.05
ild 0.03 —-0.15 -0.03 0.01 —0.02
i2.d 0.06 0.29 0.01 0.03 -0.01

Finally, in Table 8.5, the estimated I is displayed. This matrix measures
the combined effects of the two cointegration relations. The purchasing power
parity hypothesis postulates a relationship between the two price indices and
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Fig. 8.2. Graphical display of the first two cointegration relations

Table 8.5. H1(2) model: Coefficient matrix of the lagged variables in levels, II

Variable pl.l2 p2l2 el212 il.12 212

pld —0.067 0.061 0.060 0.272 0.090
p2.d —0.018 0.016 0.016 0.064 0.030
el2.d 0.101 —0.091 —0.093 —0.345 —0.186
ild 0.030 —0.026 —0.018 —0.263 0.072
i2.d 0.066 —0.062 —0.082 0.097 —0.382

the exchange rate of (a;, —a;, —a;). These relations are closely fulfilled for the
first, third, and fourth equations.

8.1.3 Testing for Weak Exogenity

By now it has been assumed that all components of y; are treated as en-
dogenous variables. But sometimes we are interested in treating some of these
components as exogenous, such that model simulations can be carried out by
providing alternative paths for the exogenous assumed variables. Hence, a test
is required for the full system if the hypothesis that some components of y;
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are exogenous is valid. The test idea is to see whether zero restrictions on
the relevant rows of a hold. The restrictions are contained in the (K X m)
matrix A such that Hy : @« = AW, whereby the elements of the matrix ¥
contain the new unrestricted loadings. Johansen and Juselius [1990] showed
that this test can be traced down to an eigenvalue problem like the one given
in Equation (4.12). For calculating the new sets of residuals that enter the
conditional concentrated likelihood function, it is convenient to introduce the
(K x (K — m)) matrix B, which is orthogonal to A such that B'A = 0
or equivalently B’ac = 0. Johansen and Juselius [1990] and Johansen [1995]
then showed that the sets of residuals that enter the concentrated likelihood
function are defined as

Ru = A'Ro, — SuuS;,' B' Ry, (8.2a)
Ry, = Ry — S1,S;,' B' Ry, (8.2b)
where Ry, and Ry, and the product moment matrices .SA'” with ¢ j =0,1 are
given in Equatlon (4. 10) and the product moment matrices Sab, Sbb, and Slb

are defined as Sab A’ SOOB Sbb =B SOUB and Slb = SmB The relevant
product moment matrices that enter the eigenvalue equation are defined as

T
5 1 Sosr
Sijb = - tz:; R;; R}, withi,j =a,1. (8.3)

The maximum-likelihood estimator for 3 under the hypothesis Hy : a« = AW
is defined as the solution to the eigenvalue equation

IAS115 — Sta. bSaa bSal ] =0 (8.4)
with eigenvalues 5\41 > 5\4‘2 > .0 > 5\4‘m > 5\4‘m+1 =...= 5\4,;( = 0, and
the corresponding eigenvectors Vy = (04.1, ..., 04 k) are normalized such that
V/S114Vy = 1. The Weighting matrix ¥ is given by

= (A'A) 84144 (8.5)

with 5’4 = (D41,...,04,) under the maintained hypothesis of H;(r).
For testing the validity of Hy : @ = AW given Hi(r), Johansen [1991]
proposed the following likelihood ratio statistic

—21n(Q; Ha|H1(r) TZl { — N ’)) } (8.6)

which is asymptotically distributed as x? with 7(K — m) degrees of freedom.
This test statistic is implemented as function alrtest () in the package urca.
Therefore, if Hy cannot be rejected, the VECM can be reduced to an m-
dimensional system by conditioning to Ays;, where yo; contains the exogenous
variables.
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The authors applied this test to the trade-weighted foreign wholesale price
index and the three-month Eurodollar interest rate; i.e., p2 and i2, respec-
tively. The restriction matrices A; and Ao are then given by

1000 1000
0000 0100
A;=]|0100|, Ax={0010
0010 0001
0001 0000

In R code 8.3, these two test statistics are calculated. The matrices A; and A,
are easily set up with the matrix () function. The ca. jo object corresponding
to the model Hy(r = 2) has been created in R code 8.1 as H1.

R Code 8.3 H4 model: Testing for weak exogenity

Al <— matrix(c(1,0,0,0,0, 0,0,1,0,0, .
0,0,0,1,0, 0,0,0,0,1), 2

nrow=>5, ncol=4) 3

A2 <— matrix(c(1,0,0,0,0, 0,1,0,0,0, 4
0,0,1,0,0, 0,0,0,1,0), 5

nrow=5, ncol=4) 6

H41 <— summary(alrtest(z = H1, A = Al, r = 2)) 7
H42 <— summary(alrtest(z = H1, A = A2, r = 2)) 8

The value of the test statistic is stored in the slot teststat and its
marginal level of significance, the p-value, in the slot pval. The restricted
eigenvalues can be retrieved by object@lambda and the associated eigenvec-
tors (i.e., the cointegration relations) by object@V. The new loadings calcu-
lated as in Equation (8.5) are contained in the slot W. The results of the two
tests are reported in Table 8.6. For the variable p2, the null hypothesis can-
not be rejected, whereas for the interest rate variable, the result is borderline
given a significance level of 10%.4

8.1.4 Testing Restrictions on 3

In this section, three statistical tests for validating different forms of restric-
tions on the B matrix are discussed. The hypotheses formulated about this

4 Please note that the results differ from the ones reported in Johansen and Juselius
[1992]. The authors report slightly smaller values for the second eigenvalues for
each test statistic. Qualitatively, the test conclusion is thereby only affected for
the second hypothesis, where the authors report a value of 6.34, which clearly
indicates that the three-month Eurodollar interest rate cannot be considered as
weakly exogenous for 3.
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Table 8.6. H4 model: Testing for weak exogenity

Variable Test Statistic p-value 5\1 5\2 5\3 5\4
Haa|Hi(r =2) 0.657 0.720 0.400 0.285 0.167 0.088
Ha2|Hi(r =2) 4.384 0.112 0.387 0.256 0.194 0.086

matrix are, as for the test for the e matrix, linear. Furthermore, these tests do
not depend on the normalization of the cointegration relations. The first test
can be used to test the validity of restrictions for all cointegration relations
and is termed Hs. This test was introduced in Johansen [1988] and applied
in Johansen and Juselius [1990]. A theoretical exposition can also be found in
Johansen [1991] and Johansen [1995]. In the second test, it is assumed that
some 71 of the r cointegration relations are assumed to be known and the
remaining 79 cointegration relations have to be estimated. This hypothesis is
termed Hj. Finally, in the last hypothesis, Hg, some restrictions are placed on
the r1 cointegration relations, and the remaining o ones are estimated with-
out constraints. The last two hypotheses were introduced in Johansen and
Juselius [1992]. To summarize, these three hypotheses are listed below with
the dimensions of the restriction matrices and the spaces of the cointegration
relations to be tested:

(i) Hs : B = Hsp with H3(K x s), p(s x 1), and r < s < K:
sp(B) C sp(Hs).
(ii) Hs: 8= H5, ¥ with H5(K X 1), (K X 13), 7 =71 + Ta:
sp(Hs) C sp(B).
(i) He : B = Hgp, W with Hg(K x s), (s x r1), (K x1re), r1 <s < K,
r=17r]+Tr9:
dim(sp(8) N sp(Hsg)) > r1.

First, the hypothesis H3 is presented. Johansen showed that the estimator
¢ under this hypothesis is the eigenvector of

INH}S11 Hs — H,S10S5, So1 Hs). (8.7)
The solution to this equation gives the eigenvalues A > ...> A, > 0. The
corresponding eigenvectors are denoted as V' = (91, ...,9s). The estimate of
@ is then given as (01, ...,0,), and therefore 8 = H3(v1,...,0,).

The hypothesis Hs given Hi(r) can be tested with a likelihood-ratio test
defined as

i)

which is asymptotically distributed as y? with r(K — s) degrees of freedom.
This test is implemented as function blrtest () in the contributed package
urca.

—21n(Q; Hs|H1(r) TZm{ A“) } (8.8)
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Table 8.7. H3z model: Restriction in all cointegration relations

Variable Test Statistic p-value 5\1 5\2 5\3 A
Hs1|Hi(r =2) 2.761 0.599 0.386 0.278 0.090
Ha.2|Hi(r =2) 13.709  0.001 0.286 0.254 0.146 0.093

Johansen and Juselius used this test statistic for validating the purchasing
power parity and for testing whether the interest rate differential enters all
cointegration relations. The purchasing power parity states that the variables
p1, P2, and e1o enter the cointegration relations proportionally as (1, —1,—1);
i.e., if a stationary combination of these variables exists, then it must enter
the cointegration relations as (a;, —a;, —a;, *, *) with ¢ = 1,...,r. Likewise,
the restriction to test whether the interest rate differential (i.e., i; —i2) enters
all cointegration relations is given by the proportional cointegration vector
(1,—1), and hence this can be formulated as (x,*,x*,b;,—b;) for i = 1,... r.
Therefore, the two restriction matrices Hs 1 and Hj3 o are written as

100 100 O
—-100 010 O
Hs;;=|-100|, Hs,=[(001 0
010 000 1
001 000 -1

The R code for conducting these two tests is displayed in R code 8.4. As in R
code 8.3, as unrestricted model H;, the object H1 from R code 8.1 has been
used.

R Code 8.4 H3 model: Testing for restrictions in all cointegration relations

H.31 <~ matrix(c(1,-1,-1,0,0, 0,0,0,1,0, 0,0,0,0,1),
c(5.3))

H.32 <— matrix(c(1,0,0,0,0, 0,1,0,0,

0,0,0,1,-1), c(5,4)

H31 <— summary(blrtest(z = Hl, H=H

H32 <— summary(blrtest(z = Hl, H=H

0, 0,0,1,0,0,
)

=

31 2))
32, r = 2))

o a oA W N e

The results of the test are displayed in Table 8.7. In the case of the pur-
chasing power parity, the model hypothesis Hs cannot be rejected. This result
mirrors closely the obtained (a;, —a;, —a;, *, %) relations in the estimated IT
matrix for two cointegration relations as provided in Table 8.5.5

5 Incidentally, the two model hypotheses H4 and Hs for a given unrestricted model
H1(r) can be tested jointly, as shown in Johansen and Juselius [1990], for instance.
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The authors directly tested whether (1, —1,—1,0,0)"y; and (0,0,0,1, —1)y;
each constitute a stationary relation. Such hypotheses can be tested with the
model Hs, in which some cointegration relations are assumed to be known.

To test the hypothesis Hs, the partial weighting matrix corresponding to
Hj is concentrated out of the likelihood function. It is achieved by regressing
Ry and Ry on HLRy; and thereby obtaining the new sets of residuals

Ro.n: = Rot — So1 Hs(HLS11Hs) "' Hs Ry, (8.9a)
Rin = Ry — S1Hs(H, S Hs) " H5Ry,. (8.9b)

The new product moment matrices are then calculated as
Sij.h = Sij - A¢1H5(Hés'11H)71H/SA'1j for i,j = 0, 1. (810)

An estimate of the partially unknown cointegration relations ¥ is obtained
by solving two eigenvalue problems. First, the K — r; eigenvalues of

7T — S11n =0 (8.11)

are retrieved and the auxiliary matrix C' is calculated as

—1/2

m 0 -ev--- 0
0 %0 0
C=(e1,ez,...,ex_r) 0o . , (8.12)
: : .0
0 0 -0
where (e1,ea,...,ex_r, ) are the eigenvectors belonging to 7. The matrix C
then enters the second eigenvalue problem,
|AI — C/S10~hg(;01_hS01,hC| =0, (8.13)
which yields the eigenvalues A o> L > S\K,Tl > 0 and eigenvectors f/: =
(01,...,0K—r, ). The partial cointegration relations are then estimated as ¥ =
C(v1,...,0,,), and therefore the cointegration relations are given as 3 =
(H5,9).

Finally, for calculating the likelihood-ratio test statistic, the eigenvalues p
have to be extracted from

|pHéS11H5 — Hég10g501.§01H5| =0 (814)
with p = g1,..., pr,. The test statistic is defined as

This combined test is implemented as the function ablrtest () in the contributed
package urca. An example of its application is provided in the citation above,
which is mirrored in example(ablrtest).
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Table 8.8. Hs model: Partly known cointegration relations

Variable Test Statistic p-value 5\1 5\2 5\3 5\4
Hs.1|Hi(r =2) 14.521 0.002 0.396 0.281 0.254 0.101
Hs.2|Hi(r =2) 1.895 0.595 0.406 0.261 0.105 0.101

—21In Q(Hs|Ha (r {Zlm—m —i—Zlnl— 21111—

(8.15)
which is asymptotically distributed as x? with (K — r)r; degrees of freedom.
Johansen and Juselius applied this test statistic to validate whether the
purchasing power parity or the interest rate differential form a stationary pro-
cess by themselves. This test is implemented in the function bh5lrtest ()
contained in the contributed package urca. In R code 8.5, the results are repli-
cated. The assumed-to-be-known partial cointegration matrices are set up as
matrix objects H.51 and H.52, respectively. In the following lines, the test is
applied to both of them.

R Code 8.5 H3 model: Testing for partly known cointegration relations

H.51 <— c(1, -1, -1, 0, 0)
H.52 <— c(0, 0, 0, 1, —1)
H51 <— summary(bh5lrtest(z = H1, H =H.51, r = 2))
H52 <— summary(bh5lrtest(z = H1, H =H.52, r = 2))

AW N e

The results are exhibited in Table 8.8. The hypothesis that the PPP rela-
tion is stationary is rejected, whereas the hypothesis that the interest differ-
ential forms a stationary process cannot be rejected.

Finally, the model hypothesis Hg : 3 = (Hgp,¥) has to be discussed.
Recall that this hypothesis is used for testing some restrictions placed on
the first 1 cointegration relations, and the remaining ones contained in ¥ are
estimated freely. In contrast to the previous two model hypotheses, one cannot
reduce this one to a simple eigenvalue problem. Johansen and Juselius [1992]
proposed a simple switching algorithm instead. The algorithm is initialized by
setting ¥ = 0, and the eigenvalue problem

IANH}S11Hs — H}S105;,' So1 Hg| = 0 (8.16)

is solved for ¢, which results in the eigenvalues A > ... > A\ > 0 and the
corresponding eigenvectors (91, . .., ¥s). The first partition of the cointegration
relations (i.e., the restricted ones) is therefore given by 81 = Hg(01, ..., 0y, ),
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although it is preliminary. The algorithm starts by fixing these values B1 and
by conditioning on 31 Ri:. It leads to the eigenvalue problem

2 (S11.6, — S, élg&)lﬁ o1,
! (8.17)
|w’ S11 5 |
for ¥, where the product moment matrices S’ij,b are given by
Sijv = Si; — SuB(ByS11B8y) 1B, S, fori,j=0,1andb=1,2. (8.18)

The solution to the eigenvalue problem in Equation (8.17) is given as Lemma
1 in Johansen and Juselius [1992], and an extended exposition of eigenvalues
and eigenvectors is given in Appendix A.1 in Johansen [1995]. Equation (8.18)
yields eigenvalues A1, ..., Ax_,, and eigenvectors (@1, ..., g —_., ). Hence, the
second partition of cointegration relations is given as Bg = (U1,...,Upy),
although it is preliminary. The second step of the algorithm consists of holding
these cointegration relations fixed and conditioning on Bgth. Hereby, a new
estimate of B; is obtained by solving

|<PIHé(S11.é2 - Slo.éQ‘gil“ 5'01.62)}&‘3“0|

00.82
o' H§S

, (8.19)
Heop|

11.8,

which results in eigenvalues @1, . . ., @, and eigenvectors (01, ..., ¥s). The new
estimate for B, is then given by 8; = Hg(01,...,0, ). Equations (8.17) and
(8.18) form the switching algorithm by consecutively calculating new sets of
eigenvalues and corresponding eigenvectors until convergence is achieved; i.e.,
the change in values from one iteration to the next is smaller than an a priori
given convergence criterion. Alternatively, one could iterate as long as the
likelihood function

T2 T1

H(l ~A)= S00.3 H(l — ;) (8.20)

i=1 =1

2T
L2/ S04,

max

has not achieved its maximum. Unfortunately, this algorithm does not neces-
sarily converge to a global maximum but to a local one instead.
Finally, to calculate the likelihood-ratio test statistic, the eigenvalue prob-
lem o o
1pB151181 — B1510550 So1B1| =0 (8:21)
has to be solved for the eigenvalues p1, ..., pr,. The test statistic is then given
as

—21In Q(He|Ha (r {Zlm—m —i—Zlnl— Zlnl—

(8.22)
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Table 8.9. Hs model: Restrictions on r; cointegration relations

Variable Test Statistic p-value 5\1 5\2 :\3 :\4
He|Hai(r = 2) 4.931 0.026 0.407 0.281 0.149 0.091

which is asymptotically distributed as x? with (K — s — r2)r; degrees of
freedom.

This test statistic is implemented as function bh6lrtest() in the con-
tributed package urca. Besides the H; object and the restriction matrix, the
total number of cointegration relations, the number of restricted relationships,
the convergence value, and the maximum number of iterations enter as func-
tional arguments. The convergence criterion is defined as the vector norm of
A

Because the test result of the model hypothesis Hs indicated that the
purchasing power parity does not hold in the strict sense, the authors applied
this test to see whether a more general linear but still stationary combination
of p1, p2, and eyo exists. That is, the question now is whether a more general
cointegration vector of the form (a, b, ¢,0,0) yields a stationary process. This
restriction can be cast into the following matrix Hg:

100
010
001
000
000

Hg

The application of this test is provided in R code 8.6, and its results are
depicted in Table 8.9. The test statistic is not significant at the 1% level.
Please note that compared with the results in Johansen and Juselius [1992],
the algorithm converged to slightly different values for the second, third, and
fourth eigenvalues.

R Code 8.6 Hg model: Testing of restrictions on r; cointegration relations

H.6 <— matrix(rbind(diag(3), c(0, 0, 0), c(0, 0, 0)),
nrow=5, ncol=3)
H6 <— summary(bh6lrtest(z = Hl, H=H.6,
r=2, rl1 =1))

AW N e
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8.2 VECM and Structural Shift

In Section 6.1, the implications for the statistical inference of unit root tests in
light of structural breaks have been discussed. The pitfalls of falsely concluding
non-stationarity in the data can also be encountered in the case of VECM.
The flip side would be a wrongly accepted cointegration relation, where some
or all underlying series behave like an AR(1)-process with a structural break.
Liitkepohl, Saikkonen and Trenkler [2004] proposed a procedure for estimating
a VECM in which the structural shift is a simple shift in the level of the process
and the break date is estimated first. Next, the deterministic part, including
the size of the shift, is estimated, and the data are adjusted accordingly.
Finally, a Johansen-type test for determining the cointegration rank can be
applied to these adjusted series.

Liitkepohl et al. assume that the (K X 1) vector process {y;} is generated
by a constant, a linear trend, and level shift terms

Yt = po + pat + 8dir + T, (8.23)

where d; is a dummy variable defined by di; = 0 for ¢ < 7 and d;; = 1 for
t > 7. The shift assumes that the shift point 7 is unknown and is expressed
as a fixed fraction of the sample size,

T=[TA with0 <A< A< A<, (8.24)

where A and \ define real numbers and [-] defines the integer part. The meaning
of Equation (8.24) is that the shift might occur neither at the very beginning
nor at the very end of the sample. Furthermore, it is assumed that the process
{x:} can be represented as a VAR(p) and that the components are at most
I(1) and cointegrated with rank 7.

The estimation of the break point is based on the regressions

Yy = vo+vit+0d + A1y +. .+ Apy—pte fort =p+1,..., T, (8.25)

where A; with ¢ = 1,...,p assign the (K x K) coefficient matrices and &;
is the spherical K-dimensional error process. It should be noted that other
exogenous regressors, like seasonal dummy variables, can also be included in
Equation (8.25).

The estimator for the break point 7 is then defined as

T
7 = arg min det ( Z étTé;T> , (8.26)

TEX t=p+1

where T = [T\, TA] and &, are the least-squares residuals of Equation (8.25).
The integer count of the interval ¥ = [T\, T'\] determines how many regres-
sions have to be run with the corresponding step dummy variables d;, and
how many times the determinant of the product moment matrices of ;. have
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to be calculated. The minimal one is the one that selects the most likely break
point.
Once the break point 7 is estimated, the data are adjusted according to

&=y — fro — fat — Odyz. (8.27)

This method is included as function cajolst () in the contributed package
urca. By applying this function, an object of class ca.jo is generated. The
adjusted series are in the slot x, and the estimate of the break point is stored
in the slot bp. Instead of using the test statistic as proposed in Liitkepohl
et al. [2004] with critical values provided in Liitkepohl and Saikkonen [2000],

the test statistic v

LR(r)=T Y In(1+2X)) (8.28)
j=r+1

has been implemented with critical values from Trenkler [2003] in the function
cajolst (). The advantage is that, in the latter source, the critical values are
provided more extensively and precisely.

In R code 8.7, this method has been applied to estimate a money demand
function for Denmark as in Johansen and Juselius [1990]. For a better com-
parison, the results for the non-adjusted data are also given in Table 8.10.

R Code 8.7 H; model: Inference on cointegration rank for Danish money
demand function allowing for structural shift

data(denmark)

1

sjd <— denmark[, c("LRM", "LRY", "IBO", "IDE")] 2
sjd .vecm <— summary(ca.jo(sjd, ecdet = "const”, 3
type = "eigen", 4

K=2, 5

spec = "longrun”, 6

season = 4)) 7

lue.vecm <— summary(cajolst(sjd, season=4)) 8

For the non-adjusted data, the hypothesis of one cointegration relation
cannot be rejected for a significance level of 5%. If one allows for a structural
shift in the data, however, one cannot reject the hypothesis of no cointegration
as indicated by the results in Table 8.11. The shift occurred most likely in
1975:Q4. Therefore, a VAR in differences with an intervention dummy for
that period might be a more suitable model to describe the data-generating
process.
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Table 8.10. Money demand function for Denmark: Maximal eigenvalue statistic,
non-adjusted data

Rank Test Statistic 10% 5% 1%

r<=3 2.35 7.52 9.24 12.97
r <=2 6.34 13.75 15.67 20.20
r<=1 10.36 19.77 22.00 26.81
r=20 30.09 25.56 28.14 33.24

Table 8.11. Money demand function for Denmark: Trace statistic, allowing for
structural shift

Rank Test Statistic 10% 5% 1%

r<=3 3.15 542 6.79 10.04
r <=2 11.62 13.78 15.83 19.85
r<=1 24.33 25.93 28.45 33.76
r=20 42.95 42.08 45.20 51.60

8.3 The Structural Vector Error-Correction Model

Reconsider the VECM from Equation (4.9) on page 80. It is possible to apply
the same reasoning for SVAR-models as outlined in Section 2.3 to VECMs,
in particular when the equivalent level-VAR representation of the VECM is
used. However, the information contained in the cointegration properties of
the variables is therefore not used for identifying restrictions on the structural
shocks. Hence, typically a B-type model is assumed, whence an SVEC-model
is specified and estimated.

Ay, =afB'yi—1 + 1Ay 1+ ...+ [p_1ys—pt1 + Bey, (8.29)

where u; = Be; and e ~ N(0,Ik). In order to exploit this information, one
considers the Beveridge-Nelson moving average representation of the variables
y; if they adhere to the VECM process as in Equation (3.4):

t [e%e}
yt:EZui+ZE;ut7j+yS~ (8.30)
i=1 j=0

The variables contained in y; can be decomposed into a part that is integrated
of order one and a part that is integrated of order zero. The first term on the
right-hand side of Equation (8.30) is referred to as the “common trend” of the
system, and this term drives the system y;. The middle term is integrated

of order zero, and it is assumed that the infinite sum is bounded; u.e., =7
converge to zero as j — o0o. The initial values are captured by yg§. For the
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modeling of SVEC, interest centers on the common trends, in which the long-
run effects of shocks are captured. The matrix = is of reduced rank K — r,
where 7 is the count of stationary cointegration relationships. The matrix is
defined as

p—1 -1
E:ﬁl [O{l <IK_ZF'L'> ﬁl] O/L' (831)

i=1
Because of its reduced rank, only K — r common trends drive the system.
Therefore, by knowing the rank of I7, one can then conclude that at most r
of the structural errors can have a transitory effect. This implies that at most
r columns of = can be set to zero. One can combine the Beveridge-Nelson
decomposition with the relationship between the VECM error terms and the
structural innovations. The common trends term is then ZBY .7 &, and
the long-run effects of the structural innovations are captured by the matrix
Z'B. The contemporaneous effects of the structural errors are contained in the
matrix B. As in the case of SVAR-models of type B, one needs for local, just-
identified SVEC-models } K (K —1) restrictions. The cointegration structure of
the model provides r (K —r) restrictions on the long-run matrix. The remaining
restrictions can be placed on either matrix, where at least (r — 1)/2 of them
must be imposed directly on the contemporaneous matrix B.

We now specify and estimate an SVEC-model and thereby replicate the
results in Breitung, Briiggemann and Liitkepohl [2004]. The authors inves-
tigated the Canadian labor market by using a model that was proposed by
Jaconson, Vredin and Warne [1997]. The model consists of four equations: a
production function, a labor demand function, a labor supply function, and a
wage-setting relation. The output equation is specified as

gdp; = pe; + 61,4, (8.32)

the output is dependent on employment, and the coefficient p measures returns
to scale. It is further assumed that advances in technology can be represented
by the quantity 6, ;, which follows a random walk; i.e., 01 = 611 + 9P
and €97 is white noise. The labor demand is a function of output and real
wages,

er = Agdpy — v(w — p)¢ + 2.4, (8.33)

where it is assumed that 02 ; = ¢ppb2 1 + €5 is an AR(1)-process. The labor
demand is therefore stationary if the absolute value of the autoregressive co-
efficient is less than 1. The labor supply is dependent on the real wage and a
trend. For the latter, it is assumed that this trend follows a random walk

Iy =m(w—p)i + O34, (8.34)

with 63; = 031 + €. Finally, real wages are a function of labor productiv-
ity and unemployment, and its trend component is modeled, like the labor
demand equation, as an AR(1)-process that can be non-stationary,
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(w—p)e =d(gdp — e)s — y(l — )¢ + Ous, (8.35)

with 04+ = ¢ybs+—1 + €. The derivation of the model’s solution in terms of
the trend variables 6; ; for i = 1,...,4 as right-hand-side arguments is left to
the reader (see Exercise 4).

Breitung et al. [2004] utilized the following series: labor productivity de-
fined as the log difference between GDP and employment, the log of employ-
ment, the unemployment rate, and real wages defined as the log of the real
wage index. These series are signified by “prod,” “e,” “U,” and “rw,” respec-
tively. The data are taken from the OECD database and span from the first
quarter 1980 until the fourth quarter 2004.

R Code 8.8 Canadian data set: Preliminary analysis

library (vars)
data(Canada)

summary (Canada)

plot (Canada, nc = 2)

S

A preliminary data analysis is conducted by displaying the summary statis-
tics of the series involved as well as the corresponding time series plots (see
Figure 8.3). In the next step, Breitung et al. conducted unit root tests by
applying the ADF test regressions to the series. The R code for the tests
conducted is given in R code 8.9, and the results are reported in Table 8.12.



148 8 Multiple-Equation Methods

prod
405 410 415
1
e

930 940 950 960

T T T T T
1980 1985 1990 1995 2000

3]

e

=] g

_ <

=] g

o

- o

© o
<

~

T T T T T
1980 1985 1990 1995 2000

Fig. 8.3. Canadian data set:

T T T T T
1980 1985 1990 1995 2000

T T T T T
1980 1985 1990 1995 2000

Time series plots

R Code 8.9 Canadian data set: ADF-test regressions

summary (ur.df(Canada[, "prod”],

type = "trend”, lags = 2))
summary (ur.df(diff (Canada[, "prod”]),

type = "drift”, lags = 1))
summary (ur.df(Canada[, "e"],

type = "trend”, lags = 2))
summary (ur.df(diff (Canada[, "e"]),

type = "drift”, lags = 1))
summary (ur.df(Canada[, "U"],

type = "drift”, lags = 1))
summary (ur.df(diff (Canada[, "U"]),

type = "none”, lags = 0))
summary (ur.df(Canada[, "rw"],

type = "trend”, lags = 4))
summary (ur.df(diff (Canada[, "rw"]),

type = "drift”, lags = 3))
summary (ur.df(diff (Canada[, "rw"]),

type = "drift”, lags = 0))

© o N O w oA W N e
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Table 8.12. ADF tests for Canadian data

Variable Deterministic Terms Lags Test Value Critical Values
1% 5% 10%
prod constant, trend 2 —1.99 —4.04 —3.45 —3.15
Aprod constant 1 —5.16 —3.51 —2.89 —2.58
e constant, trend 2 —1.91 —4.04 —3.45 —3.15
Ae constant 1 —4.51 —3.51 —2.89 —2.58
U constant 1 —2.22 —3.51 —2.89 —2.58
AU 0 —4.75 —2.6 —1.95 —1.61
rw constant, trend 4 —2.06 —4.04 —3.45 —3.15
Arw constant 3 —2.62 —3.51 —2.89 —2.58
Arw constant 0 —5.6 —3.51 —2.89 —2.58

Table 8.13. Canada VAR: Lag-order selection
Lag Order AIC(n) HQ(n) SC(n) FPE(n)

p=1 —6.2726 —5.9784 —5.5366 0.0019
p=2 —6.6367 —6.1464 —5.4100 0.0013
p=3 —6.7712 —6.0848 —5.0538 0.0012
p=4 —6.6346 —5.7522 —4.4265 0.0014
p=25 —6.3981 —5.3196 —3.6994 0.0018
p==6 —6.3077 —5.0331 —3.1183 0.0020
p=7T —6.0707 —4.6000 —2.3906 0.0028
p=2_8 —6.0616 —4.3947 —1.8908 0.0031

It can be concluded that all time series are integrated of order one. Please
note that the critical values reported differ slightly from the ones that are
reported in Breitung et al. [2004]. The authors utilized the software JMULTI, in
which the critical values of Davidson and MacKinnon [1993] are used, whereas
in the function ur.df () the critical values are taken from Dickey and Fuller
[1981] and Hamilton [1994].

In an ensuing step, the authors determined an optimal lag length for an
unrestricted VAR for a maximal lag length of 8. This can be accomplished
swiftly with the function VARselect (), as evidenced in R code 8.10. The results
are reported in Table 8.13.

R Code 8.10 Canada VAR: Lag-order selection

VARselect (Canada, lag.max = 8, type = "both") 1
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According to the AIC and FPE, the optimal lag number is p = 3, whereas
the HQ criterion indicates p = 2 and the SC criterion indicates an optimal
lag length of p = 1. Breitung et al. estimated for all three lag orders a VAR
including a constant and a trend as deterministic regressors and conducted
diagnostic tests with respect to the residuals. In R code 8.11, the relevant
commands are exhibited. First, the variables have to be reordered in the same
sequence as in Breitung et al. [2004]. This step is necessary because otherwise
the results of the multivariate Jarque-Bera test, in which a Choleski decompo-
sition is employed, would differ slightly from those reported in Breitung et al.
[2004].

R Code 8.11 Diagnostic tests for VAR(p) specifications for Canadian data

Canada <— Canada[, c("prod”, "e”, "U", "rw")] 1
plct <— VAR(Canada, p = 1, type = "both") 2
p2ct <— VAR(Canada, p = 2, type = "both") 3
p3ct <— VAR(Canada, p = 3, type = "both") 4
## Serial 5
serial .test(p3ct, lags.pt = 16, 6
type = "PT.asymptotic”) 7
serial .test(p2ct, lags.pt = 16, 8
type = "PT.asymptotic”) 9
serial .test(plct, lags.pt = 16, 10
type = "PT.asymptotic”) 1
serial .test(p3ct, lags.pt = 16, 12
type = "PT.adjusted”) 13
serial .test(p2ct, lags.pt = 16, 14
type = "PT.adjusted”) 15
serial .test(plct, lags.pt = 16, 16
type = "PT.adjusted ") 17
## JB 18

normality . test (p3ct)
normality . test (p2ct)
normality . test(plct)

IS
S ©

¥
s

44 ARCH 2
arch.test(p3ct, lags.multi = 5) 23
arch.test(p2ct, lags.multi = 5) 24
arch.test(plct, lags.multi = 5) 25

## Stability (Recursive CUSUM)
plot(stability (p3ct), nc = 2)
plot(stability (p2ct), nc = 2)
plot(stability (plct), nc = 2)

)
=

©
]

¥
3

N
©

Given the diagnostic test results, Breitung et al. concluded that a VAR(1)-
specification might be too restrictive. The graphical results of the OLS-
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Table 8.14. Diagnostic tests for VAR(p) specifications for Canadian data

Lag order Q16 p-value  Qi¢ p-value JB4 p-value MARCHs5 p-value
p=3 173.97  0.96 198.04 0.68 9.66  0.29 512.04  0.35
p =2 209.74 0.74 236.08 0.28 2.29 0.97 528.14 0.19
p=1 233.50  0.61 256.88  0.22 9.92  0.27 570.14  0.02
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CUSUM test are exhibited in Figures 8.4-8.6. They argued further that al-
though some of the stability tests do indicate deviations from parameter con-
stancy, the time-invariant specifications of the VAR(2) and VAR(3) models
will be maintained as tentative candidates for the following cointegration anal-

ysis.
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Fig. 8.4. OLS-CUSUM test of VAR(3)

The authors estimated a VECM where a deterministic trend has been in-
cluded in the cointegration relation. The estimation of these models as well as
the statistical inference with respect to the cointegration rank can be swiftly
accomplished with the function ca.jo (). Although the following R code exam-
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Fig. 8.5. OLS-CUSUM test of VAR(2)

ples use functions contained in the package urca, it is beneficial to reproduce
these results for two reasons: the interplay between the functions contained in
the packages urca and vars is exhibited and provides an understanding of the
SVEC specification that follows.

R Code 8.12 Johansen cointegration tests for Canadian system

1

summary(ca.jo(Canada, type = "trace”, 1
ecdet = "trend"”, K = 3, 2
spec = "transitory”)) 3
summary(ca.jo(Canada, type = "trace”, 4
ecdet = "trend"”, K = 2, 5
spec = "transitory”)) 6

These results indicate one cointegration relationship. The reported critical
values differ slightly from the ones that are reported in Table 4.3 of Breitung
et al. [2004]. These authors used the values that are contained in Johansen
[1995], whereas the values from Osterwald-Lenum [1992] are used in the func-
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Table 8.15. Johansen cointegration tests for Canadian system

Ho Test Statistics Critical Values

p=3 p=2 90% 95% 99%
r=0 84.92 86.12 59.14 62.99 70.05
r=1 36.42 37.33 39.06 42.44 48.45
r =2 18.72 15.65 22.76 25.32 30.45
r=3 3.85 4.10 10.49 12.25 16.26

tion ca.jo(). In R code 8.13, the VECM is reestimated with this restriction
and a normalization of the long-run relationship with respect to real wages.
The results are shown in Table 8.16.



154 8 Multiple-Equation Methods

R Code 8.13 VECM with r = 1 and normalization with respect to real wages

vecm <— ca.jo(Canada[, c("rw”, "prod”, "e”, "U")], 1
type = "trace"”, ecdet = "trend", 2
K = 3, spec = "transitory") 3
vecm.rl <— cajorls (vecm, 1) 4

r =
alpha <— coef(veecm.rl1$rim)[1, ] 5
beta <— vecm.rl$beta 6
resids <— resid(vecm.rl1$rim) 7
N <— nrow(resids) 8
sigma <— crossprod (resids) / N 9

#4# t—stats for alpha 10
alpha.se <— sqrt(solve(crossprod ( 1
cbind (vecem@ZK %% beta, vecm@Z1))) 12

[1, 1]* diag(sigma)) 13

alpha.t <— alpha / alpha.se 14
## t—stats for beta 15
beta.se <— sqrt(diag(kronecker(solve( 16
crossprod (vecm@RK [, —1])), 17

solve(t(alpha) %% solve(sigma) 18

%% alpha)))) 19

beta.t <— c(NA, beta[—1] / beta.se) 20

Table 8.16. Cointegration vector and loading parameters

Vector  prod e U rw trend
B8 0.545 —0.013 1.727 1.000 —0.709

(0.90) (—0.02) (1.19) (—2.57)
a’' —0.012 —0.016 —0.009 —0.085

(—0.92) (—2.16) (—1.49) (—5.71)

Note: ¢ statistics in parentheses.

For a just identified SVEC-model of type B, one needs jK(K — 1) = 6
linear independent restrictions. It is further reasoned from the Beveridge-
Nelson decomposition that there are k* = (K —r) = 3 shocks with permanent
effects and only one shock that exerts a temporary effect, due to r = 1. Because
the cointegration relation is interpreted as a stationary wage-setting relation,
the temporary shock is associated with the wage shock variable. Hence, the
four entries in the last column of the long-run impact matrix =B are set to
zero. Because this matrix is of reduced rank, only £*r = 3 linear independent
restrictions are imposed. It is therefore necessary to set ék*(k* -1) =3
additional elements to zero. Breitung et al. assumed constant-scale returns and
that therefore productivity is only driven by output shocks. This reasoning
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implies zero coefficients in the first row of the long-run matrix for the variables
employment, unemployment, and real wages, and hence the elements =B ;
for j = 2,3, 4 are set to zero. Because = B; 4 has already been set to zero, only
two additional restrictions have been added. The last restriction is imposed
on the element By . The authors assumed that labor demand shocks do not
exert an immediate effect on real wages.

In R code 8.14, the matrix objects LR and SR are set up accordingly and
the just-identified SVEC is estimated with function SVEC(). In the call to the
function SVEC(), the argument boot = TRUE has been employed such that
bootstrapped standard errors and hence ¢ statistics can be computed for the
structural long-run and short-run coefficients.

R Code 8.14 Estimation of SVEC with bootstrapped t statistics

vecm <— ca.jo(Canada[, c("prod”, "e”, "U", "rw")], 1

type = "trace"”, ecdet = "trend", 2

K = 3, spec = "transitory") 3
SR <— matrix(NA, nrow = 4, ncol = 4) 4
SR[4, 2] <- 0 5
SR 6
LR <— matrix(NA, nrow = 4, ncol = 4) 7
LR[1, 2:4] <- 0 s
LR[2:4, 4] <— 0 0
LR 10
svec <— SVEC(vecm, LR = LR, SR=SR, r =1, 11

Irtest = FALSE, 12

boot = TRUE, runs = 100) 13
svec 14
svec$SR / svec$SRse 15
svec$LR / svec$LRse 16

The results are shown in Tables 8.17 and 8.18. The values of the ¢ statistics
differ slightly from those reported in Breitung et al. [2004], which can be
attributed to sampling. In R code 8.14, only 100 runs have been executed,
whereas in Breitung et al. [2004] 2000 repetitions were used.

Breitung et al. investigated further if labor supply shocks have no long-run
impact on unemployment. This hypothesis is mirrored by setting = B3 3 = 0.
Because one more zero restriction has been added to the long-run impact
matrix, the SVEC-model is now overidentified. The validity of this over-
identification restriction can be tested with an LR test. In R code 8.15, first
the additional restriction is set and then the SVEC is reestimated. The result
of the LR test is contained in the returned list as named element LRover.
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Table 8.17. Estimated coefficients of the contemporaneous impact matrix

Equation Efdp Efabord sfabors E;uage
Output 0.58 0.07 —-0.15 0.07
(5.53)  (0.55) (—0.64) (1.02)

Labor demand —0.12 0.26 —-0.16 0.09
(—1.68) (4.31) (—0.91) (2.49)

Unemployment 0.03

—0.27 0.01 0.05

(0.45) (—5.88)  (0.09) (1.54)

Real wages 0.11
(0.73)

0 048 0.49
(0.74) (6.11)

Note: t statistics in parentheses.

Table 8.18. Estimated coefficients of the long-run impact matrix

Equation g9 5tLab°Td gpabor® gwage
Output 0.79 0 0 0
(4.78)
Labor demand 0.2 0.58 —0.49 0
(0.88) (2.85) (—0.86)
Unemployment —0.16 —0.34 0.14 0
(—1.49) (-3.37) (0.92)
Real wages —-0.15 0.6 —0.25 0
(—0.85) (3.37) (—0.92)

Note: t statistics in parentheses.

R Code 8.15 SVEC: Overidentification test

LR[3, 3] <— 0 .
LR 2
svec.oi <— SVEC(vecm, LR = LR, SR=SR, r =1, 3
Irtest = TRUE, boot = FALSE) 4

svec.oi <— update(svec, LR = LR, Irtest = TRUE, 5
boot = FALSE) 6

svec.oi$LRover 7

The value of the test statistic is 6.07, and the p-value of this x2(1)-
distributed variable is 0.014. Therefore, the null hypothesis that shocks to
the labor supply do not exert a long-run effect on unemployment has to be
rejected for a significance level of 5%.

In order to investigate the dynamic effects on unemployment, the authors
applied an impulse response analysis. The impulse response analysis shows
the effects of the different shocks (i.e., output, labor demand, labor supply,
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and wage) to unemployment. In R code 8.16, the irf method for objects with
class attribute svecest is employed and the argument boot = TRUE has been
set such that confidence bands around the impulse response trajectories can
be calculated. The outcome of the IRA is exhibited in Figure 8.7.

R Code 8.16 SVEC: Impulse response analysis

svec.irf <— irf(svec, response = "U",
n.ahead = 48, boot = TRUE)

svec. irf

plot(svec.irf)
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Fig. 8.7. Responses of unemployment to economic shocks with a 95% bootstrap
confidence interval

In the final step, a forecast error variance decomposition is conducted with
respect to unemployment. This is achieved by applying the fevd method to
the object with class attribute svecest. The FEVD is swiftly computed for
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Table 8.19. Forecast error variance decomposition of Canadian unemployment

Period Efdp sf‘abo'r‘l E{‘abors szuage
1 0.01 0.96 0.00 0.03
4 0.01 0.78 0.21 0.01
8 0.05 0.69 024 0.01

12 0.08 0.68 0.23 0.01
24 0.10 0.69 0.21 0.01
48 0.12  0.70  0.18 0.00

the unemployment, as shown in R code 8.17. The authors report only the
values for selected quarters. These results are displayed in Table 8.19.

R Code 8.17 Forecast error variance decomposition of Canadian unemploy-
ment

fevd .U <— fevd(svec, n.ahead = 48)$U 1

Summary

In this last chapter of the book, likelihood-based inference in cointegrated
vector autoregressive models has been presented. It has been shown how to
determine the cointegration rank and, depending on that outcome, how to
specify and test the validity of restrictions placed on the cointegrating and the
weighting matrices. This methodology offers the researcher a powerful tool to
investigate the relationships in a system of cointegrated variables more thor-
oughly compared with the single-equation methods presented in Chapter 7.
Furthermore, it has been shown how one can employ this methodology in light
of a structural shift at an unknown point in time. The chapter concluded with
an exposition of the SVEC analysis applied to a macroeconomic data set for
Canada.

Exercises

1. Consider the data sets finland and denmark in the contributed package
urca. Specify for each country a VECM that mirrors a real money demand
function.

2. Reconsider the data sets Raotbl1l and Raotbl2 in the contributed package
urca. Now specify a VECM for each monetary aggregate, and compare
your findings with the results from Exercise 1 in Chapter 7.
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3. Reconsider the data set Raotbl6 in the contributed package urca. Now
specify a VECM Phillips-curve model as in Mehra [1994]. Discuss your
findings compared with your results from Exercise 2 in Chapter 7.

4. Solve the labor market model shown by Equations (8.32)—(8.35) for its
endogenous variables (gdp — e)¢, et, (I — €)t, and (w — p)¢ in terms of 0, ¢
fori=1,...,4.

5. Reconsider the SVEC-model for the Canadian data set. Reestimate the
VECM, and conduct the analysis for a cointegration rank of » = 2 instead
of r =1.
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Appendix

9.1 Time Series Data

There are several possibilities for dealing with time series data in R. First, the
class ts in the base distribution is well suited for handling regularly spaced
time series data. In R code 9.1, it is shown how to assign the range and the
frequency to the data frame finland contained in the package urca. Objects
of class ts own a time series property that can be shown by the function
tsp (). The time component of an object of class ts can be retrieved with the
function time (). Finally, subsetting a time series object to a narrower sample
range is accomplished by using the window () function.

R Code 9.1 Time series objects of class ts

## time series handling in R 1
library (urca) 2
data(finland) 3
str(finland) 4
## utilization of time series class 'ts' 5
## in base package 6
fin.ts <— ts(finland, start=c(1958, 2), 7
end=c (1984, 3), frequency=4) 8

str(fin.ts) 9
#4# time series properties of fin.ts 10
tsp(fin.ts) 11
time(fin.ts)[1:10] 12
## Creating a subsample 13
finsub .ts <— window(fin.ts, start=c(1960, 2), 14
end=c (1979, 3)) 15

tsp(finsub .ts) 16
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Second, mostly encountered in financial econometric applications is the
case of series irregularly spaced with respect to time. Four contributed pack-
ages exist in R that particularly address this issue: fBasics, its, tseries, and
z00. Although these packages differ in how certain functionalities and classes
are defined, building unions and intersections and the merging of objects can
be achieved with all of them, although the package its is the most mature.
The functions its() and timeSeries() in the packages its and fBasics have
been implemented as S4 classes, whereas the functions irts() and zoo() in
the packages tseries and zoo are S3 classes for irregularly spaced observations.
The advantage of zoo compared with the other functionalities is that time in-
formation can be of almost any class, whereas in the other implementations
it needs to be of class POSIXct. The handling of irregular time series in the
package fBasics resembles that for the finmetrics package of S-PLUS. Further
details about date-time classes are provided in the RNews articles by Ripley
and Hornik [2001] and Grothendieck and Petzoldt [2004].

9.2 Technicalities

This book was typeset in IMTEX. Text editor Emacs/ESS has been used. The
indices were generated with the program makeindex and the bibliography
with BiBTeX. The flow chart (see Figure 3.3) was produced with the program
flow. The following IATEX packages have been used: amsmath, amssymb, array,
bm, booktabs, float, graphicx, index, listings, multicol, paralist, and
sweave.

All R code examples have been processed as Sweave files. Therefore, the
proper working of the R commands is guaranteed. Where possible, the results
are exhibited as tables by making use of the function latex() contained in
the contributed package Hmisc. The examples have been processed under R
version 2.6.2 on an 1486 PC with Linux as the operating system and kernel
2.6.22-14-generic. Linux is a registered trademark of Linus Torvalds (Helsinki,
Finland), the original author of the Linux kernel. All contributed packages
were updated before publication and are listed in Table 9.1.
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9.3 CRAN Packages Used

Table 9.1. Overview of packages used

Name Title Version Date
car Companion to Applied Regression 1.2-7 2007-10-27
chron Chronological objects which can handle 2.3-22 2008-03-04

dates and times
dsel Dynamic Systems Estimation

(time series package) 2007.11-1  2007-11-01
dyn Time Series Regression 0.2-6 2005-06-15
dynlm Dynamic Linear Regression 0.2-0 2008-01-26
fArma Rmetrics—ARMA Time Series

Modelling 260.72 2007
fBasics Rmetrics—Markets and Basic

Statistics 260.72 2007
forecast Forecasting functions for time series 1.11 2008-02-08
fracdiff Fractionally differenced ARIMA aka 1.3-1 2006-09-07

ARFIMA (p,d,q) models
fUnitRoots Rmetrics—Trends and Unit Roots 260.72 2007

Hmisc Harrell Miscellaneous 3.4-3 2007-10-31
Imtest Testing Linear Regression Models 0.9-21 2007-07-26
mAr Multivariate AutoRegressive analysis  1.1-1
Remdr R Commander 1.3-12 2008-01-24
strucchange  Testing, Monitoring and Dating
Structural Changes 1.3-2 2007-04-13
tseries Time series analysis and computational 0.10-14 2008-02-22
finance
urca Unit root and cointegration tests for 1.1-6 2007-11-01
time series data
uroot Unit Root Tests and Graphics for
Seasonal Time Series 14 2005-10-10
vars VAR Modelling 1.3-7 2008-02-12

700 7’s ordered observations 1.5-0 2008-03-14



10

Abbreviations, Nomenclature, and Symbols

Abbreviations:

ACF
ADF
ADL

AIC

AR
ARIMA
ARFIMA

ARMA
BIC

CI(d, b)
CRDW

DF
DGP
ECM
ERS
FEVD
GNP
HEGY
1(d)
id.
ii.d.
IRF
JB
LB
LM
KPSS

autocorrelation function

augmented Dickey-Fuller

autoregressive distributed lag

Akaike information criteria
autoregression

autoregressive integrated moving average
autoregressive fractionally integrated
moving average

autoregressive moving average

Bayesian information criteria
cointegrated of order d, b

cointegrating regression Durbin-Watson
statistic

Dickey-Fuller

data-generating process

error-correction model/mechanism
Elliott, Rothenberg, and Stock

Forecast error variance decomposition
gross national product

Hylleberg, Engle, Granger, and Yoo
integrated of order d

independently distributed

independently and identically distributed
impulse response function

Jarque-Bera test

Ljung-Box Portmanteau test

Lagrange multiplier

Kwiatkowski, Phillips, Schmidt, and Shin
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MA moving average

NI near integrated

OLS ordinary least-squares

PACF partial autocorrelation function

PP Phillips and Perron

SC Schwarz criteria

SI seasonally integrated

SP Schmidt and Phillips

SVAR structural vector autoregressive model

SVECM structural vector error-correction model

T sample size or last observation in a time
series

VAR vector autoregression

var variance

VECM vector error-correction model

ZA Zivot and Andrews

Nomenclature:

Bold lowercase: y, vectors

Bold uppercase: Y, I” matrices

Greek letters: a, 3,7 population values (parameters)

Greek letters with "or” sample values (estimates or estimators)

Y,y endogenous variables

X, x 7, 2 exogenous or predetermined variables

L Lag operator, defined as Lx; = x4

A first-difference operator: Az, = x; — 141

Symbols:

1 orthogonality sign

N intersection

€ set membership

dim() dimension

I() Gamma function

i complex number

H hypothesis
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logarithm

normal distribution

rank of a matrix

space

trace of a matrix

column-stacking operator
column-stacking operator main diagonal
and below a matrix
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