
RATS Programming Manual
2nd Edition

Walter Enders
Department of Economics, Finance & Legal Studies

University of Alabama
Tuscaloosa, AL 35487
wenders@cba.ua.edu

and

Thomas Doan
Estima

Evanston, IL 60201
tomd@estima.com

Draft
January 26, 2014

Copyright c© 2014 by Walter Enders and Thomas Doan

This book is distributed free of charge, and is intended for personal, non-
commercial use only. You may view, print, or copy this document for your own
personal use. You may not modify, redistribute, republish, sell, or translate
this material without the express permission of the copyright holders.

Contents

Preface v

1 Introduction 1
1.1 What Are Your Options? . 2

1.2 Which Should You Use? . 3

1.3 Three Words of Advice . 4

1.4 General Stylistic Tips . 5

1.5 About This E-Book . 7

2 Regression and ARIMA Models 9
2.1 The Data Set. 9

2.2 Linear Regression and Hypothesis Testing 12

2.2.1 Examples using RESTRICT 18

2.3 The LINREG Options . 19

2.4 Using LINREG and Related Instructions 20

2.5 ARMA(p,q) Models . 26

2.6 Estimation of an ARMA(p,q) process with RATS. 27

2.6.1 Identification . 27

2.6.2 Estimation . 28

2.6.3 Diagnostic Checking . 29

2.7 An Example of the Price of Finished Goods 29

2.8 Automating the Process . 33

2.8.1 Introduction to DO Loops 34

2.9 An Example with Seasonality 37

2.10 Forecasts and Diagnostic Checks. 41

2.11 Examining the Forecast Errors 44

2.12 Coefficient Stability. 49

2.13 Tips and Tricks . 52

2.13.1 Preparing a graph for publication 52

i

Contents ii

2.13.2 Preparing a table for publication 52

2.1 Introduction to basic instructions 53

2.2 Engle-Granger test with lag length selection 55

2.3 Estimation and diagnostics on ARMA models 56

2.4 Automated Box-Jenkins model selection 57

2.5 Seasonal Box-Jenkins Model . 58

2.6 Out-of-sample forecasts with ARIMA model 59

2.7 Comparison of Forecasts . 60

2.8 Stability Analysis . 61

3 Non-linear Least Squares 63

3.1 Nonlinear Least Squares . 64

3.2 Using NLLS . 67

3.3 Restrictions: Testing and Imposing. 72

3.4 Convergence and Convergence Criteria 75

3.5 ESTAR and LSTAR Models . 77

3.6 Estimating a STAR Model with NLLS 79

3.7 Smooth Transition Regression 87

3.8 An LSTAR Model for Inflation 91

3.9 Functions with Recursive Definitions. 98

3.10 Tips and Tricks . 101

3.10.1 Understanding Computer Arithmetic 101

3.10.2 The instruction NLPAR . 102

3.10.3 The instruction SEED . 105

3.1 Simple nonlinear regressions . 106

3.2 Sample STAR Transition Functions 108

3.3 STAR Model with Generated Data 109

3.4 Smooth Transition Break . 111

3.5 LSTAR Model for Inflation . 113

3.6 Bilinear Model . 115

Contents iii

4 Maximum Likelihood Estimation 116

4.1 The MAXIMIZE instruction . 117

4.2 ARCH and GARCH Models . 122

4.3 Using FRMLs from Linear Equations 127

4.4 Tips and Tricks . 133

4.4.1 The Simplex Algorithm . 133

4.4.2 BFGS and Hill-Climbing Methods 135

4.4.3 The CDF instruction and Standard Distribution Functions 137

4.1 Likelihood maximization . 139

4.2 ARCH Model, Estimated with MAXIMIZE 140

4.3 GARCH Model with Flexible Mean Model 141

5 Standard Programming Structures 143

5.1 Interpreters and Compilers . 143

5.2 DO Loops . 146

5.3 IF and ELSE Blocks . 151

5.4 WHILE and UNTIL Loops . 154

5.5 Estimating a Threshold Autoregression 159

5.5.1 Estimating the Threshold 161

5.5.2 Improving the Program . 164

5.6 Tips and Tricks . 169

5.1 Illustration of DO loop . 172

5.2 Illustration of IF/ELSE . 172

5.3 Illustration of WHILE and UNTIL 173

5.4 Threshold Autoregression, Brute Force 174

5.5 Threshold Autoregression, More Flexible Coding 176

6 SERIES and Dates 178

6.1 SERIES and the workspace . 178

6.2 SERIES and their integer handles 180

6.3 Integer Arithmetic and Variables 181

6.4 Dates as Integers. 181

Contents iv

6.5 Series as Integers . 183

6.5.1 Creating Numbered Series and Labels 185

6.5.2 Other Loops . 187

6.6 Loops for Dates and Series . 189

6.7 Tips and Tricks . 191

7 Nonstationary Variables 192

7.1 1. The Dickey-Fuller Test . 192

7.2 2. DF-testing Procedures . 197

7.3 3. A Test with More Power . 204

7.4 4. Tests with Breaks . 206

7.5 5. Two Univariate Decompositions 211

7.6 6. Cointegration . 214

A Probability Distributions 224

A.1 Univariate Normal . 224

A.2 Univariate Student (t) . 225

A.3 Chi-Squared Distribution . 226

A.4 Gamma Distribution . 227

A.5 Multivariate Normal . 228

B Quasi-Maximum Likelihood Estimations (QMLE) 229

C Delta method 232

D Central Limit Theorems with Dependent Data 233

Bibliography 236

Index 237

Preface

This is an update of the RATS Programming Manual written in 2003 by En-
ders. That was, and this is, a free “e-book” designed to help you learn better
how to use the more advanced features of RATS. Much has changed with RATS
over the intervening ten years. It has new data types, more flexible graphics
and report-building capabilities, many new and improved procedures, count-
less new example files.

And the practice of econometrics has changed as well. It’s much more com-
mon (and almost expected) to use more “computational intensive” methods,
such as simulations and bootstrapping, sample stability analysis, etc. These
techniques will often require use of programming beyond the “pre-packaged”
instructions and procedures, and that’s what this e-book is here to explain.

The econometrics used in the illustrations is drawn from Enders (2010), but
there is no direct connection between the content of this e-book and the text-
book. If you have questions about the underlying statistical methods, that book
would be your best reference.

Because the goal is to help you understand how to put together usable pro-
grams, we’ve included the full text of each example in this book. And the run-
ning examples are also available as separate files.

v

Chapter 1

Introduction

This book is not for you if you are just getting familiar with RATS. Instead, it is
designed to be helpful if you want to simplify the repetitive tasks you perform
in most of your RATS sessions. Performing lag length tests, finding the best
fitting ARMA model, finding the most appropriate set of regressors, and setting
up and estimating a VAR can all be automated using RATS programming lan-
guage. As such, you will not find a complete discussion of the RATS instruction
set. It is assumed that you know how to enter your data into the program and
how to make the standard data transformations. If you are interested in learn-
ing about any particular instruction, you can use RATS Help Menu or refer to
the Reference Manual and User’s Guide.
The emphasis here is on what we call RATS programming language. These
are the instructions and options that enable you to write your own advanced
programs and procedures and to work with vectors and matrices. The book
is intended for applied econometricians conducting the type of research that
is suitable for the professional journals. To do state-of-the-art research, it is
often necessary to go “off the menu.” By the time a procedure is on the menu
of an econometric software package, it’s not new. This book is especially for
those of you who want to start the process of going off the menu. With the
power of modern computers, it’s increasingly expected that researchers justify
their choices of things like lag lengths, test robustness through bootstrapping,
check their model for sample breaks, etc. While some of these have been stan-
dardized and are incorporated into existing instructions and procedures, many
have not and in some cases can not because they are too specific to an applica-
tion. Sometimes, the “programming” required is as simple as “throwing a loop”
around the key instruction. But often it will require more than that.
Of course, it will be impossible to illustrate even a small portion of the vast
number of potential programs you can write. Our intent is to give you the tools
to write your own programs. Towards that end, we will discuss a number of the
key instructions and options in the programming language and illustrate their
use in some straightforward programs. We hope that the examples provided
here will enable you to improve your programming technique. This book is
definitely not an econometrics text. If you are like us, it is too difficult to learn
econometrics and the programming tools at the same time. As such, we will try
not to introduce any sophisticated econometric methods or techniques. More-
over, all of the examples will use a single data set. All examples are compatible
with RATS version 8.0 or later.

1

Introduction 2

1.1 What Are Your Options?

If you need some calculation which can’t be done by just reading the data,
doing some transformations, running basic statistic instructions (such as least
squares regressions) and reporting the results, then you have three general
“platforms” in which to do your work:

General Purpose Programming Language
Forty years ago, almost all statistical programming was done in Fortran, which
is still heavily used in science and engineering. (If you ever see an astronomer
or particle physicist scroll through a program, it will probably be Fortran).
Some economists still use Fortran, or C++, and most of the high level statis-
tical packages are written in them. (RATS uses C++). These are “compiled”
languages, which means that they look at the entire program, optimize it and
produce an executable program for a specific machine. This makes them harder
to write, even harder to debug (you have to make a change and regenerate the
executable in order to test something), but as a result of being compiled are
very fast. The great disadvantage is that they, by and large, manipulate in-
dividual numbers and pairs of numbers, rather than matrices. While you can
obtain and use packages of subroutines that do specific matrix calculations,
you don’t use matrices in “formula translation” form. (The phrase FORmula
TRANslation is the source of the Fortran name). Since matrix calculations
form the backbone of most work on econometrics, this isn’t convenient.

Math Packages
The two most prominent of these in econometrics are Matlab R© and GaussTM,
but there are others. These are primarily designed as matrix programming
languages. Since matrix manipulations are so important in statistics in general
and econometrics in particular, this makes them much simpler to use than
general purpose languages.

These are designed to do the relatively small number of their built-in functions
very well. Some “hot spot” calculations are specially optimized so they are
faster than the same thing done using the compiled language.

This does come at a cost. Particularly in time series work, a “data as matrix”
view doesn’t work well, because the data matrix for one operation with one
set of lags is different from the one needed with a different set. If you look
at a program for, for instance, the estimation of a Vector Autoregression, very
little of it will be the matrix calculations like B=(X′X)ˆ-1*(X′Y)—most will be
moving information around to create the X and Y matrices.

High Level Statistical Packages
RATS is an example of this. These have a collection of “built-in” instructions for
specific statistical calculations. All of them, for instance, will have something

Introduction 3

similar to the RATS LINREG instruction which takes as input a dependent vari-
able and collection of explanatory variables and a performs a multiple linear
regression, producing output, which typically includes summary statistics on
residuals and fit, standard errors and significance levels on the coefficients.
While the calculations for a simple LINREG are straightforward, what RATS
and similar programs are doing for you simplifies considerably what would be
required to do the same in a math package:

1. You can adjust the model by just changing the list of variables, instead of
having to re-arrange the input matrices.

2. You don’t have to figure out yourself how to display the output in a usable
form. That can be a considerable amount of work if you want your output
to make sense by itself, without having to refer back to the program.

3. While most of the summary statistics are simple matrix functions of the
data and residuals, some common ones (such as the Durbin-Watson and
Ljung-Box Q) aren’t quite so simple, and thus are often omitted by people
using math packages.

In addition to these, RATS also takes care of adjusting the sample range to allow
for lags of the explanatory variables and for any other type of missing values.
RATS also allows you to use lagged values without actually making a shifted
copy of the data, which is a necessary step both in using a math package or a
statistical package which isn’t designed primarily for time series work.

Which high-level commands are built into a particular statistical package de-
pends upon the intended market and, to a certain extent, the philosophy of
the developers. The TS in RATS stands for Time Series, so RATS makes it easy
to work with lags, includes instructions for handling vector autoregressions,
GARCH models, computing forecasts and impulse responses, estimating ARIMA
models, state-space models and spectral methods. While it also handles cross-
sectional techniques such as probit and tobit models, and has quite a bit of
support for working with panel data, you are probably using RATS because
you’re working with some type of dynamic model.

Most high-level statistical packages include some level of programmability,
with looping, conditional execution, matrix manipulations, often some type of
“procedure” language. RATS has these and also user-definable menus and di-
alogs for very sophisticated types of programs. CATS is the best example of
this—it is entirely written in the RATS programming language. We will cover
all of these topics as part of this book.

1.2 Which Should You Use?

Your goal in doing empirical work should be to get the work done correctly
while requiring as little human time as possible. Thirty years ago, computing
time was often quite expensive. Estimating a single probit model on 10000

Introduction 4

data points might cost $100, so it was much more important to choose the
right platform and check and double-check what you were doing before you
even submitted a job for computation. Computer time was more valuable than
human time—a good research assistant would keep the computer center bills
down. With modern computers, computing time for almost anything you might
want to do is almost costless. No matter how fast computers get, there will
always be someone figuring out some type of analysis which will take several
days to run on the fastest computers available, but that’s not typical. Even
complicated simulations with a large number of replications can now be done
in under an hour.

As a general rule, the best way to achieve this goal is to use a programmable
high-level statistical package. By doing that, you start out with what will be in
most cases large pieces of what you need to do already written, already tested,
already debugged. All software (including RATS) has some bugs in it, but bugs
in mass-marketed software generally get discovered fairly quickly because of
the sheer number of users. The software is also “vetted” by doing comparisons
against calculations done using other software. By contrast, a function written
in a math package for use for one paper is never actually checked by anyone,
other than the writer. (And, unfortunately, sometimes not even by the writer,
as we have discovered in doing paper replications).

What’s important, though, is that you make use, as much as possible, of the fea-
tures available in RATS—the existing instructions, procedures and functions. If
you don’t you’re throwing away the single greatest advantage of the statistical
package.

1.3 Three Words of Advice

Get to Know Your Data!
The best way to waste time is to plunge ahead with a complicated piece of
analysis, only to discover that your data aren’t right only when the results
make no sense. (Even worse, of course, is to do the work, and write an entire
paper only to have a referee or thesis advisor tell you that the results make
no sense). In the interest of brevity, most published papers omit graphs of the
data, tables of basic statistics, simple regression models to help understand the
behavior of the data, but even if they don’t make it into your final product, they
should be a vital part of your analysis.

Don’t Reinvent the Wheel!
Use the built-in instructions whereever possible—they’re the single greatest
advantage of using a high-level statistical package. Use the RATS procedure
library. Understand how to use the procedures which already exist. We’ll dis-
cuss how to write your own procedures, and that same information can be used
to modify existing ones where necessary, but before you do either, see if the

Introduction 5

existing ones can be used as is. RATS comes with over 1000 textbook and paper
replication examples. See if something similar to what you want has already
been done and, if so, use it as the base for your work.

Realize That Not All Models Work!
You may need to be flexible. The RATS LINREG instruction will take just about
any set of data that you throw at it—it will handle collinear data by (in effect)
dropping the redundant variables—so as long as you have at least one usable
observation, it will give you some result. However with non-linear estimation
instructions like GARCH, MAXIMIZE, DLM, there’s no guarantee that they can
handle a model with a given set of data. Some models have multiple modes,
some have boundary problems, some have parameter scaling issues. Many
have structural changes and so don’t fit properly over a whole sample. If you
read a published paper, you’re generally looking at the models which worked,
not the ones which didn’t. And often there are many in the latter category. So
be prepared to have to drop a country or industry, or to change up the data
range if you need to.

1.4 General Stylistic Tips

Commenting
Your first goal is always to get the calculations correct. However, if you have a
program (or part of one) that you expect that you might need again, it’s a good
idea to add comments. Don’t overdo it—the following would be a waste of the
time to do the comment and also is distracting:

*
* Take first difference of log M2

*
set dlm2 = log(m2) - log(m2{1})

Note the difference between this and

*
* Use first difference of log M2 as in Smith and Jones(2010)

*
set dlm2 = log(m2) - log(m2{1})

where the comment will help you in writing up the results later. And if you
have a part of your program which you’re not sure is correct, commenting it can
often help you spot errors. (If you can’t explain why you’re doing something,
that might be a good sign that you’re doing it wrong).

Prettifying
The word prettify is used in programming circles to describe making the pro-
gram easier to read by changing spacing, line lengths, etc. It doesn’t change

Introduction 6

how it works, just how it reads. Well-chosen spaces and line breaks can make it
easier to read a program, and will go a long way towards helping you get your
calculations correct. Even minor changes can help you do that. Compare

set dlrgdp = log(rgdp)-log(rgdp{1})
set dlm2 = log(m2)-log(m2{1})
set drs = tb3mo-tb3mo{1}
set dr1 = tb1yr-tb1yr{1}
set dlp = log(deflator)-log(deflator{1})
set dlppi = log(ppi)-log(ppi{1})

with

set dlrgdp = log(rgdp) - log(rgdp{1})
set dlm2 = log(m2) - log(m2{1})
set drs = tb3mo - tb3mo{1}
set dr1 = tb1yr - tb1yr{1}
set dlp = log(deflator) - log(deflator{1})
set dlppi = log(ppi) - log(ppi{1})

The only difference is a handful of spaces in each line, but it’s much clearer in
the second case that these are parallel transformations, and it would be much
easier to spot a typo in any of those lines.

At a minimum, you should get into the habit of indenting loops and the like.
This makes it much easier to follow the flow of the program, and also makes it
easier to skip more easily from one part of the calculation to the next.

Two operations on the Edit menu can be helpful with this. Indent Lines adds
(one level) of indentation at the left; Unindent Lines removes one level. The
number of spaces per level is set in the preferences in the Editor tab. All the
programs in this book are done with 3 space indenting, which seems to work
well for the way that RATS is structured. In the following, if you select the five
lines in the body of the loop and do Edit–Indent

do i = 1,8
linreg(noprint) dresids 1962:2 *
resids{1} dresids{1 to i}
com aic = %nobs*log(%rss) + 2*(%nreg)
com sbc = %nobs*log(%rss) + (%nreg)*log(%nobs)
dis "Lags: " i "T-stat" %tstats(1) aic sbc
end do i

you’ll get

Introduction 7

do i = 1,8
linreg(noprint) dresids 1962:2 *
resids{1} dresids{1 to i}
com aic = %nobs*log(%rss) + 2*(%nreg)
com sbc = %nobs*log(%rss) + (%nreg)*log(%nobs)
dis "Lags: " i "T-stat" %tstats(1) aic sbc

end do i

1.5 About This E-Book

Examples
The full running examples are included both in the text and are distributed
as separate files with the e-book. The names for these files are RPMn m.RPF,
where RPM is “RATS Programming Manual”, n is the chapter number and m
the example number. We would suggest that you use the separate example
files rather than trying to copy and paste whole programs out of the PDF—if
you do the latter, you can often end up extra information from the page layout.

Typefaces
To help you understand how RATS works and in particular, what is happening
in the sample programs, we will use several conventions for typefaces.

Elements of RATS programs (instructions and options) are in Courier font.
Within text, they will be in upper case to stand out, with instruction names in
bold face and options or variable names in regular face:

We want to suppress the usual LINREG output from the regres-
sions with different lags, so we’ll use NOPRINT. Then we’ll use DISPLAY
to show the test statistic and the two criteria.

However, stand-alone examples of code will be in lower case for readability:

do q=0,3
do p=0,3

boxjenk(constant,ar=p,ma=q) y
end do p

end do q

Standard procedures which are distributed with RATS will be shown (in bold
upper case Courier) with the standard @ prefix, the way that you would use
them in practice: @DFUNIT, @REGCRITS. Since almost all procedures are on a
file named “procedure name”.src (that is, dfunit.src for @DFUNIT), we won’t
talk about where you might find the code for a procedure unless it’s on a file
other than the expected one.

Introduction 8

Output taken straight out of a RATS output window will be in smaller fixed font
(to keep the information aligned) with a box around it:
Null Hypothesis : The Following Coefficients Are Zero
DRS Lag(s) 5 to 7
F(3,196)= 9.44427 with Significance Level 0.00000739

Wizards
We won’t talk much about the use of RATS “wizards”. While some of these
remain useful even to very experienced RATS programmers (the Data (Other
Formats) and Standard Functions wizards in particular), they’re generally de-
signed to help with one-off calculations for less-experienced users, and not for
calculations with variables for ranges, and looping calculations that we’ll be
doing here.

Tips and Tricks
If there is a subject which you might find interesting, but which would inter-
rupt the flow of a chapter, we will shift that into a Tips and Tricks section at
the end of the chapter.

Exercises
The point of this book is to help you learn better how to accomplish more ad-
vanced tasks using RATS. To that end, we will occasionally insert “exercises”,
which are ask you to think about how to do a slightly different example or how
to recode what we’ve already presented.

Chapter 2

Regression and ARIMA Models

This chapter begins with a quick overview of some of the basic RATS instruc-
tions used in estimating linear regression and ARMA models. This book is
definitely not an econometrics text; instead, the aim is to refresh your memory
and to introduce you to some basic RATS tools. Towards that end, a number of
key RATS instructions are illustrated in some straightforward programs.

2.1 The Data Set

The file labeled QUARTERLY(2012).XLS contains quarterly values for the 3-
month and 1-year treasury bill rates, real GDP, potential real GDP, the GDP
deflator, the seasonally adjusted money supply (M2), the producer price index
of finished goods (PPI), and currency in circulation for the 1960:1 – 2012:4 pe-
riod. The data were obtained from the website of the Federal Reserve Bank of
St. Louis (www.stls.frb.org/index.html) and saved in Excel format. If
you open the file, you will see that the first eight observations are:

DATE Tb3mo Tb1yr RGDP Potent Deflator M2 PPI Curr
1960Q1 3.87 4.57 2845.3 2824.2 18.521 298.7 33.2 31.8
1960Q2 2.99 3.87 2832.0 2851.2 18.579 301.1 33.4 31.9
1960Q3 2.36 3.07 2836.6 2878.7 18.648 306.5 33.4 32.2
1960Q4 2.31 2.99 2800.2 2906.7 18.700 310.9 33.7 32.6
1961Q1 2.35 2.87 2816.9 2934.8 18.743 316.3 33.6 32.1
1961Q2 2.30 2.94 2869.6 2962.9 18.785 322.1 33.3 32.1
1961Q3 2.30 3.01 2915.9 2991.3 18.843 327.6 33.3 32.7
1961Q4 2.46 3.10 2975.3 3019.9 18.908 333.3 33.4 33.4

If you open up Example 2.1 (file RPM2 1.RPF), you’ll see the following lines,
which read in the entire data set:

cal(q) 1960:1
all 2012:4
open data quarterly(2012).xls
data(org=obs,format=xls)

Note that only the first three letters of the CALENDAR and ALLOCATE instruc-
tions have been used–in fact, any RATS instruction can be called using only the
first three letters of its name. If you use the TABLE instruction and limit the
output to only two decimal places, your output should be:

9

www.stls.frb.org/index.html

Regression and ARIMA Models 10

table(picture="*.##")

Series Obs Mean Std Error Minimum Maximum
TB3MO 212 5.03 2.99 0.01 15.05
TB1YR 212 5.58 3.18 0.11 16.32
RGDP 212 7664.75 3390.65 2800.20 13665.40
POTENT 212 7764.87 3511.54 2824.20 14505.40
DEFLATOR 212 61.53 31.59 18.52 116.09
M2 212 3136.84 2648.84 298.70 10317.70
PPI 212 99.97 49.13 33.20 196.20
CURR 212 327.91 309.02 31.83 1147.62

Many of the examples presented will use the growth rates of M2 and real GDP,
the first differences of the 3-month and 1-year T-bill rates, and the rate of infla-
tion (as measured by the growth rate of the GDP deflator or the PPI). You can
create these six variables using:

set dlrgdp = log(rgdp) - log(rgdp{1})
set dlm2 = log(m2) - log(m2{1})
set drs = tb3mo - tb3mo{1}
set dr1 = tb1yr - tb1yr{1}
set dlp = log(deflator) - log(deflator{1})
set dlppi = log(ppi) - log(ppi{1})

Notice that we’ve chosen to notate the change in a variable as a prefix of d, the
growth rate of a variable by dl, and the suffixes s and l refer to the short-term
and long-term interest rates, and the logarithmic change in price (called dlp)
is the quarterly inflation rate.

We can create graphs of the series (Figure 2.1) using:1

spgraph(footer="Graphs of the Series",hfields=2,vfields=2)
graph(header="Panel 1: The Interest Rates",key=below,nokbox) 2
tb3mo
tb1yr
graph(header="Panel 2: Real and Potential GDP",key=upleft) 2
rgdp
potent
graph(header="Panel 3: Time path of money growth",noaxis) 1
dlm2
graph(header="Panel 4: Time path of Inflation",noaxis) 1
dlp

spgraph(done)

Recall that the typical syntax of the GRAPH instruction is:

GRAPH(options) number
series start end

1The growth rate of the PPI and CURR are not shown here–both are considered in more
detail later in the chapter.

Regression and ARIMA Models 11

Panel 1: The Interest Rates

TB3MO TB1YR

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Panel 2: Real and Potential GDP

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
2500

5000

7500

10000

12500

15000
RGDP
POTENT

Panel 3: Time path of money growth

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Panel 4: Time path of Inflation

1960 1970 1980 1990 2000 2010
-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Figure 2.1: Graphs of the series

number The number of series to graph. The names of the series are
listed on the supplementary cards (one card for each series).

series The name of the series to graph

start end Range to plot. If omitted, RATS uses the current sample range.

The graphs shown in Figure 2.1 illustrate only a few of the options available in
RATS. The commonly used options are (brackets[] indicate default choice):

HEADER=header string (centered above graph)
FOOTER=footer string (left-justified below graph)

KEY=the location of the key
Some of the choices you can use are [NONE], UPLEFT, LORIGHT, ABOVE,
BELOW, RIGHT. Some (such as UPLEFT and LORIGHT) are inside the graph
box, others (such as ABOVE and RIGHT) are outside.

STYLE=graph style
Some of the choices include: [LINE], POLYGON, BAR, STACKEDBAR.

DATES/NODATES
RATS will label the horizontal axis with dates (rather than entry numbers)
unless the NODATES option is specified.

The program also illustrates the use of the SPGRAPH instruction to place mul-
tiple graphs on a single page. The first time SPGRAPH is encountered, RATS is
told to expect a total of four graphs. The layout is such that there are two fields
horizontally (HFIELD=2) and two vertically (VFIELD=2). The option FOOTER
produces “Graphs of the Series” as the footer for the full page. The headers
on the four GRAPH instructions produce the headers on the individual panels.
Nothing is actually shown until the SPGRAPH(DONE).

Regression and ARIMA Models 12

2.2 Linear Regression and Hypothesis Testing

The LINREG instruction is the backbone of RATS and it is necessary to review
its use. As such, suppose you want to estimate the first difference of the 3-
month t-bill rate (i.e., drs) as the autoregressive process:

drst = α0 +
7∑
i=1

αidrst−i + εt (2.1)

The next two lines of the program (this is still RPM2 1.RPF) estimate the model
over the entire sample period (less the seven usable observations lost as a re-
sult of the lags and the additional usable observation lost as a result of differ-
encing) and save the residuals in a series called resids.

linreg drs / resids
constant drs{1 to 7}

Linear Regression - Estimation by Least Squares
Dependent Variable DRS
Quarterly Data From 1962:01 To 2012:04
Usable Observations 204
Degrees of Freedom 196
Centered Rˆ2 0.2841953
R-Barˆ2 0.2586309
Uncentered Rˆ2 0.2843637
Mean of Dependent Variable -0.011617647
Std Error of Dependent Variable 0.759163288
Standard Error of Estimate 0.653660810
Sum of Squared Residuals 83.745401006
Regression F(7,196) 11.1168
Significance Level of F 0.0000000
Log Likelihood -198.6489
Durbin-Watson Statistic 1.9709

Variable Coeff Std Error T-Stat Signif
**
1. Constant -0.011903358 0.045799634 -0.25990 0.79521316
2. DRS{1} 0.390010248 0.069644459 5.60002 0.00000007
3. DRS{2} -0.380186642 0.074718282 -5.08827 0.00000084
4. DRS{3} 0.406843358 0.078304236 5.19567 0.00000051
5. DRS{4} -0.159123423 0.082740231 -1.92317 0.05590809
6. DRS{5} 0.193334248 0.078290297 2.46945 0.01438724
7. DRS{6} -0.089946745 0.074692035 -1.20423 0.22995107
8. DRS{7} -0.220768119 0.069358921 -3.18298 0.00169542

Almost every piece of information in this output can be retrieved for future
calculations—in the descriptions below the variable name (if it exists) is in
bold. These are all saved to full precision, not just to the number of decimal
places shown in the output. You need to be careful since these are replaced
every time you estimate a regression, and some may be recomputed by other
instructions as well. %NOBS, for instance, is replaced by almost any statistical
instruction.

Usable Observations (%NOBS)
This doesn’t count observations lost to differencing and lags. If there were
missing values within the sample it wouldn’t count those either.

Regression and ARIMA Models 13

Degrees of Freedom (%NDF)
Number of observations less number of (effective) regressors. If you hap-
pened to run a regression with collinear regressors (too many dummies, for
instance), the number of effective regressors might be less than the number
you listed.

Centered Rˆ2 (%RSQUARED)
The standard regression R2.

R-Barˆ2 (%RBARSQ)
R2 corrected for degrees of freedom.

Uncentered Rˆ2
R2 comparing sum of squared residuals to sum of squares of the dependent
variable, without subtracting the mean out of the latter.

Mean of Dependent Variable (%MEAN)
The mean of the dependent variable computed only for the data points used
in the regression. Thus it will be different from what you would get if you
just did a TABLE or STATISTICS instruction on the dependent variable.

Std Error of Dependent Variable (%VARIANCE)
This is the standard error of the dependent variable computed only for the
data points used in the regression. %VARIANCE is its square.

Standard Error of Estimate (%SEESQ)
The standard degrees-of-freedom corrected estimator for the regression stan-
dard error. Its square (that is the variance estimated) is in the %SEESQ vari-
able.

Sum of Squared Residuals (%RSS)

Regression F (%FSTAT)
This is the F test for the hypothesis that all coefficients in the regression
(other than the constant) are zero. Here, the sample value of F for the joint
test α1 = α2 = α3 = . . . = α7 = 0 is 11.1168. It output also shows the
numerator and denominator degrees of freedom of the test.

Significance Level of F (%FSIGNIF)
This is the significance level of the regression F , which here is highly signif-
icant.

Log Likelihood (%LOGL)
This is the log likelihood assuming Normal residuals. Note that RATS in-
cludes all constants of integration in any log likelihood calculations.

Durbin-Watson Statistic (%DURBIN)
The Durbin-Watson test for first-order serial correlation in the residuals.
This is computed and displayed even though the standard small sample lim-
its don’t apply to a regression like this with lagged dependent variables—it’s

Regression and ARIMA Models 14

mainly used as an informal indicator of serial correlation if it differs substan-
tially from the theoretical value of 2.0 for serially uncorrelated residuals.

In the regressor table at the bottom, we have the coefficient estimate (Coeff),
the standard error of estimated coefficient (Std Error), the t-statistic for the
null hypothesis that the coefficient equals zero (T-Stat), and the marginal sig-
nificance level of the t-test (Signif). The fetchable information here are saved
in VECTORS, each of which would have 8 elements in this case. The coeffi-
cients are in %BETA, the standard errors in %STDERRS and the t-statistics in
%TSTATS. (The significance levels aren’t saved). Thus %BETA(2) is the coef-
ficient on the first lag of DRS (roughly .3900), %STDERRS(5) is the standard
error on the estimate of DRS{4} (.0827), and (%TSTATS(8)) is the t-statistic on
DRS{8} (-3.183).

There are a several other variables defined by LINREG which don’t show di-
rectly on the output:

%NREG Number of regressors

%NMISS Number of skipped data points (between the start and end)

%TRSQUARED Number of observations times the R2. Some LM tests use this as
the test statistic.

%TRSQ Number of observations times the uncentered R2. Also some-
times used in LM tests.

%SIGMASQ Maximum likelihood estimate (that is, not corrected for degrees
of freedom) of the residual variance.

%XX The (X ′X)−1 matrix, or (in some cases) the estimated covariance
matrix of the coefficients. This is a k × k SYMMETRIC matrix
where k is the number of regressors. %XX(i,j) is its i, j element.

For a time series regression, it is always important to determine whether there
is any serial correlation in the regression residuals. The CORRELATE instruc-
tion calculates the autocorrelations (and the partial autocorrelations) of a spec-
ified series. The syntax is:

CORRELATE(options) series start end corrs

where

series The series for which you want to compute correlations.

start end The range of entries to use. The default is the entire series.

Regression and ARIMA Models 15

corrs Series used to save the autocorrelations (Optional).

The principal options are:

NUMBER=number of autocorrelations to compute
The default is the integer value of T/4

RESULTS=series used to save the correlations
PARTIAL=series for the partial autocorrelations

If you omit this option, the PACF will not be calculated.

QSTATS
Produces the Ljung-Box Q-statistics

SPAN=interval width for Q-statistics
Use with QSTATS to set the width of the intervals. For example, SPAN=4
produces Q(4), Q(8), Q(12), and so forth.

In the example at hand, we can obtain the first eight autocorrelations, partial
autocorrelations, and the associated Q-statistics of the residuals with:

corr(number=24,partial=partial,qstats,span=4,pic="##.###") resids

The options also include a degrees of freedom correction. Here, you could in-
clude the option DFC=7 since the residuals are generated from a model with
seven autoregressive coefficients.
Correlations of Series RESIDS
Quarterly Data From 1962:01 To 2012:04

Autocorrelations
1 2 3 4 5 6 7 8 9 10
0.015 0.002 -0.019 -0.021 -0.043 0.044 -0.069 0.105 -0.096 0.061
11 12 13 14 15 16 17 18 19 20

-0.137 0.022 -0.067 0.006 -0.131 -0.047 -0.092 0.076 -0.025 0.001
21 22 23 24
0.041 0.028 -0.045 0.049

Partial Autocorrelations
1 2 3 4 5 6 7 8 9 10
0.015 0.002 -0.019 -0.020 -0.043 0.045 -0.071 0.107 -0.103 0.067
11 12 13 14 15 16 17 18 19 20

-0.145 0.033 -0.069 -0.004 -0.123 -0.077 -0.063 0.032 0.004 -0.058
21 22 23 24
0.083 -0.035 0.005 -0.002

Ljung-Box Q-Statistics
Lags Statistic Signif Lvl

4 0.209 0.994898
8 4.390 0.820339
12 11.371 0.497450
16 16.661 0.407869
20 20.035 0.455719
24 21.637 0.600931

Regression and ARIMA Models 16

All of the autocorrelation and partial autocorrelations are small and the Ljung-
Box Q-statistics do not indicate the values are statistically significant. Other
diagnostic checks include plotting the residuals using (for instance)

graph 1
resids

A concern is that the model is over-parameterized since it contains a total
of eight coefficients. While the t-statistics allow you to determine the signif-
icance levels of individual coefficients, the EXCLUDE, SUMMARIZE, TEST, and
RESTRICT instructions allow you to perform hypothesis tests on several co-
efficients at once. EXCLUDE is followed by a supplementary card listing the
variables to exclude from the most recently estimated regression. RATS pro-
duces the F-statistic and the significance level for the null hypothesis that the
coefficients of all excluded variables equal zero. The following does a joint test
on the final three lags:

exclude
drs{5 to 7}

Null Hypothesis : The Following Coefficients Are Zero
DRS Lag(s) 5 to 7
F(3,196)= 9.44427 with Significance Level 0.00000739

This can be rejected at conventional significance levels.
With EXCLUDE (and similar instructions) you can suppress the output with the
NOPRINT option, or you can “improve” the output using the TITLE option to
give a clearer description. Whether or not use print the output or not, they
define the variables

%CDSTAT The test statistic

%SIGNIF The significance level

%NDFTEST The (numerator) degrees of freedom. (The denominator degrees
of freedom on a F will be the %NDF from the previous regression.)

SUMMARIZE has the same syntax as EXCLUDE but is used to test the null hy-
pothesis that the sum of the list coefficients is equal to zero. In the following
example, the value of t for the null hypothesis α5 +α5 +α7 = 0 is -1.11460. As
such, we do not reject the null hypothesis that the sum is zero.

summarize
drs{5 to 7}

Summary of Linear Combination of Coefficients

DRS Lag(s) 5 to 7
Value -0.1173806 t-Statistic -1.11460
Standard Error 0.1053116 Signif Level 0.2663855

Regression and ARIMA Models 17

In addition to %CDSTAT and %SIGNIF, SUMMARIZE defines %SUMLC and %VARLC
as the sum of the coefficients and the estimated variance of it.

EXCLUDE can only test whether a group of coefficients is jointly equal to zero.
The TEST instruction has a great deal more flexibility; it is able to test joint re-
strictions on particular values of the coefficients. Suppose you have estimated
a model and want to perform a significance test of the joint hypothesis restrict-
ing the values of coefficients αi, αj, . . . and αk equal the values ri, rj, . . . and rk,
respectively. Formally, suppose you want to test the restrictions

αi = ri, αj = rj, ...,and αk = rk

To perform the test, you first type TEST followed by two supplementary cards.
The first supplementary card lists the coefficients (by their number in the
LINREG output list) that you want to restrict and the second lists the restricted
value of each. Suppose you want to restrict the coefficients of the last three lags
of DRS to all be 0.1 (i.e., α5 = 0.1, α6 = 0.1, and α7 = 0.1). To test this restriction,
use:

test
6 7 8
0.1 0.1 0.1

F(3,196)= 15.77411 with Significance Level 0.00000000

RATS displays the F-value and the significance level of the joint test. If the
restriction is binding, the value of F should be high and the significance level
should be low. Hence, we can be quite confident in rejecting the restriction
that each of the three coefficients equals 0.1. To test the restriction that the
constant equals zero (i.e., α0 = 0) and that α1 = 0.4, α2 = −0.1, α3 = 0.4, use:

test
1 2 3 4
0. 0.4 -0.1 0.4

F(4,196)= 4.90219 with Significance Level 0.00086693

RESTRICT is the most powerful of the hypothesis testing instructions. It can
test multiple linear restrictions on the coefficients and estimate the restricted
model. Although RESTRICT is a bit difficult to use, it can perform the tasks of
SUMMARIZE, EXCLUDE, and TEST. Each restriction is entered in the form:

βiαi + βjαj + ...+ βkαk = r

where the αi are the coefficients of the estimated model (i.e., each coefficient
is referred to by its assigned number), the βi are weights you assign to each

Regression and ARIMA Models 18

coefficient, and r represents the restricted value of the sum (which may be
zero).

To implement the test, you type RESTRICT followed by the number of restric-
tions you want to impose. Each restriction requires the use of two supplemen-
tary cards. The first lists the coefficients to be restricted (by their number) and
the second lists the values of the βi and r.

2.2.1 Examples using RESTRICT

1. To test the restriction that the constant equals zero (which could be done
with EXCLUDE or TEST) use:

restrict 1
1
1 0

The first line instructs RATS to prepare for one restriction. The second line is
the supplementary card indicating that coefficient 1 (i.e., the constant) is to be
restricted. The third line imposes the restriction 1.0× α0 = 0.

2. To test the restriction that α1 = α2, we rearrange that to α1−α2 = 0 and use

restrict 1
2 3
1 -1 0

Again, the first line instructs RATS to prepare for one restriction. The second
line is the supplementary card indicating that coefficients 2 and 3 are to be
restricted. The third line imposes the restriction 1.0× α1 − 1.0× α2 = 0.

3. If you reexamine the regression output, it seems as if α1 + α2 = 0. We’ll also
include several other restrictions which aren’t quite as clear: α3 + α4 = 0 and
α4 + α5 = 0. To test the combination of these three restrictions use:

restrict(create) 3 resids
2 3
1. 1. 0.
4 5
1. 1. 0.
5 6
1. 1. 0.

Note that RESTRICT can be used with the CREATE option to test and estimate
the restricted form of the regression. Whenever CREATE is used, you can save
the new regression residuals simply by providing RATS with the name of the se-
ries in which to store the residuals—here RESIDS. (%RESIDS is also redefined).
The test is shown above the new regression output.

Regression and ARIMA Models 19

F(3,196)= 3.74590 with Significance Level 0.01197151

Linear Model - Estimation by Restricted Regression
Dependent Variable DRS
Quarterly Data From 1962:01 To 2012:04
Usable Observations 204
Degrees of Freedom 199
Mean of Dependent Variable -0.011617647
Std Error of Dependent Variable 0.759163288
Standard Error of Estimate 0.667052922
Sum of Squared Residuals 88.546960661
Durbin-Watson Statistic 1.9307

Variable Coeff Std Error T-Stat Signif
**
1. Constant -0.013441955 0.046725758 -0.28768 0.77389289
2. DRS{1} 0.378316399 0.060581719 6.24473 0.00000000
3. DRS{2} -0.378316399 0.060581719 -6.24473 0.00000000
4. DRS{3} 0.266709604 0.065399412 4.07817 0.00006562
5. DRS{4} -0.266709604 0.065399412 -4.07817 0.00006562
6. DRS{5} 0.266709604 0.065399412 4.07817 0.00006562
7. DRS{6} -0.112088351 0.075915937 -1.47648 0.14139579
8. DRS{7} -0.175829465 0.069193109 -2.54114 0.01181155

Here the F-statistic (with three degrees of freedom in the numerator and 196
in the denominator) is 3.74 with a significance level of 0.01197. Hence, we
would reject the null hypothesis at the 5% significance level and conclude that
restriction is binding. At the 1% significance level, we can (just barely) accept
the null hypothesis.

Note that when you do RESTRICT(CREATE), the t-statistics in the new output
(and any other further tests that you do) take the set of restrictions used as
given. Thus the t-statistic on DRS{1} tests whether the coefficient on the first
lag is zero, given that the first two lags sum to zero, which means that it ac-
tually is restricting both coefficients to zero (hence the matching (up to sign) t
statistics).

2.3 The LINREG Options

LINREG has many options that will be illustrated in the following chapters.
The usual syntax of LINREG is:

LINREG(options) depvar start end residuals
list

depvar The dependent variable.

start end The range to use in the regression. The default is the largest
common range of all variables in the regression.

residuals Series name for the residuals. Omit if you do not want to
save the residuals in a separate series. RATS always saves

Regression and ARIMA Models 20

the residuals in a series in a series called %RESIDS. You can
use this series just as if you named the series. However, be
aware that %RESIDS is overwritten each time a new LINREG
instruction (or similar instruction) is performed.

list The list of explanatory variables.

The most useful options for our purposes are:

DEFINE=name of EQUATION to define
[PRINT]/NOPRINT

LINREG also has options for correcting standard errors and t-statistics for hy-
pothesis testing. ROBUSTERRORS/ [NOROBUSTERRORS] computes a consistent
estimate of the covariance matrix that corrects for heteroscadesticity as in
White (1980). ROBUSTERRORS and LAGS= produces various types of Newey-
West estimates of the coefficient matrix. You can use SPREAD is for weighted
least squares and INSTRUMENTS for instrumental variables. The appropriate
use of these options is described in Chapter 2 of the RATS User’s Guide.

2.4 Using LINREG and Related Instructions

To illustrate working with the LINREG and related instructions, it is useful to
consider the two interest rate series shown in Panel 1 of Figure 2.1.2 Economic
theory suggests that long-term and short-term rates have a long-term equilib-
rium relationship. Although the two series appear to be nonstationary, they
also seem to bear a strong relationship to each other. We can estimate this
relationship using:

linreg tb1yr / resids
constant tb3mo

2The analysis from this section is in Example 2.2, file RPM2 2.RPF.

Regression and ARIMA Models 21

Linear Regression - Estimation by Least Squares
Dependent Variable TB1YR
Quarterly Data From 1960:01 To 2012:04
Usable Observations 212
Degrees of Freedom 210
Centered Rˆ2 0.9868383
R-Barˆ2 0.9867756
Uncentered Rˆ2 0.9967863
Mean of Dependent Variable 5.5787735849
Std Error of Dependent Variable 3.1783132737
Standard Error of Estimate 0.3654972852
Sum of Squared Residuals 28.053535759
Regression F(1,210) 15745.3945
Significance Level of F 0.0000000
Log Likelihood -86.4330
Durbin-Watson Statistic 0.5766

Variable Coeff Std Error T-Stat Signif
**
1. Constant 0.2706392926 0.0491897079 5.50195 0.00000011
2. TB3MO 1.0547609616 0.0084057656 125.48065 0.00000000

An important issue concerns the nature of the residuals. We can obtain the
first 12 residual autocorrelations using:

corr(num=8,results=cors,partial=partial,picture="##.###",qstats) resids

Correlations of Series RESIDS
Quarterly Data From 1960:01 To 2012:04

Autocorrelations
1 2 3 4 5 6 7 8
0.711 0.410 0.260 0.133 -0.042 -0.141 -0.069 -0.013

Partial Autocorrelations
1 2 3 4 5 6 7 8
0.711 -0.193 0.103 -0.109 -0.176 0.003 0.179 -0.039

Ljung-Box Q-Statistics
Lags Statistic Signif Lvl

8 169.465 0.000000

As expected, the residual autocorrelations seem to decay reasonably rapidly.
Notice that we used the QSTATS option–this option produces the Ljung-Box Q-
statistic for the null hypothesis that all 8 autocorrelations are zero. Clearly,
this null is rejected at any conventional significance level. If we wanted addi-
tional Q-statistics, we could have also used the SPAN= option. For example, if
we wanted to produce the Q-statistics for lags, 4, 8, and 12, we could use:

corr(num=12,results=cors,partial=partial,span=4,qstats) resids

Since we are quite sure that the autocorrelations differ from zero, we won’t use
that here. We can graph the ACF and PACF (Figure 2.2) using:

graph(nodates,number=0,style=bar,key=below,footer="ACF and PACF") 2
cors
partial

Regression and ARIMA Models 22

CORS PARTIAL

0 1 2 3 4 5 6 7 8
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2: Correlations from interest rate regression

Notice that we used the NODATES and NUMBER= options. We want the x-axis
to be labeled with integers ranging from 0 to 24 instead of calendar dates since
these aren’t data, but a sequence of statistics. Since it is clear that the residuals
decay over time, we can estimate the dynamic process. Take the first difference
of the resids and call the result DRESIDS:

diff resids / dresids

Now estimate the dynamic adjustment process as:

dresidst = α0residst +

p∑
i=1

αidresidst−1 + εt

If we can conclude that α0 is less than zero, we can conclude that the {resids}
sequence is a convergent process. However, it is not straightforward to esti-
mate the regression equation and then test the null hypothesis α0 = 0. One
problem is that under the null hypothesis of no equilibrium long-run relation-
ship (that is, under the null of no cointegration between the two rates), we
cannot use the usual t-distributions—this is the Engle-Granger test from En-
gle and Granger (1987). And to apply this, we need to choose p to “eliminate”
the serial correlation in the residuals. p is clearly not zero, so we must come up
with some method to choose it.3

The ACF suggests that we can look at a relatively short lag lengths although
the partial autocorrelation coefficient at lag 6 appears to be significant. We
could do the test allowing for two full years’ worth of lags (that is, 8) with:

3This is a heavily-used test, and RATS provides procedures for doing this, as will be dis-
cussed below. But for now, we’ll look at how to do it ourselves.

Regression and ARIMA Models 23

diff resids / dresids
linreg dresids
resids{1} dresids{1 to 8}

Linear Regression - Estimation by Least Squares
Dependent Variable DRESIDS
Quarterly Data From 1962:02 To 2012:04
Usable Observations 203
Degrees of Freedom 194
Centered Rˆ2 0.2552704
R-Barˆ2 0.2245599
Uncentered Rˆ2 0.2552866
Mean of Dependent Variable -0.001310240
Std Error of Dependent Variable 0.281667715
Standard Error of Estimate 0.248033987
Sum of Squared Residuals 11.935046594
Log Likelihood -0.4213
Durbin-Watson Statistic 2.0048

Variable Coeff Std Error T-Stat Signif
**
1. RESIDS{1} -0.379234416 0.084147774 -4.50677 0.00001136
2. DRESIDS{1} 0.241016426 0.092645733 2.60148 0.00999787
3. DRESIDS{2} 0.005897591 0.091245574 0.06463 0.94853175
4. DRESIDS{3} 0.125011741 0.083397849 1.49898 0.13550420
5. DRESIDS{4} 0.129833220 0.079674704 1.62954 0.10482111
6. DRESIDS{5} 0.008635668 0.078080089 0.11060 0.91204778
7. DRESIDS{6} -0.142481467 0.075908766 -1.87701 0.06201793
8. DRESIDS{7} 0.050886186 0.071685366 0.70985 0.47864666
9. DRESIDS{8} 0.085033097 0.071088272 1.19616 0.23309320

where we can read off the E-G test statistic as the t-stat on the lagged resid-
ual (-4.50677). That wouldn’t be an unreasonable procedure, but then at least
those last two lags and perhaps all but the first lag on DRESIDS look like they
may be unnecessary. Since each added lag costs a usable data point, and un-
needed coefficients tend to make the small-sample behavior of tests worse, it
would be useful to see if we can justify using fewer.

There are several possible ways to “automate” lag selection in a situation like
this. Here, we’ll demonstrate use of Information Criteria. Using the variables
defined by a LINREG, values for the Akaike Information Criterion (AIC) and
the Schwartz Bayesian Criterion (SBC) (often called the Bayesian Information
Criterion or BIC) can be computed using:

com aic = -2.0*%logl + %nreg*2
com sbc = -2.0*%logl + %nreg*log(%nobs)

We want to suppress the usual LINREG output from the regressions with dif-
ferent lags, so we’ll use NOPRINT. Then we’ll use DISPLAY to show the test
statistic and the two criteria.

When you use Information Criteria to choose lag length, it’s important to make
sure that you use the same sample range for each regression—if you don’t, the
sample log likelihoods won’t be comparable. We can pick up the range from the
8 lag regression using

Regression and ARIMA Models 24

compute egstart=%regstart()

and use that as the start period on the other regressions:

do i = 0,8
linreg(noprint) dresids egstart *
resids{1} dresids{1 to i}
com aic = -2.0*%logl + %nreg*2
com sbc = -2.0*%logl + %nreg*log(%nobs)
dis "Lags: " i "T-stat" %tstats(1) "The aic = " aic " and sbc = " sbc

end do i

Lags: 0 T-stat -5.87183 The aic = 30.68736 and sbc = 34.00057
Lags: 1 T-stat -6.60326 The aic = 24.73007 and sbc = 31.35648
Lags: 2 T-stat -5.38733 The aic = 24.58260 and sbc = 34.52222
Lags: 3 T-stat -5.63637 The aic = 23.88187 and sbc = 37.13469
Lags: 4 T-stat -6.24253 The aic = 19.43505 and sbc = 36.00108
Lags: 5 T-stat -5.67614 The aic = 21.43312 and sbc = 41.31236
Lags: 6 T-stat -4.37831 The aic = 16.65477 and sbc = 39.84721
Lags: 7 T-stat -4.34237 The aic = 18.33419 and sbc = 44.83984
Lags: 8 T-stat -4.50677 The aic = 18.84250 and sbc = 48.66135

Whether we use the 6-lag model selected by the minimum AIC or the 1-lag
model selected by the SBC, the t-statistic is sufficiently negative that we reject
the null hypothesis α0 equals zero. As such, we conclude that the two interest
rates are cointegrated.4

It is important to note that there are many equivalent ways to report the AIC
and SBC for linear regressions, which is fine as long as you use the same for-
mula in comparing models. The following eliminate the additive terms from
−2 logL term that depend only upon the number of observations:

AIC = T log(RSS) + 2k

SBC = T log(RSS) + k log T

and can be computed with

com aic = %nobs*log(%rss)+%nreg*2
com bic = %nobs*log(%rss)+%nreg*log(%nobs)

You can also divide through the formulas by the number of observations. Since
the number of observations should match in models that you are comparing
with the information criteria, neither of these changes will affect the rank or-
derings of models.

We can now re-run the regression with the 6 lags picked using AIC:
4With 203 usable observations, the 5% critical value is −3.368.

Regression and ARIMA Models 25

linreg dresids
resids{1} dresids{1 to 6}

Note that the t-statistic on the lagged residual is slightly different here from
what it was for six lags when we did the loop (-4.44300 vs -4.37831). This
is because the earlier regression used the sample range that allowed for eight
lags, while this one has re-estimated using the longer range allowed by only six
lags. It’s a fairly common practice in this type of analysis to pick the number of
lags based upon a common range (which is necessary for using the information
criteria), then re-estimate with the chosen lag length using as much data as
possible.

Two other standard procedures can be helpful in avoiding some of the program-
ming shown above. @REGCRITS produces four model selection criterion (includ-
ing the AIC and SBC). Note that it uses uses a “per observation” likelihood-
based version of the criteria:

AIC = −2 log(L)/T + 2k/T

SBC = −2 log(L)/T + k log(T)/T

Again, this is fine as long as you use the same formula for each model that you
are comparing.

@REGCORRS produces an analysis of the residuals—with the options shown be-
low it creates both a graph of the correlations, and a table of “running” Q statis-
tics.

@regcrits
@regcorrs(number=24,qstats,report)

As mentioned earlier, the Engle-Granger test is important enough that there
is a separate procedure written to do the calculation above. That’s @EGTEST.
To choose from up to 8 lags using AIC, you would do the following:

@egtest(lags=8,method=aic)
tb1yr tb3mo

Note that this matches what we did, and gives the test statistic from the re-
estimated model:
Engle-Granger Cointegration Test
Null is no cointegration (residual has unit root)
Regression Run From 1961:04 to 2012:04
Observations 206
With 6 lags chosen from 8 by AIC
Constant in cointegrating vector
Critical Values from MacKinnon for 2 Variables

Test Statistic -4.44300**
1%(**) -3.95194
5%(*) -3.36688
10% -3.06609

Regression and ARIMA Models 26

2.5 ARMA(p,q) Models

Instead of the pure autoregressive process represented by equation (2.1), most
time-series models are based on the stochastic difference equation with p au-
toregressive terms and q moving average terms. Consider

yt = a0 + a1yt−1 + a2yt−2 + . . .+ apyt−p + εt + β1εt−1 + . . .+ βqεt−q

where yt is the value of the variable of interest in time period t, the values of a0
through ap and β1 through βq are coefficients, and εt is a white-noise stochastic
disturbance with variance σ2.

As a practical matter, the order of the ARMA process is unknown to the re-
searcher and needs to be estimated. The typical tools used to identify p and q
are the autocorrelation function (ACF) and the partial autocorrelation function
(PACF). The autocorrelation function is the set of correlations between yt and
yt−i for each value of i. Thus, the ACF is formed using

ρi = γi/γ0

where γi is the covariance between yt and yt−i. As discussed in Enders (2010),
some of the key properties of the ACF are:

1. White-noise (i.e., ai = 0 and βi = 0): All autocorrelations are zero.

2. AR(1): For a1 > 0, the values of ρi decay geometrically with ρi = ai1. For
negative values of a1, the decay is oscillatory.

3. MA(q): The autocorrelations cut to zero after lag q.

4. AR(2): The decay pattern can contain trigonometric components.

5. ARMA(1, q): If a1 > 0 and q = 1, geometric decay after lag 1; if a1 < 0 there
is oscillating geometric decay after lag 1.

6. ARMA(p, q): The ACF will begin to decay at lag q. The decay pattern can
contain trigonometric components.

In contrast to the autocorrelation ρi, the partial autocorrelation between yt and
yt−i holds constant the effects of the intervening values of yt−1 through yt−i+1.
A simple way to understand the partial autocorrelation function is to suppose
that the yt series is an ARMA(p, q) process has been demeaned. Now consider
the series of regression equations

yt = θ11yt−1 + et

yt = θ21yt−1 + θ22yt−2 + et

yt = θ31yt−1 + θ32yt−2 + θ33yt−3 + et

Regression and ARIMA Models 27

where et is an error term (that may not be white-noise).

The partial autocorrelation function (PACF) is given by the values θ11, θ22, θ33,
etc., that is, the coefficient on the final lag. For a pure AR(p) process, θp+1,p+1 is
necessarily zero. Hence, the PACF of an AR(p) process will cut to zero after lag
p. In contrast, the PACF of a pure MA process will decay.

2.6 Estimation of an ARMA(p,q) process with RATS

The Box-Jenkins methodology is a three-step procedure: Identification, Esti-
mation, and Diagnostic Checking. Each is described below.

2.6.1 Identification

The first step in the Box-Jenkins methodology is to identify several plausible
models. A time-series plot of the series and a careful examination of the ACF
and PACF of the series can be especially helpful. Be sure to check for outliers
and missing values. If there is no clear choice for p and q, entertain a number of
reasonable models. If the series has a pronounced trend or meanders without
showing a strong tendency to revert to a constant long-run value, you should
consider differencing the variables. As discussed in later chapters, the current
practices in such circumstances involve testing for unit roots and/or structural
breaks.

Although you can create the plot the correlations and partial correlations using
CORRELATE and GRAPH, it’s much quicker to use the @BJIDENT procedure:

@BJIDENT(options) series start end

series Series used to compute the correlations.

start end Range of entries to use. The default is the entire series.

The principal options are:

DIFF=number of regular differences [0]
SDIFFS=number of seasonal differences [0]

TRANS=[NONE]/LOG/ROOT
Chooses the preliminary transformation (if any). ROOT means the square
root.

NUMBER=number of correlations to compute
The default is the integer value of T/4

Regression and ARIMA Models 28

2.6.2 Estimation

Although it is straightforward to estimate an AR(p) process using LINREG, the
situation is more complicated when MA terms are involved. Since, the values
of εt, εt−1, . . . are not observed, it isn’t possible to let the lagged values of these
error terms be regressors in an OLS estimation. Instead, models with MA terms
are generally estimated using maximum likelihood techniques. The form of the
RATS instruction used to estimate an ARMA model is:

BOXJENK(options) series start end residuals

For our purposes, the important options are:

AR=number of autoregressive parameters [0]
MA=number of moving average parameters [0]
DIFFS=number of regular differences [0]
CONSTANT/[NOCONSTANT]

Note: by default, a constant is not included in the model.

SAR=number of seasonal autoregressive parameters [0]
SMA=number of seasonal moving average parameters [0]
DEFINE=name of the EQUATION to define from this

As with the LINREG instruction, BOXJENK creates a number of internal vari-
ables that you can use in subsequent computations. A partial list of these
variables includes the coefficient vector %BETA, the vector of the t-statistics
%TSTATS, the degrees of freedom %NDF, the number of observations %NOBS, the
number of regressors %NREG, and the residual sum of squares %RSS.

BOXJENK also creates the variable %CONVERGED. %CONVERGED = 1 if the esti-
mation converged and %CONVERGED = 0 if it didn’t.

It is important to remember that the default is to not include an intercept
term from the model. Moreover, the reported value of CONSTANT is actually the
estimate of the mean (not the estimate of a0).

5 The relationship between the
mean, µ, and the intercept, a0, is

µ = a0/(1− a1 − a2 − ...− ap)

After the candidate set of models has been estimated, they should be compared
using a number of criteria including:

Parsimony
Select models with low values of p and q. Large values of p and q will neces-
sarily increase the fit, but will reduce the number of degrees of freedom. Poorly

5This parameterization makes it simpler to do more general regressions with ARIMA errors.

Regression and ARIMA Models 29

estimated coefficients have large standard errors and will generally result in
poor forecasts. Moreover, high order ARMA(p, q) models can usually be well-
approximated by low-order models.

Goodness of Fit
The most popular goodness-of-fit measures are the Akaike Information Crite-
rion (AIC) and the Schwartz Bayesian Criterion (SBC). You can construct these
measures using the same code as for the LINREG instruction.

2.6.3 Diagnostic Checking

It is important to check the residuals for any remaining serial correlation. The
GRAPH, STATISTICS, and CORRELATE instructions applied to the residuals can
help you determine whether or not the residuals are well-described as a white-
noise process. Any pattern in the residuals means that you equation is mis-
specified. As described below, you can use recursive estimations to check for
coefficient stability.

2.7 An Example of the Price of Finished Goods

The ideas in the previous section can be illustrated by considering an extended
example of the producer price index. This is Example 2.3, file RPM2 3.RPF.
We’ll again read in the data with

cal(q) 1960:1
all 2012:4

*
open data quarterly(2012).xls
data(org=obs,format=xls)

If you look at a time series graph of PPI,6 it should be clear that it is not sta-
tionary and needs to be differenced. It turns out that it is best to work with the
logarithmic difference. This variable can be created using:

log ppi / ly
dif ly / dly

We could do this in one step, but we’ll also have use for the LY series itself.
Now graph the (log differenced) series and obtain the ACF and PACF using

spgraph(footer="Price of Finished Goods",hfield=2,vfield=1)
graph(header="Panel a: Quarterly Growth Rate") 1
dly
@bjident(separate,number=12) dly

spgraph(done)

6The quickest way to do that is by doing the menu operation View-Series Window, click on
the PPI series and the Time Series Graph toolbar icon.

Regression and ARIMA Models 30

Panel a: Quarterly Growth Rate

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0 Differences of DLY

Correlations

0 1 2 3 4 5 6 7 8 9 10 11 12
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Partial Correlations

0 1 2 3 4 5 6 7 8 9 10 11 12
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Figure 2.3: Price of Finished Goods

This produces Figure 2.3. Notice that we wrapped an SPGRAPH around our own
GRAPH, and the graphs produced by @BJIDENT. @BJIDENT also uses SPGRAPH
to split a graph space vertically between the ACF on top and the PACF on the
bottom. These end up splitting the right pane in the SPGRAPH that we define.
This is how nested SPGRAPHs work.

The plot of the series, shown in Panel a of Figure 2.3 indicates that there was a
run-up of prices in the early 1970s and a sharp downward spike in 2008:4.
However, for our purposes, the series seems reasonably well-behaved. Al-
though the ACF (shown in the upper right-hand portion of the figure) decays,
the decay does not seem to be geometric. Notice that the PACF has significant
spikes at lags 1 and 3. As such, at this point in the analysis, there are several
possible candidates:

1. AR(3): The ACF does not exhibit simple geometric decay so an AR(1) is
likely to be inappropriate. Moroever, the PACF does not display a simple
decay pattern; instead, the values of θ1 and θ3 are significant.

2. Low-order ARMA(p, q): Neither the ACF nor the PACF display simple de-
cay patterns. As such, the process may be mixed in that it contains AR
and MA terms.

Estimating the series as an AR(3) can be done using LINREG or BOXJENK. To
illustrate the use of BOXJENK, we have

boxjenk(constant,ar=3) dly

The coefficient block of the output is:

Regression and ARIMA Models 31

Variable Coeff Std Error T-Stat Signif
**
1. CONSTANT 0.008431166 0.002141902 3.93630 0.00011349
2. AR{1} 0.478711560 0.068156413 7.02372 0.00000000
3. AR{2} -0.008559549 0.076086058 -0.11250 0.91053898
4. AR{3} 0.228904929 0.068504836 3.34144 0.00099121

If we reestimate the model without the insignificant AR(2) term, we obtain:

boxjenk(constant,ar=||1,3||) dly

Variable Coeff Std Error T-Stat Signif
**
1. CONSTANT 0.0084324694 0.0021480622 3.92562 0.00011810
2. AR{1} 0.4752570939 0.0607005314 7.82954 0.00000000
3. AR{3} 0.2253908909 0.0608218529 3.70576 0.00027113

Checking the residuals for serial correlation, it should be clear that the model
performs well. Note the use of the option DFC=%NARMA. BOXJENK sets the in-
ternal variable %NARMA with the number of AR + MA coefficients, which is
required to correct the degrees of freedom for the Q-statistics when they are
computed for the residuals from an ARMA estimation. Here, %NARMA is equal
to 2.

corr(number=8,qstats,span=4,dfc=%narma,picture=".#.###") %resids

Correlations of Series %RESIDS
Quarterly Data From 1961:01 To 2012:04

Autocorrelations
1 2 3 4 5 6 7 8

0.022 -0.037 -0.003 -0.123 0.067 0.150 -0.035 -0.067

Ljung-Box Q-Statistics
Lags Statistic Signif Lvl

4 3.610 0.164446
8 10.678 0.098844

The fit of the model can be obtained using:

com aic = -2.0*%logl + %nreg*2
com sbc = -2.0*%logl + %nreg*log(%nobs)
display "aic = " aic "bic = " sbc

aic = -1353.86042 bic = -1343.84781

Next, estimate the series as an ARMA(1, 1) process. Since the two models are
to be compared head-to-head, they need to be estimated over the same sample
period. The estimation for the ARMA(1,1) is constrained to begin on 1961:1
(the first usable observation for the AR model with three lags).

Regression and ARIMA Models 32

boxjenk(constant,ar=1,ma=1) dly 1961:1 *
com aic = -2.0*%logl + %nreg*2
com sbc = -2.0*%logl + %nreg*log(%nobs)
display "aic = " aic "bic = " sbc

Variable Coeff Std Error T-Stat Signif
**
1. CONSTANT 0.008516961 0.002099853 4.05598 0.00007093
2. AR{1} 0.810358229 0.066987586 12.09714 0.00000000
3. MA{1} -0.393822229 0.105012809 -3.75023 0.00022985

aic = -1346.07120 bic = -1336.05858

The AR(1,3) is the clear favorite of the information criteria7

In addition, the residual correlations for the ARMA model are unsatisfactory:

corr(number=8,qstats,span=4,dfc=%narma,picture=".#.###") %resids

Correlations of Series %RESIDS
Quarterly Data From 1961:01 To 2012:04

Autocorrelations
1 2 3 4 5 6 7 8

0.045 -0.140 0.092 -0.105 0.040 0.176 -0.040 -0.070

Ljung-Box Q-Statistics
Lags Statistic Signif Lvl

4 8.751 0.012583
8 17.174 0.008665

Note that you can also use @REGCORRS to do the analysis of the correlations,
displaying the autocorrelations (Figure 2.4), the Q and the AIC and SBC:8

@regcorrs(number=8,qstats,dfc=%narma,footer="ARMA(1,1) Model")

Exercise 2.1 Experiment with the following:

1. @bjident(report,qstats,number=8) resids
2. box(ar=5,constant) dly / resids

versus
box(ar=||1,3||,constant) dly / resids

3. box(ar=2,ma=1,constant) dly / resids
dis \%converged

7Since the number of estimated parameters in the two models is the same, the two criteria
must agree on the ordering.

8The AIC and SBC on the output from @REGCORRS have been divided by the number of
observations which doesn’t change the ordering, and makes them easier to display.

Regression and ARIMA Models 33

ARMA(1,1) Model
1 2 3 4 5 6 7 8

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Q= 16.65 P-value 0.01066
AIC= -6.471 SBC= -6.423

Figure 2.4: Residual analysis for ARMA(1,1)

2.8 Automating the Process

The Box-Jenkins methodology provides a useful framework to arrive at a care-
fully constructed model that can be used for forecasting. However, to some, the
method is not scientific in that two equally skilled researchers might come up
with slightly different models. Moreover, it may not be practical to carefully
examine each series if there are many series to process. An alternative is to
use a completely data-driven way to select p and q. The method is to estimate
every possible ARMA(p, q) model and to select the one provides the best fit.
Although it might seem time-intensive to estimate a model for every possible
p and q, RATS can do it almost instantly. This is done in Example 2.4, file
RPM2 4.RPF.

The procedure @BJAUTOFIT allows you to specify the maximum values for p
and q and estimates all of the varied ARMA models.9 You can select whether to
use the AIC or the SBC to use as the criterion for model selection.

@BJAUTOFIT(options) series start end

The important options are

PMAX=maximum value of p
QMAX=maximum value of q
CRIT=[AIC]/SBC
DIFFS=number of regular differencings [0]
SDIFFS=number of regular differencings [0]

9It does not allow for “zeroing out” intermediate lags. An AR(3) is considered but not an
AR({1,3}). There are simply too many possibilities if lags are allowed to be skipped.

Regression and ARIMA Models 34

CONSTANT/[NOCONSTANT]

It is instructive to understand the programming methods used within the pro-
cedure.

2.8.1 Introduction to DO Loops

The DO loop is the simplest and most heavily used of the programming features
of RATS (and any other statistical programming language). It’s a very simple
way to automate many of your repetitive programming tasks. The usual struc-
ture of a DO loop is:

do index=n1,n2,increment
program statements

end do index

where N1, N2 and INCREMENT are integer number or variables. If INCREMENT
is omitted, the default value of 1 is used. The “index” is a name that you assign
to be the counter through the loop. Typically, this is a (very) short name, with I,
J and K being the most common ones. I and J are, in fact, defined variables in
RATS precisely because they are such common loop indexes (which is why you
can’t use the I name for an “investment” series). There is, of course, nothing
preventing you for using something more descriptive like LAG or DRAW.

The DO loop is really a counter. The first time that the DO instruction is ex-
ecuted, the index variable takes on the value N1 and the block of program
statements is executed. On reaching the end of the loop, the index is increased
by INCREMENT (that is, index is now N1+INCREMENT). If the index is less than
or equal to N2, the block of program statements is executed again. On reaching
the end of the loop, the value of the index is again increased by INCREMENT
and again compared to N2. This process is repeated until the value of the index
exceeds N2. At that point, RATS exits the loop and subsequent instructions can
be performed.

There are two differences among DO loop implementations in different lan-
guages that you need to keep in mind:

1. In RATS, if N1>N2, the loop is not executed at all (that is, the test is at the
top of the loop). In a few languages, the loop is always executed once (the
test is at the bottom).

2. In RATS, the loop index has the value from the last executed pass through
the statements, not the value that would force the termination of the loop.
This can be quite different from language to language (in some, it’s not
even necessarily defined outside the loop).

Regression and ARIMA Models 35

DO loops are particularly useful because they can be nested. Consider the fol-
lowing section of code:

do q=0,3
do p=0,3

boxjenk(constant,ar=p,ma=q) y
end do p

end do q

The key point to note is that the AR and MA options of the BOXJENK instruction
do not need to be set equal to specific numbers. Instead, they are set equal to
the counters P and Q. The first time through the two loops, P and Q are both
zero, so the BOXJENK estimates an ARMA(0,0) model (that is, just the mean).
Since the P loop is the inner loop, the value of P is incremented by 1 but Q
remains at 0. Hence, RATS next estimates an AR(1) model. Once the AR(3)
model is estimated, control falls out of the DO P loop, and Q is incremented.
The DO P loop is started again with P=0, but now with Q=1. In the end, all
16 combinations of ARMA(p,q) models with 0 ≤ p ≤ 3 and 0 ≤ q ≤ 3 will be
estimated.

The output produced by this small set of instructions can be overwhelming. In
practice, it is desirable to suppress most of the output except for the essential
details. A simple way to do this is to use the NOPRINT option of BOXJENK.
The following estimates the 16 models over a common period (1961:1 is the
earliest that can handle 3 lags on the difference), displays the AIC, SBC, and
also shows the value of %CONVERGED. The results from an estimation that has
not converged are clearly garbage, though it’s very rare that a model where the
estimation would fail to converge would be selected anyway, since, for an ARMA
model, a failure to converge is usually due to “overparameterization”, which is
precisely what the AIC and SBC are trying to penalize.

do q=0,3
do p=0,3

boxjenk(noprint,constant,ar=p,ma=q) dly 1961:1 *
com aic=-2*%logl+%nreg*2
com sbc=-2*%logl+%nreg*log(%nobs)
disp "Order("+p+","+q+")" "AIC=" aic "SBC=" sbc "OK" %converged

end do p
end do q

Regression and ARIMA Models 36

Order(0,0) AIC= -1265.14664 SBC= -1261.80910 OK 1
Order(1,0) AIC= -1342.37368 SBC= -1335.69861 OK 1
Order(2,0) AIC= -1342.78978 SBC= -1332.77717 OK 1
Order(3,0) AIC= -1351.87333 SBC= -1338.52317 OK 1
Order(0,1) AIC= -1326.95443 SBC= -1320.27935 OK 1
Order(1,1) AIC= -1346.07120 SBC= -1336.05858 OK 1
Order(2,1) AIC= -1346.06399 SBC= -1332.71383 OK 1
Order(3,1) AIC= -1352.68025 SBC= -1335.99256 OK 1
Order(0,2) AIC= -1327.74892 SBC= -1317.73630 OK 1
Order(1,2) AIC= -1349.46788 SBC= -1336.11773 OK 1
Order(2,2) AIC= -1353.41486 SBC= -1336.72717 OK 1
Order(3,2) AIC= -1351.42556 SBC= -1331.40034 OK 1
Order(0,3) AIC= -1345.26392 SBC= -1331.91377 OK 1
Order(1,3) AIC= -1350.81865 SBC= -1334.13096 OK 1
Order(2,3) AIC= -1351.41686 SBC= -1331.39164 OK 1
Order(3,3) AIC= -1353.87773 SBC= -1330.51496 OK 1

The minimum AIC is (3,3) (just barely better than the (2,2)), while SBC shows a
clear choice at (3,0). If we want to use AIC as the criterion, we should probably
try a higher limit since as it is, it’s being minimized at the upper bound in both
parameters.

A similar analysis can be done with the @BJAUTOFIT:

@bjautofit(constant,pmax=3,qmax=3,crit=aic) dly

AIC analysis of models for series DLY
MA

AR 0 1 2 3
0 -1287.8512 -1349.7689 -1350.5439 -1368.6927
1 -1365.5246 -1369.9612 -1373.2313 -1374.6395
2 -1365.9782 -1371.0569 -1377.5783* -1375.7936
3 -1375.0658 -1375.5717 -1375.7714 -1377.5110

You’ll note that the values (and the decision) are somewhat different. That’s
because @BJAUTOFIT uses maximum likelihood (rather than conditional least
squares), and, because it uses the (more complicated) maximum likelihood es-
timator, it can use the full data range for DLY from 1960:2 on. You’ll also note
that it’s presented in a more convenient table rather than a line at a time list-
ing that we got using DISPLAY. @BJAUTOFIT (and most other standard RATS
procedures) uses the REPORT instructions to format their output. We’ll learn
more about that later in the book.

Exercise 2.2 You can see how well the method works using the following code:

set eps = %ran(1)
set(first=%ran(1)) y1 = 0.5*y1{1} + eps
@bjautofit(pmax=3,qmax=3,constant) y1

Repeat using

Regression and ARIMA Models 37

set y2 = 0.
set y2 3 * = 0.5*y2{1} + 0.25*y2{2} + eps }
@bjautofit(pmax=3,qmax=3,constant) y2}
set y3 = 0.5*eps{1} + eps }
@bjautofit(pmax=3,qmax=3,constant) y3}
set(first=%ran(1)) y4 = 0.5*y4{1} + eps + 0.5*eps{1}
@bjautofit(pmax=3,qmax=3,constant) y4

Be aware that the model with the best in-sample fit may not be the one that
provides the best forecasts. It is always necessary to perform the appropriate
diagnostic checks on the selected model. Autofitting techniques are designed
to be a tool to help you select the most appropriate model.

2.9 An Example with Seasonality

Many series have a distinct seasonal pattern such that their magnitudes are
predictably higher during some parts of the year than in others. In order to
properly model such series, it is necessary to capture both the seasonal and
nonseasonal dependence. Since the Federal Reserve injects currency into the
financial system during the winter quarter, we would expect the stock of cur-
rency in the current winter quarter to aid in predicting the stock for the next
winter. Fortunately, the autocorrelations and partial autocorrelations often re-
flect pattern of the seasonality. In Example 2.5 (file RPM2 5.RPF), we again
pull in the data set QUARTERLY(2102).XLS:

cal(q) 1960:1
all 2012:4
open data quarterly(2012).xls
data(org=obs,format=xls)

We then compute the log difference and log combined regular and seasonal
differences of currency with:

set ly = log(curr)
dif ly / dly
dif(sdiffs=1,dif=1) ly / m

In terms of lag operators, m = (1 − L4)(1 − L)ly. The following graphs (Figure
2.5) the ACF and PACF of the two types of differenced data:

spgraph(footer="ACF and PACF of dly and m",hfields=2,vfields=1)
@bjident dly
@bjident m

spgraph(done)

The ACF and PACF of the dly series (shown in the left-hand side panel) indicate
that the ρ1 is significant at the 5% level. However, the pronounced features of

Regression and ARIMA Models 38

0 Differences of DLY

0 5 10 15 20 25
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

CORRS
PARTIALS

0 Differences of M

0 5 10 15 20 25
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

CORRS
PARTIALS

Figure 2.5: ACF/PACF of Differences of Log Currency

the figure are the spikes at lags in the autocorrelations at lags 4, 8, 12, 16, 20
and 24. Obviously, these correlations correspond to the seasonal frequency of
the data. If we focus only on the autocorrelations at the seasonal frequency, it
should be clear that there is little tendency for these autocorrelations to decay.
In such circumstances, it is likely that the data contains a seasonal unit-root.
Hence, we can transform the data by forming the seasonal difference of dlyt as:
mt = dlyt − dlyt−4.

If you are unsure as to the number of differences to use, the procedure @BJDIFF
can be helpful. The following reports the Schwartz criteria allowing for a max-
imum of one regular difference and one seasonal difference with and without a
constant:
BJDiff Table, Series CURR
Reg Diff Seas Diff Intercept Crit

0 0 No -0.104162
0 0 Yes -2.558801
0 1 No -8.222783
0 1 Yes -8.994149
1 0 No -8.524110
1 0 Yes -9.098987
1 1 No -9.477942*
1 1 Yes -9.453089

As indicated by the asterisk (*), the log transformation using one seasonal dif-
ference, one regular difference, and no intercept seems to be the most appro-
priate.10

Because there are now four choices that need to be made (regular AR and MA,
seasonal AR and MA) rather than just two, selecting a model for a seasonal

10You can formally test for a unit root and a seasonal unit root using the Hylleberg, Engle,
Granger, and Yoo (1990) test. The procedure @HEGY will perform the test using quarterly data.

Regression and ARIMA Models 39

ARMA can be quite tricky. In general, it’s a good idea to start with simple
models, estimate and see if there’s residual autocorrelation remaining. Here,
we’ll start with four: (1, 1, 0) × (0, 1, 1), (0, 1, 1) × (0, 1, 1) (sometimes known as
the “airline model”), (1, 1, 0)× (1, 1, 0) and (0, 1, 1)× (1, 1, 0). This covers all four
cases with exactly one parameter in the regular polynomial (either one AR or
one MA) and one in the seasonal (one SAR or one SMA). We’ll use @REGCORRS to
compute the Q, and the information criteria for each. For comparison purposes,
we need to estimate the models over the same sample period. Note that the
model with one AR term and one seasonal AR term can begin no earlier than
1962:3, with losses due to both the differencing and the lags for the AR and
SAR parameters. We’ll use NOPRINT while we’re just doing a crude check of
various models.

boxjenk(noprint,constant,ar=1,sma=1) m 1962:3 *
@regcorrs(title="(1,1,0)x(0,1,1)",dfc=%narma)
display "aic = " %aic "bic = " %sbc "Q(signif)" *.### %qsignif

*
boxjenk(noprint,constant,ma=1,sma=1) m 1962:3 *
@regcorrs(title="(0,1,1)x(0,1,1)",dfc=%narma)
display "aic = " %aic "bic = " %sbc "Q(signif)" *.### %qsignif

*
boxjenk(noprint,constant,ar=1,sar=1) m 1962:3 *
@regcorrs(title="(1,1,0)x(1,1,0)",dfc=%narma)
display "aic = " %aic "bic = " %sbc "Q(signif)" *.### %qsignif

*
boxjenk(noprint,constant,ma=1,sar=1) m 1962:3 *
@regcorrs(title="(0,1,1)x(1,1,0)",dfc=%narma)
display "aic = " %aic "bic = " %sbc "Q(signif)" *.### %qsignif

aic = -7.11001 bic = -7.06088 Q(signif) 0.566
aic = -7.10238 bic = -7.05325 Q(signif) 0.442
aic = -6.93147 bic = -6.88234 Q(signif) 0.002
aic = -6.92417 bic = -6.87504 Q(signif) 0.001

The first of the four models seems to be slightly preferred over the second, with
the other two being inadequate. We can now take the NO off the NOPRINT to
look at it more carefully:

boxjenk(print,constant,ar=1,sma=1) m 1962:3 *
@regcorrs(title="(1,1,0)x(0,1,1)",dfc=%narma)
display "aic = " %aic "bic = " %sbc "Q(signif)" *.### %qsignif

Regression and ARIMA Models 40

Box-Jenkins - Estimation by LS Gauss-Newton
Convergence in 10 Iterations. Final criterion was 0.0000032 <= 0.0000100
Dependent Variable M
Quarterly Data From 1962:03 To 2012:04
Usable Observations 202
Degrees of Freedom 199
Centered Rˆ2 0.5102749
R-Barˆ2 0.5053530
Uncentered Rˆ2 0.5105079
Mean of Dependent Variable 0.0002124435
Std Error of Dependent Variable 0.0097610085
Standard Error of Estimate 0.0068650289
Sum of Squared Residuals 0.0093785957
Log Likelihood 721.1113
Durbin-Watson Statistic 1.9192
Q(36-2) 38.9946
Significance Level of Q 0.2551573

Variable Coeff Std Error T-Stat Signif
**
1. CONSTANT 0.000071690 0.000209506 0.34219 0.73257113
2. AR{1} 0.432725378 0.063065071 6.86157 0.00000000
3. SMA{4} -0.767040488 0.047004350 -16.31850 0.00000000

The Q statistic is fine11 and there are no obvious signs of problems in the in-
dividual autocorrelations on the graph (not shown). The only change to the
model that seems likely to make a difference would be to take the constant out.
@BJDIFF chose a model with no constant, and this would confirm that that
seemed to be the correct recommendation.12

The procedure for automating selection of a seasonal ARMA model (given the
choice of differencing) is @GMAUTOFIT. This puts an upper bound, but not lower
bound, on the number of parameters in each polynomial, so it includes models
with no parameters. Even with a limit of 1 on each, there are quite a few
candidate models. And, fortunately, it agrees with our choice:

@gmautofit(regular=1,seasonal=1,noconst,full,report) m

AR MA AR(s) MA(s) LogL BIC
0 0 0 0 666.1212169 -1332.24243
0 0 0 1 713.3733549 -1421.41399
0 0 1 0 700.2558277 -1395.17894
0 0 1 1 714.0155643 -1417.36569
0 1 0 0 689.8974268 -1374.46213
0 1 0 1 736.2116913 -1461.75795
0 1 1 0 720.3065378 -1429.94764
0 1 1 1 736.3675337 -1456.73691
1 0 0 0 689.7674212 -1374.20212
1 0 0 1 737.3251643 -1463.98489*
1 0 1 0 721.2150088 -1431.76458
1 0 1 1 737.4792222 -1458.96029
1 1 0 0 690.6894892 -1370.71354
1 1 0 1 737.9898838 -1459.98161
1 1 1 0 721.7517229 -1427.50529
1 1 1 1 738.1317848 -1454.93269

11The Q in the output above and the Q in the @REGCORRS output use different numbers of
autocorrelations, but they lead to the same conclusion.

12A model with two differences (in any combination) plus a constant would have a quadratic
drift, which isn’t likely.

Regression and ARIMA Models 41

2.10 Forecasts and Diagnostic Checks

Perhaps the primary use of the Box-Jenkins methodology is to develop a fore-
casting model. The selection of the proper AR and MA coefficients is important
because any model specification errors will be projected into the future. If your
model is too small, it will not capture all of the dynamics present in the series.
As such, you want to forecast with a model that does not contain any remain-
ing correlation in the residuals. Clearly, one way to eliminate serial correlation
in the residuals is to add one or more AR or MA coefficients. However, you
need to be cautious about simply increasing the number of estimated param-
eters. All parameters estimated are subject to sampling error. If your model
includes a parameter with a large standard error, this estimation error will be
projected into the future. To take a specific example, suppose that yt is prop-
erly estimated as an AR(1) process. However, suppose that someone estimates
the series as yt = a0 + a1yt−1 + a2yt−2 + εt. Now, if a2 turned out to be exactly
zero, there would not be a problem forecasting with this model. In point of
fact, the probability that the estimated value of a2 takes on the value zero is
almost surely equal to zero. On average, forecasts from the model will contain
the error a2yt−2.

Most diagnostic checks begin with a careful examination of the residuals. Plot
the residuals and their ACF to ensure that they behave as white-noise. This is
most easily done using the REGCORRS procedure discussed earlier. For now, we
consider the issue of how to use a properly estimated ARIMA model to forecast.

Out of Sample Forecasts
Probably the most important use of time-series models is to provide reliable
forecasts of the series of interest. After all, once the essential properties of
the dynamic process governing the evolution of yt have been estimated, it is
possible to project these properties into the future to obtain forecasts. To take
a simple example, suppose that the evolution of yt has been estimated to be the
ARMA(1,1) process:

yt = a0 + a1yt−1 + β1εt−1 + εt

so that
yt+1 = a0 + a1yt + β1εt + εt+1

Given the estimates of a0, a1, and β1 along with the estimated residual series,
the conditional expectation of yt+1 is

Etyt+1 = Et[a0 + a1yt + β1εt + εt+1]

= a0 + a1yt + β1εt

and the conditional expectation of yt+2 is

Etyt+2 = a0 + a0a1 + a1β1εt + a21yt

Regression and ARIMA Models 42

The arithmetic gets quite messy with larger models and for larger forecasting
horizons. However, the important point is that RATS can readily perform all
of the required calculations using the UFORECAST and FORECAST instructions.
Although the FORECAST instruction is the more flexible of the two, UFORECAST
is very easy to use for single-equation models. The syntax of UFORECAST is:

UFORECAST(options) series start end

series This is where the forecasts will be saved.

start end The range to forecast. You can use this, or the FROM, TO and
STEPS options to set this—choose whichever is simplest in a
given situation.

The most important options are

EQUATION=name of the equation to use for forecasting
FROM=starting period of the forecasts
TO=ending period of the forecasts
STEPS=number of forecast steps to compute
ERRORS=series containing the forecast errors
STDERRS=series of standard errors of the forecasts
PRINT/[NOPRINT]

Note that the default is to not print the forecasts.

Notice that UFORECAST requires the name of a previously estimated equa-
tion to use for forecasting. Whenever you estimate a linear regression using
LINREG or an equation using BOXJENK, use the option to DEFINE the model.
UFORECAST uses this previously defined model for forecasting purposes. If you
omit the EQUATION= option, UFORECAST will use the most recently estimated
equation. In Example 2.6 (file RPM2 6.RPF), we’ll take the model chosen in
Section 2.7 and use it to forecast the logarithmic change of the PPI two years
beyond the end of the sample (2012:4).

We need to define an EQUATION usable for forecasting when we estimate the
model, so we add the DEFINE option to the BOXJENK.

boxjenk(constant,ar=||1,3||,define=ar1_3) dly

In order to forecast, the equation is defined as AR1 3. Now UFORECAST can be
used to instruct RATS to produce the 1- through 8-step ahead forecasts using

uforecast(equation=ar1_3,print) forecasts 2013:1 2014:4

Regression and ARIMA Models 43

Entry DLY
2013:01 0.003903092
2013:02 0.007167626
2013:03 0.007082460
2013:04 0.006769988
2014:01 0.007357279
2014:02 0.007617198
2014:03 0.007670298
2014:04 0.007827904

You can get the same results with

ufore(equation=ar1_3,print,steps=8) forecasts

as UFORECAST by default starts the forecasts one period beyond the (most re-
cent) estimation range, so this requests 8 forecast steps. You pick the combi-
nation of STEPS, FROM and TO options, or the start and end parameters that
you find most convenient.

Although the FORECAST instruction is typically used for multiequation fore-
casts, it can also forecast using a single equation. Subsequent chapters will
consider FORECAST in more detail. For now, it suffices to indicate that the
identical output can be obtained using

forecast(print,steps=8,from=2013:1) 1
ar1_3 forecasts

If you are going to forecast, there is an important difference between the fol-
lowing two instructions:

boxjenk(constant,ar=||1,3||,define=ar1_3) dly

and

boxjenk(define=ar_alt,constant,ar=||1,3||,dif=1) ly

The coefficients are identical, the fits are identical, but in the second case, the
original dependent variable is LY, not its difference DLY, and the equation it
produces is one that has LY as the dependent variable, so the forecasts are of
LY, not of DLY. You can use DISPLAY to look at the two equations:

disp ar1_3 ar_alt

Regression and ARIMA Models 44

2009 2010 2011 2012 2013 2014
5.125

5.150

5.175

5.200

5.225

5.250

5.275

5.300

5.325

5.350

Figure 2.6: Actual and Forecasted Values of log PPI

Dependent Variable DLY
Variable Coeff

1. Constant 0.0025242767
2. DLY{1} 0.4752570939
3. DLY{3} 0.2253908909

Dependent Variable LY
Variable Coeff

1. Constant 0.002524277
2. LY{1} 1.475257094
3. LY{2} -0.475257094
4. LY{3} 0.225390891
5. LY{4} -0.225390891

You can verify that these are identical if you substitute out DLY=LY-LY1. We
can forecast LY itself and graph the forecasts (with the final four years of actual
data, Figure 2.6) using:

ufore(equation=ar_alt,print) forecasts 2013:1 2014:4
graph(footer="Actual and Forecasted Values of the log PPI") 2
ly 2009:1 *
forecasts

2.11 Examining the Forecast Errors

Given that the forecasts will contain some error, it would be desirable to have a
model that produces unbiased forecasts with the smallest possible mean square
error. Although it is not really possible to know the forecast errors, it is possible
to put alternative models to a head-to-head test. With the PPI series, for exam-
ple, you could compare the AR({1,3}) and ARMA(1,1) specifications by holding

Regression and ARIMA Models 45

back 50 observations (about 1/4 of the data set) and performing the following
steps:

1. Construct two series to contain the forecast errors. For simplicity, we will
let error1 contain the forecast errors from the AR({1,3}) and error2
contain the forecast errors from the ARMA(1,1).

2. For each time period between 2000:2 and 2012:3, estimate the two mod-
els from the start of the data set through that time. Construct one-step
forecasts and save the errors.

Analyzing these two series can give you insight into which of the two models
generates forecast errors with the most desirable properties. For example, if
the mean of the forecast errors from the AR({1,3}) model is closer to zero than
those of the ARMA(1,1), you might prefer to use the AR model to forecast be-
yond the actual end of the data set (i.e., 2012:4).
It’s a good idea to avoid using “hard-coded” dates on the individual instructions
if at all possible. If we wrote all this with 2000:2 and 2012:3, for instance, then,
if we (or a referee) decided that we really should start in 1998:2 instead, we
would have to change several lines and hope that we caught all the places that
mattered. So in Example 2.7 (file RPM2 7.RPF), after reading the data and
creating DLY as we’ve done before, we’ll start with:

compute dataend=2012:4
compute baseend=dataend-50

which define DATAEND as the end of the observed data and BASEEND as 50 en-
tries earlier. You can even avoid the hard-coded 2012:4 by using the %ALLOCEND()
function, which gives the entry number of the end of the standard range of the
workspace.
The error series are initialized with

set error1 baseend+1 * = 0.
set error2 baseend+1 * = 0.

This is necessary when you are filling entries of a series one-at-a-time using
COMPUTE instructions, which is what we will be doing here with the forecast
errors—RATS needs to set aside space for the information.
The working instructions are:

do end=baseend,dataend-1
boxjenk(constant,ar=||1,3||,define=ar1_3) dly * end
boxjenk(constant,ar=1,ma=1,define=arma) dly * end
ufore(equation=ar1_3,steps=1) f1
ufore(equation=arma,steps=1) f2
compute error1(end+1)=dly(end+1)-f1(end+1)
compute error2(end+1)=dly(end+1)-f2(end+1)

end do t

Regression and ARIMA Models 46

This runs a loop over the end of the estimation sample, with the variable END
used to represent that. Why is it through DATAEND-1 rather than DATAEND?
If we estimate through DATAEND, there is no data to which to compare a one-
step-ahead forecast. There wouldn’t be any real harm in doing it, since the
forecast errors would just be missing values, but it’s better to write the program
describing what you actually need, rather than relying on the RATS missing
value handlers to fix the mistake.

By default, the UFORECAST instructions forecast from one period beyond the
end of the previous regression range, which is what we want, so we only need
to indicate the number of steps. The forecast errors are computed using the
actual data DLY and the forecasts (F1 and F2) for the period END+1.

Exercise 2.3 The loop above could just as easily have been written with the
loop index running over the start of the forecast period rather than the end of
the estimation period. What changes would be necessary to do that?

table / error1 error2

Series Obs Mean Std Error Minimum Maximum
ERROR1 50 -0.0004350166 0.0136450332 -0.0698340471 0.0214472245
ERROR2 50 -0.0004141885 0.0137877256 -0.0709608893 0.0186385371

Notice that the forecast errors from the AR({1,3}) model have a larger mean
(in absolute value) than those of the ARMA(1,1) model but have a smaller stan-
dard error. A simple way to test whether the mean of the forecast errors is
significantly different from zero is to regress the actual values on the predicted
values. Consider:

linreg dly
constant f1
test(title="Test of Unbiasedness of AR(3) forecasts")
1 2
0 1

If the forecasts are unbiased, the intercept should be equal to zero and the
slope coefficient should be equal to unit, which is what the TEST instruction is
doing. The results are:
Test of Unbiasedness of AR(3) forecasts
F(2,48)= 3.32730 with Significance Level 0.04433528

Repeating for the ARMA forecasts:

linreg dly
constant f2
test(title="Test of Unbiasedness of ARMA forecasts")
1 2
0 1

Regression and ARIMA Models 47

gives
Test of Unbiasedness of ARMA forecasts
F(2,48)= 3.55490 with Significance Level 0.03633255

Although both models show some bias, there is a slight preference for the
AR({1,3}).

Mean Square Forecast Errors
Not only are we concerned about the bias of the forecast errors, most researchers
would also want the dispersion of the errors to be as small as possible. Al-
though the standard error of the forecasts from the AR({1,3}) model is smaller
than that from the ARMA(1,1) model, we might want to know if it is possible
to conclude that there is a statistical difference between the two (that is reject
the null hypothesis that the variance of the error1 series is equal to that of
the error2 series).

The Granger-Newbold test (Granger and Newbold (1973)) can be used to test
for a difference between the sums of squared forecast errors:

d = (SSR1 − SSR2)/N

where SSR1 and SSR2 are the sums of squared forecast errors from models 1
and 2, respectively and N is the number of forecast errors. If the two models
forecast equally well, this difference should be zero. Under the assumptions
that

1. the forecast errors have the same means and are normally distributed
and

2. the errors are serially uncorrelated

Granger and Newbold show that the following has a t-distribution with N − 1
degrees of freedom

√
N − 1

r√
1− r2

r is the correlation coefficient between xt and zt defined as xt = e1t+e2t and zt =
e1t − e2t and e1t and e2t are the forecast errors from the alternative models. If
you reject the null hypothesis r = 0, conclude that the model with the smallest
residual sum of squares has the smallest mean square forecast errors. Instead
of programming the test yourself, it is simpler to use the procedure @GNEWBOLD.
In this case, the instruction is

@gnewbold dly f1 f2

giving us

Regression and ARIMA Models 48

Granger-Newbold Forecast Comparison Test
Forecasts of DLY over 2000:03 to 2012:04

Forecast Test Stat P(GN>x)
F1 -0.3295 0.62842
F2 0.3295 0.37158

Hence, we do not reject the null hypothesis that the two mean square fore-
cast errors are equal and conclude that the forecast errors from the AR({1,3})
model has the same dispersion as the ARMA(1,1). The first set (the AR model)
is slightly better since it’s showing the negative test value, but that isn’t sta-
tistically significant.

Diebold and Mariano (1995) have shown how to modify the Granger-Newbold
test for the case in which the forecast errors are serially correlated. Although
one-step-ahead forecasts like these ideally shouldn’t be serially correlated, when
we check them with:

corr(qstats,span=4) error1
corr(qstats,span=4) error2

we find that that doesn’t seem to be the case here (note particularly the 4th
lag):
Correlations of Series ERROR1
Quarterly Data From 2000:03 To 2012:04

Autocorrelations
1 2 3 4 5 6 7 8 9 10

0.0884 -0.1558 -0.2303 -0.3086 0.0422 0.1078 -0.1068 -0.0497 -0.0260 -0.0212
11 12

0.2272 0.0192

Ljung-Box Q-Statistics
Lags Statistic Signif Lvl

4 10.046 0.039667
8 11.678 0.166162
12 15.215 0.229873

The Diebold-Mariano test is done with the @DMARIANO procedure, which has
similar syntax to @GNEWBOLD but requires a LAGS option. The procedure does
a linear regression with a HAC covariance matrix—we recommend that you
also include the option LWINDOW=NEWEY, as the default “truncated” lag window
(which was recommended in the original paper) doesn’t guarantee a positive-
definite covariance matrix estimator.

@dmariano(lags=4,lwindow=newey) dly f1 f2

Diebold-Mariano Forecast Comparison Test
Forecasts of DLY over 2000:03 to 2012:04
Test Statistics Corrected for Serial Correlation of 4 lags
Forecast MSE Test Stat P(DM>x)
F1 0.00018265 -0.5723 0.71645
F2 0.00018647 0.5723 0.28355

Regression and ARIMA Models 49

Again, the mean square forecast errors are so similar that null hypothesis of
no significant difference is not rejected.

Note that the asymptotics of the Diebold-Mariano test break down if the two
models are “nested” (one is a special case of the other). That’s not the case here.
A full AR(3) vs the AR({1,3}) would be a pair of nested models and couldn’t be
compared using a straight Diebold-Mariano test.

2.12 Coefficient Stability

If the model adequately reflects the data generating process, the coefficients
should be stable over time. In other words, the coefficients should not change
dramatically when we estimate the model over different sample periods. A sim-
ple way to check for coefficient stability is to use recursive estimates. That’s
what we’ll do in Example 2.8 (file RPM2 8.RPF). Consider the following seg-
ment of code for the transformed PPI series. We first set up the “target” series:
two for the recursive estimates of the coefficients (INTERCEPT for the constant
term and AR1 for the first autoregressive parameter), and two for their esti-
mated standard errors.

set intercept = 0.
set ar1 = 0.
set sd0 = 0.
set sd1 = 0.

Next, loop over each entry from 1980:1 to 2012:4, estimating the model through
that period and save the four items required. Note again that we add a NOPRINT
option to the BOXJENK so we don’t produce pages of unnecessary output. If,
however, you find that something seems to be wrong, don’t hesitate to re-
activate the PRINT to see what’s happening. Because BOXJENK uses an it-
erative estimation process, this checks whether there is any problem with
convergence—that’s unlikely for such a simple model, but it doesn’t hurt to
be safe.

do end = 1980:1,2012:4
boxjenk(constant,ar=||1,3||,noprint) dly * end
com intercept(end) = %beta(1), ar1(end) = %beta(2)
com sd0(end) = %stderrs(1) , sd1(end) = %stderrs(2)
if %converged<>1

dis "###DID NOT CONVERGE for " %datelabel(end)
end do end

When we run this, we don’t get any messages about non-convergence. We can
construct confidence intervals around the estimated coefficients by adding and
subtracting 1.64 standard deviations13 to the estimated coefficient values. Con-
sider:

13If you want greater accuracy, you can use %INVNORMAL(.95) in place of 1.64.

Regression and ARIMA Models 50

The Estimated Mean

1980 1985 1990 1995 2000 2005 2010
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
The AR(1) Coefficient

1980 1985 1990 1995 2000 2005 2010
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Figure 2.7: Coefficient Estimates with 90% Confidence Intervals

set plus0 = intercept + 1.64*sd0
set minus0 = intercept - 1.64*sd0
set plus1 = ar1 + 1.64*sd1
set minus1 = ar1 - 1.64*sd1

Now, we can graph the coefficients and the confidence intervals using:

spgraph(hfield=2,vfields=1,$
footer="Coefficient Estimates with 90% Confidence Intervals")
graph(header="The Estimated Mean") 3
intercept 1980:1 *
plus0 1980:1 * 2
minus0 1980:1 * 2
graph(header="The AR(1) Coefficient") 3
ar1 1980:1 *
plus1 1980:1 * 2
minus1 1980:1 * 2

spgraph(done)

producing Figure 2.7. The recursive estimates for both coefficients are quite
stable over time. Since the earliest estimates use a small number of observa-
tions, it is not surprising that the confidence intervals are widest for these early
periods. Sometimes it is preferable to estimate recursive regressions using a
rolling window instead of an expanding window. With an expanding window
the number of observations increases as you approach the end of the sample.
With a fixed, or rolling window, you use the same number of observations in
each regression. The way to modify the code to have an expanding window is
to allow the start date to increase by 1 and the end date to increase by 1 every
time through the loop. To modify the code to have a rolling window with—say
75—observations use:

Regression and ARIMA Models 51

compute width=75
do end = 1980:1,2012:4

boxjenk(constant,ar=||1,3||,noprint) dly end-width+1 end
com intercept(end) = %beta(1), ar1(end) = %beta(2)
com sd0(end) = %stderrs(1) , sd1(end) = %stderrs(2)
if %converged<>1

dis "DID NOT CONVERGE for t = " %datelabel(end)
end do end

The first time through the loop, the estimation uses the 75 observations from
1961:3 (74 periods before 1980:1), the second time through observations from
1961:4 to 1980:2, and so on.
For models which are, in fact, linear in the parameters (like this one), another
way to obtain the recursive estimates with an expanding window is to use the
RATS instruction RLS (for Recursive Least Squares). The syntax is:

RLS(options) series start end resids
list of explanatory variables in regression format

The principal options are:
EQUATION=equation to estimate
COHISTORY=VECTOR[SERIES] of coefficient estimates
SEHISTORY=VECTOR[SERIES] of coefficient standard errors

Hence, similar output to that reported above can be obtained using:

rls(cohist=coeffs,sehist=serrs,equation=ar1_3) dly
set plus0 = coeffs(1) + 1.64*serrs(1)
set minus0 = coeffs(1) - 1.64*serrs(1)
set plus1 = coeffs(2) + 1.64*serrs(2)
set minus1 = coeffs(2) - 1.64*serrs(2)

There are several differences between RLS and what you get by the DO loop
method:

1. The residuals in the first method (either %RESIDS or the series saved
by the resids parameter) are recomputed for the full sample each time
through. RLS produces recursive residuals where the time t residual is the
(standardized) predictive error for period t given the previous estimates,
and t − 1 and earlier are left alone at time t. Recursive residuals have
many nice properties for analyzing model stability.

2. Because BOXJENK uses a different parameterization for the intercept/mean
that a linear regression, those won’t be directly comparable. The autore-
gressive coefficients will be the same however.

3. RLS cannot be used with MA terms, so we cannot estimate the ARMA(1,1)
model using RLS.

Regression and ARIMA Models 52

2.13 Tips and Tricks

2.13.1 Preparing a graph for publication

You may have noticed that all of our graphs used a FOOTER option on the GRAPH
(if it was stand-alone) or on the outer SPGRAPH. This is used in preference to
a HEADER, which is generally only used in inner graphs for SPGRAPH setups.
You may also have noticed that in almost all cases, that footer was gone in
the version that we included in the book. Most publications will put their own
caption on a graphic, so you probably don’t want something similar to show
up in the graph itself. Since the graphic labeling is usually below, the footer,
rather than header, comes closest to the final appearance. The footer also uses
a smaller font, more similar to what will be used.

It wouldn’t be a good idea to strip the footer (or header) out of the graph while
you’re still doing the empirical work. The footer/header is used in the title bar
of the graph window, and in the Window menu to identify graphs for a closer
look. What we do is to use the GSAVE(NOFOOTER) instruction which was added
with RATS 8.2. This strips the outer footer out of a graph, but only when it is
exported in some way (either by being exported to a file or to the clipboard with
by Edit-Copy).

2.13.2 Preparing a table for publication

If you check the Window-Report Windows menu after running one of the exam-
ple programs, you’ll see anywhere from 1 to 20 reports queued up. These are
generated by instructions like LINREG, BOXJENK or FORECAST or procedures
like @BJDIFF or @REGCRITS. The ones at the top of the list will be the last
ones created. Note that these are only created if you PRINT the output; if you
do NOPRINT, RATS saves time by not formatting up the reports. If you select
one of the reports, it will load it into a window. However, unlike the standard
output that goes into the text-based output window, this is organized into a
spreadsheet-like table of rows and columns. And, even though you can’t see it,
this has the full precision at which the calculations were done.

We will show later in the course how to use the RATS REPORT instruction to
generate a table with the specific information that you want, but in many
cases, you may be able to get by using just the re-loaded standard format-
ted report. Any “text-based” copy and paste operation (to TeX or format like
comma-delimited) will copy the numbers with the rounding shown in the win-
dow. (Excel and similar formats will get full-precision). You can reformat any
contiguous block of cells to show whatever numerical format you want. Select
the cells you want to reformat, and choose Edit-Change Layout, or Reformat
on the right-click menu. Then select the cells you want to export and copy-
and-paste or export to a file. Note that Copy-¿TeX copies a TeX table into the
clipboard, so you can paste into a TeX document.

Regression and ARIMA Models 53

Example 2.1 Introduction to basic instructions

cal(q) 1960:1
all 2012:4
*
open data quarterly(2012).xls
data(org=obs,format=xls)
table(picture="*.##")

set dlrgdp = log(rgdp) - log(rgdp{1})
set dlm2 = log(m2) - log(m2{1})
set drs = tb3mo - tb3mo{1}
set dr1 = tb1yr - tb1yr{1}
set dlp = log(deflator) - log(deflator{1})
set dlppi = log(ppi) - log(ppi{1})

spgraph(footer="Graphs of the Series",hfields=2,vfields=2)
graph(header="Panel 1: The Interest Rates",key=below,nokbox) 2
tb3mo
tb1yr
graph(header="Panel 2: Real and Potential GDP",key=upleft) 2
rgdp
potent
graph(header="Panel 3: Time path of money growth",noaxis) 1
dlm2
graph(header="Panel 4: Time path of Inflation",noaxis) 1
dlp

spgraph(done)
*
linreg drs / resids
constant drs{1 to 7}
*
corr(number=24,partial=partial,qstats,span=4,pic="##.###") resids
graph 1
resids

exclude
drs{5 to 7}

summarize
drs{5 to 7}

test
6 7 8
0.1 0.1 0.1

test
1 2 3 4
0. 0.4 -0.1 0.4

restrict(create) 3 resids
2 3
1. 1. 0.
4 5

Regression and ARIMA Models 54

1. 1. 0.
5 6
1. 1. 0.

Regression and ARIMA Models 55

Example 2.2 Engle-Granger test with lag length selection

cal(q) 1960:1
all 2012:4
*
open data quarterly(2012).xls
data(org=obs,format=xls)
*
set dlrgdp = log(rgdp) - log(rgdp{1})
set dlm2 = log(m2) - log(m2{1})
set drs = tb3mo - tb3mo{1}
set dr1 = tb1yr - tb1yr{1}
set dlp = log(deflator) - log(deflator{1})
set dlppi = log(ppi) - log(ppi{1})
*
* Estimate "spurious regression"
*
linreg tb1yr / resids
constant tb3mo

corr(num=8,results=cors,partial=partial,picture="##.###",qstats) resids

graph(nodates,number=0,style=bar,key=below,footer="ACF and PACF") 2
cors
partial
*
* Do E-G test with fixed lags
*
diff resids / dresids
linreg dresids
resids{1} dresids{1 to 8}
*
* Do E-G test with different lag lengths
*
compute egstart=%regstart()
do i = 0,8

linreg(noprint) dresids egstart *
resids{1} dresids{1 to i}
com aic = -2.0*%logl + %nreg*2
com sbc = -2.0*%logl + %nreg*log(%nobs)
dis "Lags: " i "T-stat" %tstats(1) "The aic = " aic " and sbc = " sbc

end do i

linreg dresids
resids{1} dresids{1 to 6}
@regcrits
@regcorrs(number=24,qstats,report)
*
@egtest(lags=8,method=aic)
tb1yr tb3mo

Regression and ARIMA Models 56

Example 2.3 Estimation and diagnostics on ARMA models

cal(q) 1960:1
all 2012:4
*
open data quarterly(2012).xls
data(org=obs,format=xls)
*
log ppi / ly
dif ly / dly
*
spgraph(footer="Price of Finished Goods",hfield=2,vfield=1)

graph(header="Panel a: Quarterly Growth Rate") 1
dly
@bjident(separate,number=12) dly

spgraph(done)
*
boxjenk(constant,ar=3) dly
boxjenk(constant,ar=||1,3||) dly
corr(number=8,qstats,span=4,dfc=%narma,picture=".#.###") %resids
@regcorrs
com aic = -2.0*%logl + %nreg*2
com sbc = -2.0*%logl + %nreg*log(%nobs)
display "aic = " aic "bic = " sbc

boxjenk(constant,ar=1,ma=1) dly 1961:1 *
com aic = -2.0*%logl + %nreg*2
com sbc = -2.0*%logl + %nreg*log(%nobs)
display "aic = " aic "bic = " sbc

corr(number=8,qstats,span=4,dfc=%narma,picture=".#.###") %resids
@regcorrs(number=8,qstats,dfc=%narma,footer="ARMA(1,1) Model")

Regression and ARIMA Models 57

Example 2.4 Automated Box-Jenkins model selection

cal(q) 1960:1
all 2012:4
*
open data quarterly(2012).xls
data(org=obs,format=xls)

log ppi / ly
dif ly / dly

do q=0,3
do p=0,3

boxjenk(noprint,constant,ar=p,ma=q) dly 1961:1 *
com aic=-2*%logl+%nreg*2
com sbc=-2*%logl+%nreg*log(%nobs)
disp "Order("+p+","+q+")" "AIC=" aic "SBC=" sbc "OK" %converged

end do p
end do q
*
@bjautofit(constant,pmax=3,qmax=3,crit=aic) dly

Regression and ARIMA Models 58

Example 2.5 Seasonal Box-Jenkins Model

cal(q) 1960:1
all 2012:4
open data quarterly(2012).xls
data(org=obs,format=xls)

set ly = log(curr)
dif ly / dly
dif(sdiffs=1,dif=1) ly / m

spgraph(footer="ACF and PACF of dly and m",hfields=2,vfields=1)
@bjident dly
@bjident m

spgraph(done)

@bjdiff(diff=1,sdiffs=1,trans=log) curr

boxjenk(noprint,constant,ar=1,sma=1) m 1962:3 *
@regcorrs(title="(1,1,0)x(0,1,1)",dfc=%narma)
display "aic = " %aic "bic = " %sbc "Q(signif)" *.### %qsignif
*
boxjenk(noprint,constant,ma=1,sma=1) m 1962:3 *
@regcorrs(title="(0,1,1)x(0,1,1)",dfc=%narma)
display "aic = " %aic "bic = " %sbc "Q(signif)" *.### %qsignif
*
boxjenk(noprint,constant,ar=1,sar=1) m 1962:3 *
@regcorrs(title="(1,1,0)x(1,1,0)",dfc=%narma)
display "aic = " %aic "bic = " %sbc "Q(signif)" *.### %qsignif
*
boxjenk(noprint,constant,ma=1,sar=1) m 1962:3 *
@regcorrs(title="(0,1,1)x(1,1,0)",dfc=%narma)
display "aic = " %aic "bic = " %sbc "Q(signif)" *.### %qsignif
*
* Do estimation with output for the preferred model
*
boxjenk(print,constant,ar=1,sma=1) m 1962:3 *
@regcorrs(title="(1,1,0)x(0,1,1)",dfc=%narma)
display "aic = " %aic "bic = " %sbc "Q(signif)" *.### %qsignif
*
@gmautofit(regular=1,seasonal=1,noconst,full,report) m

Regression and ARIMA Models 59

Example 2.6 Out-of-sample forecasts with ARIMA model

cal(q) 1960:1
all 2012:4
*
open data quarterly(2012).xls
data(org=obs,format=xls)

log ppi / ly
dif ly / dly

boxjenk(constant,ar=||1,3||,define=ar1_3) dly
ufore(equation=ar1_3,print) forecasts 2013:1 2014:4
ufore(equation=ar1_3,print,steps=8) forecasts
*
forecast(print,steps=8,from=2013:1) 1
ar1_3 forecasts
*
* Forecasts of log PPI (not differences)
*
boxjenk(define=ar_alt,constant,ar=||1,3||,dif=1) ly
*
disp ar1_3 ar_alt
*
ufore(equation=ar_alt,print) forecasts 2013:1 2014:4
graph(footer="Actual and Forecasted Values of the log PPI") 2
ly 2009:1 *
forecasts

Regression and ARIMA Models 60

Example 2.7 Comparison of Forecasts

cal(q) 1960:1
all 2012:4
*
open data quarterly(2012).xls
data(org=obs,format=xls)
*
set ly = log(ppi)
set dly = ly-ly{1}
*
compute dataend=2012:4
compute baseend=dataend-50
*
set error1 baseend+1 * = 0.
set error2 baseend+1 * = 0.
do end=baseend,dataend-1

boxjenk(constant,ar=||1,3||,define=ar1_3) dly * end
boxjenk(constant,ar=1,ma=1,define=arma) dly * end
ufore(equation=ar1_3,steps=1) f1
ufore(equation=arma,steps=1) f2
compute error1(end+1)=dly(end+1)-f1(end+1)
compute error2(end+1)=dly(end+1)-f2(end+1)

end do t
table / error1 error2
*
linreg dly
constant f1
test(title="Test of Unbiasedness of AR(3) forecasts")
1 2
0 1
*
linreg dly
constant f2
test(title="Test of Unbiasedness of ARMA forecasts")
1 2
0 1
*
* Granger-Newbold and Diebold-Mariano tests
*
@gnewbold dly f1 f2
*
corr(qstats,span=4) error1
corr(qstats,span=4) error2
*
@dmariano(lags=4,lwindow=newey) dly f1 f2

Regression and ARIMA Models 61

Example 2.8 Stability Analysis

cal(q) 1960:1
all 2012:4
*
open data quarterly(2012).xls
data(org=obs,format=xls)
*
set ly = log(ppi)
set dly = ly-ly{1}
*
set intercept = 0.
set ar1 = 0.
set sd0 = 0.
set sd1 = 0.
*
do end = 1980:1,2012:4

boxjenk(constant,ar=||1,3||,noprint) dly * end
com intercept(end) = %beta(1), ar1(end) = %beta(2)
com sd0(end) = %stderrs(1) , sd1(end) = %stderrs(2)
if %converged<>1

dis "###DID NOT CONVERGE for " %datelabel(end)
end do end
*
set plus0 = intercept + 1.64*sd0
set minus0 = intercept - 1.64*sd0
set plus1 = ar1 + 1.64*sd1
set minus1 = ar1 - 1.64*sd1
*
spgraph(hfield=2,vfields=1,$

footer="Coefficient Estimates with 90% Confidence Intervals")
graph(header="The Estimated Mean") 3
intercept 1980:1 *
plus0 1980:1 * 2
minus0 1980:1 * 2

graph(header="The AR(1) Coefficient") 3
ar1 1980:1 *
plus1 1980:1 * 2
minus1 1980:1 * 2

spgraph(done)
*
* Alternatively, use a rolling window with 75 observations
*
compute width=75
do end = 1980:1,2012:4

boxjenk(constant,ar=||1,3||,noprint) dly end-width+1 end
com intercept(end) = %beta(1), ar1(end) = %beta(2)
com sd0(end) = %stderrs(1) , sd1(end) = %stderrs(2)
if %converged<>1

dis "DID NOT CONVERGE for t = " %datelabel(end)
end do end
*
equation ar1_3 dly
constant dly{1 3}

Regression and ARIMA Models 62

*
rls(cohist=coeffs,sehist=serrs,equation=ar1_3) dly / resids
set plus0 = coeffs(1) + 1.64*serrs(1)
set minus0 = coeffs(1) - 1.64*serrs(1)
set plus1 = coeffs(2) + 1.64*serrs(2)
set minus1 = coeffs(2) - 1.64*serrs(2)

Chapter 3

Non-linear Least Squares

It is well-known that many economic variables display asymmetric adjustment
over the course of the business cycle. The recent financial crisis underlines the
point that economic downturns can be far sharper then recoveries. Yet, the
standard ARMA(p, q) model requires that all adjustment be symmetric, as it is
linear in all lagged values of {yt} and {εt}. For example, in the AR(1) model
yt = 0.5yt−1 + εt, a one-unit shock to εt will induce yt to increase by one unit,
yt+1 to increase by 0.5 units, yt+2 to increase by 0.25 units, and so on. And a
one-unit decrease in εt will induce yt to decrease by one unit, yt+1 to decrease
by 0.5 units, and yt+2 to decrease by 0.25 units. Doubling the magnitude of the
shock doubles the magnitude of the change in yt and in all subsequent values of
the sequence. The point is that in a linear specification, such as the ARMA(p, q)
model, it isn’t possible to capture the types of asymmetries displayed by many
time-series variables. As such, there is a large and growing literature on non-
linear alternatives to the standard ARMA model. RATS allows you to estimate
dynamic nonlinear models in a number of different ways including non-linear
least squares, which is the subject of this chapter.

In general, non-linear estimation requires more work from you and more care-
ful attention to detail than does linear regression. You really have to try very
hard to construct an example where the LINREG instruction fails to get the
“correct” answer, in the sense that it gives a result other than the coefficients
which minimize the sum of squares to any reasonable level of precision—for
linear regressions, most statistical packages agree to at least eight significant
digits even on fairly “difficult” data. This doesn’t mean that the results make
economic sense, but you at least get results.

However, there are various “pathologies” which can affect non-linear models
that never occur in linear ones.

Boundary Issues
Probabilities have to be in [0, 1]. Variances have to be non-negative. These are
just two examples of possible non-linear parameters where the optimum might
be at a boundary. If the optimum is at the boundary, the partial derivative
doesn’t have to be zero. Since the most straightforward method of optimizing a
continuous function is to find a zero of the gradient, that won’t work properly
with the bounded spaces. In addition, the derivative may not even exist at the
optimum if the function isn’t definable in one direction or the other.

63

Non-linear Least Squares 64

Unbounded parameter space
If the X matrix is full-rank, the sum of squares surface for linear least squares
is globally concave and goes to infinity in every direction as the coefficients get
very large. However, a non-linear function like exp(−xtβ) is bounded below by
zero no matter how large β gets. It’s possible for an optimum to be at β =
inf. This is often related to the boundary issue, as bounded parameters are
sometimes mapped into an unbounded parameter space. For instance, σ2 can
be replaced with exp(κ) where the boundary σ2 = 0 is now mapped to κ = −∞.

Convergence issues
Assuming that X is full rank, least squares can be solved exactly with a single
matrix calculation. Even if a non-linear least squares problem avoids the previ-
ous two issues, the minimizer can rarely be computed analytically with a finite
number of calculations. Instead, the solution has to be approximated, and at
some point we have to decide when we’re “done”. Because of its importance,
we’re devoting a full section to it (Section 3.4).

Lack of identification
A linear model can have identification issues—the dummy variable trap is a
good example—but they are usually the result of an error in specifying the
set of regressors. Generally, you can test for additional coefficients by “overfit-
ting” a model (adding additional regressors) without any major computational
problems. By contrast, there are whole classes of non-linear models where en-
tire sets of parameters can, under certain circumstances, fail to be identified.
In particular, various “switching” and “threshold” models can fail if you try to
overfit by adding an extra (and unnecessary) regime. This will come up quite
often in this chapter.

3.1 Nonlinear Least Squares

Suppose that you want to estimate the following model using nonlinear least
squares:

yt = βxγt + εt (3.1)

Since the disturbance term is additive, you cannot simply take the log of each
side and estimate the equation using OLS.1 However, nonlinear least squares
allows you to estimate β and γ directly, finding the values of the parameters
which minimize

T∑
t=1

(yt − βxγt)
2 (3.2)

1If the model had the form yt = βxγt εt where {εt} was log-normal, it would be appropriate to
estimate the regression in logs using LINREG.

Non-linear Least Squares 65

The instruction which does the minimization is NLLS (for NonLinear Least
Squares). However, before we use it, we must go through several preliminary
steps. Instead of a linear function of explanatory variables, we need to allow
for a general function of the data on the right-side of the equation as in (3.1).
This is done using the instruction FRML.

However, before we can even define the explanatory FRML, we need to let RATS
know the variable names that we are going to use in defining that, translat-
ing the math equation into a usable expression. That is done with the NONLIN
instruction, which both defines the variables to RATS and also creates the pa-
rameter set to be used in estimation. And there is one more step before we
can use NLLS—we need to give “guess values” to those parameters. That’s not
necessary with a linear regression, where a single matrix calculation solves the
minimization problem. Non-linear least squares requires a sequence of steps,
each of which brings us closer to the minimizers, but we have to start that
sequence somewhere. Sometimes the estimation process is almost completely
unaffected by the guess values; in other cases, you will get nowhere without a
very good starting point.

The obvious choices for the names of the two parameters would be BETA and
GAMMA. So the first instruction would be

nonlin beta gamma

The following defines a FRML named F1 with dependent variable Y and ex-
planatory function BETA*XˆGAMMA.

frml f1 y = beta*xˆgamma

A FRML is a function of the (implied) entry variable T, so, for instance, F1(100)
evaluates to BETA*X(100)ˆGAMMA. Note that if we had not done the NONLIN
instruction first, the FRML instruction would have no idea what BETA and
GAMMA were supposed to be. You would get the message:

SX11. Identifier BETA is Not Recognizable. Incorrect Option Field or Parameter Order?

If you get a message like that while setting up a non-linear estimation, you
probably either have a typo in the name, or you failed to create all the param-
eters before defining the FRML.

By default, RATS will use 0.0 for any non-linear parameter which isn’t other-
wise initialized. Often, that’s OK; here, not so. If β = 0, γ has no effect on
the function value. In this case, it turns out that RATS can fight through that2

but it’s not a good strategy to ignore the need for guess values and hope that it
2β changes on the first iteration while γ doesn’t, after which, with a non-zero β, estimation

proceeds normally. However, quite a few statistical programs would quit on the first iteration.

Non-linear Least Squares 66

works. Since we won’t be estimating this model, we’ll just give β an arbitrary
value, and start γ at 1.

compute beta=0.5,gamma=1.0

Finally the parameters are estimated with

nlls(frml=f1) y

How does NLLS work? The first thing it does is to see which entries can be used
in estimation by evaluating the input FRML at each entry and seeing if it gets
a (legal) value. NLLS has the standard start and end parameters and SMPL
option to allow you to control the estimating range, but it also needs to test for
problems itself. This is one place where bad guess values, or a generally bad
setup might give a bad outcome. While it wouldn’t happen here, it’s possible to
get the message:

SR10. Missing Values And/Or SMPL Options Leave No Usable Data Points

which is telling you that the explanatory function has no entries at which it
could be computed, generally due to either missing values working their way
through the data set, or something like log or square root of a negative number
being part of the formula at the guess values.

The next step (under the default method of estimation) is to take a first order
Taylor series expansion of (3.1) with respect to the parameters.

yt − βxγt ≈ xγt (β
∗ − β) + (βxγt log xt)(γ

∗ − γ) + ε∗t

If we treat the unstarred β and γ as fixed, then this is in the form of a linear
regression of the current residuals yt − βxγt on the two derivative series xγt and
βxγt log xt to get (β∗ − β) and (γ∗ − γ). Going from (β, γ) to (β∗, γ∗) is called
taking a Gauss-Newton step. This is repeated with the new expansion point,
and the process continues until the change is small enough that the process is
considered to be converged.

However, NLLS doesn’t always take a full Gauss-Newton step. It’s quite pos-
sible that on the first few Gauss-Newton steps, the sum of squares function
actually increases on a full step. This is because the first order expansion may
not yet be very accurate. While the G-N algorithm may actually work (and
work well) despite taking steps that are “too large”, NLLS instead will take a
shorter step in the same direction as the full step so that the sum of squares
decreases, adopting a slower but steadier approach to optimization.

Note that this first G-N step is where the β = 0 guess creates a problem since
it zeroes out the derivative with respect to γ. What NLLS does with that is to

Non-linear Least Squares 67

not try to solve for γ∗ − γ (since there’s no useful information for that) and just
solve for β∗ − β. On the second step, β is no longer zero, so it’s possible to move
both parameters.

3.2 Using NLLS

We’ll use the data set to do several examples of non-linear least squares using
something similar to the simple model from the previous section. These are
both in Example 3.1). The first of these will be a “nonsense” regression, to show
how having a (theoretically) unidentified parameter can affect your estimation.

This first example will be a regression of inflation on its lag plus a power func-
tion on the lag of real GDP:

πt = b0 + b1πt−1 + b2y
γ
t−1 + εt (3.3)

There is no particular reason to believe that the level of GDP has any effect
on inflation (the growth rate of GDP would be a different story), so we really
wouldn’t expect b2 to be non-zero. But if b2 is zero, γ isn’t identified. However,
this is only a theoretical lack of identification—in sample, b2 won’t be exactly
zero, so we will be able to estimate γ, if not very well.

The second example (which will be discussed in detail in Section 3.3) will use
the two interest rates, estimating a exponential rather than linear relation-
ship:

LRt = a0 + a1LRt−1 + a2SR
δ
t−1 + εt

where LR is the “long” rate (one year) and SR the short (three month).

Step 1-Define parameter set
Specify the parameter set to be estimated using the NONLIN instruction. The
syntax for this is:

NONLIN parameter list

In most instances, the parameter list will be a simple list of the coefficients
to be estimated, separated by spaces. For our first model (3.3), this (with the
obvious choices for names) would be

nonlin b0 b1 b2 gamma

One NONLIN controls the parameter set until another NONLIN is executed, so
we don’t want to define parameter set for the second problem until we’re done
with the first. By the way, there is no reason that we couldn’t have used the
same set of parameter names in the second problem as the first—we’re using
different ones here for illustration, since the two models have nothing to do
with each other. In practice, where the different models are probably much

Non-linear Least Squares 68

more closely related, you would largely keep the same parameter set and make
adjustments to it from one estimation to the next.

We’ll see later that you can define PARMSET variables that save a parameter
list like this so you can easily switch between sets of parameters.

Step 2-Define FRML
This defines the explanatory formula. The syntax for FRML (as it is generally
used in non-linear least squares is):

frml(options) formula name depvar = function(t)

where:

formula name The name you choose to give to the formula

depvar Dependent variable

function(t) The explanatory function

For the first example, this would be

frml pif pi = b0+b1*pi{1}+b2*y{1}ˆgamma

where the PI and Y series are assumed to have already been defined.

Step 3-Set Guess Values
An obvious set of guess values would be to take B0, B1 and B2 from a linear
regression with Y{1} as the third variable, which gives the sum of squares
minimizers for the case where GAMMA is 1. Could we get by with something less
“accurate”? For this model, probably yes. For a more complicated model, pos-
sibly not. For a (non-linear) model to be useful in practice, it’s important that
there be a reasonable way to get guess values for the parameters using more
basic models applied to the data plus “prior knowledge” from other datasets or
similar models. A model which can only be estimated if fed the best from the
results of dozens of attempts at guess values is unlikely to be useful in practice,
since it can’t be applied easily to different data sets.

For the first example, we would do this with:

linreg pi
constant pi{1} y{1}
compute b0=%beta(1),b1=%beta(2),b2=%beta(3),gamma=1.0

Note that %BETA gets redefined by NLLS, so you need to get those as soon as
possible after the LINREG.

Non-linear Least Squares 69

Step 4-Estimate using NLLS
The syntax for NLLS is

NLLS(frml=formula name,...) depvar start end residuals

depvar Dependent variable used on the FRML instruction.

start end Range to estimate.

residuals Series to store the residuals. This is optional. %RESIDS is
always defined by NLLS.

The principal options are:

METHOD=[GAUSS]/SIMPLEX/GENETIC
GAUSS is the (modified) Gauss-Newton algorithm described on page 66. SIMPLEX
and GENETIC are slower optimizers which don’t use the special structure of
the non-linear least squares problem, but are more robust to bad guess val-
ues. Gauss-Newton tends to work fine, but these are available if you get
convergence problems.

ITERATIONS=maximum number of iterations to make [100]

ROBUSTERRORS/[NOROBUSTERRORS]
As with LINREG, this option calculates a consistent estimate of the covari-
ance matrix in the presence of heteroscedasticity.

NLLS defines most of the same internal variables as LINREG including %RSS,
%BETA, %TSTATS and %NOBS. It also defines the internal variable %CONVERGED
which is 1 if the estimation converged and otherwise is 0.

With the variable definitions (which need to be done at some point before the
FRML instruction)

set pi = 100.0*log(ppi/ppi{1})
set y = .001*rgdp

we can estimate the non-linear least squares model with

nlls(frml=pif) pi

which gives us

Non-linear Least Squares 70

Nonlinear Least Squares - Estimation by Gauss-Newton
Convergence in 61 Iterations. Final criterion was 0.0000067 <= 0.0000100
Dependent Variable PI
Quarterly Data From 1960:02 To 2012:04
Usable Observations 210
Degrees of Freedom 206
Skipped/Missing (from 211) 1
Centered Rˆ2 0.3183981
R-Barˆ2 0.3084719
Uncentered Rˆ2 0.5576315
Mean of Dependent Variable 0.8431326891
Std Error of Dependent Variable 1.1492476234
Standard Error of Estimate 0.9556932859
Sum of Squared Residuals 188.15002928
Regression F(3,206) 32.0764
Significance Level of F 0.0000000
Log Likelihood -286.4410
Durbin-Watson Statistic 2.1142

Variable Coeff Std Error T-Stat Signif
**
1. B0 0.446055502 0.243426525 1.83240 0.06833506
2. B1 0.556482217 0.057868679 9.61629 0.00000000
3. B2 -0.000876438 0.017920471 -0.04891 0.96104072
4. GAMMA 2.072568472 7.640418224 0.27126 0.78645982

A few things to note about this:

1. This shows 1 Skipped/Missing Observation. If you look at the output for
the LINREG used for the guess values (not shown here), you’ll see that
it gets the same 210 usable observations, but doesn’t show any as being
skipped. This is due to the difference in how the two instructions work
if you let the program choose the estimation range. LINREG scans all the
series involved in the regression to figure out the maximum usable range.
NLLS initially restricts the range based upon the one input series that it
knows about (the dependent variable), then tries to evaluate the FRML at
the points in that range, knocking out of the sample any at which it can’t
evaluate it. It ends up actually using the range from 1960:3 to 2012:4,
but accounts for it differently.

2. The second line in the output shows the actual iteration count. 61 is quite
a few iterations for such a small model. That’s mainly due to the problem
figuring out the poorly-estimated power term.

The GAMMA is showing the signs of a parameter which isn’t really identified.
Even a one standard deviation range runs from roughly -5 to 10, most of which
are rather nonsensical values.

You might ask why Y was defined as

set y = .001*rgdp

rather than just RGDP alone. For a linear regression, a re-scaling like that
has no real effect on the calculation of the estimates—in effect, the data get
standardized as part of the process of inverting the X′X. The only effect is

Non-linear Least Squares 71

on how the estimates look when displayed: if we use RGDP alone, the linear
regression would give
Linear Regression - Estimation by Least Squares
Dependent Variable PI
Quarterly Data From 1960:03 To 2012:04
Usable Observations 210
Degrees of Freedom 207
Centered Rˆ2 0.3179162
R-Barˆ2 0.3113260
Uncentered Rˆ2 0.5573187
Mean of Dependent Variable 0.8431326891
Std Error of Dependent Variable 1.1492476234
Standard Error of Estimate 0.9537190610
Sum of Squared Residuals 188.28306978
Regression F(2,207) 48.2409
Significance Level of F 0.0000000
Log Likelihood -286.5152
Durbin-Watson Statistic 2.1147

Variable Coeff Std Error T-Stat Signif
**
1. Constant 0.496236135 0.175785276 2.82297 0.00522240
2. PI{1} 0.557330554 0.057684919 9.66163 0.00000000
3. Y{1} -0.000016091 0.000019699 -0.81684 0.41495922

A good practitioner would try to avoid reporting a regression like this which re-
quires either scientific notation or a large number of digits in order to show the
coefficient on Y{1}. However, everything about the regression matches exactly
with and without the rescaling except for the display of that last coefficient and
its standard error.

Proper scaling of the data makes a much greater difference in non-linear es-
timation for more reasons than just how the estimates look. In many cases,
the only way to get proper behavior is to rescale the data (or sometimes re-
parameterize the whole model). Theoretically, if you could do all calculations
to “infinite” precision, this wouldn’t be an issue. However, the standard at this
point in statistical calculations is “double precision” (64-bit representation with
about 15 significant digits) typically with intermediate calculations done to a
somewhat higher precision by the microprocessor.3 If we look at the results
from NLLS with the rescaled RGDP series, and think about what would happen
if we used it without rescaling, yγt−1 would be higher by a factor of more than 106,
and b2 would correspondingly have to be divided by more than 106, making it on
the order of 10−9. In the Gauss-Newton algorithm (or any iterative procedure),
there’s always a question of when to stop—when should we consider that we’ve
done the best that we reasonably can. When you have a parameter with a tiny
scale like that, it’s hard to tell whether it’s small because it’s naturally small
and small changes in it may still produce observable changes in the function
value, or it’s small because it’s really (machine-)zero and small changes won’t
have an effect. It’s not the scale of the data itself that’s the problem, but the
scale of the parameters that result from the scale of the data.

3See this chapter’s Tips and Tricks (page 101) for more on computer arithmetic.

Non-linear Least Squares 72

In this case, the NLLS on the data without scaling down RGDP doesn’t converge
at 100 iterations, but does if given more (ITERS=200 on the NLLS is enough),
and does give roughly the same results for everything other than B2. In other
cases, you may never be able to get convergence without reworking the data a
bit.

3.3 Restrictions: Testing and Imposing

We’ll now do the second example of non-linear least squares:

LRt = a0 + a1LRt−1 + a2SR
δ
t−1 + εt (3.4)

The setup here is basically the same as before with renaming of variables:

nonlin a0 a1 a2 delta
linreg tb1yr
constant tb1yr{1} tb3mo{1}
frml ratef tb1yr = a0+a1*tb1yr{1}+a2*(tb3mo{1})ˆdelta
compute a0=%beta(1),a1=%beta(2),a2=%beta(3),delta=1.0
nlls(frml=ratef) tb1yr

Nonlinear Least Squares - Estimation by Gauss-Newton
Convergence in 11 Iterations. Final criterion was 0.0000089 <= 0.0000100
Dependent Variable TB1YR
Quarterly Data From 1960:01 To 2012:04
Usable Observations 211
Degrees of Freedom 207
Skipped/Missing (from 212) 1
Centered Rˆ2 0.9445648
R-Barˆ2 0.9437614
Uncentered Rˆ2 0.9864386
Mean of Dependent Variable 5.5835545024
Std Error of Dependent Variable 3.1851074843
Standard Error of Estimate 0.7553379512
Sum of Squared Residuals 118.10083205
Regression F(3,207) 1175.6969
Significance Level of F 0.0000000
Log Likelihood -238.1723
Durbin-Watson Statistic 1.5634

Variable Coeff Std Error T-Stat Signif
**
1. A0 -0.083102618 0.233285762 -0.35623 0.72203360
2. A1 0.845299348 0.142798909 5.91951 0.00000001
3. A2 0.302138458 0.203001283 1.48836 0.13817851
4. DELTA 0.719742244 0.319257061 2.25443 0.02521634

The “significant” t-statistic on DELTA is somewhat misleading because it’s a
test for δ = 0 and that’s not a particularly interesting hypothesis. Of the hy-
pothesis testing instructions from Section 2.2, you can’t use EXCLUDE, since it
uses “regressor lists” to input the variables to be tested, and NLLS works with
parameter sets instead. TEST and RESTRICT, which use coefficient positions,
are available, and there is a form of SUMMARIZE which can be used as well.

Non-linear Least Squares 73

In this case, the most interesting hypothesis regarding δ would be whether it’s
equal to 1. We can use TEST for that—DELTA is coefficient 4, so the test would
be done with

test(title="Test of linearity")
4
1.0

Test of linearity
t(207)= -0.877844 or F(1,207)= 0.770609 with Significance Level 0.38104636

so we would conclude that the extra work for doing the power term doesn’t
seem to have helped much.

SUMMARIZE can also be applied to the results from non-linear least squares. It
can be used to test non-linear functions of the parameters, and can also use
the delta method (Appendix C) to compute asymptotic variances for non-linear
functions. One potentially interesting question about the relationship between
the short and long rates is whether a permanent increase in the short rate
would lead to the same increase in the long rate. If δ were 1, the long-run effect
would be

a2
1− a1

We can use SUMMARIZE after the LINREG to estimate that and its standard
error (note—this is at the end of the example program):

linreg tb1yr
constant tb1yr{1} tb3mo{1}
summarize(title="Long-run effect using linear regression") $

%beta(3)/(1-%beta(2))

Long-run effect using linear regression

Value 0.88137621 t-Statistic 3.63694
Standard Error 0.24234021 Signif Level 0.0003479

It’s not significantly different from one, but the standard error is quite large.

With the non-linear model, the effect of a change in the short rate on the long
rate is no longer independent of the value of TB3MO. The analogous calculation
for the long run effect would now be:

a2δSR
δ−1

1− a1
Since this depends upon the short rate, we can’t come up with a single value,
but instead will have a function of “test” values for the short rate. We can
compute this function, together with upper and lower 2 standard error bounds
using the following:

Non-linear Least Squares 74

2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 3.1: Long-run effect using non-linear regression

set testsr 1 100 = .1*t
set lreffect 1 100 = 0.0
set lower 1 100 = 0.0
set upper 1 100 = 0.0

*
do t=1,100

summarize(noprint) $
%beta(3)*%beta(4)*testsr(t)ˆ(%beta(4)-1)/(1-%beta(2))

compute lreffect(t)=%sumlc
compute lower(t)=%sumlc-2.00*sqrt(%varlc)
compute upper(t)=%sumlc+2.00*sqrt(%varlc)

end do t

TESTSR is a series of values from 0.1 to 10. The three other series are initialized
to zero over the “grid range” so they can be filled in entry by entry inside the
loop. SUMMARIZE computes %SUMLC as the estimate of the non-linear function
and %VARLC as the estimated variance.

The following graphs (Figure 3.1) the function. The range is limited to values
of SR between 2 and 6, as the function, particularly for under 2, grows rapidly,
dominating the range of the graph.

scatter(smpl=testsr>=2.0.and.testsr<=6.0,style=lines,vgrid=1.0,$
footer="Long-run effect using non-linear regression") 3

testsr lreffect
testsr lower / 2
testsr upper / 2

Non-linear Least Squares 75

Panel a

Beta

R
es

id
u

al
 S

u
m

 o
f

S
q

u
ar

es

0.0 0.2 0.4 0.6 0.8 1.0

3

4

5

6

7

8

9

10

Panel b

Beta

R
es

id
u

al
 S

u
m

 o
f

S
q

u
ar

es

0.0 0.2 0.4 0.6 0.8 1.0

3

4

5

6

7

8

9

10

Figure 3.2: Sums of Squares Examples

3.4 Convergence and Convergence Criteria

Numerical optimization algorithms use iteration routines that cannot guar-
antee precise solutions for the estimated coefficients. Various types of “hill-
climbing” methods (Gauss-Newton is an example, though it “climbs” only if
you switch the sign of the objective function) are used to find the parameter
values that maximize a function or minimize the sum of squared residuals. If
the partial derivatives of the function are near zero for a wide range of param-
eter values, RATS may not be able to converge to the optimum point.

To explain, suppose that the sum of squared residuals for various values of β
can be depicted by Panel a of Figure 3.2. Obviously, a value of β of about 0.71
minimizes the sum of squared residuals. However, there is a local minimum
at β = 0.23. If we started with a guess value less than .4 (where the function
has the local maximum), it is likely that Gauss-Newton will find that local
minimum instead. How can we know if we have the global rather than local
maximum? In general, we can’t, unless we have strong knowledge about the
(global) behavior of the function.4 For instance, even in this case, notice that
the function is starting to turn down at the right edge of Panel a—there’s no
way to be sure that the function doesn’t get even smaller out beyond β = 1.0.

The sum of squares surface shown in the figure is rather convex (has a strongly
positive second derivative) so it is clear where the local minima occur. However,
suppose that the surface was quite flat. As shown by the smooth line in Panel
b, the sum of squared residuals is almost invariant to the value of β selected.
In such circumstances, it might take many iterations for RATS to select a value
of β within the default tolerance of 0.00001. There’s a practical limit to how

4For many functions, it’s possible to prove that the sum of squares surface is (quasi-)convex,
which would mean that it can have just one local minimum.

Non-linear Least Squares 76

accurately you can estimate the coefficients. Suppose you’re trying to maximize
f(β) with respect to β, and assume for simplicity that β has just one element. If
f has enough derivatives, we can approximate f with a two term Taylor series
approximation as

f(β) ≈ f(β0) + f ′(β0)(β − β0) +
1

2
f ′′(β0)(β − β0)2

If we’re very close to the optimum, f ′(β0) will be very close to zero. So if

f ′′(β0)(β − β0)
2

2f(β0)
(3.5)

is less than 10−15 (which is “machine-zero”), then on a standard computer, we
can’t tell the difference between f(β) and f(β0). Since the difference in the β’s
comes in as a square, in practice, we’re limited to about 7 significant digits at
the most, and there is rarely any need to try to push below the 5 significant
digits that are the default—you are unlikely to ever report more digits than
that, and the extra work won’t really change the results in any meaningful
way.

The two main controls for the Gauss-Newton algorithm are options on NLLS:
the ITERATIONS option, which you can use to increase the number of iter-
ations, and the CVCRIT option, which can be used to tighten or loosen the
convergence criterion. The default on ITERATIONS is 100, which is usually
enough for well-behaved problems, but you might, on occasion need to increase
it. The default on CVCRIT is .00001, which, as we noted above, is a reasonable
value in practice—you’re unlikely to report even five significant digits in prac-
tice, and it’s unlikely that you could get much of a better result if you put in a
smaller value. There’s also a PMETHOD option for using a different method at
first (PMETHOD means Preliminary METHOD) before switching to Gauss-Newton,
but it is rarely needed for NLLS. It will be important for models estimated with
maximum likelihood.

Some secondary controls for non-linear estimation routines are included in the
separate NLPAR instruction which is covered in this chapter’s Tips and Tricks
(page 102).

The non-linear least squares algorithm is based upon an assumption that the
sum of squares surface is (at least locally) well-behaved. If you have the (for all
practical purposes) non-differentiable function shown in the lower function in
panel (b), NLLS is very unlikely to give good results. Even a brute-force “grid
search” might fail to find the minimum unless it uses a very fine grid. This
again shows the importance of having some idea of how the sum of squares
surface looks.

Non-linear Least Squares 77

3.5 ESTAR and LSTAR Models

The Logistic Smooth Transition Autoregressive (LSTAR) and Exponential
Smooth Transition Autoregressive (ESTAR) models generalize the standard au-
toregressive model to allow for a varying degree of autoregressive decay, thus
allowing for different dynamics for the up and down parts of cycles. The LSTAR
model can be represented by:

yt = α0 +

p∑
i=1

αiyt−i + θ

[
β0 +

p∑
i=1

βiyt−i

]
+ εt (3.6)

where θ = [1 + exp(−γ(yt−1 − c))]
−1 and γ > 0 is a scale parameter.

In the limit, as γ → 0, the LSTAR model becomes an AR(p) model since θ is
actually constant. For 0 < γ < ∞, the value of θ changes with the value of
yt−1. Hence, θ acts as a weighting function so the degree of autoregressive
decay depends on the value of yt−1. As the value of yt−1 → −∞, θ → 0 so the
behavior of yt is given by α0 + α1yt−1 + . . . + αpyt−p + εt (which we’ll call the
first branch). And, as yt−1 → +∞, θ → 1 so that the behavior of yt is given
by (α0 + β0) + (α1 + β1)yt−1 + . . . (αp + βp)yt−p + εt (which we’ll call the second
branch). The two branches can have different means and different dynamics,
sometimes very different. For an LSTAR model, as yt−1 ranges from very small
to very large values, θ goes from zero to unity, and you get a blend of the two
branches. In particular, when yt−1 equals the centrality parameter c, the value
of θ = 0.5, and you get an average of the coefficients.

The ESTAR model is similar to the LSTAR model except θ has the form:

θ =
[
1− exp(−γ(yt−1 − c)2)

]
; γ > 0

For the ESTAR model, θ = 0 when yt−1 = c and approaches unity as yt−1 ap-
proaches ±∞. The shape of θ is somewhat like an inverted bell—effectively it’s
a Normal density flipped outside down.

You can get a good sense of the nature of the LSTAR and ESTAR models by
experimenting with the following code (Example 3.2). The first line sets up y
to range from −0.5 to +0.5. In the second, c is given the value zero, with a γ of
10. We then compute the two shape functions:

set y 1 201 = (t-100)/201.
compute c=0.0,gamma=10.0
set lstar = ((1 + exp(-gamma*(y-c))))ˆ-1
set estar = 1 - exp(-gamma*(y-c)ˆ2)

The following graphs (Figure 3.3) the two transition functions:

Non-linear Least Squares 78

LSTAR Model

T
h

et
a

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.8

1.0

ESTAR Model

T
h

et
a

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.00

0.25

0.50

0.75

1.00

Figure 3.3: Shapes of STAR Transitions

spgraph(footer="Shapes of STAR Transitions",vfields=1,hfields=2)
scatter(header="LSTAR Model",style=line,vlabels="Theta")
y lstar
scatter(header="ESTAR Model",style=line,vlabels="Theta")
y estar
spgraph(done)

You should experiment by rerunning the program with different values of c and
γ. You will find that increasing γ makes the transitions shorter and steeper;
in the limit, as γ → ∞, the LSTAR converges to a step function and the ESTAR
to a (downwards) “spike”. Changing the value of the centrality parameter, c,
changes the transition point for the LSTAR and the point of symmetry for the
ESTAR.

We’ll first use generated data to illustrate the process of estimating a STAR
model. We will do this because STAR models are a classic example of the 3rd
word of advice: “Realize That Not All Models Work!” Suppose that there really
is no “second branch” in (3.6), that is, the data are generated by simply:

yt = α0 +

p∑
i=1

αiyt−i + εt

What would happen if we tried to estimate a STAR (in particular, an LSTAR)?
If βi = 0 for all i, then the transition parameters don’t matter. If c is bigger
than any data value for y, then a large value of γ will make θ effectively zero
through the data set, so the β coefficients don’t matter. If c is smaller than any
data value for y, a large value of γ will now make θ effectively one through the
data set, so only αi + βi matters and not the individual values for α or β. So we
have three completely different ways to get equivalent fits to the model.

Non-linear Least Squares 79

However, what is likely to happen in practice?. Suppose the residual for the
entry with the highest value of yt−1 in the data set is non-zero. Then, we can
reduce the sum of squares by adding a dummy variable for that entry. Now we
would never actually pick a data point and dummy it out without a good reason,
but we have a non-linear model which can “generate” a dummy by particular
choices for γ and c. If c is some value larger than the second highest value of
yt−1, and γ is very large, then, in this data set, θ will be a dummy for that one
observation with the highest value of the threshold, and this will thus reduce
the sum of squares. You can do something similar at the other end of the data
set, isolating the smallest value for yt−1. Thus the sum of squares function is
likely to have two “local” modes with c on either end of the data set, and there
will be no particularly good way to move between them. Neither generates an
interesting transition model, and it will often be hard to get non-linear least
squares to converge to either since it requires a very large value of γ.

Note, by the way, that this problem is much worse for an ESTAR model, where
the transition function can (in effect) dummy any data point. You can’t just
take a set of data and fit a STAR model to it and hope it will give reasonable
results.

3.6 Estimating a STAR Model with NLLS

If c and γ were known (or at least treated as fixed), (3.6) would be linear—we
would just have to construct the variables for the β terms by multiplying the
(time-varying) θ by the lagged y. However, in practice, the transition param-
eters aren’t known, which makes this a non-linear least squares problem. To
illustrate how to estimate this type of model, we first need to generate data
with a STAR effect.

The following example is from Section 7.9 of Enders (2010). The first part of
the program (Example 3.3) generates a simple LSTAR process containing 250
observations. The first three lines of code set the default series length to 250,
seed the random number generator, and draw 350 pseudo-random numbers5

from a normal distribution with standard deviation one (and mean zero):

all 250
seed 2003
set eps 1 350 = %ran(1)

Next, we’ll create an LSTAR process with 350 observations. This uses the RATS
function %LOGISTIC function, which computes the transition function without
any chance of an overflow on the exp function.6 This uses c = 5 and γ = 10:

5The reason for 350 will be described shortly. See this chapter’s Tips and Tricks (page 105)
for more on random number generation.

6exp(z) will overflow when z is 710 or greater. The way that expressions are evaluated in
RATS, 1.0/(1 + exp(z)) will be evaluated as NA for such a value of z. The %LOGISTIC function
knows the behavior of the overall function, and so returns 0 for a case like that.

Non-linear Least Squares 80

25 50 75 100 125 150 175 200 225 250
-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

Figure 3.4: Simulated STAR Process

set(first=1.0) x 1 350 = $
1.0+.9*x{1}+(-3.0-1.7*x{1})*%logistic(10.0*(x{1}-5.0),1.0)+eps

It is not obvious how to set the initial value of x. In such circumstances, a com-
mon practice is to generate a series longer than necessary and then discard the
extra. Here we use 100 extra points—these are known as the burn-in period.
There are several ways to handle this—you could start all the analysis at entry
101, but here we’ll simply copy the data down to the desired entries with

set y 1 250 = x(t+100)

The time series graph of the series (Figure 3.4) is created using:

graph(footer="The Simulated LSTAR Process")
y

The first branch of the LSTAR is yt = 1.0 + .9yt−1 + εt. This has mean 10 and
is strongly positively correlated. The second branch is created by adding the
two processes—it is what you would get for values of yt−1 above 5,7 so it’s yt =
−2.0− .8yt−1 + εt. This has a mean of −2/1.8 ≈ −1.11 and is strongly negatively
correlated. As a result, the process generally moves steadily up under the
control of the first branch until the value of y is greater than 5. In the next
time period, it is likely to drop very sharply under control of the second branch,
which will drive it back onto the first branch. So the process going up is slower
than the one going down.

The NONLIN instruction and FRML definition are:
7Since γ is large, the transition is very short.

Non-linear Least Squares 81

nonlin a0 a1 b0 b1 gamma c
frml lstar y = (a0+a1*y{1})+$

(b0+b1*y{1})*%logistic(gamma*(y{1}-c),1.0)

Guess Values, Method One. Based at OLS
One way to get initial guesses is to estimate a linear model and use the coef-
ficient estimates as the initial values. This starts as if we have only the first
branch, zeroing out the change. For illustration, we’ll start with c = 0 (roughly
the middle of the data) and γ = 5.

linreg y
constant y{1}
compute a0=%beta(1),a1=%beta(2),b0=0.0,b1=0.0
compute c=0.0,gamma=5.0

*
nlls(frml=lstar) y 2 250

Nonlinear Least Squares - Estimation by Gauss-Newton
NO CONVERGENCE IN 100 ITERATIONS
LAST CRITERION WAS 0.0185721
Dependent Variable Y
Usable Observations 249
Degrees of Freedom 243
Centered Rˆ2 0.6130672
R-Barˆ2 0.6051056
Uncentered Rˆ2 0.6234211
Mean of Dependent Variable 0.5876231693
Std Error of Dependent Variable 3.5509791503
Standard Error of Estimate 2.2314573881
Sum of Squared Residuals 1209.9947042
Log Likelihood -550.1400
Durbin-Watson Statistic 1.7369

Variable Coeff Std Error T-Stat Signif
**
1. A0 2.74882 0.50706 5.42105 0.00000014
2. A1 1.04721 0.11905 8.79664 0.00000000
3. B0 -273.09372 11487.80317 -0.02377 0.98105359
4. B1 28.61805 1312.03609 0.02181 0.98261587
5. GAMMA 0.75187 0.43441 1.73079 0.08475907
6. C 8.92116 51.91215 0.17185 0.86369759

The results don’t look at all sensible, but more important, when you look at the
second and third lines of the output, it’s clear that we don’t have “results” in
the first place. If we haven’t gotten convergence, one question to ask is whether
it’s worth just increasing the iteration limit in hope that that will fix things.
When you have a model like this that can have multiple modes, you probably
want to stop and look at whether you will likely just be converging to a bad
mode. Here, we have a value for c which is well above the maximum value for
y in the data set (nearly 9 vs a maximum value of just above 7). With these
values, the largest value that θ will take is about .2, so only a fraction of those
(rather absurd-looking) values for B0 and B1 will apply. Despite this not being
converged, and having very strange dynamics, the sum of squares is (much)

Non-linear Least Squares 82

lower with these “estimates” than it is for the simple least squares model, 1209
here vs 2218 for OLS—note that the estimated first branch is somewhat similar
to the one used in the actual DGP, and the effect of the θ times the second
branch will be sharply negative for the values closest to c, which is the behavior
we need.

In this case, the main problem with the guesses was the value of γ. Even
though the guess of 5 is smaller than the true value, when combined with the
wrong value of c, it works poorly because the function is almost non-differ-
entiable with respect to c due to the sharp cutoff. If you go back and try with
GAMMA=1.0, you’ll see that you get convergence to a reasonable set of esti-
mates. Note, however, that you need to re-execute the LINREG and COMPUTE
instructions to make that work: %BETA has been re-defined by NLLS so the
COMPUTE instructions for A0 and A1 will no longer use the OLS values unless
you re-do the LINREG.

The biggest problem in fitting STAR models is finding the threshold value c. As
we mentioned, given γ and c, the model is linear in the other parameters, and
given c, γ usually isn’t hard to estimate.

Guess Values, Method 2: Data-Determined
The initial values for c and γ above were basically just wild guesses. A more
straightforward alternative is to use STATISTICS on the threshold and get
guess values for c and γ off of that, for instance:

stats y
compute c=%mean,gamma=1.0/sqrt(%variance)

Using the reciprocal of the sample standard error8 starts with a rather “flat”
transition function (most of the observed data will be a blend of the two
branches rather than one or the other), which makes it easier for Gauss-
Newton to find the optimal c. The following then treats C and GAMMA as fixed to
get the corresponding coefficients of the two branches (in the first NLLS) then
estimates all the parameters together:

nonlin a0 a1 b0 b1
nlls(frml=lstar) y 2 250
nonlin a0 a1 b0 b1 gamma c
nlls(frml=lstar) y 2 250

The first NLLS is actually linear, since GAMMA and C are fixed (not included in
the NONLIN). If you look at the output from it (not shown), you’ll see that it
converged in 2 iterations—the first moves to the minimizer, and the second
tries to improve but can’t. The output from the NLLS with the full parameter
set is:

8For a ESTAR, you would use 1.0/%variance instead since the exponent depends upon the
square of the data.

Non-linear Least Squares 83

Nonlinear Least Squares - Estimation by Gauss-Newton
Convergence in 57 Iterations. Final criterion was 0.0000018 <= 0.0000100
Dependent Variable Y
Usable Observations 249
Degrees of Freedom 243
Centered Rˆ2 0.9201029
R-Barˆ2 0.9184590
Uncentered Rˆ2 0.9222409
Mean of Dependent Variable 0.5876231693
Std Error of Dependent Variable 3.5509791503
Standard Error of Estimate 1.0139960256
Sum of Squared Residuals 249.84966939
Regression F(5,243) 559.6826
Significance Level of F 0.0000000
Log Likelihood -353.7398
Durbin-Watson Statistic 2.0482

Variable Coeff Std Error T-Stat Signif
**
1. A0 1.017585644 0.068354840 14.88681 0.00000000
2. A1 0.917712225 0.020712881 44.30635 0.00000000
3. B0 -4.467787643 3.502956803 -1.27543 0.20337389
4. B1 -1.438183472 0.591133075 -2.43293 0.01569975
5. GAMMA 9.957050393 1.551367386 6.41824 0.00000000
6. C 5.002927739 0.019240934 260.01481 0.00000000

Note that this has quite accurately estimated A0, A1, GAMMA and C, but not so
much B0 and B1. That’s not that surprising since there are only about 20 data
points out of the 250 where the B0 and B1 even matter.

Guess Values, Method 3: Grid Search
A grid search can sometimes be helpful if it’s hard to fit a model from more
“generic” guess values and there is a single parameter that is the main prob-
lem. A grid search over a full six-dimensional space (as we have here) is not
really feasible, and here isn’t even necessary since the model is linear given γ
and c. We have three possible approaches that might make sense:

1. Fix γ and grid search over c.
2. Grid search over c, estimating γ by non-linear least squares for each.
3. Jointly search over a grid in c and γ.

The first would involve the least calculation since each test model is linear (γ
is fixed in advance, and c is fixed for a given evaluation). The second would
likely require the most calculation since it would be fully estimating a non-
linear least squares model for each c. The third would be the hardest to set up
since it requires a two-dimensional grid.
The simplest and most general way to handle the control of a grid search (for
minimization) is the following “pseudo-code” (descriptive rather than actual):

compute bestvalue=%na
do over grid

calculate value(thisgrid) to thisvalue
if .not.%valid(bestvalue).or.bestvalue>thisvalue

compute bestvalue=thisvalue,bestgrid=thisgrid
end grid

Non-linear Least Squares 84

At the end of this, the grid point at which the calculation is smallest will be
in “bestgrid”,9 and the value of the function there will be “bestvalue”. The IF
statement will give a “true” condition if either the current bestvalue is %NA,10

or if thisvalue is smaller than the current bestvalue.

Although the grid can be an actual equally-spaced set of values, that
isn’t required. For our purposes, the quickest way to create the
grid is with the %SEQA function (meaning additive sequence), where
%SEQA(start,increment,n) returns the VECTOR with n values start,
start+increment, . . ., start+increment*(n-1). For the grids for c, we’ll use

stats(fractiles) y
compute ygrid=%seqa(%fract05,(%fract95-%fract05)/19,20)

which will do a 20 point grid (n = 20) over the range from 5%-ile to the 95%-ile
of the data.11

The loop over the grid values is done with

dofor c = ygrid
...

end dofor c

DOFOR is a more general looping instruction than DO (section 2.8.1)—while DO
only loops under the control of “counter” (INTEGER) variables, DOFOR can loop
over a “list” of anything. Usually (as here), the “list” is a VECTOR of some data
type but it can be a list of items separated by spaces:

dofor c = 1.0 2.0 4.0 8.0 16.0
...

end dofor c

Each time through the loop, DOFOR just pulls the next value off the list or out
of the VECTOR, sets the index variable (here C) equal to it, and re-executes the
content of the loop. There are other ways to set this up—in general, there can
be many equivalent ways to code a calculation like this. For instance, we could
have done

stats(fractiles) y
do i=1,20

compute c=%fract05+(i-1)*(%fract95-%fract05)/19
...

end do i

9If you want to maximize instead, simply change the <to >on the IF.
10.not.%valid(bestvalue) will be “true” if and only if bestvalue is missing, which will

happen the first time through the loop.
11STATS(FRACTILES) computes a standard set of quantiles of the data, for 1, 5, 10, 25, 50,

75, 90, 95 and 99 which are fetchable as variables named %FRACTnn.

Non-linear Least Squares 85

There are two advantages of using the DOFOR setup:

1. It’s clearer what the loop is doing.
2. The “controls” of the loop (start, end, number of values) are included in

just a single instruction (the COMPUTE with the %SEQA), instead of two
(the limit on the DO and the COMPUTE C).

The working code for the grid search for a fixed value of γ is:

stats(fractiles) y
compute gamma=2.0/sqrt(%variance)
compute ygrid=%seqa(%fract05,(%fract95-%fract05)/19,20)
nonlin a0 b1 b0 b1
compute bestrss=%na
dofor c = ygrid

nlls(noprint,frml=lstar) y 2 250
if .not.%valid(bestrss).or.%rss<bestrss

compute bestrss=%rss,bestc=c
end dofor c

This uses a NONLIN which doesn’t include C or GAMMA, since those are being
fixed on each evaluation. This restores to C the best of the grid values and
estimates all parameters of the model:

disp "Guess Value used" bestc

*
compute c=bestc
nonlin a0 a1 b0 b1 gamma c
nlls(frml=lstar) y 2 250

The setup for the grid search across C with GAMMA being estimated given C is
similar. We’ll include all the instructions, even though many are the same as
before:

stats(fractiles) y
compute gamma0=2.0/sqrt(%variance)
compute ygrid=%seqa(%fract05,(%fract95-%fract05)/19,20)
nonlin a0 b1 b0 b1 gamma
compute bestrss=%na
dofor c = ygrid

compute gamma=gamma0
nlls(noprint,frml=lstar) y 2 250
if .not.%valid(bestrss).or.%rss<bestrss

compute bestrss=%rss,bestc=c,bestgamma=gamma
end dofor c

This now includes GAMMA in the parameter set on the NONLIN and saves the
value of GAMMA along with C when we find an improvement. Note that GAMMA

Non-linear Least Squares 86

is restored to its original guess value each time through the loop—this avoids
problems if (for instance) the first values of C have an optimal GAMMA which
is large. If GAMMA isn’t re-initialized, it will use the value it got as part of the
previous estimation, which might be a problem.

We now have to restore the best values for both C and GAMMA:

disp "Guess values used" bestc "and" bestgamma
compute c=bestc,gamma=bestgamma
nonlin a0 a1 b0 b1 gamma c
nlls(frml=lstar) y 2 250

The bivariate grid search requires that we also set up a grid for γ. We’ll use
the same grid for c. Since γ has to be positive, we’ll use the %EXP function with
%SEQA to generate a geometric sequence. %EXP takes the element-by-element
exp of a matrix—here it will give us fractions ranging from .25 to 25 of the
reciprocal of the inter-quartile range of the data.12

stats(fractiles) y
compute ygrid=%seqa(%fract05,(%fract95-%fract05)/19,20)
compute ggrid=%exp(%seqa(log(.25),.1*log(100),11))/(%fract75-%fract25)

As with the first grid, we leave both GAMMA and C out of the parameter set. We
nest the two DOFOR loops (the order here doesn’t matter), and do the NLLS and
the test for improvement inside the inner loop.

nonlin a0 b1 b0 b1
compute bestrss=%na
dofor c = ygrid

dofor gamma = ggrid
nlls(noprint,frml=lstar) y 2 250
if .not.%valid(bestrss).or.%rss<bestrss

compute bestrss=%rss,bestc=c,bestgamma=gamma
end dofor gamma

end dofor c

As before, we restore the best values for both, and estimate the full set of pa-
rameters:

disp "Guess values used" bestc "and" bestgamma
compute c=bestc,gamma=bestgamma
nonlin a0 a1 b0 b1 gamma c
nlls(frml=lstar) y 2 250

12The inter-quartile range is the distance between the 25%-ile and 75-%ile of a series, and
is a (robust) alternative to the standard deviation for measuring dispersion since it isn’t an
sensitive to outliers.

Non-linear Least Squares 87

Not surprisingly (since it’s with constructed data), all three grid search meth-
ods end up with the same optimum as we got originally. That may not be the
case with actual data, as we’ll see in Section 3.8.

3.7 Smooth Transition Regression

In the models examined above, the threshold variable was a lag of the depen-
dent variable. It’s also possible to use a lag of the difference (known as a mo-
mentum TAR model), or possibly some other linear combination of lags (several
period average for instance). Because the threshold in any of these cases is en-
dogenous, the dynamics of the generated process can be quite complicated.

It’s also possible to apply the same type of non-linear model to a situation where
the threshold is exogenous. Such models are called Smooth Transition Regres-
sion (or STR) rather than STAR. One obvious case would be where the thresh-
old variable is time—so the model has a structural break at some point but
smoothly moves from one regime to the other, perhaps due to a gradual rollout
or slow adoption of new technologies.

The following program simulates a series with an LSTR break such that:

yt = 1 + 3/ [1 + exp(−0.075(t− 100))] + 0.5yt−1 + εt (3.7)

Note that the centrality parameter is 100 and that γ = 0.075. Here, the break
affects only the intercept term as the autoregressive parameter is always 0.5.
Since the value of θ ranges from 0 to 1, the intercept is 1 for small values of
t and is 4 for large values of t. With an autoregressive parameter of 0.5, the
mean of the series is about 2 for small values of t and is about 8 for very large
values of t. Nevertheless, with a smooth LSTR break, the average value of the
series starts to slowly shift upward beginning around t = 75 and continues the
upward shift until the process levels off at roughly t = 125.

The first part of the program (Example 3.4) sets the default length of a se-
ries to be 250 observations, seeds the random number generator and creates
the eps series containing 250 pseudo-random numbers drawn from a normal
distribution with a standard deviation of unity.

all 250
seed 2003
set eps = %ran(1)

The next two lines create the series for θ and the yt. The resulting series is
graphed, producing Figure 3.5:

set theta = 1/(1+exp(-.075*(t-100.)))
set(first=2.) y = 1 + 3*theta + 0.5*y{1} + eps
graph(footer="A Simulated LSTR Break") 1
y

Non-linear Least Squares 88

25 50 75 100 125 150 175 200 225 250
-2

0

2

4

6

8

10

12

Figure 3.5: A Simulated LSTR Break

Note that it’s easier to simulate this because the θ function can be generated
separately from the y.

This type of model is much easier to handle than a STAR because the “break”,
while not necessarily sharp, has an easily visible effect: here the series seems
to have a clearly higher level at the end than at the beginning.

One way to proceed might be to estimate the series as a linear process and
create guess values based upon the estimated coefficients. Since the intercept
appears to be lower near the start of the data set, this makes the first branch
somewhat lower than the linear estimate, and the second somewhat higher.13

linreg(noprint) y
constant y{1}
compute a1=%beta(2),a0=%beta(1)-%stderrs(1),b0=2*%stderrs(1)
compute c=75.0,gamma=.25

The guess value for c appears at least reasonable given the graph, as 75 seems
to be roughly the point where the data starts changing. This value of γ may be
a bit too high (at γ = .25 about 90% of the transition will be over the range of
[c− 12, c+ 12]) but it appears to work in this case:

nlls(frml=lstar,iterations=200) y

13Since the second branch intercept is the sum of a0 and b0, b0 is initialized to the guess at
the difference between the two intercepts.

Non-linear Least Squares 89

Nonlinear Least Squares - Estimation by Gauss-Newton
Convergence in 9 Iterations. Final criterion was 0.0000029 <= 0.0000100
Dependent Variable Y
Usable Observations 249
Degrees of Freedom 244
Skipped/Missing (from 250) 1
Centered Rˆ2 0.8871302
R-Barˆ2 0.8852799
Uncentered Rˆ2 0.9725995
Mean of Dependent Variable 5.4629432995
Std Error of Dependent Variable 3.0993810584
Standard Error of Estimate 1.0497715136
Sum of Squared Residuals 268.89293630
Regression F(4,244) 479.4457
Significance Level of F 0.0000000
Log Likelihood -362.8848
Durbin-Watson Statistic 1.9852

Variable Coeff Std Error T-Stat Signif
**
1. A0 0.723962117 0.181964155 3.97860 0.00009144
2. A1 0.433037455 0.057838156 7.48705 0.00000000
3. B0 3.876373910 0.448189508 8.64896 0.00000000
4. GAMMA 0.065350537 0.012699962 5.14573 0.00000055
5. C 97.482532947 3.385817497 28.79143 0.00000000

The coefficient estimates are reasonably close to the actual values in the data
generating process. As an exercise, you might want to experiment with differ-
ent initial guesses. It turns out that, for this model, the results are quite robust
to the choice of the initial conditions. Also, use the AIC and BIC to compare the
fit of this model to that of a linear model and to a model estimated with a sharp
structural break.

A grid search for a threshold based upon time is simpler than it is for a con-
tinuous variable, as you can just loop over the entries. The following does a
preliminary grid search over the center 70% of the data (leaving out 15% at
either end). It also saves the values of the sum of squares into the series RSS
so we can graph it (Figure 3.6):

nonlin a0 a1 b0 gamma
set rss = %na
do time=38,213

compute gamma=.25
compute c=time
nlls(frml=lstr,iterations=200,noprint) y
if %converged==1

compute rss(time)=%rss
end do ic

This is doing the second form of grid search, where γ is estimated for each test
value of c. We don’t need to save the best value for c because we can simply use
EXTREMUM to find the best value, and entry at which it’s achieved (%MINENT is
defined by EXTREMUM):

Non-linear Least Squares 90

50 75 100 125 150 175 200
260

280

300

320

340

360

Figure 3.6: Sum of Squares for LSTR Break

extremum rss
compute c=%minent
compute gamma=.25
nonlin a0 a1 b0
nlls(frml=lstr,iterations=200) y
nonlin a0 a1 b0 gamma c
nlls(frml=lstr,iterations=200) y

This gives us the same results as we got with the empirical guess values. The
graph of the sums of squares (as a function of time) is produced with:

graph(footer="Sum of Squares for LSTR Break") 1
rss 38 213

Note that the model doesn’t always converge for larger values, which is why
the graphs has gaps. (Note the test for %CONVERGED in the grid search loop
above).

Non-linear Least Squares 91

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
-25

-20

-15

-10

-5

0

5

10

15

20

Figure 3.7: Annualized Inflation Rate (Measured by PPI)

3.8 An LSTAR Model for Inflation

Our previous examples used simulated data, so we knew what the “true” model
was. We will now try to fit an LSTAR model to the U.S. inflation rate. The full
program is Example 3.5. We can compute and graph (Figure 3.7) the (annual-
ized) inflation rate with:

set pi = 400.0*log(ppi/ppi{1})
graph(footer="Annualized Inflation Rate (Measured by PPI)",$

grid=(t==1983:1))
pi

It’s fairly clear from looking at this that there is a difference in the process
in the period from 1973 to 1980 compared with after that. During the 1970’s,
inflation was often over 5% quarter after quarter; more recently, almost any
time inflation exceeds 5% in a quarter, it is followed by a quick drop. While the
U.S. monetary policy has never formally used “inflation targeting”, it certainly
seems possible that the inflation series since the 1980’s might be well-described
by a non-linear process similar to the one generated in Section 3.6.

We’ll focus on the sample period from 1983:1 on. In the simulated example, we
knew that the process was an LSTAR with AR(1) branches—here we don’t know
the form, or even know whether an LSTAR will even work. We can start by see-
ing if we can identify a AR model from the autocorrelation function (restricting
the calculation to the desired sample, Figure 3.8):

@bjident pi 1983:1 *

Since we’re picking a pure autoregression, the partial autocorrelations are the
main statistic, and they would indicate either 1 or 4 lags. Since these statistics

Non-linear Least Squares 92

0 5 10 15 20 25
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

CORRS
PARTIALS

Figure 3.8: Correlations of Inflation Rate (1983-2012)

are being computed assuming a single model applies to the whole sample, it
makes sense to work with the more general model to start, possibly reducing
it if it appears to be necessary. Note that there is no reason the two branches
must have the same form.

Now, we can estimate the base AR(4) model and look at the autocorrelations of
the residuals (Figure 3.9):

linreg pi 1983:1 *
constant pi{1 to 4}
@regcorrs(qstats,footer="Residuals from AR(4) Model")

Linear Regression - Estimation by Least Squares
Dependent Variable PI
Quarterly Data From 1983:01 To 2012:04
Usable Observations 120
Degrees of Freedom 115
Centered Rˆ2 0.1453374
R-Barˆ2 0.1156100
Uncentered Rˆ2 0.3440071
Mean of Dependent Variable 2.2002048532
Std Error of Dependent Variable 4.0148003022
Standard Error of Estimate 3.7755989989
Sum of Squared Residuals 1639.3419971
Regression F(4,115) 4.8890
Significance Level of F 0.0011203
Log Likelihood -327.1461
Durbin-Watson Statistic 1.9443

Variable Coeff Std Error T-Stat Signif
**
1. Constant 2.009014916 0.474728227 4.23193 0.00004681
2. PI{1} 0.345155837 0.090901340 3.79704 0.00023547
3. PI{2} -0.180008354 0.095737234 -1.88023 0.06260632
4. PI{3} 0.151718031 0.096356361 1.57455 0.11810720
5. PI{4} -0.227600168 0.091450487 -2.48878 0.01424990

Non-linear Least Squares 93

Residuals from AR(4) Model
2 4 6 8 10 12 14 16 18 20

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Q= 10.00 P-value 0.97889
AIC= 5.536 SBC= 5.652

Figure 3.9: Residuals from AR(4) Model

Everything seems fine. Maybe we could look at re-estimating dropping the 3rd
lag, but otherwise this looks fine. However, there are some other tests that
we can apply that could pick up more subtle failures in the model. One of
these, which looks specifically at an autoregression and tests for the possibil-
ity of STAR behavior is STARTEST. The testing procedure is from Terasvirta
(1994). A similar test for more general smooth transition behavior is provided
by REGSTRTEST.

The two main options on STARTEST are P=number of lags and D=delay (lag) in
the threshold. It’s recommended that you try several values for D—here, we’ll
do 1, 2 and 3:

@startest(p=4,d=1) pi 1983:1 *
@startest(p=4,d=2) pi 1983:1 *
@startest(p=4,d=3) pi 1983:1 *

The results for D=2 are the most significant, which is the method used to choose
the best delay:
Test for STAR in series PI
AR length 4
Delay 2

Test F-stat Signif
Linearity 3.6535512 0.0001
H01 5.3764713 0.0005
H02 1.5748128 0.1863
H03 3.2926785 0.0139
H12 3.5313261 0.0012

These provide a series of LM tests for the correlation of the standard AR resid-
uals with various non-linear functions on the data (products of the regressors
with powers of the threshold variable). You should be very careful in inter-
preting the results of this (and any other) LM diagnostic test. If the data show

Non-linear Least Squares 94

STAR behavior, we would expect that this test would pick it up; you might want
to check this with the data from Example 3.3. However, a significant test re-
sult doesn’t necessarily mean that STAR behavior is present—it indicates that
there is evidence of some type of non-linearity not captured by the simple AR.
However, it is also possible for this test to be “fooled” by outliers using the
mechanism described on page 79.

The different test statistics are for different set of powers (from 1 to 3) of the
threshold in the interaction terms. The “Linearity” statistic is a joint test of all
of them. The combination of results points to a LSTAR rather than an ESTAR
as the more likely model—some type of STAR behavior is possible given the
rejection of linearity, but if H03 (the 3rd power) were insignificant, it would
point towards an ESTAR which, because of symmetry, wouldn’t have 3rd power
contributions.

Because the model now is bigger, and may be subject to change, we’ll introduce
a more flexible way to handle it:

linreg pi 1983:1 *
constant pi{1 to 4}
frml(lastreg,vector=b1) phi1f
frml(lastreg,vector=b2) phi2f

This estimates the standard AR(4) model, then defines two FRMLs, called PHI1F
and PHI2F, each with the form of that last regression (the LASTREG option).
The PHI1F formula will use the VECTOR B1 for its coefficients and PHI2F will
use B2. Thus, given values for the B1 coefficients, PHI1F(T) will evaluate

b1(1)+b1(2)*pi(t-1)+b1(3)*pi(t-2)+b1(4)*pi(t-3)+b1(5)*pi(t-4)

The advantage of this is clear: we can change the entire setup of the model by
changing that LINREG.

We’ll now split the parameter set into two parts: STARPARMS, which will be
just the γ and c, and REGPARMS, which will have the two “B” VECTORS. This is
done using NONLIN with the PARMSET option.

nonlin(parmset=starparms) gamma c
nonlin(parmset=regparms) b1 b2

A PARMSET is a convenient way to organize a set (or subset) of non-linear pa-
rameters. If you “add” PARMSET’s with (for instance) STARPARMS+REGPARMS,
you combine them into a larger set. Any of the estimation instructions which
allow for general non-linear parameters (such as NLLS) have a PARMSET option
so you can put in a PARMSET that you’ve created.

We can put together the final calculation for the LSTAR explanatory model with

frml glstar = %logistic(gamma*(pi{2}-c),1.0)
frml star pi = g=glstar,phi1f+g*phi2f

Non-linear Least Squares 95

This does the same general type of calculation as the single FRML used in Ex-
ample 3.3, but has broken it up into more manageable pieces.

The following will do the estimation using the “data-determined” method of
guess values (page 82):

stats pi 1983:1 *
compute c=%mean,gamma=1.0/sqrt(%variance)

*
nlls(parmset=regparms,frml=star,noprint) pi 1983:1 *
nlls(parmset=regparms+starparms,frml=star,print) pi 1983:1 *

This uses the PARMSET option on NLLS and the ability to “add” PARMSETs to
simplify the two-step estimation process; the first NLLS holds c and γ fixed
(since they aren’t in REGPARMS), estimating only the regression coefficients,
while the second NLLS does the whole model.

Unfortunately, the results are not promising. The model doesn’t converge and
the coefficients look like:
1. B1(1) 0.85 1.50 0.56531 0.57303574
2. B1(2) 0.47 0.13 3.48749 0.00070638
3. B1(3) -0.24 0.18 -1.31836 0.19017384
4. B1(4) 0.19 0.12 1.66112 0.09958973
5. B1(5) -0.03 0.19 -0.13401 0.89364362
6. B2(1) 16687.40 37452754.62 4.45559e-004 0.99964532
7. B2(2) -503.54 1125697.16 -4.47310e-004 0.99964392
8. B2(3) -250.03 559047.27 -4.47245e-004 0.99964398
9. B2(4) -1326.00 2958199.04 -4.48246e-004 0.99964318
10. B2(5) -1459.13 3260045.06 -4.47579e-004 0.99964371
11. GAMMA 0.38 0.47 0.81112 0.41908326
12. C 27.94 5961.68 0.00469 0.99626886

The values for B2 are nonsensical, as is C, which is much higher than the
largest observed value in the data range. How is it possible for this to give
a lower sum of squares than a non-threshold model (which it does–even not
converged, it’s 1309 vs 1639 for the simple AR(4))? With the large value of
c, the θ function is only barely larger than 0 for any of the data points—the
largest is roughly .001 at 2008:2. Clearly, however, that tiny fraction applied
to those very large B2 values improves the fit (quite a bit) at some of the data
points.

We can see if the more complicated preliminary grid search helps, though this
seems unlikely given the results above (where c drifted off outside the data
range). To use the combined PARMSET’s, we need to define a new one (called
GAMMAONLY) which leaves C out, since we want to peg that at each pass through
the grid:

Non-linear Least Squares 96

stats(fractiles) pi 1983:1 *
*
nonlin(parmset=gammaonly) gamma

*
compute bestrss=%na
dofor c = %seqa(%fract10,(%fract90-%fract10)/19,20)

compute gamma=1.0/sqrt(%variance)
nlls(parmset=regparms,frml=star,noprint) pi 1983:1 *
nlls(parmset=regparms+gammaonly,frml=star,noprint) pi 1983:1 *
if .not.%valid(bestrss).or.%rss<bestrss

compute bestrss=%rss,bestc=c,bestgamma=gamma
end dofor

*
disp "Grid choices" bestc bestgamma

This picks the following which (as might be expected) has c at the upper bound
of the grid.

Grid choices 7.28375 0.33748

As before, the following would estimate the model given those guess values.
Since we now want to estimate both c and γ, we use STARPARMS rather than
GAMMAONLY.

compute c=bestc,gamma=bestgamma
nlls(parmset=regparms,frml=star,noprint) pi 1983:1 *
nlls(parmset=regparms+starparms,frml=star,print) pi 1983:1 *

The outcome, however, is basically the same as before.

When a model fails like this, it’s helpful to know what conditions might cause
it. With any model, you need to check for major structural breaks, but STAR
models are particularly susceptible to outliers so that’s a first check. If we take
a look at the residuals from that last (unconverged) non-linear model and the
original linear regression (Figure 3.10):

set nllsresids = %resids
linreg pi 1983:1 *
constant pi{1 to 4}
set olsresids = %resids
graph(footer="Comparison of STAR and OLS Residuals",$

key=upleft,klabels=||"STAR","OLS"||) 2
nllsresids
olsresids

The 2008:4 residual on the linear model is about 7 standard deviations. Since
2008:4 is preceded by three relatively high values for π, the STAR model is able
to combine that with a “trigger” using the second period lag in the threshold to

Non-linear Least Squares 97

1983 1986 1989 1992 1995 1998 2001 2004 2007 2010
-25

-20

-15

-10

-5

0

5

10

15
STAR
OLS

Figure 3.10: Comparison of STAR and OLS Residuals

dramatically reduce the residual at that point, at the cost of worse fits follow-
ing a few of the other large values. The change in the sum of squares due to the
better “fit” at that one point for the STAR more than covers the difference be-
tween the sums of squares over the whole 120 data points, so the fit is actually,
on net, worse on the other 119 entries.

If we revisit the test for STAR, but apply it to the data set only through 2007:4,
we get a very different result:

@startest(p=4,d=2) pi 1983:1 2007:4

Test for STAR in series PI
AR length 4
Delay 2

Test F-stat Signif
Linearity 1.1955332 0.3001
H01 2.4000773 0.0557
H02 0.4187428 0.7947
H03 0.8483300 0.4986
H12 1.3787493 0.2171

Our conclusion is that a STAR process doesn’t seem to be required to explain the
behavior of the inflation rate over that period. Since the autoregressive repre-
sentation has relatively little persistence, it’s quite possible that the apparent
sharp drops are simply the result of the natural behavior of an AR process
with low serial correlation. If there is some systematic non-linearity, it isn’t
explained by a STAR model.

Non-linear Least Squares 98

3.9 Functions with Recursive Definitions

An alternative model which shows non-linear adjustment is the bilinear model.
A simple case of this is

yt = αyt−1 + βεt−1 + γyt−1εt−1 + εt (3.8)

If γ were zero, this would be a standard ARMA(1,1) model. The “bilinear” part
of this is the last term, which is linear in yt−1 given εt−1 and linear in εt−1 given
yt−1. For this model

∂yt
∂εt−1

= α + β + γyt−1 + γεt−1

which takes into account the fact that yt−1 moves with εt−1. Note that when γ
is zero, the derivative doesn’t depend upon the past value(s) of y or the size of
εt−1—that’s what the process being “linear” means. With γ non-zero, it depends
upon both.

What complicates this is that two of the regressors depend upon the unobserv-
able εt−1 which has a recursive definition: we can’t compute the residual εt
without εt−1 (and the values for α, β and γ) and we can’t compute εt−1 with-
out εt−2, etc. This is also true for ARMA models with MA terms, but because
that’s such a standard type of model, the recursion is handled internally by the
BOXJENK instruction. For a non-standard recursive model, you’ll have to write
the FRML carefully to make sure that it is calculated the way you want.

One obvious problem is that the recursion has to start somewhere. If we begin
at t = 2 (which is the first data point where yt−1 is available), what can we use
for εt−1? Since it’s a residual, the most obvious choice is 0. The following gets
us started:

dec series eps
clear(zeros) eps

The series EPS will be used for the generated time series of residuals.

In Example 3.6, we’ll again use the inflation rate over the period from 1983 on
as the dependent variable:

set pi = 400.0*log(ppi/ppi{1})

To the three parameters in (3.8), we’ll add an intercept to allow for a non-zero
mean.14 We’ll call that C0. So the NONLIN instruction to declare the non-linear
parameters is

nonlin c0 alpha beta gamma

14Note, however, that the bilinear term yt−1εt−1 has a non-zero expectation. A bilinear term
where the y is dated before the ε will have zero expected value.

Non-linear Least Squares 99

The following is probably the simplest way to do the FRML:

frml bilinear pi = z=c0+alpha*pi{1}+beta*eps{1}+gamma*pi{1}*eps{1},$
eps=pi-z,z

In the end, the FRML needs to provide the explanatory part of the equation, but
we need that to compute the current residual for use at the next data point.15

Thus the three-step calculation, generating into the (REAL) variable Z the sys-
tematic part, computing the current value of EPS using the dependent variable
and the just-computed value of Z, then bringing back the Z to use as the return
value of the FRML. If we didn’t add that ,Z to the end return value would be
the last thing computed, which would be EPS.

Obvious guess values here would be either the results from an AR(1) model
(β and γ both zero) or from an ARMA(1,1) model (only γ zero). We’ll use the
ARMA. To do this, all we have to do is peg GAMMA to 0 and let NLLS handle it:

nonlin c0 alpha beta gamma=0.0
nlls(frml=bilinear) pi 1983:1 *

We then relax the restrictions to get our model:

nonlin c0 alpha beta gamma
nlls(frml=bilinear,iters=500) pi 1983:1 *

The before and after estimates (cut down to the key values) are
Sum of Squared Residuals 1676.4146107

Variable Coeff Std Error T-Stat Signif
**
1. C0 3.063121504 0.713047291 4.29582 0.00003615
2. ALPHA -0.410666169 0.171062737 -2.40068 0.01794100
3. BETA 0.755033543 0.125563348 6.01317 0.00000002

Sum of Squared Residuals 1622.0602194

Variable Coeff Std Error T-Stat Signif
**
1. C0 3.170708712 0.695829116 4.55673 0.00001293
2. ALPHA -0.561753920 0.102134138 -5.50016 0.00000023
3. BETA 0.926950151 0.043157032 21.47854 0.00000000
4. GAMMA 0.007104857 0.003221804 2.20524 0.02940923

The bilinear model fits somewhat better than the ARMA.16 From the t-statistic,
the bilinear term is significant at standard levels, but just barely. However,
the sign on γ would appear to be “wrong” to explain non-linearity due to some
form of inflation targeting—a positive value of γ means that large residuals

15%RESIDS doesn’t get defined until the end of the calculations, so you can’t use it here.
16If you use BOXJENK to estimate the ARMA model, you’ll get effectively the same coeffi-

cients for the AR and MA, but a different constant because the “constant” in the model used by
BOXJENK is the process mean, not the intercept in a reduced form equation.

Non-linear Least Squares 100

(of either sign) tend to produce higher values for π in the next period. If we
re-estimate ending at 2008:2 (just before the big negative outlier), we get

Variable Coeff Std Error T-Stat Signif
**
1. C0 2.957252096 0.735882030 4.01865 0.00011494
2. ALPHA -0.213433697 0.264220271 -0.80779 0.42116963
3. BETA 0.597679361 0.217233787 2.75132 0.00707134
4. GAMMA -0.030825660 0.021977365 -1.40261 0.16389334

so the positive γ seems to have been created by that outlier. You might ask
why we didn’t just “SMPL” the outlier out of the data set (with the option
SMPL=T<>2008:3). With a recursively-defined function, you can’t really do
that. If you try to use SMPL this way, it will cut the estimation off at the end of
2008:2 anyway—since EPS doesn’t get defined for 2008:3, it’s not available to
calculate the model at 2008:4, so EPS can’t be computed for 2008:4, and, extend-
ing this, the remainder of the sample can’t be computed. You could “dummy
out” the data point by adding the dummy variable created with

set dummy = t==2008:4

to the model.17 What that does, however, is forcibly make EPS equal to zero
at 2008:3, which might cause problems explaining the data in the periods im-
mediately after this. Since it’s near the end of the data set, simply cutting the
sample before the big outlier is probably the best approach, and the results
would show that, again, we haven’t come up with a good way to describe the
inflation rate with a nonlinear time series model.

17As an exercise, you might want to try to incorporate that.

Non-linear Least Squares 101

3.10 Tips and Tricks

3.10.1 Understanding Computer Arithmetic

The standard representation for “real” numbers in statistical computations for
roughly the past 40 years has been “double precision”. This uses 64 bits to rep-
resent the value. The older “single precision” is 32 bits. Before the introduction
of specialized “floating point processors”, both the single and double precision
floating point calculations had to be done using blocks of shorter integers, sim-
ilar to the way that children are taught to multiply two four-digit numbers. If
you compare the amount for work required to multiply two two-digit numbers
by hand vs the amount required to do two four-digit numbers, you can see that
single precision calculations were quite a bit faster, and were sometimes cho-
sen for that reason. However, particularly when used with time series data,
they were often inadequate—even a relatively short univariate autoregression
on (say) log GDP wouldn’t be computed accurately at single precision.

There are three principal problems which are produced due to the way com-
puters do arithmetic: overflow, underflow and loss of precision. The standard
now for double precision number is called IEEE 754. This uses 1 sign bit, 11
exponent bits and 53 “significand” bits, with a lead 1 bit assumed, so 52 are
actually needed.18 The value is represented in scientific notation as (in binary,
though we’ll use standard notation)

(sign)× 1.xxxxxxxxxxxxxxx× 10power

The range of the power is from -308 to +308. An overflow is a calculation which
makes the power larger than +308, so there’s no valid double precision repre-
sentation. When this happens, RATS and most other software will treat the
result as “infinity”.19 An underflow is a calculation which makes the power less
than -308. Here the standard behavior is to call the result zero.

Most statistical calculations are able to steer clear of over- and underflow, typi-
cally by using logs rather than multiplying—the main cause of these conditions
is multiplying many large or small numbers together, so adding logs avoids
that. However, there are situations (particularly in Bayesian methods) where
the actual probabilities or density functions are needed, and you may have to
exercise some care in doing calculations in those cases.

A more serious problem is loss of precision. What’s the value of

1.00000000000000001− 1.0

If you’re a computer doing double-precision arithmetic, it’s 0 because it doesn’t
have the 17 significant digits available to give different representations to the

18The number 0 is represented by all zero bits.
19The IEEE standard has special codings for infinity and other “denormals” such as NaN (not

a number) for a result such as
√
−1.

Non-linear Least Squares 102

two values on either side of the −. When you subtract two large and almost
equal numbers, you may lose almost all the precision in the result. Take the
following situation—this is (to 10 digits) the cross product matrix of two lags of
GDP from the data set. If we want to do a linear regression with those two lags
as the regressors, we would need to invert this matrix.

14872.33134 14782.32952
14782.32952 14693.68392

You can compute the determinant of this20 using all ten digits, and the same

rounding to just five with

disp 14872.33134*14693.68392-14782.32952ˆ2
disp 14872.*14694.-14782.ˆ2

The results are very different:

12069.82561
21644.00000

Even though the input values in the second case were accurate to five digits,
the end result isn’t even correct to a single digit. And this is just a 2× 2 case.

Linear regressions in RATS and most other software are set up to avoid these
types of problems where possible. For instance, specialized inversion routines
are used. While theoretically, the sum of squared residuals could be computed
as

y′y − y′Xβ̂

that’s “subtracting two big numbers to create a small one” that can cause preci-
sion problems. Instead, RATS computes the individual residuals and uses those
to compute the sum of squares.

It’s much easier to work around potential problems when the calculations are
as well-structured as a linear regression. It’s much harder to do this with non-
linear ones since it’s not always obvious where the difficulties may lie. This is
why it’s important to understand the usefulness of minor changes to the model
discussed in Section 3.4.

3.10.2 The instruction NLPAR

The most important controls for non-linear estimation are the ITERS, CVCRIT
and METHOD options on the estimation instructions. There are, however, quite

20RATS uses a different method for doing the inversion.

Non-linear Least Squares 103

a few other controls which can be used for particularly troublesome estima-
tion problems. Rather than add these (rarely used) tweaks in each estimation
instruction, they are handled by the separate instruction NLPAR.

One option on NLPAR that changes fundamentally how convergence is deter-
mined is

CRITERION=[COEFFICIENTS]/VALUE
Convergence occurs if the change in the COEFFICIENTS or VALUE is less
than the number specified by the CVCRIT on the estimation instruction.

In most cases, we want the coefficients to be well-estimated, as that’s usually
the main interest. The default is thus CRITERION=COEFFICIENTS, so the pro-
cess doesn’t converge until the change in each individual coefficient is small.
However, in some cases, you don’t need that—you just need to be reasonably
close to the optimum. Using NLPAR(CRIT=VALUE) changes the convergence
test to look only at the function value, and not the coefficients, and is usually
met more easily. When might that be reasonable? Perhaps you’re only doing
some type of grid search and need only a reasonable approximation to the op-
timum. In the examples we did in this chapter, that wouldn’t be necessary, but
a grid search with a much more complicated function might take hours. Cut-
ting that by a 1/3 by using a looser fit might be noticeable. In some cases, you
may have a function where an optimum at a boundary as described on page 64
might be possible. In that case, changes of a parameter on the order of 1000’s
might have no noticeable effect on the function value so convergence on coef-
ficient values would never be met. However, a better approach in a case like
that is to either re-parameterize the model so the (new) parameter is bounded
rather than unbounded, or to simply peg it at a large value of the proper sign
(since it should be clear the optimum is at one of the infinities) and estimate
the rest of the model.

Some other options control the sub-iteration process using by NLLS and most
other non-linear estimation instructions. As we describe on page 66, NLLS
does not always take a full Gauss-Newton step, since a full step might actually
increase the sum of squares. Instead, it moves in the same direction as the G-
N step, often taking a full step, but sometimes a shorter one. It’s looking for a
point where the new sum of squares function is lower than the current one, and
where certain other criteria are met. The process of choosing how far to go in
the selected direction is known as sub-iteration. Gauss-Newton is usually well
enough behaved that adjustments to this aren’t necessary—there are other
types of optimization algorithms for which this isn’t true. The main option in
this category is EXACTLINESEARCH. By default, the subiteration process is gen-
erally to start with a full step—if that doesn’t work (sum of squares increases),
take a half-step, test that, take a quarter step, etc. until a point is found at
which the sum of squares is better than it was. With EXACTLINESEARCH, in-
stead of this simple process of searching for a place where the sum of squares

Non-linear Least Squares 104

is better, it searches along the direction for the place where it’s best. That
sounds like a good idea, but in fact, is usually just a waste of calculations—
since it’s not finding the optimum of the function itself (just the optimum in
one direction from a certain point), the added time required rarely pays off. It
can sometimes be helpful in big models with dozens of parameters, but almost
never makes sense with small ones.

One option which was added with RATS version 8.1 is the DERIVES option:

DERIVES=[FIRST]/SECOND/FOURTH

NLLS and most other FRML-based estimation instructions use numerical meth-
ods when they need derivatives. While some functions have analytical deriva-
tives, many don’t, or the analytical derivatives are too complicated to be calcu-
lated feasibly. 21 An approximation to the derivatives of εt with respect to θ at
θ0 require that we compute εt at θ0 and at nearby points. These are often quite
accurate, but sometimes might not be. The proper amount by which to “per-
turb” θ isn’t known, and smaller isn’t necessarily better—too small a change
and the calculation might run into the loss of precision problem from Section
3.10.1. The default is DERIVES=FIRST, which does the simple arc-derivative
calculation:

f ′(θ) ≈ f(θ + h)− f(θ)

h

The h is chosen differently for each parameter based upon the information
known about it at the time. This requires one extra full function evaluation
per parameter to get the partial derivatives. With DERIVES=SECOND, the cal-
culation is done using

f ′(θ) ≈ f(θ + h)− f(θ − h)

2h

This requires two extra function evaluations per parameter, thus doubling the
time required for computing the derivatives. However, it’s more accurate as it
eliminates a “second order” term. It thus can be done with a slightly larger
value of h, which makes it less likely that precision issues will come up.

DERIVES=FOURTH is a four-term approximation which is still more accurate at
the cost of four times the calculation versus the simple numerical derivatives.

Again, in most cases, changing this won’t help, but it’s available for problems
where it appears that the accuracy of the derivatives seems to be an issue.

21For instance, the derivatives of εt in the bilinear model are a function of the derivatives at
all preceding time periods.

Non-linear Least Squares 105

3.10.3 The instruction SEED

The purpose of seeding the random number generator is to ensure that you gen-
erate the same data from when you do simulations. After all, computers are not
capable of generating truly random numbers–any sequence generated is actu-
ally a deterministic sequence. If you are aware of the algorithm used to gen-
erate the sequence, all values of the sequence can be calculated by the outside
observer. What computers generate are known as “pseudo-random” numbers
in the sense that the sequence is deterministic if you know the algorithm but
otherwise are indistinguishable from those obtained from independent draws
from a prespecified probability distribution.

In this manual, we use SEED in all the instructions which generate data so
you will get exactly the same data that we do. RATS uses a “portable” random
number generator which is designed to generate identical sequences on any
computer given the seed. If you don’t use SEED, the seed for the random num-
ber generator is initialized using date and time when the program is executed,
so it will be different each time and thus will generate a completely different
set of data.

Non-linear Least Squares 106

Example 3.1 Simple nonlinear regressions

These the simple non-linear least squares regressions from Sections 3.2 and
3.3.

cal(q) 1960:1
all 2012:4
open data quarterly(2012).xls
data(org=obs,format=xls)
*
set pi = 100.0*log(ppi/ppi{1})
set y = .001*rgdp
*
* Power function with GDP in inflation equation
*
nonlin b0 b1 b2 gamma
frml pif pi = b0+b1*pi{1}+b2*y{1}ˆgamma
linreg pi
constant pi{1} y{1}
compute b0=%beta(1),b1=%beta(2),b2=%beta(3),gamma=1.0
nlls(frml=pif) pi
*
* Power function with interest rates
*
nonlin a0 a1 a2 delta
linreg tb1yr
constant tb1yr{1} tb3mo{1}
frml ratef tb1yr = a0+a1*tb1yr{1}+a2*(tb3mo{1})ˆdelta
compute a0=%beta(1),a1=%beta(2),a2=%beta(3),delta=1.0
nlls(frml=ratef) tb1yr
*
test(title="Test of linearity")
4
1.0
*
set testsr 1 100 = .1*t
set lreffect 1 100 = 0.0
set lower 1 100 = 0.0
set upper 1 100 = 0.0
*
do t=1,100

summarize(noprint) $
%beta(3)*%beta(4)*testsr(t)ˆ(%beta(4)-1)/(1-%beta(2))

compute lreffect(t)=%sumlc
compute lower(t)=%sumlc-2.00*sqrt(%varlc)
compute upper(t)=%sumlc+2.00*sqrt(%varlc)

end do t
*
scatter(smpl=testsr>=2.0.and.testsr<=6.0,style=lines,vgrid=1.0,$

footer="Long-run effect using non-linear regression") 3
testsr lreffect
testsr lower / 2
testsr upper / 2

Non-linear Least Squares 107

linreg tb1yr
constant tb1yr{1} tb3mo{1}
summarize(title="Long-run effect using linear regression") $

%beta(3)/(1-%beta(2))

Non-linear Least Squares 108

Example 3.2 Sample STAR Transition Functions

These generate and graph the sample transition functions described in Section
3.5.

set y 1 201 = (t-100)/201.
compute c=0.0,gamma=10.0
set lstar = ((1 + exp(-gamma*(y-c))))ˆ-1
set estar = 1 - exp(-gamma*(y-c)ˆ2)
spgraph(footer="Shapes of STAR Transitions",vfields=1,hfields=2)
scatter(header="LSTAR Model",style=line,vlabels="Theta")
y lstar
scatter(header="ESTAR Model",style=line,vlabels="Theta")
y estar

spgraph(done)

Non-linear Least Squares 109

Example 3.3 STAR Model with Generated Data

This estimates the LSTAR model with generated data from Section 3.6.

all 250
seed 2003
set eps 1 350 = %ran(1)
set(first=1.0) x 1 350 = $

1.0+.9*x{1}+(-3.0-1.7*x{1})*%logistic(10.0*(x{1}-5.0),1.0)+eps
*
* Shift final 250 observations down
*
set y 1 250 = x(t+100)
*
graph(footer="The Simulated LSTAR Process")
y
*
nonlin a0 a1 b0 b1 gamma c
frml lstar y = (a0+a1*y{1})+$

(b0+b1*y{1})*%logistic(gamma*(y{1}-c),1.0)
*
* Guess values based upon linear regression
*
linreg y
constant y{1}
compute a0=%beta(1),a1=%beta(2),b0=0.0,b1=0.0
compute c=0.0,gamma=5.0
*
nlls(frml=lstar) y 2 250
*
* Guess values for C and GAMMA from sample statistics with regressions
* from NLLS with those fixed.
*
stats y
compute c=%mean,gamma=1.0/sqrt(%variance)
nonlin a0 a1 b0 b1
nlls(frml=lstar) y 2 250
nonlin a0 a1 b0 b1 gamma c
nlls(frml=lstar) y 2 250
*
* Guess value for C from grid search with fixed value of GAMMA
*
stats(fractiles) y
compute gamma=2.0/sqrt(%variance)
compute ygrid=%seqa(%fract05,(%fract95-%fract05)/19,20)
nonlin a0 b1 b0 b1
compute bestrss=%na
dofor c = ygrid

nlls(noprint,frml=lstar) y 2 250
if .not.%valid(bestrss).or.%rss<bestrss

compute bestrss=%rss,bestc=c
end dofor c
*

Non-linear Least Squares 110

disp "Guess Value used" bestc
*
compute c=bestc
nonlin a0 a1 b0 b1 gamma c
nlls(frml=lstar) y 2 250
*
* Guess value for C from grid search with GAMMA estimated separately
*
stats(fractiles) y
compute gamma0=2.0/sqrt(%variance)
compute ygrid=%seqa(%fract05,(%fract95-%fract05)/19,20)
nonlin a0 b1 b0 b1 gamma
compute bestrss=%na
dofor c = ygrid

compute gamma=gamma0
nlls(noprint,frml=lstar) y 2 250
if .not.%valid(bestrss).or.%rss<bestrss

compute bestrss=%rss,bestc=c,bestgamma=gamma
end dofor c
*
disp "Guess values used" bestc "and" bestgamma
*
compute c=bestc,gamma=bestgamma
nonlin a0 a1 b0 b1 gamma c
nlls(frml=lstar) y 2 250
*
* Guess values for C and GAMMA from bivariate grid search
*
stats(fractiles) y
compute ygrid=%seqa(%fract05,(%fract95-%fract05)/19,20)
compute ggrid=%exp(%seqa(log(.25),.1*log(100),11))/(%fract75-%fract25)
nonlin a0 b1 b0 b1
compute bestrss=%na
dofor c = ygrid

dofor gamma = ggrid
nlls(noprint,frml=lstar) y 2 250
if .not.%valid(bestrss).or.%rss<bestrss

compute bestrss=%rss,bestc=c,bestgamma=gamma
end dofor gamma

end dofor c
*
disp "Guess values used" bestc "and" bestgamma
compute c=bestc,gamma=bestgamma
nonlin a0 a1 b0 b1 gamma c
nlls(frml=lstar) y 2 250

Non-linear Least Squares 111

Example 3.4 Smooth Transition Break

This an example of a AR model with a smooth transition break in the mean
from Section 3.7.

cal(q) 1960:1
all 2012:4
open data quarterly(2012).xls
data(org=obs,format=xls)
*
set pi = 400.0*log(ppi/ppi{1})
graph(footer="Annualized Inflation Rate (Measured by PPI)",$

grid=(t==1983:1))
pi
*
@bjident pi 1983:1 *
*
linreg pi 1983:1 *
constant pi{1 to 4}
*
@regcorrs(qstats,footer="Residuals from AR(4) Model")
*
@startest(p=4,d=1) pi 1983:1 *
@startest(p=4,d=2) pi 1983:1 *
@startest(p=4,d=3) pi 1983:1 *
*
linreg pi 1983:1 *
constant pi{1 to 4}
frml(lastreg,vector=b1) phi1f
frml(lastreg,vector=b2) phi2f
*
nonlin(parmset=starparms) gamma c
nonlin(parmset=regparms) b1 b2
*
frml glstar = %logistic(gamma*(pi{2}-c),1.0)
frml star pi = g=glstar,phi1f+g*phi2f
*
stats pi 1983:1 *
compute c=%mean,gamma=1.0/sqrt(%variance)
*
nlls(parmset=regparms,frml=star,noprint) pi 1983:1 *
nlls(parmset=regparms+starparms,frml=star,print) pi 1983:1 *
*
stats(fractiles) pi 1983:1 *
*
nonlin(parmset=gammaonly) gamma
*
compute bestrss=%na
dofor c = %seqa(%fract10,(%fract90-%fract10)/19,20)

compute gamma=1.0/sqrt(%variance)
nlls(parmset=regparms,frml=star,noprint) pi 1983:1 *
nlls(parmset=regparms+gammaonly,frml=star,noprint) pi 1983:1 *
if .not.%valid(bestrss).or.%rss<bestrss

Non-linear Least Squares 112

compute bestrss=%rss,bestc=c,bestgamma=gamma
end dofor
*
disp "Grid choices" bestc bestgamma
*
compute c=bestc,gamma=bestgamma
nlls(parmset=regparms,frml=star,noprint) pi 1983:1 *
nlls(parmset=regparms+starparms,frml=star,print) pi 1983:1 *
*
* Compare residuals
*
set nllsresids = %resids
linreg pi 1983:1 *
constant pi{1 to 4}
set olsresids = %resids
graph(footer="Comparison of STAR and OLS Residuals",$

key=upleft,klabels=||"STAR","OLS"||) 2
nllsresids
olsresids
*
* Test just with the data through 2007:4
*
@startest(p=4,d=2) pi 1983:1 2007:4

Non-linear Least Squares 113

Example 3.5 LSTAR Model for Inflation

This attempts to fit an LSTAR model to the U.S. inflation rate. This is described
in detail in section 3.8.

cal(q) 1960:1
all 2012:4
open data quarterly(2012).xls
data(org=obs,format=xls)
*
set pi = 400.0*log(ppi/ppi{1})
graph(footer="Annualized Inflation Rate (Measured by PPI)",$

grid=(t==1983:1))
pi
*
@bjident pi 1983:1 *
*
linreg pi 1983:1 *
constant pi{1 to 4}
*
@regcorrs(qstats,footer="Residuals from AR(4) Model")
*
@startest(p=4,d=1) pi 1983:1 *
@startest(p=4,d=2) pi 1983:1 *
@startest(p=4,d=3) pi 1983:1 *
*
linreg pi 1983:1 *
constant pi{1 to 4}
frml(lastreg,vector=b1) phi1f
frml(lastreg,vector=b2) phi2f
*
nonlin(parmset=starparms) gamma c
nonlin(parmset=regparms) b1 b2
*
frml glstar = %logistic(gamma*(pi{2}-c),1.0)
frml star pi = g=glstar,phi1f+g*phi2f
*
stats pi 1983:1 *
compute c=%mean,gamma=1.0/sqrt(%variance)
*
nlls(parmset=regparms,frml=star,noprint) pi 1983:1 *
nlls(parmset=regparms+starparms,frml=star,print) pi 1983:1 *
*
stats(fractiles) pi 1983:1 *
*
nonlin(parmset=gammaonly) gamma
*
compute bestrss=%na
dofor c = %seqa(%fract10,(%fract90-%fract10)/19,20)

compute gamma=1.0/sqrt(%variance)
nlls(parmset=regparms,frml=star,noprint) pi 1983:1 *
nlls(parmset=regparms+gammaonly,frml=star,noprint) pi 1983:1 *
if .not.%valid(bestrss).or.%rss<bestrss

Non-linear Least Squares 114

compute bestrss=%rss,bestc=c,bestgamma=gamma
end dofor
*
disp "Grid choices" bestc bestgamma
*
compute c=bestc,gamma=bestgamma
nlls(parmset=regparms,frml=star,noprint) pi 1983:1 *
nlls(parmset=regparms+starparms,frml=star,print) pi 1983:1 *
*
* Compare residuals
*
set nllsresids = %resids
linreg pi 1983:1 *
constant pi{1 to 4}
set olsresids = %resids
graph(footer="Comparison of STAR and OLS Residuals",$

key=upleft,klabels=||"STAR","OLS"||) 2
nllsresids
olsresids
*
* Test just with the data through 2007:4
*
@startest(p=4,d=2) pi 1983:1 2007:4
*
set threshvar = pi{1}+pi{2}
linreg pi 1983:1 *
constant pi{1 to 4}
@regstrtest(threshold=threshvar) 1983:1 *
frml glstar = %logistic(gamma*(threshvar-c),1.0)
*
stats threshvar 1983:1 *
compute c=%mean,gamma=1.0/sqrt(%variance)
*
nlls(parmset=regparms,frml=star,noprint) pi 1983:1 *
nlls(parmset=regparms+starparms,frml=star,print) pi 1983:1 *

Non-linear Least Squares 115

Example 3.6 Bilinear Model

This is an example of a bilinear model from Section 3.9.

cal(q) 1960:1
all 2012:4
open data quarterly(2012).xls
data(org=obs,format=xls)
*
set pi = 400.0*log(ppi/ppi{1})
*
dec series eps
clear(zeros) eps
*
nonlin c0 alpha beta gamma
frml bilinear pi = z=c0+alpha*pi{1}+beta*eps{1}+gamma*pi{1}*eps{1},$

eps=pi-z,z
*
* Estimate ARMA model
*
nonlin c0 alpha beta gamma=0.0
nlls(frml=bilinear) pi 1983:1 *
*
* Estimate bilinear model
*
nonlin c0 alpha beta gamma
nlls(frml=bilinear) pi 1983:1 *
*
* Estimate with truncated sample
*
nlls(frml=bilinear) pi 1983:1 2008:2

Chapter 4

Maximum Likelihood Estimation

Suppose you wanted to estimate parameters (β and σ) in the process:

yt = Xtβ + εt; εt ∼ N(0, σ2) (4.1)

The obvious way to do this is least squares, which can be done using the LINREG
instruction. An alternative approach to parameter estimation is maximum
likelihood. The following derivation can be found in any elementary economet-
rics text: the likelihood for entry t is:

1√
2π

(
σ2
)−1/2

exp

(
− 1

2σ2 (yt −Xtβ)2
)

If the entries are independent, then the log likelihood for the full sample is:∑
t

−1

2
log(2π)− 1

2
log σ2 − 1

2σ2 (yt −Xtβ)2 = −T
2

log(2π)−T
2

log σ2− 1

2σ2

∑
t

(yt −Xtβ)2

By inspection, the maximizer of this for β is the minimizer of the sum of
squares: ∑

t

(yt −Xtβ)2

regardless of the value of σ2. The first order condition for maximization over σ2

is

− T

2σ2 +
1

2σ4

∑
t

(yt −Xtβ)2 = 0⇒ σ2 =
1

T

∑
t

(yt −Xtβ)2

Thus, for model (4.1), the maximum likelihood and least squares give identical
estimates. This is specific to the assumption that the residuals are Normal.
Suppose, instead, that the residuals were assumed to be t with ν degrees of
freedom to allow for heavier tails in the error process. The likelihood for yt is
now:

K
(
σ2(ν − 2)/ν

)−1/2(
1 + (yt −Xtβ)2/

(
σ2/(ν − 2)

))−(ν+1)/2
(4.2)

where the (rather complicated) integrating constant K depends upon ν. This
is parameterized with σ2 as the variance of the ε process. The only term in the
full sample log likelihood which depends upon β is:

−(ν + 1)

2

∑
t

log
(
1 + (yt −Xtβ)2/

(
σ2/(ν − 2)

))
116

Maximum Likelihood Estimation 117

Unlike the Normal, you can’t optimize β separately from σ2, and there are no
sufficient statistics for the mean and variance, so the log likelihood for a {β, σ2}
combination can only be computed by summing over the full data set.

There are many other types of models for which the log likelihood can’t be
simplified beyond the sum of the log likelihood elements, even if the error pro-
cess which is basically Normal—to simplify to least squares or weighted least
squares, the variance has to be constant or at least a function that depends
upon exogenous variables but not free parameters.

There are some specialized instructions for estimating particular models by
maximum likelihood, such as DDV for probit, LDV for tobit and related models,
BOXJENK for ARIMA and related models, GARCH for specific types of ARCH and
GARCH models. However, the instruction which is most flexible and thus most
commonly used is MAXIMIZE.

4.1 The MAXIMIZE instruction

MAXIMIZE requires that you define a FRML which evaluates at entry t the func-
tion ft (yt, xt, β) where the log likelihood takes the form

F (β) ≡ logL(Y |X, β) =
T∑
t=1

ft (yt, xt, β) (4.3)

where: xt and yt can be vectors (and xt can represent a lagged value of yt).

Now MAXIMIZE doesn’t know whether the FRML that you provided is, in fact,
the log likelihood element for t. It will try to maximize (4.3) no matter what you
are actually calculating. And, in most cases, it will give the proper optimized
values for β. F being the actual log likelihood matters to the interpretation
of the output: what are displayed as the “standard errors” and “t-statistics”
are that only if F is the log likelihood, or at least the log likelihood up to an
additive constant which doesn’t depend upon β. However, the ROBUSTERRORS
option can be used to compute an asymptotically valid covariance matrix if F
isn’t the true log likelihood.

MAXIMIZE(options) frml start end

where

frml A previously defined formula

start end The range of the series to use in the estimation

The key options for our purposes are:

Maximum Likelihood Estimation 118

METHOD=BHHH/[BFGS]/SIMPLEX/GENETIC/EVALUATE
PMETHOD=BHHH/BFGS/[SIMPLEX]/GENETIC
ITERATIONS=limit on iterations
PITERATIONS=limit on preliminary iterations
CVCRIT=convergence limit [0.00001]

ROBUSTERRORS/[NOROBUSTERRORS]

The set-up of a maximum likelihood estimation is very similar to that of NLLS.
The essential difference is that the FRML instruction defines the the log like-
lihood that you want to maximize. Otherwise the steps to perform maximum
likelihood estimation are just like those of nonlinear least squares:

1. Define the parameters to be estimated using NONLIN instruction.
2. Define the log likelihood for observation t using a FRML instruction.
3. Set the initial values of the parameters using the COMPUTE command.
4. Use the MAXIMIZE instruction to maximize the sum across time of the

formula in Step 2.

How does MAXIMIZE solve the optimization of (4.3)? At a minimum, F must be
a continuous function of β. The SIMPLEX and GENETIC choices for the METHOD
(and PMETHOD) options require nothing more than that.

Of course, the same types issues that arise with NLLS (page 63) can occur with
MAXIMIZE. Be sure to use good initial guesses and ensure that you are finding
the global maximum.

The two main algorithms used for optimization are BFGS and SIMPLEX. These
are described in greater detail in this chapter’s Tips and Tricks (Section 4.4).
These are often used together, with SIMPLEX used for preliminary iterations
(PMETHOD=SIMPLEX, PITERS=number of preliminary iterations) and BFGS (the
default choice for METHOD) used to actually estimate the model. SIMPLEX is
slower, and, because it doesn’t assume differentiability, can’t provide estimates
of the standard errors, and thus is rarely used as the main estimation method.
However, it is much less sensitive to bad guess values, and so is handy for
getting the estimation process started.

If you have a program written for an older version of RATS, you might
see two otherwise identical MAXIMIZE instructions at some point, one with
METHOD=SIMPLEX, the second with METHOD=BFGS. Since version 6, MAXIMIZE
has had the PMETHOD option to allow the single instruction to use the two meth-
ods sequentially, so you should take advantage of that. However, note that
many optimization problems don’t need preliminary simplex iterations.

As a simple example (Example 4.1), we’ll do the same power function on the
interest rates as in Section 3.3, but we’ll allow for t distributed rather than

Maximum Likelihood Estimation 119

Normal errors. It’s helpful to start out with the Normal model, which can be
estimated with NLLS as before:

nonlin a0 a1 a2 delta
linreg tb1yr
constant tb1yr{1} tb3mo{1}
frml ratef tb1yr = a0+a1*tb1yr{1}+a2*(tb3mo{1})ˆdelta
compute a0=%beta(1),a1=%beta(2),a2=%beta(3),delta=1.0
nlls(frml=ratef) tb1yr 2 *

How do we extend this to allow for t errors? First, as we saw above, we can’t
simply “concentrate” out the variance. So we need to add two parameters, σ2

and ν. For convenience, we’ll separate the original and new parameters into
two PARMSET’s.

nonlin(parmset=baseparms) a0 a1 a2 delta
nonlin(parmset=tparms) sigsq nu

We can take the guess value for SIGSQ from the non-linear least squares and
start with NU at a fairly high value, so that we will be approximately at the
same location as we would have with Normal residuals:

compute sigsq=%seesq,nu=20.0

Now, we need to define a FRML which evaluates the log likelihood for the t
rather than simply the right-hand-side of an equation. Although one could
write out the density for the t as in (4.2), it’s simpler (and faster) to use the
existing %LOGTDENSITY function. This takes (in order) the variance, residual
and degrees of freedom as its arguments. Since we already have the existing
RATEF formula to evaluate the right-side expression, this is fairly simple:

frml logl = %logtdensity(sigsq,tb1yr-ratef,nu)

Note that all RATS built-in density and log density functions like
%LOGTDENSITY and %LOGDENSITY include all integrating constants, not just
the ones that depend upon the parameters. What RATS reports as the log like-
lihood is indeed the full log likelihood given the model and parameters. If you
try to replicate published results, you may find that the reported log likelihoods
are quite different than you get from RATS even if the coefficients are effectively
identical. If that’s the case, it’s usually because the authors of the original work
left out some constants that had no effect on the results otherwise.

The optimization can be done with:

maximize(parmset=baseparms+tparms,iters=300) logl 2 *

We ended up increasing the number of iterations, as the model hadn’t con-
verged in 100. The original output (with the default 100 iterations) was

Maximum Likelihood Estimation 120

MAXIMIZE - Estimation by BFGS
NO CONVERGENCE IN 100 ITERATIONS
LAST CRITERION WAS 0.0183646
Quarterly Data From 1960:02 To 2012:04
Usable Observations 211
Function Value -211.5020

Variable Coeff Std Error T-Stat Signif
**
1. A0 -0.387364457 2.750515178 -0.14083 0.88800154
2. A1 0.986460486 0.028992266 34.02495 0.00000000
3. A2 0.440294321 2.735910770 0.16093 0.87214732
4. DELTA 0.067177518 0.545349075 0.12318 0.90196250
5. SIGSQ 0.983706526 0.801170498 1.22784 0.21950828
6. NU 2.451540091 0.514078793 4.76880 0.00000185

A common error that users make is to ignore those warnings about lack of
convergence. They’re in all upper case for a reason. This is an easy one to fix by
increasing the iteration count.

One thing to note about MAXIMIZE and the BFGS algorithm is that if the model
fails to converge in 100 iterations, and you simply select the MAXIMIZE again
and re-execute, you will get roughly the same parameter estimates as if you
allowed for 200 (or more) in the first go, but not the same standard errors. The
BFGS estimate of the (inverse) Hessian is dependent upon the path taken to
reach the optimum. If you re-execute the MAXIMIZE, the BFGS Hessian is re-
initialized as a diagonal matrix. If the optimization was interrupted by the
iteration limit when nearly converged, the information to update the Hessian
is rather weak; the changes in both the gradient and the parameter vectors are
small. In this case, doing 100 iterations, then another 100 gives:
MAXIMIZE - Estimation by BFGS
Convergence in 11 Iterations. Final criterion was 0.0000095 <= 0.0000100
Quarterly Data From 1960:02 To 2012:04
Usable Observations 211
Function Value -211.5020

Variable Coeff Std Error T-Stat Signif
**
1. A0 -0.387252416 0.050604638 -7.65251 0.00000000
2. A1 0.986378426 0.025989119 37.95351 0.00000000
3. A2 0.440550069 0.061171096 7.20193 0.00000000
4. DELTA 0.067414052 0.100235707 0.67256 0.50123027
5. SIGSQ 0.984391447 0.275353108 3.57501 0.00035021
6. NU 2.450853777 0.179995863 13.61617 0.00000000

If we do the same estimation starting with enough iterations to converge we
get:

Maximum Likelihood Estimation 121

MAXIMIZE - Estimation by BFGS
Convergence in 130 Iterations. Final criterion was 0.0000000 <= 0.0000100
Quarterly Data From 1960:02 To 2012:04
Usable Observations 211
Function Value -211.5019

Variable Coeff Std Error T-Stat Signif
**
1. A0 -0.433719170 1.787260243 -0.24267 0.80825900
2. A1 0.986521104 0.031013227 31.80969 0.00000000
3. A2 0.486938369 1.756506306 0.27722 0.78161132
4. DELTA 0.060438285 0.279017340 0.21661 0.82851134
5. SIGSQ 0.984881664 0.785715851 1.25348 0.21002989
6. NU 2.450541777 0.503477442 4.86723 0.00000113

The estimation with the two sequential MAXIMIZE’s wasn’t really even able
to move off the results from the first successfully because the initial “diagonal”
Hessian has the shape of the function completely wrong. Note that even though
the coefficients appear to be quite different in the last two outputs, the function
value itself, what we’re trying to maximize, is almost identical, so the likelihood
surface is very flat. That’s reflected in the high standard errors in the second
estimator which had enough iterations.

Of the various algorithms used by RATS for non-linear estimation, BFGS is the
only one with the property that the covariance matrix is dependent upon the
path used by the optimization algorithm. Since it is heavily used, not just
by RATS, but by other software, this is a characteristic of the algorithm about
which you need to be careful.

MAXIMIZE defines both %LOGL and %FUNCVAL as the value of the function at
the final set of parameters. Assuming that you’ve set up the FRML to include
all integrating constants (as mentioned above, %LOGTDENSITY does this), and
you’ve estimated the model over the same range, then the log likelihood for
MAXIMIZE and a simpler NLLS are comparable. If we want to compare the re-
sults from the t with the Normal, we need to be careful about the parameter
count. While it would appear that the t has six free parameters, and the Nor-
mal has only four, that’s not including the variance in the latter. The variance
is estimated by NLLS, but in a second step given the other parameters rather
than being included directly. So the t model adds just 1. The Normal is a spe-
cial case of the t with ν =∞. If we ignore the fact that the restriction is on the
boundary1 we can get a likelihood ratio statistic for the Normal vs the t with
2(−211.5019−−238.1723) = 53.3408, which is clearly way out in the tails for one
degree of freedom.

We can test the linearity hypothesis δ = 1 with a Wald test either by

test(title="Test for linearity")
4
1.0

1which violates one of the assumptions governing the most straightforward proof of the
asymptotics of the likelihood ratio test.

Maximum Likelihood Estimation 122

since DELTA is the fourth parameter in the combined parameter set, or, with
RATS 8.2 or later

summarize(parmset=baseparms+tparms,$
title="Test for linearity") delta-1

These produce the identical results (the TEST in “squared” form):
Test for linearity
Chi-Squared(1)= 11.339352 with Significance Level 0.00075882

Test for linearity

Value -0.9395617 t-Statistic -3.36740
Standard Error 0.2790173 Signif Level 0.0007588

We can also do a likelihood ratio test for δ = 1 relatively easily: we just add a
third PARMSET that pegs δ to the hypothesized value. We save the original log
likelihood and re-estimate the model with the restriction:

nonlin(parmset=pegs) delta=1.0
compute loglunr=%logl

*
maximize(parmset=baseparms+tparms+pegs) logl 2 *
cdf(title="LR Test for delta=1") chisqr 2*(%logl-loglunr) 1

This gives us the rather remarkable result:
LR Test for delta=1
Chi-Squared(1)= 0.576804 with Significance Level 0.44756761

which conflicts with the Wald test. Now unlike linear restrictions on linear
models, there is no theorem which says that the Wald and Likelihood Ratio
tests should be identical, but these aren’t even close. Apparently, the likeli-
hood surface is even flatter than even the rather wide standard errors in the
MAXIMIZE output suggest. Now, we knew from the beginning that this was
likely a flawed model, and the results here would confirm that it’s not reli-
able for any real inference. Again, not all models work. The fact that you get
converged estimates doesn’t help if the model itself isn’t good.

4.2 ARCH and GARCH Models

RATS includes a GARCH instruction that is capable of estimating many stan-
dard types of univariate and multivariate GARCH models. However, there are
even more forms of GARCH that aren’t covered by the built-in GARCH, and these
require MAXIMIZE. Thus, it makes sense to examine the process of estimating
a simple GARCH model using the more general instruction, since extensions
usually start with the more basic forms.

Maximum Likelihood Estimation 123

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
-6

-4

-2

0

2

4

6

Figure 4.1: Standardized Residuals from Linear Regression

Suppose you want to estimate a simple regression model with an ARCH(1)
error process:

yt = xtβ + εt (4.4)

εt = vt

√
α0 + α1ε

2
t−1 (4.5)

where vt is a zero-mean normal i.i.d. variable. Under these assumptions,

Et−1εt = 0 (4.6)
Et−1ε

2
t ≡ ht = α0 + α1ε

2
t−1 (4.7)

We’ll look at the regression model

LRt = β0 + β1LRt−1 + β2SRt−1 + εt

which is the model from Section 3.3 without the power on the SR term. In
Example 4.2, we start with OLS estimates:

linreg tb1yr
constant tb1yr{1} tb3mo{1}

We can compute and graph (Figure 4.1) the standardized residuals:

set stdu = %resids/sqrt(%seesq)
graph(footer="Standardized Residuals from Linear Regression")
stdu

We see that we have a clear problem that there are several very large residuals
(greater than 4 standard errors), with more that are larger than 2 than would
be expected in just 200 data points. That, by itself, could be an indication that
a fatter tailed distribution than the Normal might be appropriate, but, what

Maximum Likelihood Estimation 124

suggests the need for something more complicated is that most of the largest
residuals (of various signs) are grouped together in a relatively short range of
data. While the residuals might not be showing serial correlation (which is a
measure of linear association), they don’t appear to be independent—instead,
the squares of the residuals appear to be serially correlated. A Lagrange mul-
tiplier (LM) test for ARCH disturbances was proposed by Engle (1982). After
you have estimated the most appropriate model for yt, save the residuals, then
create the square of the residuals and regress these squared residuals on a con-
stant and on m lagged values of the squared residuals. In our case, if m = 4:

set u = %resids
set usq = uˆ2
linreg usq
constant usq{1 to 4}
cdf(title="Test for ARCH") chisqr %trsquared 4

If there are no ARCH or GARCH effects, this regression will have little explana-
tory power so the coefficient of determination (the usual R2) will be quite low.
With a sample of T residuals, under the null hypothesis of no ARCH errors, the
test statistic TR2 converges to a χ2 distribution with m degrees of freedom. We
can use the variance %TRSQUARED computed by LINREG as the test statistic.
This turns out to be very significant:
Test for ARCH
Chi-Squared(4)= 55.352434 with Significance Level 0.00000000

so we would conclude that the residuals aren’t (conditionally) homoscedastic,
which is the null, and strongly suggests the presence of ARCH or GARCH ef-
fects.2 Since this is a heavily-used test, there’s a standard @ARCHTEST proce-
dure to do it:

@archtest(lags=4,form=lm) u

which produces the same result as before. Note that the input to @ARCHTEST is
the residual itself, not its square. Note also that we saved the original residuals
from the LINREG into a separate series since the standard %RESIDS will be
overwritten by the auxiliary regression.

Since our test seems to show the residuals show “ARCH” behavior, how do we
adjust our estimation to allow for that? We can write f(yt|yt−1, . . . , y1) using

yt ∼ N(xtβ, ht)

ht = a0 + a1ε
2
t−1

εt = yt − xtβ
2Again, it’s important to understand what a test like this means. We haven’t determined

that there are, in fact, ARCH or GARCH effects, or (more particularly) that any specific ARCH
or GARCH model is appropriate, just that the large residuals are clustering in a way that isn’t
compatible with a simple model (the null hypothesis) where the sizes of residuals are indepen-
dent across time.

Maximum Likelihood Estimation 125

since εt−1 (and thus ht) is a function of data only through t−1. Thus, we can get
the full sample likelihood by using the standard “trick” of writing f(y1, . . . , yT)
as f(y1)f(y2|y1) . . . f(yT |yT−1, . . . , y1). In logs, this converts to a sum so

log f(y1, . . . , yT) =
T∑
t=1

log fN(εt|ht)

where fN(x|σ2) is the Normal density function at x with mean 0 and variance
σ2. The simplest way to compute log fN(eps, h) in RATS is with the function
%LOGDENSITY(h,eps) (note the parameter order).

We could directly write out the log likelihood at t by substituting everything
out and getting

log f(yt|yt−1, . . .) = fN
(
yt − xtβ|a0 + a1(yt−1 − xtβ)2

)
However, aside from the fact that writing a complicated formula like that ac-
curately isn’t easy, it also evaluates εt twice, once at t, when it’s the residual
and once at t + 1 when it would be the lagged residual needed for computing
ht+1. The extra time required for computing the same value twice isn’t a major
problem here, though it could be in other cases; the biggest problem is the lack
of flexibility—if we want to change the “mean” function for the process, we’ll
have to make the same change twice. It would be better if we could change it
just once.

We’ll start by using NONLIN instructions to declare the five parameters: the
three parameters in the regression model and two in the ARCH process. By
splitting these up, we make it easier to change one part of the model separately
from the other.

nonlin(parmset=meanparms) b0 b1 b2
nonlin(parmset=archparms) a0 a1

We’ll define the log likelihood in three parts:

frml efrml = tb1yr-(b0+b1*tb1yr{1}+b2*tb3mo{1})
frml hfrml = a0+a1*efrml{1}ˆ2
frml logl = %logdensity(hfrml,efrml)

The “mean model” appears only in the EFRML, the “variance model” only in the
HFRML, and the LOGL FRML really doesn’t need to know how either of those is
computed. This is good programming practice—if different parts of a model
can be changed independently of each other, try to build the model that way
from the start.

We now need guess values for the parameters. We can’t simply allow the de-
fault 0’s, because if A0 and A1 are zero, HFRML is zero, so the function value is
undefined—if the function value is undefined at the guess values, there’s really

Maximum Likelihood Estimation 126

no good way off of it. The first thing that MAXIMIZE does is to compute the for-
mula to see which data points can be used. Without better guesses (for A0 and
A1), the answer to that is none of them. You’ll get the message:

SR10. Missing Values And/Or SMPL Options Leave No Usable Data Points

In this case, there are fairly obvious guess values for the regression parameters
as the coefficients from the LINREG. One obvious choice for A0 and A1 are the
residual variance from the LINREG and 0, respectively, which means that the
model starts out from the linear regression with fixed variance. Since 0 is a
boundary value, however, it might be better to start with a positive value for
A1 and adjust A0 to match the sample variance, thus:

linreg tb1yr
constant tb1yr{1} tb3mo{1}

*
compute b0=%beta(1),b1=%beta(2),b2=%beta(3)
compute a0=%seesq/(1-.5),a1=.5

The instruction for maximizing the log likelihood is:

maximize(parmset=meanparms+archparms) logl 3 *

Note that we lose two observations: one for the lag in the mean model so εt isn’t
defined until 2 and one additional observation due to the lag εt−1 in the ARCH
specification, so we start at entry 3.
MAXIMIZE - Estimation by BFGS
Convergence in 19 Iterations. Final criterion was 0.0000078 <= 0.0000100
Quarterly Data From 1960:03 To 2012:04
Usable Observations 210
Function Value -226.8267

Variable Coeff Std Error T-Stat Signif
**
1. B0 0.091504296 0.092871014 0.98528 0.32448474
2. B1 1.010540358 0.173973445 5.80859 0.00000001
3. B2 -0.033379484 0.184926188 -0.18050 0.85675875
4. A0 0.386146972 0.047680337 8.09866 0.00000000
5. A1 0.350387587 0.122202087 2.86728 0.00414017

If we want to compare the ARCH model with the linear regression, we need to
use the same sample range. The AIC for the ARCH model can be computed with

compute aicarch=-2.0*%logl+2.0*%nreg

while the same for the OLS is done with:

linreg tb1yr %regstart() %regend()
constant tb1yr{1} tb3mo{1}
compute aicols=-2.0*%logl+2.0*(%nreg+1)

Maximum Likelihood Estimation 127

using %REGSTART() and %REGEND() to ensure we use the same range on the
LINREG as we did on the MAXIMIZE. As with the earlier example of the t vs
Normal, we need to count the variance as a separate parameter for OLS since
the ARCH is explicitly modeling the variance. A comparison of the AIC values
shows a clear edge to the ARCH:

disp "AIC-ARCH" @15 *.### aicarch
disp "AIC-OLS" @15 *.### aicols

AIC-ARCH 463.653
AIC-OLS 483.993

The same model can be estimated using the built-in GARCH instruction with:

garch(reg,q=1) / tb1yr
constant tb1yr{1} tb3mo{1}

which is obviously much simpler than going through the setup for using
MAXIMIZE. In general, where a built-in instruction is available for a model,
it’s a good idea to use it.

4.3 Using FRMLs from Linear Equations

Many users concentrate so much on condition (4.7) that they forget about
(4.6)—that the residuals are also supposed to be serially uncorrelated. Al-
though Engle’s original ARCH paper used the inflation rate in the U.K. as its
example, for years most empirical work using the more flexible GARCH model
(Bollerslev (1986)) applied it to returns on financial assets where lack of serial
correlation could almost be taken as a given. However, if you’re applying an
ARCH technique to some other type of data (such as macroeconomic data as we
are here), it’s important to also try to get the “mean model” correct.

One problem with the program above is that it keeps repeating the same lin-
ear equation specification. The first one is for illustration only, but there’s a
LINREG for guess values, a LINREG for the AIC comparison, the regression re-
lation is coded into the EFRML formula, and the regressor list is repeated again
on the GARCH instruction. We would be much better off if we could define the
mean model once and have that used all the way through.

We saw this idea in Chapter 3, page 94. Here, we’ll define both an EQUATION,
and a FRML based upon the single linear specification. Right up at the top of
Example 4.3, we’ll do:

linreg tb1yr
constant tb1yr{1} tb3mo{1}
equation(lastreg) meaneq
frml(lastreg,vector=beta) meanfrml
compute rstart=%regstart(),rend=%regend()

Maximum Likelihood Estimation 128

This

1. Defines the EQUATION MEANEQ with the form (and coefficients) taken from
the regression.

2. Defines the FRML MEANFRML with the form taken from the regression,
using BETA(1), BETA(2) and BETA(3) for the three coefficients, with
those three given the values from the regression.

3. Defines RSTART and REND as the estimation range of the regression.

The third of these is useful because if we add lags to the model, the estimation
range will change, and RSTART will change automatically. We can then use
RSTART to get the proper start entry on the MAXIMIZE instruction.

In addition to using a more flexible setup for the mean model, we’ll use a GARCH
model rather than the simpler ARCH. In a GARCH(1,1) model, the variance
evolves as

ht = c+ aε2t−1 + bht−1 (4.8)

This gives a smoother evolution to the variance than is possible with the sim-
pler ARCH, and, in practice, works so much better that the ARCH is now rarely
used. One major difference in programming is that, unlike the ARCH, the vari-
ance isn’t computable using only the data and parameters: how do we compute
h1 (or more specifically h at the first entry in the estimation range)? Unlike the
case of a moving average model, zero isn’t an obvious “pre-sample” value, since
the expected value of a variance isn’t zero. The model can be solved to get a
“long-run” value for the variance of

h∞ = c/(1− a− b)

except that won’t exist if a + b ≥ 1. And unlike an ARMA model, there is no
“stationary” distribution for a GARCH process which can be used for doing full
information maximum likelihood. In short, there is no single obvious log like-
lihood value given the data and the parameters—different programs will come
up with somewhat different results given different choices for the pre-sample
values for h. With a large data set, the differences are generally quite minor,
but with a shorter one (and the roughly 200 data points in our data set is quite
short for a GARCH model), they could be more substantial.

The RATS GARCH instruction uses the common choice of the estimate from a
fixed variance model (that is, the linear regression) and that’s what we’ll show
here. In order to avoid dropping data points to handle the ε2t−1 term, we will
also use the same pre-sample value for that.

Because h now requires a lagged value of itself, we can’t simply write out a
FRML for (4.8). Instead, we have to create a separate series for the variances,
and have the formulas use that for lags and reset that as its computed. The
following will get us started: these create three series, one for the variances,
one for the residuals and one for the squared residuals.

Maximum Likelihood Estimation 129

set h = %seesq
set u = %resids
set uu = %seesq

H and UU are initialized to the fixed variance from the LINREG; however, the
only entries for which that matters are the pre-sample ones, as all others will
be rewritten as part of the function evaluation.

The two parameter sets can be defined with

nonlin(parmset=meanparms) beta
nonlin(parmset=garchparms) c a b

and the log likelihood formula is again defined in three parts:

frml efrml = tb1yr-meanfrml
frml hfrml = c+a*uu{1}+b*h{1}
frml logl = h=hfrml,u=efrml,uu=uˆ2,%logdensity(h,u)

Unlike Example 4.2, this now has the more flexible method of handling the
mean model, so if we change the initial LINREG, the whole model will change.

If we look at the LOGL formula piece by piece we see that it does the following
(in order) when evaluating entry T:

1. Evaluates and saves H(T) using HFRML. This uses UU(T-1) and
HH(T-1). When T is the first entry in the estimation range, those will
be the values we put into the H and UU series by the SET instructions
earlier

2. Evaluates and saves (into U(T)) the residual using EFRML
3. Saves the square of U(T) into UU(T)
4. Finally, evaluates the log likelihood for T.

Why do we create a series for UU rather than simply squaring U when needed?
It’s all for that one pre-sample value—there is no residual available to be
squared to get U(T-1) ˆ2.

Why do we evaluate H first rather than U? In this model, it doesn’t matter, but
if you allow for an “M” effect (see Engle, Lilien, and Robins (1987)) you must
compute current H first so it will be available for computing the residual. It’s
never wrong to compute H before E.

We now need guess values. The mean model is already done—the
FRML(LASTREG) copies the LINREG coefficients into BETA. The following is a
reasonable set of start values for the GARCH parameters:

compute a=.1,b=.6,c=%seesq/(1-a-b)

Maximum Likelihood Estimation 130

In practice, if there is a GARCH effect, the coefficient on the lagged variance
(what we’re calling B) tends to be larger than the one on the lagged squared
residual (A).

We can estimate the model with

maximize(parmset=meanparms+garchparms,$
pmethod=simplex,piters=10) logl rstart rend

compute aicgarch=-2.0*%logl+2.0*%nreg

This model doesn’t converge properly without the simplex iterations—if you
want to test this, change it to PITERS=0 and re-do the program starting at the
beginning (so you get the original guess values).

The results from estimation with the combination of simplex and BFGS are
MAXIMIZE - Estimation by BFGS
Convergence in 27 Iterations. Final criterion was 0.0000009 <= 0.0000100
Quarterly Data From 1960:02 To 2012:04
Usable Observations 211
Function Value -187.4168

Variable Coeff Std Error T-Stat Signif
**
1. BETA(1) 0.0368121628 0.0486053825 0.75737 0.44882940
2. BETA(2) 0.9346725646 0.1594455856 5.86202 0.00000000
3. BETA(3) 0.0584863698 0.1776252153 0.32927 0.74195283
4. C 0.0147378717 0.0105093858 1.40235 0.16080978
5. A 0.5084325110 0.1922289141 2.64493 0.00817072
6. B 0.5779414855 0.0930391861 6.21181 0.00000000

This is much better than the earlier ARCH model. This uses an extra data
point (211 rather than 210) and has one extra parameter, but the gap in log
likelihood between the ARCH and GARCH is huge. As before, we can do an AIC
comparison with OLS using

linreg(equation=meaneq) * %regstart() %regend()
compute aicols=-2.0*%logl+2.0*(%nreg+1)

*
disp "AIC-GARCH" @15 *.### aicgarch
disp "AIC-OLS" @15 *.### aicols

This leaves no doubt at to which model the data prefer:

AIC-GARCH 384.730
AIC-OLS 483.993

We can do tests for the adequacy of the model using the standardized residuals
and the squared standardized residuals:3

3The DFC options are 1 for the residuals because we have one lag of the dependent variable
in the mean model, and 2 for the squared residuals because we have two lagged coefficients in
the GARCH variance model.

Maximum Likelihood Estimation 131

1 2 3 4 5 6 7 8 9 10
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Q= 4.67 P-value 0.79259

Figure 4.2: Standardized Squared Residuals

set stdu = u/sqrt(h)
set stdusq = stduˆ2

*
@regcorrs(number=10,dfc=1,nocrits,qstat,$

title="Standardized Residuals") stdu
@regcorrs(number=10,dfc=2,nocrits,qstat,$

title="Standardized Squared Residuals") stdusq

The second of these (Figure 4.2) shows what we would like to see:

This is a test of any remaining ARCH or GARCH. If we applied this to the ARCH
model, we wouldn’t get such a comforting result—a significant Q suggests that
the variance model isn’t adequate, and the simple ARCH isn’t.

The first test, on the standardized residuals themselves, gives us Figure 4.3
which shows a problem with serial correlation, that is, that (4.6) doesn’t appear
to be true. Note that we can’t really test the non-standardized residuals as we
did with ARMA models because those calculations will be strongly influenced
by a relatively small number of data points where the variance is high. After
standardizing by the GARCH estimate of the standard deviation (Figure 4.4),
we get a first lag autocorrelation which is very significant and a Q with a very
significant p-value.

This suggests that we didn’t allow enough lags in the mean model. If you go
back and change the model to

linreg tb1yr
constant tb1yr{1 2} tb3mo{1 2}

and re-run, you’ll find that the standardized residuals are much closer to white
noise.

Maximum Likelihood Estimation 132

1 2 3 4 5 6 7 8 9 10
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Q= 48.18 P-value 0.00000

Figure 4.3: Standardized Residuals from GARCH

The GARCH estimates of the standard deviations (from the model with just one
lag) can be created with

set hstddev = sqrt(h)
graph(footer="Standard Deviations from GARCH Model")
hstddev

It usually works better to graph standard deviations rather than variances
because of scale—the larger variances are so much higher than the low ones
that you get very little detail except for the zone where the variance is high.

Maximum Likelihood Estimation 133

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 4.4: Standard Deviations from GARCH Model

4.4 Tips and Tricks

4.4.1 The Simplex Algorithm

The simplex algorithm can be applied to an optimization problem assuming
nothing more than continuity of the objective function. In order to operate
with so little restriction on the behavior of the function, the simplex algorithm
is more a collection of “rules” that seem to work in practice than a formal algo-
rithm.

Instead of trying to “climb” the hill directly, it instead crawls upward primarily
by determining which directions aren’t correct. In a K-dimensional space, it
uses a set of K + 1 vertices, thus, for instance, the vertices of a triangle in 2-
space. At a pass through the algorithm, a replacement is sought for the worst
of the vertices. An obvious guess (if we’re still trying to move up) is that the
function will be better if we go through the face opposite the worst point. The
test is whether that new point is better than the one we’re trying to replace, not
that it’s better than all the other points. If we have an improvement over the
worst point, that old one is removed from the simplex collection and the new
one added. If the new point is worse, then it seems likely that the optimum may
already be surrounded, so a test point is chosen in the interior. This process
of replacing the worst of the vertices continues until the entire simplex has
shrunk down so the difference between the best and worst vertices satisfies
the convergence criterion.

As an example, suppose that we are trying to maximize f(x, y) = −(x + 4y2).
The optimum is (0, 0) by inspection, but suppose that we only have a “black
box” which returns the value given an (x, y) combination. If our guess value is
(1, 2), we need to construct a triangle with that as one of the vertices. Suppose

Maximum Likelihood Estimation 134

-4.00 -2.00 0.00 2.00 4.00

-4.00

-2.00

0.00

2.00

4.00

(1.0,2.0)

(1.0,4.0)

(2.0,2.0)

(2.0,0.0)(1.0,0.0)

(2.0,-2.0)

(1.25,1.0)

Figure 4.5: Simplex Algorithm in Action

that our three initial points are (1, 2), (2, 2) and (1, 4).4The function values at
the three points are -17, -20 and -65 respectively, so the vertex to be replaced
is (1, 4). The test point is the reflection of (1, 4) through the midpoint of the
side formed by the two other points, which is (2, 0).5 The value there is -4, so
we accept it and eliminate (1, 4). Now the worst of the three is (2, 2). The new
test point is (1 + 2 − 2, 2 + 0 − 2) or (1, 0) where the function value is -1, again,
better than the point being replaced. Our three vertices are now (1, 0), (2, 0)
and (1, 2). The test replacement for (1, 2) is (2,−2) where the function is -20,
thus worse than at (1, 2). So instead, we try the interior point halfway between
the vertex being replaced and the center of the side opposite: (1.25, 1.00). The
function there is -5.5625, thus better than the -17 at (1, 2), though not better
than the best one so far. Figure 4.5 shows the contours of the function, and the
points evaluated. Note that it’s replaced all three of the original vertices.

Unlike more direct “climbing” methods, this has to drag allK+1 vertices up the
hill, rather than a single point, so it’s less efficient for well-behaved problems.
However, even with functions that are twice-continuously differentiable, the
simplex algorithm can be useful as a preliminary optimization method, as it
can work even if the likelihood surface has the “wrong” curvature at the guess
values (that is, it’s not concave). In effect, the preliminary simplex iterations
help to refine the guess values. To get preliminary simplex iterations, use the
combination of the options PMETHOD=SIMPLEX and PITERS=number of prelim-
inary “iterations”. What counts as an iteration for this is 2K simplex moves,
which roughly equalizes the number of function evaluations in an actual itera-
tion with other methods.

4RATS will actually start with a much tighter cluster.
5In two dimensions, the coordinates are found by summing the two kept points and subtract-

ing the coordinates of the one being rejected, thus the test has x = 1 + 2− 1 and y = 2 + 2− 4.

Maximum Likelihood Estimation 135

We often see users overdo the number of preliminary iterations. Usu-
ally 5 to 10 is enough, and rarely will you need more than 20.
PMETHOD=SIMPLEX,PITERS=200 does quite a bit of calculation and won’t re-
ally get you much farther along than the same with PITERS=20.

4.4.2 BFGS and Hill-Climbing Methods

The BFGS algorithm6 is the workhorse optimization algorithm for general max-
imum likelihood, not just in RATS but in many other statistical packages, as it
works quite well in a broad range of applications. BFGS requires that the func-
tion being optimized be twice-continuously differentiable which will be the case
for most log likelihoods that you will encounter. The function will have a second
order Taylor expansion around θ0:

f(θ) ≈ f(θ0) + f ′(θ0) • (θ − θ0) + 1/2(θ − θ0)′f ′′(θ0)(θ − θ0)

If f were quadratic, then f ′′(θ0) would be a constant (negative definite) matrix
Q, and the optimum could be found directly by solving

θ = θ0 −Q−1f ′(θ0)

no matter what start values we have for θ0. If we start near the optimum,
then the same calculation should be at least close to finding the top even if the
function is only locally quadratic. There are two main problems in practice:

1. For a non-quadratic function, what happens if we’re not near the opti-
mum?

2. It may not be easy to compute f ′′(θ0).

The gradient can usually be computed fairly accurately by numerical methods.
Numerical second derivatives are much less accurate and require quite a bit of
extra calculation—you can compute the gradient inK space withK+1 function
evaluations (a base plus a slightly perturbed value in each direction), but the
second derivative requires an extra K(K + 1)/2 to fill up a K ×K symmetrical
array.

The key result for the BFGS algorithm is that you can get an increasingly accu-
rate estimate of the Hessian (f ′′) without ever computing it directly by seeing
how the gradient changes from one iteration to the next. The precise result is
that if the function is actually quadratic and you do K iterations of BFGS with
exact line searches at each stage, then at the end, you will have built Q exactly
(and thus will have also found the optimum).

In practice, the function isn’t globally quadratic, and we generally don’t (for
efficiency) do “exact” line searches, so the algorithm will not converge exactly
in K iterations and the final f ′′ will only be approximate. However, with rare

6For Broyden, Fletcher, Goldfarb and Shanno, the creators of the algorithm.

Maximum Likelihood Estimation 136

exceptions, if the function is, indeed, twice continously differentiable and has a
negative definite Hessian (no singularities) at the local maximum on the start-
ing “hill”, then BFGS will find its way to the top of that hill.

To illustrate how BFGS works, we’ll use the same example as simplex, maxi-
mizing −(x+ 4y2) starting at (1, 2) where the function value is -17. BFGS builds
an approximation to G ≡ [−f ′′(θ0)]−1 which (ideally) will be a positive defi-
nite matrix. For illustration, we’ll start with G = I. The gradient at (1, 2) is
g = (−2,−16). The direction of search on the first iteration is d = Gg, so the
line being searched is θ(λ) = θ0 + λd. The directional derivative along this line
is d • g = g′Gg, which must be positive since G is positive definite, so there
must be some positive value of λ (possibly very small) at which f (θ(λ)) > f(θ0).
We need to find such a value. Because G isn’t giving us a good estimate of
the curvature (yet), a “full” step (λ = 1) doesn’t work well: that would take us
to (1,−14) where the function value is -785. The RATS hill-climbing procedure
then tries λ = .5 (still doesn’t help), then λ = .25, which puts us at (.5,-2.0)
where the function value is -16.25. This is better than -17, so it would appear
that we are done. However, the directional derivative is 260. That means that
with λ = .25, we would expect to see the function increase by much more than
simply -17 to -16.25—the small arc-derivative to the new point fairly strongly
indicates that λ = .25 is still too long a step, so it’s on the other side of the maxi-
mum in the chosen direction. So the next test is with λ = .125 or (.75, 0.0) where
the function value is -.5625. Now, we’re improving by 16.4375 over a distance
of .125; the arc-derivative is 131.25 which is a (very) good ratio to 260.7 So
our first iteration takes us to (.75, 0.0). This used 4 subiterations—the function
evaluations along the chosen line. It’s very common for early iterations of BFGS
to require this many, or sometimes more, subiterations since the early G isn’t
very precise. With well-behaved problems, the number of subiterations usually
drops fairly quickly to 1 or perhaps 2 on each iteration.

BFGS then updates the estimate of G using the actual and predicted values for
the gradient at the new position. In this case, the result is

G =

[
.5 0
0 .125

]
which is exactly correct. Ordinarily, the first update wouldn’t hit exactly, but
because the Hessian is diagonal and we started with a diagonal matrix, it
works here. Given that we have the correct G, the next iteration finds the
optimum.8

You can see why preliminary simplex iterations are often handy—even with
a truly quadratic function, the first iteration on the hill-climbing algorithm

7A ratio of .5 is what we would get if we found the exact maximum for λ given that this is a
true quadratic.

8Actually, almost. Because the gradient is computed numerically, none of the calculations
done above are exact.

Maximum Likelihood Estimation 137

-4.00 -2.00 0.00 2.00 4.00

-4.00

-2.00

0.00

2.00

4.00

(1.0,2.0)

(.5,-2.0)

(.75,0.0)

Figure 4.6: BFGS in Action

tries some very wrong parameter vectors. In Figure 4.6, we can’t even show
the first two subiterations on the graph—the first one would be three pages
down. In this case, the wildly incorrect vectors won’t be a problem, but with
some functions which aren’t globally defined (because of the presence of logs or
square roots as part of the calculations, or because of explosive behavior for an
iterative calculation), it may be necessary to check for conditions that would
invalidate the value. A function evaluation which requires log or square root of
a negative number will naturally result in a missing value the way that RATS
does evaluations—it’s the explosive recursions, which might occur in GARCH or
ARMA models, that may require special care.

4.4.3 The CDF instruction and Standard Distribution Functions

We used the CDF instruction earlier to compute and display the significance
level of the test for ARCH. It supports the four most commonly used test distri-
butions: the Normal, t, F and χ2. The syntax is:

CDF(option) distribution statistic degree1 degree2

where

distribution Choose the desired distribution: FTEST for F , TTEST for t,
CHISQ for χ2 or NORMAL for (standard) normal.

statistic The value of the test statistic

degree1 Degrees of freedom for TTEST and CHISQ or numerator de-
grees of freedom for FTEST

Maximum Likelihood Estimation 138

degree2 Denominator degrees of freedom for FTEST

The (main) option is TITLE=descriptive title. One of the examples was:

cdf(title="LR Test for delta=1") chisqr 2*(%logl-loglunr) 1

which produces
LR Test for delta=1
Chi-Squared(1)= 0.576804 with Significance Level 0.44756761

CDF sets the variables %CDSTAT as the test statistic and %SIGNIF as the sig-
nificance level.

CDF is very handy if output formatted as above is fine. If you need something
else (for instance, to insert the information onto a graph or into a report), you
can use a built-in function to compute the same significance level:

Normal %ZTEST(z) returns the two-tailed significance level of z as a
Normal(0,1).

t %TTEST(t,nu) returns the two-tailed significance level of t aa a
tν .

F %FTEST(F,num,den) returns the significance level of F as an
F with num numerator degrees of freedom and den denominator
degrees of freedom.

χ2 %CHISQR(x,nu) returns the significance level of x as a χ2 with
nu degrees of freedom.

An alternative to using CDF would be something like:

compute deltatest=2*(%logl-loglunr)
compute deltasignif=%chisqr(deltatest,1)
disp "Test delta=1" *.### deltatest "with signif" *.### deltasignif

Maximum Likelihood Estimation 139

Example 4.1 Likelihood maximization

cal(q) 1960:1
all 2012:4
open data quarterly(2012).xls
data(org=obs,format=xls)
*
set pi = 100.0*log(ppi/ppi{1})
set y = .001*rgdp
*
* Power function with interest rates
*
* Non-linear least squares (maximum likelihood assuming Normal residuals)
*
nonlin a0 a1 a2 delta
linreg tb1yr
constant tb1yr{1} tb3mo{1}
frml ratef tb1yr = a0+a1*tb1yr{1}+a2*(tb3mo{1})ˆdelta
compute a0=%beta(1),a1=%beta(2),a2=%beta(3),delta=1.0
nlls(frml=ratef) tb1yr 2 *
*
* Maximum likelihood assuming t residuals. This requires adding the
* variance and the degrees of freedom to the parameter set.
*
nonlin(parmset=baseparms) a0 a1 a2 delta
nonlin(parmset=tparms) sigsq nu
*
* This starts with sigsq as the estimate from NLLS with a relatively
* high value of nu.
*
compute sigsq=%seesq,nu=20.0
frml logl = %logtdensity(sigsq,tb1yr-ratef,nu)
maximize(parmset=baseparms+tparms,iters=300) logl 2 *
*
* Test delta=1
*
test(title="Test for linearity")
4
1.0
*
* This is available in RATS 8.2 or later
*
summarize(parmset=baseparms+tparms,title="Test for linearity") delta-1
*
* Add a constraint that delta is 1.
*
nonlin(parmset=pegs) delta=1.0
*
* Save the unrestricted log likelihood
*
compute loglunr=%logl
*
maximize(parmset=baseparms+tparms+pegs) logl 2 *
cdf(title="LR Test for delta=1") chisqr 2*(%logl-loglunr) 1

Maximum Likelihood Estimation 140

Example 4.2 ARCH Model, Estimated with MAXIMIZE

cal(q) 1960:1
all 2012:4
open data quarterly(2012).xls
data(org=obs,format=xls)
*
linreg tb1yr
constant tb1yr{1} tb3mo{1}
*
* Graph standardized residuals
*
set stdu = %resids/sqrt(%seesq)
graph(footer="Standardized Residuals from Linear Regression")
stdu
*
* Test for ARCH using auxiliary regression
*
set u = %resids
set usq = uˆ2
linreg usq
constant usq{1 to 4}
cdf(title="Test for ARCH") chisqr %trsquared 4
*
* Test for ARCH using @ARCHTEST
*
@archtest(lags=4,form=lm) u
*
* Define the parameters
*
nonlin(parmset=meanparms) b0 b1 b2
nonlin(parmset=archparms) a0 a1
*
* Define log likelihood FRML in three parts:
*
frml efrml = tb1yr-(b0+b1*tb1yr{1}+b2*tb3mo{1})
frml hfrml = a0+a1*efrml{1}ˆ2
frml logl = %logdensity(hfrml,efrml)
*
* Guess values based upon linear regression
*
linreg tb1yr
constant tb1yr{1} tb3mo{1}
compute b0=%beta(1),b1=%beta(2),b2=%beta(3)
compute a0=%seesq/(1-.5),a1=.5
*
* Estimate the ARCH model
*
maximize logl 3 *
compute aicarch=-2.0*%logl+2.0*%nreg
*
* Estimate the linear regression over the same range
*
linreg tb1yr 3 *

Maximum Likelihood Estimation 141

constant tb1yr{1} tb3mo{1}
compute aicols=-2.0*%logl+2.0*(%nreg+1)
*
* Compare AIC’s with proper counting of parameters
*
disp "AIC-ARCH" @15 *.### aicarch
disp "AIC-OLS" @15 *.### aicols
*
* Same model done with GARCH
*
garch(reg,q=1) / tb1yr
constant tb1yr{1} tb3mo{1}

Example 4.3 GARCH Model with Flexible Mean Model

cal(q) 1960:1
all 2012:4
open data quarterly(2012).xls
data(org=obs,format=xls)
*
linreg tb1yr
constant tb1yr{1} tb3mo{1}
equation(lastreg) meaneq
frml(lastreg,vector=beta) meanfrml
compute rstart=%regstart(),rend=%regend()
*
set h = %seesq
set u = %resids
set uu = %seesq
*
* Define the parameters
*
nonlin(parmset=meanparms) beta
nonlin(parmset=garchparms) c a b
*
* Define log likelihood FRML in three parts:
*
frml efrml = tb1yr-meanfrml
frml hfrml = c+a*uu{1}+b*h{1}
frml logl = h=hfrml,u=efrml,uu=uˆ2,%logdensity(h,u)
*
* The BETA’s are already done as part of FRML(LASTREG)
*
compute a=.1,b=.6,c=%seesq/(1-a-b)
*
* Estimate the GARCH model
*
maximize(parmset=meanparms+garchparms,$

pmethod=simplex,piters=10) logl rstart+1 rend
compute aicgarch=-2.0*%logl+2.0*%nreg
*
linreg(equation=meaneq) * %regstart() %regend()

Maximum Likelihood Estimation 142

compute aicols=-2.0*%logl+2.0*(%nreg+1)
*
* Compare AIC’s with proper counting of parameters
*
disp "AIC-GARCH" @15 *.### aicgarch
disp "AIC-OLS" @15 *.### aicols
*
* Test for serial correlation in the standardized residuals
*
set stdu = u/sqrt(h)
set stdusq = stduˆ2
*
@regcorrs(number=10,dfc=1,nocrits,qstat,$

title="Standardized Residuals") stdu
@regcorrs(number=10,dfc=2,nocrits,qstat,$

title="Standardized Squared Residuals") stdusq
*
set hstddev = sqrt(h)
graph(footer="Standard Deviations from GARCH Model")
hstddev

Chapter 5

Standard Programming Structures

We’ve already seen some (relatively) simple examples of using the program-
ming features of RATS using the DO and DOFOR loops. In this chapter, we’ll look
in greater detail at the program control structures in RATS, emphasizing the
ones that tend to be common, in some form, to most programming languages.
These are the DO loop, IF and ELSE blocks, and WHILE and UNTIL loops. We’ll
cover DOFOR, which is very useful but not as standard, in the next chapter.

5.1 Interpreters and Compilers

Except for the examples with loops, most of what we’ve seen has been RATS
as an interpreted language, which means that it executes each instruction im-
mediately after it is processed. This is often very handy as it allows you to
experiment with different ways of handling a model and you get immediate
feedback.

However, let’s take a line out of a DO loop in an earlier program:

compute lreffect(t)=%sumlc

This really doesn’t do much—it takes the real value %SUMLC and puts it into an
entry of the series LREFFECT. What does the interpreter have to do before this
happens? The main steps are that it takes the first three characters on the line
(“com”) converts them to upper case, looks that up in a table of instructions and
determines that it’s a COMPUTE instruction. It then has to isolate the “token”
LREFFECT, look that up in a symbol table, recognize it’s a SERIES, look up T,
recognize that it’s an INTEGER variable, look up %SUMLC, recognize that it’s a
REAL, and determine that it can put all those together into a sensible instruc-
tion. At that point, it can actually do the assignment of the value of %SUMLC to
LREFFECT(T). If you got the impression that it takes a lot more time to turn
the character string “compute lreffect(t)=%sumlc” into something usable than
it does to actually do what it requests, you’re right. Now neither takes very
long in an absolute sense—the total time required might be 50 microseconds.
However, if you had to do that millions of times as part of a calculation, it could
matter.

A pure interpreted language (which RATS is not) has to go through something
like that process each time an instruction is executed. That has certain ad-
vantages as you can quite literally alter instructions right up to the time that

143

Standard Programming Structures 144

they are executed. There’s a cost in time, however, so it’s most useful when
the instructions, when executed, tend to do a lot of calculation. For instance,
if instead of a simple assignment above, we were doing a LINREG, the amount
of time the interpreter requires might go up by a factor of three, while the
amount of work done by the instruction would likely go up by many thousands,
so interpretation wouldn’t be as significant a part of the calculation time.

Instructions in complex RATS programs are often a mix of simple (such as
COMPUTE on scalars) and complicated (LINREG, MAXIMIZE) instructions. For
efficiency, when you do a loop or some other programming structure RATS uses
a compiler, which does the interpretation once and saves the generated code so
it can be executed with relatively little time added to what is needed to exe-
cute the requested calculations. This requires advanced planning on your part
as RATS doesn’t actually do anything (other than parse the instructions) until
you’re done with all the instructions for the loop. As a general rule, if you are
doing any type of loop, you are best off entering the instructions “off-line”. If
you type the following into your input window while it’s in “ready” or “on-line”
mode:

do i=1,10
dsp i

(the last line is a typo, it should have been “disp i”), you’ll get an error message
that it expected an instruction. At this point, the attempt to compile the loop
is aborted; you can’t just correct the spelling and continue on.

Instead, the better approach is to make the window “local” or “off-line” before
you even start putting in the loop code. Click the icon or type<Control>+L,
then type (or paste) in the following (with the mistake on the second line):

do i=1,10
dsp i

end do i

Now click on the or type <Control>+L to put the window back into “ready”
mode, select the three lines and hit the <Enter> key or click the icon.
You’ll get the “Expected Instruction” error.1 Now, however, you can just fix the
second line to read disp i, select the three lines again, hit <Enter>and you
get the expected

1If you select the three lines and hit<Enter>without switching back to “ready” mode, you’ll
delete the three lines since in “local” mode the <Enter> is just a standard editing keystroke.
If you do that by accident, just Undo and make sure you switch to “ready”.

Standard Programming Structures 145

1
2
3
4
5
6
7
8
9
10

Now let’s look at

disp "Before loop"
do i=1,10
disp i

end do i
disp "After loop"

As we’ve written this, the first and last DISPLAY instructions are done in in-
terpreted mode, while the middle three lines are done in compiler mode. In-
terpreted mode is the “natural” state for RATS, so it needs one of a few special
instructions to put it into compiler mode. DO is one of those. Once it’s in com-
piler mode, RATS needs another signal that it should leave compiler mode and
execute the code that it has just generated. How that is done will be different
depending upon what instruction put it into compiler mode. In the case of DO,
it’s a matching END. (The DO I after END are actually treated as comment, so
that’s for information only.) If you have nested DO loops such as

do i=1,4
do j=1,3

disp i j
end do j

end do i

the outer DO puts RATS into compiler mode. RATS then keeps track of the “level”
of the compiler structures, so the second DO raises that to level two. The match-
ing END for the DO J drops the level to one so it’s still in compile mode. The level
doesn’t drop to zero until after the matching END for the outer DO I at which
point RATS exits compiler mode and executes the double loop. This may seem
obvious from the indenting, but the indenting is only to make it easier to read
for humans—RATS ignores the lead blanks when processing the instructions. If
you have a long or complicated program segment that either is switching to in-
terpreter mode before you expect or not leaving compiler model when you think
it should, you probably have some problem with the structure levels. It’s much
easier to find those types of errors if you try to keep the instructions properly
indented (see page 6) to show the levels.

Standard Programming Structures 146

5.2 DO Loops

As illustrated in Section 2.8.1, the DO loop is a very simple way to automate
many of your repetitive programming tasks. It’s by far the most common pro-
gram control structure. The most common DO loop will look like:

DO i=1,n
instructions to execute

end do i

There are slight differences in how DO loops function in different languages, so
we’ll go through this step by step and point out where you need to be careful if
you are trying to translate a program from a different language.

1. The variable I is given the start value (here 1)
2. RATS determines how many passes through the loop are required to run

the index from the start value (here 1) to the end value (here n). If the end
value is less than the start value, the number of passes is zero, and con-
trol passes immediately to the instruction after the END DO I. In some
languages (though not many), the loop instructions are always executed
at least once.

3. The instructions are executed with the current value of I.
4. If the number of passes computed in step 2 has been reached, the loop is

exited and control passes to the instruction after the END DO I. This is
where different languages can differ quite a bit as we’ll point out in more
detail.

5. I is incremented by 1 and the pass count is incremented by 1.
6. Repeat steps 3, 4 and 5 until the pass count is reached in step 4.

Some programming languages test for the loop exit differently—at the end of
the loop, they first increment I, then test it against N. If i > n, the loop is
exited. As a result, once the loop is done, I will be equal to n + 1 (assuming n
was bigger than 0 in the first place). The way RATS handles this, at loop exit
I will be equal to the value on the final trip through the loop. This is a subtle
difference and we’ll see that it can matter.

What happens if you change the value of I inside the loop? While this is legal
in RATS (in some programming languages it isn’t), it isn’t a good idea, as the
results will probably not be what you expect. If you execute:

do i=1,10
compute i=i+3
disp i

end do i

the output is

Standard Programming Structures 147

4
8
12
16
20
24
28
32
36
40

and on loop exit, I will be equal to 40. As it says in steps 2 and 4, the DO loop
operates by determining how many passes are required right up front, and
then does that number, regardless of what happens to the value of the index. If
you need a loop where the increment can change from pass to pass, or the end
value might change, use a WHILE or UNTIL loop instead (section 5.4).

More generally, the DO loop has the form:

DO integer variable=n1,n2,increment
instructions to execute

end do integer variable

The variables I and J are pre-defined in RATS as INTEGER variables and are
by far the most common loop index variables. You can introduce a new variable
name for the “integer variable” and it will be defined as an INTEGER type.

do k=p,1,-1
...

end do k

will loop p times through the controlled instructions (as long as p is 1 or larger)
with K taking the value p to start and being decreased by 1 each pass through
the loop.

In Example 5.1, we’ll use the DO loop to analyze the possibility that log GDP
(Figure 5.1) has a “broken trend”.

To the eye, it has an approximately linear trend, but with substantial devia-
tions. If we regress on just constant and trend:

set trend = t

*
linreg loggdp
constant trend

we get a Durbin-Watson of .035. The residuals are very strongly serially corre-
lated and any attempt to model the trend will have to take that into account. A
“broken” trend could take several forms, but what we’ll look at here is a “joined”
trend, where the linear trend rate has one value through some point in time,
and another after, but the level of the process doesn’t change at the join point.
That can be handled by a linear function which looks like

α + βt+ γmax(t− t0, 0) (5.1)

Standard Programming Structures 148

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
7.8

8.0

8.2

8.4

8.6

8.8

9.0

9.2

9.4

9.6

Figure 5.1: Log U.S. Real GDP

This will grow at the rate β up to time t0, then at β + γ after t0.

There are two basic ways to model this while allowing for serial correlation.
The simpler way to do this is add lags of the dependent variable to (5.1):

yt = α + βt+ γmax(t− t0, 0) + ϕ1yt−1 + . . .+ ϕpyt−p + ut (5.2)

This makes the break what is known as an innovational outlier. In this setup,
β and γ are not structural parameters describing the trend rate of the process—
the trend rate of y prior to t0 can be solved out as

β

(1− ϕ1 − . . .− ϕp)

If you look at what happens at t0 + 1, none of the lagged y terms have yet been
affected by the trend change, so the first period after the break, the process
goes up by an extra γ compared to the process without the break. At t0 + 2, the
yt−1 has increased by an extra γ, and the γ term itself will now be γ × 2, so the
overall effect from including the break term is γ × 2 + γ × ϕ1 and so on. Notice
how the break works itself into the system gradually as the lag terms reach
the break location.

If we allow for two autoregressive lags, we can compute the sums of squares
for different break locations using the following loop:

set rssio = %na
do t0=1965:1,2007:4

set btrend = %max(t-t0,0)
linreg(noprint) loggdp
constant trend btrend loggdp{1 2}
compute rssio(t0)=%rss

end do t0

Standard Programming Structures 149

1965 1970 1975 1980 1985 1990 1995 2000 2005
0.0124

0.0125

0.0126

0.0127

0.0128

0.0129

0.0130

0.0131

Figure 5.2: RSS for Broken Trend, Innovational Outlier

The LINREG is just a straightforward translation of the formula (5.2) given the
value of T0. All we had to do was “throw a loop around” this. Why is this
running only from 1965:1 to 2007:4? With any analysis where you’re looking
for some type of break in a model, you want to exclude breaks near the ends.
Because we are searching for breaks in the trend, it makes sense to require
enough data points in each branch to properly determine a trend rather than
just a cycle. Here we make sure there are at least five years of data both before
and after the change date.

The series RSSIO is initialized to %NA since the series doesn’t exist outside the
range of the DO loop. Inside the loop, we do the regression and save the sum of
squared residuals into the T0 entry in RSSIO.

We can graph (Figure 5.2) the sum of squares with

graph(footer="RSS for Broken Trend, Innovational Outlier")
rssio

We can find where the minimum was attained using

ext(noprint) rssio
disp "Minimum at" %datelabel(%minent) %minimum

Minimum at 2003:04 0.01247

The more complicated type of model has

yt = α + βt+ γmax(t− t0, 0) + zt

zt = ϕ1zt−1 + . . .+ ϕpzt−p + ut
(5.3)

Standard Programming Structures 150

1965 1970 1975 1980 1985 1990 1995 2000 2005
0.0124

0.0125

0.0126

0.0127

0.0128

0.0129

0.0130

0.0131

Figure 5.3: RSS for Broken Trend, Additive Outlier

that is, y is described as a broken trend plus an AR(p) noise term. If it were not
for the broken trend terms, (5.2) and (5.3) would be equivalent models (with the
coefficients on the deterministics mapping to each other) if you work through
the expansions. However, with the broken trend, they aren’t. (5.3) has what is
known as an additive outlier. Here α, β and γ are structural parameters, with
β + γ being the trend rate of the y process starting immediately at t0 + 1.

You can’t estimate (5.3) using LINREG—a mean + AR or ARMA noise is done
using BOXJENK with the REGRESSORS option. The loop is almost identical other
than the substitution of the main instruction:

set rssao = %na
do t0=1965:1,2007:4

set btrend = %max(t-t0,0)
boxjenk(regressors,ar=2,noprint) loggdp
constant trend btrend
compute rssao(t0)=%rss

end do t0
graph(footer="RSS for Broken Trend, Additive Outlier")
rssao

*
ext(noprint) rssao
disp "Minimum at" %datelabel(%minent) %minimum

Perhaps not too surprisingly, the sum of squares (Figure 5.3) is quite a bit
more volatile than it is for innovational model since changes to the trend rate
hit immediately.

It’s important to note that the F statistic for either model in comparison with
a non-breaking trend model has a non-standard distribution if you search for

Standard Programming Structures 151

the best break point. It’s beyond the scope of this book to deal with the theory
behind that.

5.3 IF and ELSE Blocks

There are many instances in which we want to perform a set of instructions
only if a particular condition is met. The most common way to do this is to
use an IF or IF-ELSE block. We already saw a very simple example of this on
page 49 where we checked for whether a BOXJENK estimation converged and
displayed a message when it failed.

The basic structure of an IF block is:

IF condition {
block of statements executed if condition is “true”

}
while an IF-ELSE block is:

IF condition {
block of statements executed if condition is “true”

}
ELSE {

block of statements executed if condition is “false”
}
What form does the condition take? It can be any expression that is non-zero
when you want “true” and zero when you want “false”. This is usually built
using the following standard relational operators for comparing expressions A
and B. (Each has two equivalent representations).

A==B or A.EQ.B Equality

A<>B or A.NE.B Inequality

A>B or A.GT.B Greater than

A<B or A.LT.B Less than

A>=B or A.GE.B Greater than or equal to

A<= B or A.LE.B Less than or equal to

Note well that the test for equality is done with == (two =), not just a single =.
A=B assigns the value of B to the variable or array element A.

You can create compound conditions using “and”, “or” and “not” with

condition 1.AND.condition 2
condition 1.OR.condition 2
.NOT.condition

Standard Programming Structures 152

It’s important to note that some programming languages have constructions
like this that are used in transforming data. That is not done in RATS—use
SET with %IF or a relational operator instead. For instance, this is how not to
create a dummy variable in RATS that’s 1 when real GDP is above potential:

* This is not RATS code
if rgdp>potent

set boom = 1
else

set boom = 0

Instead, you would use simply

set boom = rgdp>potent

SET has an implied loop over the entries—the IF-ELSE does not. Something
like the IF-ELSE code could work by inserting it inside a loop. Here it would
be a bad idea since seven lines can be replaced with one, but there are other
situations where it would be superior to using a SET if the two branch calcula-
tions were sufficiently complicated. In this case, the code would be something
like:

set boom = 0.0
do t=1,%allocend()

if rgdp(t)>potent(t)
compute boom(t)=1

else
compute boom(t)=0

end do t

You may have noticed that we didn’t use { and } around the instructions con-
trolled by the IF and the ELSE in this last example. By default, IF and ELSE
control just one line. If you need to execute more than one line, you need to
enclose the controlled lines in braces. It never hurts to add the braces, but they
aren’t necessary in the simplest case.

As we’ve seen before on page 49, you can have an IF without an ELSE. IF-ELSE
can be used if there are two alternative calculations. If you have three or more
(mutually exclusive) cases, you can string together a set of IF’s and ELSE’s. For
illustration:

Standard Programming Structures 153

do rep=1,100
compute r=%ran(1.0)
if r<-2.0

disp "Big Negative value" r
else
if r<2.0

disp "Between -2 and 2" r
else

disp "Big Positive value" r
end do rep

Each pass through the loop, this draws a N(0, 1) random number. If r < −2,
the first condition is met, and the message about the “big negative value” is
displayed. If r ≥ −2, since the first IF condition fails, we do the first ELSE.
That immediately goes into a second IF. If r < 2, the second IF condition is
met, and the “between -2 and 2” message gets displayed. We know that r ≥ −2
as well since we’re in the ELSE from the first IF. Finally, if r ≥ 2, we get down
to the final ELSE clause and display the “big positive value” message.

Note that you can do the same type of multiple branch calculation within a SET
instruction using nested %IF functions. For instance

set u = %ran(1.0)
set range = %if(u<-2,-1,%if(u<2,0,1))

will create RANGE as a series which has ranget = −1 if ut < −2, ranget = 0 if
ut ≥ −2 and ut < 2 and ranget = +1 if ut ≥ 2.

As a more concrete example, we’ll look at lag length selection again in Example
5.2. We’ll find the best AIC autoregression on the change in log real RGDP. As
we mentioned on Chapter 2 (page 23), when you use an information criterion,
it’s important to run the regressions over the same range or you’ll bias the
results in one direction or the other. Before, we used the range parameters
on LINREG to enforce that. We’ll show an alternative which both makes sure
that the range is the same, and also is more efficient computationally. The
CMOMENT instruction generates a cross product matrix of a set of data. After
that, the LINREG instruction with a CMOMENT option will run a regression using
the cross product information (and range) from the CMOMENT instruction.

The CMOMENT instruction needs to include both the explanatory variables and
the dependent variable(s) from all the regressions that will be run using it.
In this case, that means lags from 0 (for the dependent variable) to 12 of the
DLRGDP plus the CONSTANT.

set dlrgdp = log(rgdp)-log(rgdp{1})

*
cmom
dlrgdp{0 to 12} constant

Standard Programming Structures 154

The following does the regressions and picks out the minimum AIC lag length:

do lags=0,12
if lags==0 {

linreg(noprint,cmom) dlrgdp
constant
compute aic = -2.0*%logl + %nreg*2
compute bestlag=lags,bestaic=aic

}
else {

linreg(noprint,cmom) dlrgdp
constant dlrgdp{1 to lags}
compute aic = -2.0*%logl + %nreg*2
if (aic < bestaic)

compute bestlag=lags,bestaic=aic
}

end do lags

The instruction block controlled by the IF runs the regression on the CONSTANT
only and saves the AIC into the BESTAIC variable. These lines are executed
only when LAGS is equal to 0. Since that’s the first pass through the loop, we
know that the model is the best that we have seen to that point. If LAGS is non-
zero, we execute the instruction block controlled by the ELSE. This estimates
the model with the current number of LAGS, computes the AIC and compares
it to whatever is now in BESTAIC. If the new AIC is smaller, we replace both
BESTLAG with the current number of lags and BESTAIC with the current value
for AIC. Note that we used a second (rather simple) IF inside the instruction
block controlled by the main ELSE—structures can be nested as deeply as you
need, though once you get above five levels it can be very hard to keep track of
which is controlling what. More advanced structures called PROCEDURES and
FUNCTIONS are often handy for removing parts of a very involved calculation
into a separate subblock of code to make the program flow easier to follow and
the whole program easier to maintain.

5.4 WHILE and UNTIL Loops

The DO loop is appropriate if you know exactly how many passes you want to
make. However, there are circumstances in which the number of repetitions
is unclear. For example, a common way to select the a lag length in an AR(p)
model is to estimate the autoregression using the largest value of p deemed
reasonable. If the t-statistic on the coefficient for lag p is insignificant at some
pre-specified level, estimate an AR(p-1) and repeat the process until the last lag
is statistically significant. This is known as a general-to-specific model selection
process. You can do this with the help of a WHILE or UNTIL instruction.

The syntax for a WHILE block is:

Standard Programming Structures 155

WHILE condition {
block of statements executed as long as condition is “true”

}

The syntax for an UNTIL block is:

UNTIL condition {
block of statements executed until condition is “true”

}

As part of Example 5.3, we’ll first use WHILE to do the lag selection as described
above, picking a lag length no larger than 12 for the growth rate in the deflator
(which we’ll call DLDEFLATOR). A possible way to write this is:

set dldeflator = log(deflator)-log(deflator{1})

*
compute lags=13,signif=1.00
while signif>.05 {

compute lags=lags-1
linreg(noprint) dldeflator
constant dldeflator{1 to lags}

compute signif=%ttest(%tstats(%nreg),%ndf)
disp "Significance of lag" lags "=" signif

}
end while

which will give us
Significance of lag 12 = 0.14249
Significance of lag 11 = 0.73725
Significance of lag 10 = 0.48749
Significance of lag 9 = 0.78494
Significance of lag 8 = 0.43323
Significance of lag 7 = 0.28264
Significance of lag 6 = 0.98133
Significance of lag 5 = 0.04629

The first time through the loop, the variable SIGNIF is compared to 0.05. Since
SIGNIF was initialized to be larger than 0.05, all of the the instructions within
the block are executed. So LAGS is decreased from 13 to 12 and a 12 lag AR
is estimated on DLDEFLATOR. %TSTATS(%NREG) is the t-statistic on the final
coefficient in the regression; we compute its two-tailed significance level with
%TTEST using as the degrees of freedom for the t the variable %NDF that’s set by
the LINREG . Note that both %NREG and %NDF will change (automatically) with
the number of lags in the regression—you don’t have to figure them out your-
self. For illustration, this now displays the number of lags and the significance
level. In a working program, you probably wouldn’t do that, but it’s a good idea
to put something like that in until you’re sure you have the loop correct.

We’re now at the end of the block so control loops up to the WHILE check at the
top. With LAGS=12 on the first pass, the significance is .14249 so the WHILE

Standard Programming Structures 156

condition is still true. Thus we start a second pass through, decreasing lags
to 11 and redoing the calculation. This repeats until LAGS is 5. This gives
SIGNIF=.04629 so when we loop to the top, the WHILE condition finally fails.
Control passes to the first instruction after the controlled block of instructions,
which means we’re done with the whole compiled subprogram.2

You may have noticed a problem with the WHILE loop—what happens if none of
the final coefficients is ever significant? That’s certainly possible if the series
is white noise. Most loops of this nature need a “safeguard” against running
forever in case the condition isn’t met. Here, the loop won’t run forever, but it
will get to the point where the regression uses lags from “1 to 0”. RATS actually
interprets that the way it would be intended here, which is to use no lags at
all. However, the t-test would then be on the CONSTANT (since it would be the
last and only coefficient), rather than a lag.

One possibility would be to change the condition to

while signif>.05.and.lags>1

which will prevent it from running the regression with no lags. However, it
won’t give us the right answer for the number of lags, because we can’t tell
(based upon this condition alone) whether LAGS is 1 when we drop out of the
loop because lag 1 was significant, or whether it was because lags 1 wasn’t
significant, and we triggered the second clause. If it’s the latter, we want the
report to be LAGS=0.

In most such cases, the secondary condition to break out of the loop is best done
with a separate BREAK instruction, controlled by an IF. BREAK does exactly
what it sounds like it would do—breaks out of the current (most inner) loop.
Here, we insert the test right after LAGS is reduced. You can check that this
does get the result correct. If we get to lag 1 and it’s significant, we break the
loop based upon the WHILE condition while LAGS is still 1. If we get to lag 1
and it’s not significant, we break the loop when LAGS is reduced to zero, which
is what we want.

compute lags=13,signif=1.00
while signif>.05 {

compute lags=lags-1
if lags==0

break
linreg(noprint) dldeflator
constant dldeflator{1 to lags}

compute signif=%ttest(%tstats(%nreg),%ndf)
disp "Significance of lag" lags "=" signif

}
end while

2The END WHILE is the signal that you want to exit compile mode. It’s only needed if the
WHILE instruction isn’t already inside some other compiled structure.

Standard Programming Structures 157

Not surprisingly, there is more than one way to do this. BREAK also can be
applied to DO and DOFOR loops. Instead of using WHILE, we could use a DO loop
which counts backwards through the lags and break out of it when we get a
significant coefficient. A first go at this would be something like:

do lags=12,1,-1
linreg(noprint) dldeflator
constant dldeflator{1 to lags}
compute signif=%ttest(%tstats(%nreg),%ndf)
disp "Significance of lag" lags "=" signif
if signif<.05

break
end do lags

This will give exactly the same results as before. The only problem is again
with the case where none of the lags is significant. It’s not that the loop runs
forever, since it will quit after the pass where LAGS is 1 as we planned. It’s just
that, because of the way that the DO loop runs (section 5.2), the value of LAGS
will be 1 if the only significant lag is 1, and will also be 1 if none of the lags
are significant—on the normal exit from the loop, the value of the index is the
value from the last pass through.

An alternative which gets all cases correct is:

compute p=0
do lags=12,1,-1

linreg(noprint) dldeflator
constant dldeflator{1 to lags}
compute signif=%ttest(%tstats(%nreg),%ndf)
disp "Significance of lag" lags "=" signif
if signif<.05 {

compute p=lags
break

}
end do lags
disp "Number of lags chosen =" p

Instead of using the loop index LAGS to represent the chosen number of lags,
this uses the separate variable P. This is originally set to 0 and is only reset if
and only if we hit a significant lag.

WHILE and UNTIL are similar, but there are two differences, one minor and one
more important:

1. The condition for WHILE is “true” if the loop is to continue, while for UNTIL
it is “true” if the loop is to terminate.

2. The body of the UNTIL loop is always executed at least once, as the test
is done at the end of a pass; WHILE tests at the top and so could drop out
without ever executing the body.

Standard Programming Structures 158

The same analysis done using an UNTIL loop is:

compute lags=13,signif=1.00
until signif<.05 {

compute lags=lags-1
if lags==0

break
linreg(noprint) dldeflator
constant dldeflator{1 to lags}
compute signif=%ttest(%tstats(%nreg),%ndf)
disp "Significance of lag" lags "=" signif

}
end until

Which of these is best to use? All of them get the job done correctly and are
roughly the same number of lines so it’s largely a matter of taste. Automatic
lag selection is extremely common in modern econometrics, particularly in unit
root and cointegration testing, so this shows up in quite a few RATS procedures.
For several reasons, we generally end up using the DO loop, as the coding is a bit
clearer, plus, the added step of saving the chosen lags into a separate variable
isn’t (in practice) really an added step, since that will almost always be done
anyway so the selected number of lags can be used later.

After the UNTIL or WHILE examples, we can estimate the chosen regression
with:

compute p=lags
linreg(title="Least Squares with Automatic Lag Selection") $

dldeflator
constant dldeflator{1 to p}

We would do the same after the DO, but without the compute p=lags.

Standard Programming Structures 159

Linear Regression - Estimation by Least Squares with Automatic Lag Selection
Dependent Variable DLDEFLATOR
Quarterly Data From 1961:03 To 2012:04
Usable Observations 206
Degrees of Freedom 200
Centered Rˆ2 0.7980032
R-Barˆ2 0.7929533
Uncentered Rˆ2 0.9376799
Mean of Dependent Variable 0.0088412547
Std Error of Dependent Variable 0.0059200109
Standard Error of Estimate 0.0026937464
Sum of Squared Residuals 0.0014512539
Regression F(5,200) 158.0229
Significance Level of F 0.0000000
Log Likelihood 929.6086
Durbin-Watson Statistic 1.9964

Variable Coeff Std Error T-Stat Signif
**
1. Constant 0.000685461 0.000353780 1.93754 0.05408801
2. DLDEFLATOR{1} 0.576388906 0.070224827 8.20777 0.00000000
3. DLDEFLATOR{2} 0.166608793 0.080443169 2.07114 0.03962957
4. DLDEFLATOR{3} 0.112942556 0.080816573 1.39752 0.16380637
5. DLDEFLATOR{4} 0.210004031 0.080784979 2.59954 0.01003079
6. DLDEFLATOR{5} -0.142165754 0.070898975 -2.00519 0.04629106

Note that, while the final lag in this regression is significant at .05, lag 3 isn’t.
It’s possible to do a more involved lag pruning to get rid of any other apparently
insignificant lags using, for instance, stepwise regression with STWISE. How-
ever, that’s almost never done in practice—you use an automatic procedure to
select just the length, not the full set of lags.

5.5 Estimating a Threshold Autoregression

To provide another example of the topics in this chapter, we will estimate a
threshold autoregresson. The threshold autoregressive (TAR) model has be-
come popular as it allows for different degrees of autogressive decay. Consider
a two-regime version of the threshold TAR developed by Tong (1983):

yt = It

[
α0 +

p∑
i=1

αiyt−i

]
+ (1− It)

[
β0 +

p∑
i=1

βiyt−i

]
+ εt (5.4)

where

It =

{
1 if yt−1 ≥ τ
0 if yt−1 < τ

(5.5)

yt is the series of interest, the αi and βi are coefficients to be estimated, τ is the
value of the threshold, p is the order of the TAR model and It is the Heaviside
indicator function.

How is this different from the STAR models in Section 3.5? The TAR is the limit
as γ → ∞ in the LSTAR model. It seems like there might not be much point
to the TAR when it’s a special case of the STAR, but it’s a special case that (as

Standard Programming Structures 160

we saw) isn’t well-handled by non-linear least squares because the objective
function isn’t differentiable (at the limit) and, in fact, isn’t even continuous.

The nice thing about the STAR is that, if it is a good explanation of the data
with a finite value of γ, it can be estimated successfully by NLLS; however, if it
requires an infinite value of γ, or if there is no threshold effect, the estimation
fails completely. On the other hand, the sum of squares (or log likelihood)
of the TAR model is easily computed given τ (just two standard least squares
regressions over the two branches), but is discontinuous in τ itself. The only
way to estimate τ is with a grid search over the observed values of yt−1.

Example 5.4 illustrates the estimation of a TAR model for the growth rate of
the money supply. The first part of the program reads in the data set and
constructs the variable gm2 using:

set gm2 = log(m2) - log(m2{1})

The next line in the program estimates the gm2 series as an AR({1,3}) process.

linreg gm2
constant gm2{1 3}

If you experiment a bit, you will see that the AR({1,3}) specification is quite
reasonable. If you are going to estimate a TAR model, it is standard to start
with a parsimonous linear specification. First, suppose that we want the value
of the threshold τ to equal the sample mean (0.016788). This might be the case
if we were certain that greater than average money growth behaved differently
from below average growth. Also, suppose you knew the delay factor used to
set the heaviside indicator was 2.3

We can create the indicator It (called PLUS) using

stats gm2
compute tau=%mean
set plus = gm2{2}>=tau

We cannot use the symbol I (since I, along with J and T are reserved integer
variables) to represent the indicator, so we use the label PLUS. For each possible
entry in the data set, the SET instruction compares gmt−2 to the value in TAU.
If gmt−2 is greater than TAU, the value of plust is equal to 1, otherwise it’s zero.

Next, we create (1− It) as the series MINUS using:

set minus = 1 - plus

There are two ways to estimate the model: you can do two separate estima-
tions with LINREG using the SMPL=PLUS option for one and SMPL=MINUS for

3We actually experimented to find the best delay.

Standard Programming Structures 161

the other, adding the two sums of squared residuals to get the full model sum
of squares, or you can generate “dummied-out” versions of the regressors for
the two periods and do a single LINREG. We’ll first show a “brute force” imple-
mentation of the second of the two by creating the variables Itgm2t−1, Itgm2t−3,
(1− It)gm2t−1 and (1− It)gm2t−3:

set y1_plus = plus*gm2{1}
set y3_plus = plus*gm2{3}
set y1_minus = minus*gm2{1}
set y3_minus = minus*gm2{3}

Now we can estimate the regression using:

linreg gm2
plus y1_plus y3_plus minus y1_minus y3_minus

Linear Regression - Estimation by Least Squares
Dependent Variable GM2
Quarterly Data From 1961:01 To 2012:04
Usable Observations 208
Degrees of Freedom 202
Centered Rˆ2 0.4665048
R-Barˆ2 0.4532994
Uncentered Rˆ2 0.8914579
Mean of Dependent Variable 0.0168372348
Std Error of Dependent Variable 0.0085299382
Standard Error of Estimate 0.0063069683
Sum of Squared Residuals 0.0080351254
Regression F(5,202) 35.3270
Significance Level of F 0.0000000
Log Likelihood 761.6537
Durbin-Watson Statistic 1.9522

Variable Coeff Std Error T-Stat Signif
**
1. PLUS 0.0049868654 0.0023541720 2.11831 0.03537110
2. Y1_PLUS 0.5062254697 0.0799787393 6.32950 0.00000000
3. Y3_PLUS 0.1542573375 0.0790118150 1.95233 0.05228060
4. MINUS 0.0017519286 0.0014967659 1.17048 0.24318846
5. Y1_MINUS 0.8237612657 0.0958011189 8.59866 0.00000000
6. Y3_MINUS 0.2164646725 0.1009068421 2.14519 0.03313113

At this point, you might want perform the standard diagnostic checks and per-
haps eliminate MINUS coefficient since its t-statistic is quite low. However, our
goal here is to illustrate programming techniques, not to obtain the best fitting
TAR model for money growth.

5.5.1 Estimating the Threshold

One problem with the above model is that the threshold may not be known.
When τ is unknown, Chan (1993) shows how to obtain a super-consistent es-
timate of the threshold parameter. For a TAR model, the procedure is to order
the observations from smallest to largest such that:

y1 < y2 < y3... < yT (5.6)

Standard Programming Structures 162

For each value of yj, let τ = yj, set the Heaviside indicator according to this
potential threshold and estimate a TAR model. The regression equation with
the smallest residual sum of squares contains the consistent estimate of the
threshold. In practice, the highest and lowest 15% of the yj values are excluded
from the grid search to ensure an adequate number of observations on each side
of the threshold.

Note that this is quite a different form of grid search than we saw in Chapter 3
(page 83). Because the objective function there was continuous, each different
grid value likely would produce a different value of the objective—we can only
hope that the grid isn’t too coarse to miss the minimum. Here, however, the
objective function is discontinuous and we know exactly at which points it can
change. Thus, the grid search that we’re conducting here, over the observed
values of the threshold, is guaranteed to find the minimum. It is, however, a
bit harder to set up. The following two lines copy the threshold series into a
new series called TAUS and sorts it (in increasing order, which is the default for
the ORDER instruction).

set taus = gm2{2}
order taus

We now need to figure out which entries of TAUS we can use, given that we want
to eliminate 15% at each end. The quickest and most flexible way to do that is
to use the INQUIRE instruction to figure out what the defined range of TAUS is.
INQUIRE is described in greater detail in this chapter’s Tips and Tricks section
(page 169).

inquire(series=taus) tstart tend
compute tlow=tstart+fix(%nobs*.15),thigh=tend-fix(%nobs*.15)

TSTART will be the first defined entry of TAUS (here 4 because GM2 starts at 2
and the threshold has a delay of 2), so TLOW will be 15% of the way into the data
set from the lowest value and THIGH 15% of the way in from the highest. Note
that this is not 15% of the gap in the values between the highest and lowest,
but 15% of the entry count. If there are many values at (for instance) the low
end, we could be starting at a value not much above the minimum, but that’s
OK since we are excluding these largely so that we don’t run regressions with
almost no data. The FIX function is needed because the entry numbers are
integer-valued and %NOBS*.15 is real—FIX(x) rounds x down to the first
integer below it.

The search can be done with:

Standard Programming Structures 163

compute rssbest=%na
do itau=tlow,thigh

compute tau=taus(itau)
set plus = gm2{2}>=tau
set minus = 1 - plus

*
set y1_plus = plus*gm2{1}
set y3_plus = plus*gm2{3}
set y1_minus = minus*gm2{1}
set y3_minus = minus*gm2{3}
linreg(noprint) gm2
plus y1_plus y3_plus minus y1_minus y3_minus
if .not.%valid(rssbest).or.%rss<rssbest

compute rssbest=%rss,taubest=tau
end do itau

Once the program exits the loop, we can display the consistent estimate of the
threshold with

disp "We have found the attractor"
disp "Threshold=" taubest

We have found the attractor
Threshold= 0.01660

Finally, we can estimate the TAR model with the consistent estimate of the
threshold using

compute tau=taubest
set plus = gm2{2}>=tau
set minus = 1 - plus

*
set y1_plus = plus*gm2{1}
set y3_plus = plus*gm2{3}
set y1_minus = minus*gm2{1}
set y3_minus = minus*gm2{3}
linreg(title="Threshold autoregression") gm2
plus y1_plus y3_plus minus y1_minus y3_minus

Standard Programming Structures 164

Linear Regression - Estimation by Threshold autoregression
Dependent Variable GM2
Quarterly Data From 1961:01 To 2012:04
Usable Observations 208
Degrees of Freedom 202
Centered Rˆ2 0.4687938
R-Barˆ2 0.4556451
Uncentered Rˆ2 0.8919236
Mean of Dependent Variable 0.0168372348
Std Error of Dependent Variable 0.0085299382
Standard Error of Estimate 0.0062934232
Sum of Squared Residuals 0.0080006495
Regression F(5,202) 35.6533
Significance Level of F 0.0000000
Log Likelihood 762.1009
Durbin-Watson Statistic 1.9391

Variable Coeff Std Error T-Stat Signif
**
1. PLUS 0.0058913925 0.0023302839 2.52819 0.01223032
2. Y1_PLUS 0.4745687514 0.0791112032 5.99876 0.00000001
3. Y3_PLUS 0.1502105166 0.0787585904 1.90723 0.05790997
4. MINUS 0.0015219242 0.0015023522 1.01303 0.31225885
5. Y1_MINUS 0.8625034171 0.0969960051 8.89215 0.00000000
6. Y3_MINUS 0.1885968485 0.1012876103 1.86199 0.06405639

5.5.2 Improving the Program

The program described in Section 5.5.1 is rather crude. It works, but far too
much of it is hard-coded for a specific example. For instance, it uses the variable
GM2 almost 20 times and the threshold delay of 2 is repeated four times. We can
also enhance the program by creating a series of the sums of squared residuals
for different values of τ , so we can see how sensitive the objective is to the
threshold value. The revised program is Example 5.5.

One question you might have is whether we should have planned ahead for
this when we originally wrote the program. How you handle it will generally
depend upon how comfortable you are with the more flexible coding that we
will be doing. One problem with trying to start with the “improved” program
is that the most complicated part of this isn’t making the specification more
flexible—it’s getting the coding for finding the optimal threshold correct. If you
try to do two things at once:

1. work out and debug the optimal threshold code
2. write a program easily adapted to other data

you might have a hard time getting either one correct. Again, that will depend
upon your skill level with RATS programming. However, the graph of the sums
of squares is definitely something that good programming practice would tell
you to wait on—that’s easy to add once everything else is done.

The first thing we will do differently is to add a DEFINE option to the initial
LINREG:

Standard Programming Structures 165

linreg(define=baseeq) gm2
constant gm2{1 3}
compute rssols=%rss

This defines BASEEQ as an EQUATION data type, which keeps track of (among
other things) the form of the equation and the dependent variable. The last
line above also saves the sum of squared residuals from the least squares esti-
mation.

To allow for greater flexibility in setting the threshold variable and delay, we
can do the following:

set threshvar = gm2
compute d=2

From this point on, if we use THRESHVAR{D} whenever we need the threshold
expression, then we can change the threshold by changing just these two lines.

As we described earlier, there are two ways to estimate the threshold regres-
sion. The method from the previous section was to create dummied-out re-
gressors and do a combined LINREG. The alternative is to run two LINREG’s
over the “plus” and “minus” samples. While we’ll show later how to create the
dummies more flexibly, it’s much easier to do the two sample regression.

We’ll skip over the estimation with τ at the mean and jump straight into the
code for finding the optimal threshold. You’ll see two differences with the set
up code:

clear taus
set taus = threshvar{d}
order taus
inquire(series=taus) tstart tend

*
compute tlow=tstart+fix(%nobs*.15),thigh=tend-fix(%nobs*.15)

First, we added a CLEAR instruction for the TAUS series. That will allow us to
change the threshold variable or delay without having to worry whether TAUS
still has left-over values from the previous analysis.4 Second, the SET TAUS
now uses THRESHVAR{D} rather than hard-coded values from the example.

We also need to add one more instruction to initialize a series for the sums of
squares as they are generated:

set rsstau = %na

4You could also avoid any problems like this by doing File-Clear Memory menu item or by
clicking on the the toolbar button before re-running the program with any changes, but
the CLEAR instruction will work whether or not you do that.

Standard Programming Structures 166

Note that CLEAR RSSTAU would also work fine. This sets up the series RSSTAU
and sets all values to NA—the only data points which will have non-missing val-
ues will be the ones where we estimate a threshold regression. The simplified
loop for finding the attractor is:

compute rssbest=rssols
do itau=tlow,thigh

compute tau=taus(itau)
set plus = threshvar{d}>=tau
linreg(noprint,equation=baseeq,smpl=plus)
compute rssplus=%rss
linreg(noprint,equation=baseeq,smpl=.not.plus)
compute %rss=%rss+rssplus
compute rsstau(itau)=%rss
if %rss<rssbest

compute rssbest=%rss,taubest=tau
end do itau

What’s different here? First, the test for whether a new sum of squares is
the best that we’ve seen is simplified a bit by starting with RSSBEST equal to
RSSOLS. Since all models with a break have to be at least as good as the same
model with no breaks, we know that this will be replaced right away. In the
previous coding, we started with RSSBEST=%NA, which then required testing
RSSBEST for %VALID. Since we have available a value which we’re computing
anyway that we know is finite but bigger than the optimal value, we might as
well use it.

Second, we’re using THRESHVAR{D} rather than the specific GM2{2}. Third, the
sums of squares for the threshold regression is computing using:

linreg(noprint,equation=baseeq,smpl=plus)
compute rssplus=%rss
linreg(noprint,equation=baseeq,smpl=.not.plus)
compute %rss=%rss+rssplus

The first LINREG runs the regression over the sample where PLUS is non-zero
(in this case, non-zero always means “one”), and the second runs it over the
remainder of the sample (.NOT.PLUS is “true” wherever PLUS is non-zero).
%RSS will be equal to the sum of the %RSS values from the two regressions.

Finally

compute rsstau(itau)=%rss

saves the value of %RSS into the entry of RSSTAU that corresponds to the cur-
rent value of TAU being examined. Note that since TAUS is a sorted copy, these
don’t represent the original time period of the data, but we’re doing a SCATTER
plot, so all that matters is that RSSTAU matches up with TAUS.

Standard Programming Structures 167

0.0075 0.0125 0.0175 0.0225

0.0080

0.0081

0.0082

0.0083

0.0084

0.0085

0.0086

0.0087

Figure 5.4: Threshold Values vs Sums of Squares

Not surprisingly, this produces the same result as the cruder coding. We add
the graph (Figure 5.4) using:

scatter(footer="Threshold Values vs Sums of Squares",style=step)
taus rsstau

Note that this uses STYLE=STEP rather than STYLE=LINE. STYLE=STEP gives
a graph of function as it should look, which is a step function between the
observed values for the threshold.

The process for generating the final regression with the dummied-out break
variables uses some more advanced programming features which will be cov-
ered in the next chapter. This will give you a taste of some of the special capa-
bilities that RATS has, particular for dealing with time series.

As before, we need to create a PLUS series which is the dummy for the “above”
branch:

compute tau=taubest
set plus = threshvar{d}>=tau

The number of “dummied-out” series that we need is 2 × the number of re-
gressors in the base model. That is most conveninently done by creating a
RECTANGULAR matrix of SERIES with the dimensions we need. You’ll notice
that this next code segment uses a specialized set of functions for pulling infor-
mation out of the saved equation. See this Chapter’s Tips and Tricks page 170
for a more complete description of those.

Standard Programming Structures 168

dec rect[series] expand(%eqnsize(baseeq),2)
do i=1,%eqnsize(baseeq)

set expand(i,1) = %eqnxvector(baseeq,t)(i)*plus
set expand(i,2) = %eqnxvector(baseeq,t)(i)*(1-plus)
labels expand(i,1) expand(i,2)
"PLUS_"+%eqnreglabels(baseeq)(i) $

"MINUS_"+%eqnreglabels(baseeq)(i)
end do i

EXPAND(I,1) is the “plus” branch and EXPAND(i,2) is the “minus” branch
for each of the regressors. The LABELS instruction is then used to give
more informative output labels to those two series. The + operator, when
applied to strings, does concatenation, so this will create labels which are
PLUS CONSTANT and MINUS CONSTANT when the regressor’s standard label is
CONSTANT, PLUS GM{1} and MINUS GM{1} when the regressor’s standard label
is GM{1}, etc.

We run the final regression with the optimal threshold using:

linreg(title="Threshold Regression") %eqndepvar(baseeq)
expand

which gives us
Linear Regression - Estimation by Threshold Regression
Dependent Variable GM2
Quarterly Data From 1961:01 To 2012:04
Usable Observations 208
Degrees of Freedom 202
Centered Rˆ2 0.4687938
R-Barˆ2 0.4556451
Uncentered Rˆ2 0.8919236
Mean of Dependent Variable 0.0168372348
Std Error of Dependent Variable 0.0085299382
Standard Error of Estimate 0.0062934232
Sum of Squared Residuals 0.0080006495
Regression F(5,202) 35.6533
Significance Level of F 0.0000000
Log Likelihood 762.1009
Durbin-Watson Statistic 1.9391

Variable Coeff Std Error T-Stat Signif
**
1. PLUS_Constant 0.0058913925 0.0023302839 2.52819 0.01223032
2. PLUS_GM2{1} 0.4745687514 0.0791112032 5.99876 0.00000001
3. PLUS_GM2{3} 0.1502105166 0.0787585904 1.90723 0.05790997
4. MINUS_Constant 0.0015219242 0.0015023522 1.01303 0.31225885
5. MINUS_GM2{1} 0.8625034171 0.0969960051 8.89215 0.00000000
6. MINUS_GM2{3} 0.1885968485 0.1012876103 1.86199 0.06405639

You can experiment with different sets of lags in the AR and different delay
values and see how this is able to adapt to them.

As we said in the Preface, you should try not to “reinvent the wheel”. We’ve
shown a program to estimate a threshold autoregression, but there already
exist several procedures which may be able to do what you need. The

Standard Programming Structures 169

@THRESHTEST procedure both estimates a general threshold regression (not
just an autoregression) and can compute bootstrapped significance levels. @TAR
estimates a threshold autoregression including a test for the best threshold de-
lay. For specific applications, there are @EndersGranger and @EndersSiklos
which do threshold unit root and cointegration tests respectively.

5.6 Tips and Tricks

The Instruction INQUIRE
If you look at the code for many of the popular RATS procedures (such as DFU-
NIT.SRC), you’ll see that one of the first executable instructions is an INQUIRE.
If you do an instruction like LINREG or STATISTICS, RATS will automatically
determine the maximum range given the series involved. However, for in-
stance, you need to run a DO loop over a range of entries, you need to find
out in advance the specific range that’s available. That’s what INQUIRE is de-
signed to do.

INQUIRE(options) value1<<p1 value2<<p2
list of variables in regression format (only with
REGLIST)

The <<p1 and <<p2 are only used in procedures, so we’ll discuss them later.
Thus, we’re looking at the basic instruction being

INQUIRE(options) value1 value2
list of variables in regression format (only with
REGLIST)

In the example in this chapter, we used:

inquire(series=taus) tstart tend

which makes TSTART equal to the first entry of TAUS which isn’t an NA, and
TEND equal to the last valid entry.

If you need the limit of a set of series, use the REGRESSORLIST (which we
usually shorten to REGLIST) and list the variables, which can include lag/lead
fields on a supplementary line. For instance, to determine the largest estima-
tion range for the model used in Example 5.4, we would do

inquire(reglist) rstart rend
gm2 constant gm2{1 3}

Note that you need to include the dependent variable as well—if you don’t,
REND will actually be one entry past the end of the data since entry T + 1 is
valid for the lags.

Standard Programming Structures 170

There’s also an EQUATION option which can be used to determine the maxi-
mum range permitted by the variables (both dependent and explanatory) in an
EQUATION. For instance,

inquire(equation=baseeq) estart eend

If it’s important to identify missing values within the data range, you can add
the VALID option to any of those. For instance,

inquire(valid=esmpl,equation=baseeq) estart eend

would define ESTART and EEND as the outer common limits of the variables in
BASEEQ with ESMPL created as a dummy variable with 1’s in the entries which
are valid across all those variables and 0’s in the entries which aren’t. In this
example, since there are no missing values inside a series, ESMPL would just
be all 1’s between ESTART and END.

EQUATION functions
We defined an EQUATION early in Example 5.5 to save the base specification
that we extended with breaks. There is a whole set of functions which can
be used to take information out of (or, less often, put information into) an
EQUATION. All of these have names starting with %EQN. Here, we used the
rather simple %EQNSIZE(eqn) which returns the size (number of explanatory
variables) of the equation. The two more important functions used in the ex-
ample are %EQNXVECTOR and %EQNREGLABELS.

%EQNXVECTOR(eqn,t) returns the VECTOR of explanatory variables for equa-
tion eqn at entry t. An eqn of 0 can be used to mean the last regression run.
The instructions

set expand(i,1) = %eqnxvector(baseeq,t)(i)*plus
set expand(i,2) = %eqnxvector(baseeq,t)(i)*(1-plus)

are inside a loop over the time subscript T. The %EQXVECTOR(baseeq,t) pulls
out the vector of explanatory variables for BASEEQ at T, which (in this case)
means [1, gm2t−1, gm2t−3]. The further (I) subscript takes one of those three
elements out.

%EQNREGLABELS(eqn) returns a VECTOR of STRINGS which are the “re-
gressor labels” used in standard regression output, combining the variable
name and (if used) lag number, such as GM2{1} and GM2{3} for the lags of
GM2. Again, we use subscript I applied to the result of that to pull out the
string that we need.

There are several related functions which can also be handy. In all cases, eqn is
either an equation name, or 0 for the last estimated (linear) regression. These
also evaluate at a specific entry T.

Standard Programming Structures 171

• %EQNPRJ(eqn,t) evaluates the fitted value Xtβ for the current set of
coefficients for the equation.
• %EQNVALUE(eqn,t,beta) evaluates Xtβ for an input set of coefficients.
• %EQNRESID(eqn,t) evaluates the residual yt−Xtβ for the current set of

coefficients, where yt is the dependent variable of the equation.
• %EQNRVALUE(eqn,t) evaluates the residual yt − Xtβ for an input set of

coefficients.

Standard Programming Structures 172

Example 5.1 Illustration of DO loop

open data quarterly(2012).xls
cal(q) 1960:1
allocate 2012:4
data(org=obs,format=xls)
*
set loggdp = log(rgdp)
*
graph(footer="U.S. Real GDP")
loggdp
*
set trend = t
*
linreg loggdp
constant trend
*
set rssio = %na
do t0=1965:1,2007:4

set btrend = %max(t-t0,0)
linreg(noprint) loggdp
constant trend btrend loggdp{1 2}
compute rssio(t0)=%rss

end do t0
*
graph(footer="RSS for Broken Trend, Innovational Outlier")
rssio
ext(noprint) rssio
disp "Minimum at" %datelabel(%minent) %minimum
*
set rssao = %na
do t0=1965:1,2007:4

set btrend = %max(t-t0,0)
boxjenk(regressors,ar=2,noprint) loggdp
constant trend btrend
compute rssao(t0)=%rss

end do t0
graph(footer="RSS for Broken Trend, Additive Outlier")
rssao
*
ext(noprint) rssao
disp "Minimum at" %datelabel(%minent) %minimum

Example 5.2 Illustration of IF/ELSE

open data quarterly(2012).xls
cal(q) 1960:1
allocate 2012:4
data(org=obs,format=xls)
*
set dlrgdp = log(rgdp)-log(rgdp{1})
*
cmom

Standard Programming Structures 173

dlrgdp{0 to 12} constant
*
do lags=0,12

if lags==0 {
linreg(noprint,cmom) dlrgdp
constant
compute aic = -2.0*%logl + %nreg*2
compute bestlag=lags,bestaic=aic

}
else {

linreg(noprint,cmom) dlrgdp
constant dlrgdp{1 to lags}
compute aic = -2.0*%logl + %nreg*2
if (aic < bestaic)

compute bestlag=lags,bestaic=aic
}

end do lags
*
disp "Minimum AIC lag" bestlag

Example 5.3 Illustration of WHILE and UNTIL

open data quarterly(2012).xls
cal(q) 1960:1
allocate 2012:4
data(org=obs,format=xls)
*
set dldeflator = log(deflator)-log(deflator{1})
*
* Cut lags until the last one is significant
*
compute lags=13,signif=1.00
while signif>.05 {

compute lags=lags-1
linreg(noprint) dldeflator
constant dldeflator{1 to lags}

compute signif=%ttest(%tstats(%nreg),%ndf)
disp "Significance of lag" lags "=" signif

}
end while
*
disp "Chosen number of lags" lags
*
* Same thing with safeguard for the number of lags
*
compute lags=13,signif=1.00
while signif>.05 {

compute lags=lags-1
if lags==0

break
linreg(noprint) dldeflator
constant dldeflator{1 to lags}

compute signif=%ttest(%tstats(%nreg),%ndf)

Standard Programming Structures 174

disp "Significance of lag" lags "=" signif
}
end while
*
* Same thing done using a DO loop
*
compute p=0
do lags=12,1,-1

linreg(noprint) dldeflator
constant dldeflator{1 to lags}
compute signif=%ttest(%tstats(%nreg),%ndf)
disp "Significance of lag" lags "=" signif
if signif<.05 {

compute p=lags
break

}
end do lags
disp "Number of lags chosen =" p
*
* Same thing done using an UNTIL loop
*
compute lags=13,signif=1.00
until signif<.05 {

compute lags=lags-1
if lags==0

break
linreg(noprint) dldeflator
constant dldeflator{1 to lags}
compute signif=%ttest(%tstats(%nreg),%ndf)
disp "Significance of lag" lags "=" signif

}
end until
compute p=lags
*
* Redo regression with chosen number of lags
*
linreg(title="Least Squares with Automatic Lag Selection") dldeflator
constant dldeflator{1 to p}

Example 5.4 Threshold Autoregression, Brute Force

open data quarterly(2012).xls
cal(q) 1960:1
allocate 2012:4
data(org=obs,format=xls)
*
set gm2 = log(m2) - log(m2{1})
*
linreg gm2
constant gm2{1 3}
*
stats gm2
compute tau=%mean

Standard Programming Structures 175

set plus = gm2{2}>=tau
set minus = 1 - plus
*
set y1_plus = plus*gm2{1}
set y3_plus = plus*gm2{3}
set y1_minus = minus*gm2{1}
set y3_minus = minus*gm2{3}
*
linreg gm2
plus y1_plus y3_plus minus y1_minus y3_minus
*
* Create the empirical grid for the threshold values
*
set taus = gm2{2}
order taus
inquire(series=taus) tstart tend
*
* These are the lowest and highest entry numbers in <<taus>> that we
* will try, discarding 15% at either end.
*
compute tlow=tstart+fix(%nobs*.15),thigh=tend-fix(%nobs*.15)
*
compute rssbest=%na
do itau=tlow,thigh

compute tau=taus(itau)
set plus = gm2{2}>=tau
set minus = 1 - plus
*
set y1_plus = plus*gm2{1}
set y3_plus = plus*gm2{3}
set y1_minus = minus*gm2{1}
set y3_minus = minus*gm2{3}
linreg(noprint) gm2
plus y1_plus y3_plus minus y1_minus y3_minus
if .not.%valid(rssbest).or.%rss<rssbest

compute rssbest=%rss,taubest=tau
end do itau
disp "We have found the attractor"
disp "Threshold=" taubest
*
* Re-estimate the model at the best values
*
compute tau=taubest
set plus = gm2{2}>=tau
set minus = 1 - plus
*
set y1_plus = plus*gm2{1}
set y3_plus = plus*gm2{3}
set y1_minus = minus*gm2{1}
set y3_minus = minus*gm2{3}
linreg(title="Threshold autoregression") gm2
plus y1_plus y3_plus minus y1_minus y3_minus

Standard Programming Structures 176

Example 5.5 Threshold Autoregression, More Flexible Coding

open data quarterly(2012).xls
cal(q) 1960:1
allocate 2012:4
data(org=obs,format=xls)
*
set gm2 = log(m2) - log(m2{1})
*
linreg(define=baseeq) gm2
constant gm2{1 3}
compute rssols=%rss
*
set threshvar = gm2
compute d=2
*
* Create the empirical grid for the threshold values
*
clear taus
set taus = threshvar{d}
order taus
inquire(series=taus) tstart tend
*
* These are the lowest and highest entry numbers in <<taus>> that we
* will try, discarding 15% at either end.
*
compute tlow=tstart+fix(%nobs*.15),thigh=tend-fix(%nobs*.15)
*
set rsstau = %na
*
compute rssbest=rssols
do itau=tlow,thigh

compute tau=taus(itau)
set plus = threshvar{d}>=tau
linreg(noprint,equation=baseeq,smpl=plus)
compute rssplus=%rss
linreg(noprint,equation=baseeq,smpl=.not.plus)
compute %rss=%rss+rssplus
compute rsstau(itau)=%rss
if %rss<rssbest

compute rssbest=%rss,taubest=tau
end do itau
disp "We have found the attractor"
disp "Threshold=" taubest
*
scatter(footer="Threshold Values vs Sums of Squares",style=step)
taus rsstau
*
* Re-estimate the model at the best values
*
compute tau=taubest
set plus = threshvar{d}>=tau
*
dec rect[series] expand(%eqnsize(baseeq),2)

Standard Programming Structures 177

do i=1,%eqnsize(baseeq)
set expand(i,1) = %eqnxvector(baseeq,t)(i)*plus
set expand(i,2) = %eqnxvector(baseeq,t)(i)*(1-plus)
labels expand(i,1) expand(i,2)
"PLUS_"+%eqnreglabels(baseeq)(i) "MINUS_"+%eqnreglabels(baseeq)(i)

end do i
*
linreg(title="Threshold Regression") %eqndepvar(baseeq)
expand

Chapter 6

SERIES and Dates

6.1 SERIES and the workspace

The following is the top of the data file that we’re using
DATE Tb3mo Tb1yr RGDP Potent Deflator M2 PPI Curr
1960Q1 3.87 4.57 2845.3 2824.2 18.521 298.7 33.2 31.8
1960Q2 2.99 3.87 2832.0 2851.2 18.579 301.1 33.4 31.9
1960Q3 2.36 3.07 2836.6 2878.7 18.648 306.5 33.4 32.2
1960Q4 2.31 2.99 2800.2 2906.7 18.700 310.9 33.7 32.6

If we do the following:

open data quarterly(2012).xls
cal(q) 1960:1
allocate 2012:4
data(org=obs,format=xls)

we create a series workspace with a standard length of 212 entries, which is
what 2012:4 is given the quarterly calendar starting in 1960:1. At this point,
it has eight series, in order, TB3MO, TB1YR, RGDP, POTENT, DEFLATOR, M2, PPI
and CURR.

What does it mean for the workspace to have a standard length of 212 entries?
If we do the following

set sims = %ran(1.0)
stats sims

you’ll see that SIMS is defined as 212 data points (the other statistics will differ
because of randomness):
Statistics on Series SIMS
Quarterly Data From 1960:01 To 2012:04
Observations 212
Sample Mean 0.069595 Variance 0.825391
Standard Error 0.908510 SE of Sample Mean 0.062397
t-Statistic (Mean=0) 1.115358 Signif Level (Mean=0) 0.265966
Skewness -0.189381 Signif Level (Sk=0) 0.263675
Kurtosis (excess) 0.559017 Signif Level (Ku=0) 0.102232
Jarque-Bera 4.027656 Signif Level (JB=0) 0.133477

However, if you do

178

SERIES and Dates 179

set sims 1 10000 = %ran(1.0)
stats sims

you’ll get something like
Statistics on Series SIMS
Quarterly Data From 1960:01 To 4459:04
Observations 10000
Sample Mean -0.006149 Variance 0.980794
Standard Error 0.990350 SE of Sample Mean 0.009904
t-Statistic (Mean=0) -0.620923 Signif Level (Mean=0) 0.534664
Skewness -0.008913 Signif Level (Sk=0) 0.716008
Kurtosis (excess) 0.004250 Signif Level (Ku=0) 0.930898
Jarque-Bera 0.139914 Signif Level (JB=0) 0.932434

so SIMS now has 10000 data points. Thus the workspace length isn’t a limit—
it simply sets the standard length which is used if no other information is
available. In general, that means only a few situations where this comes into
play, typically on SET instructions. Because the expression on the right side of
a SET could be quite complicated, RATS doesn’t try to work out the range over
which it could be computed, so, if there is no end parameter on the SET, it uses
the standard length.

Note that you can lengthen a series easily, as we did here, changing SIMS from
212 to 10000 data points. A new SET on a series doesn’t destroy the information
that’s already there. For instance, if you now repeat

set sims = %ran(1.0)
stats sims

you will replace the first 212 data points, leaving everything from 213 to 10000
as it was. Why did this SET apply only to 212 entries? Because the formula
defining a SET can be very complicated, RATS doesn’t try to figure out a range—
if there is no explicit range on the instruction, it uses the standard range, here
from 1 to 212.

What happens when you do a SET instruction involving lags?

set pi = 100.0*log(ppi/ppi{1})

Again, the target range for the SET is the standard 1 to 212. However, because
PPI{1} isn’t defined when T=1, the result for PI is an NA for entry 1. There
is no effective difference between a series created from 1 to 212 with an NA
in entry 1 and another which is defined only from 2 to 212, which is why we
suggest that you not try to adjust the ranges on SET to allow for lags—just let
RATS handle it automatically.

What if you want to erase the old information in a series? You can do a CLEAR
instruction. That replaces the current content of the series (as many as you
list) with NA’s. If you now do

SERIES and Dates 180

clear sims
set sims = %ran(1.0)
stats sims

you’ll again see just 212 entries in the statistics.

Talk about this???

set jbstats 1 10000 = 0.0 do try=1,10000 set sims 1 500 = stats(noprint) sims
compute jbstats(try)=end do try * compute crit05=sstats(mean) 1 10000 (jb-
stats¿crit05)¿¿sim05 (jbstats¿crit01)¿¿sim01 disp ”JB Statistic” disp ”Rejec-
tions at .05” sim05 ”at .01” sim01

6.2 SERIES and their integer handles

If you do the following

print 1970:1 1972:4 2 4 5

you’ll get
ENTRY TB1YR POTENT DEFLATOR
1970:01 7.55 4215.3 23.915
1970:02 7.45 4254.2 24.247
1970:03 6.94 4292.7 24.438
1970:04 5.65 4330.7 24.752
1971:01 4.05 4368.0 25.126
1971:02 4.99 4404.8 25.455
1971:03 5.75 4441.6 25.711
1971:04 4.73 4478.6 25.918
1972:01 4.41 4516.4 26.319
1972:02 4.84 4554.5 26.475
1972:03 5.15 4593.4 26.731
1972:04 5.44 4633.2 27.083

This is because each series created has an integer “handle” which is assigned
in the order in which they are created.

Next, print out the four values of real GDP (rgdp) from 1970:1 through 1970:4
using

print 1970:1 1970:4 rgdp

ENTRY RGDP
1970:01 4252.9
1970:02 4260.7
1970:03 4298.6
1970:04 4253.0

Now try using:

print(nodates) 1970:1 1970:4 rgdp

SERIES and Dates 181

ENTRY RGDP
41 4252.9
42 4260.7
43 4298.6
44 4253.0

As RGDP is stored, it has 212 entries which are numbered from 1 to 212. The
association of the entry number 41 with 1970:1 is based upon the current
CALENDAR setting. If you change the CALENDAR,1 the data don’t move; only
the association of a data point with a particular date.

???Thus, rdgp is one-dimensional array containing 212 observations or entries.
As you can see, entry 1 is equivalent to 1960:1, entry 2 is equivalent to 1960:2,
. . . and 2012:4 is entry 212. In fact, you can substitute the integers for the date
labels whenever you find it convenient. For example, you can obtain first four
values using:

???

6.3 Integer Arithmetic and Variables

???

6.4 Dates as Integers

When you write a date expression like 2012:4, you are actually using an op-
erator which takes the pair of numbers (2012 and 4) and uses the current
CALENDAR scheme to convert that to an entry number (in this case 212). The
numbers could be replaced with variables or expressions:

compute endyear=2012,endqtr=4
compute end=endyear:endqtr

???Associates highest ???wraps

Omitting CALENDAR

Given that all of the series in QUARTERLY(2012).XLS all have 212 entries,
you could read in the data set using:

all 212

open data c:\RatsManual\quarterly(2012).xls
data(org=obs,format=xls)

In fact, if you want to refer to entries by number, rather than by label, you
never use the CALENDAR instruction. However, you would not be able to use

1which you should only do if you understand exactly what is happening

SERIES and Dates 182

date labels. Thus, using CALENDAR gives you the choice of using date labels
or entry values. You cannot use date labels if you omit CALENDAR.

Examples of date arithmetic:

1. Since 1960:1 = 1, it follows that 1960:1+7 = 8 is equivalent to 1961:4. Hence,
to print the first two years of the rgdp series you can use:

pri 1 8 rgdp

Note that RATS will perform the date arithmetic 960:1+7 = 8 only if you do not
use spaces adjacent to the minus sign.

2. To estimate an AR(1) autoregression of the logarithmic change in rgdp using
the first 100 observations:

set dlrgdp = log(rgdp) - log(rgdp{1})

lin dlrgdp * 100

constant dlrgdp{1}

The first line creates the logarithmic change of rgdp. The second line prepares
RATS to estimate a regression with dlrgdp as the dependent variable such
that the last sample point is observation 100 (Note: An observation will be lost
as a result of the lagged change so that the first usable observation is number
3). The asterisk instructs RATS to use the default value for the start entry.

3. Estimate an AR(1) autoregression of the logarithmic change in rgdp using
the last 100 observations and save the residuals in the series resids:

lin dlrgdp 2012:4-99 * resids

constant dlrgdp{1}

Now line 2 instructs RATS to estimate the regression using the start date be-
ginning at 100 observations from the end of the data set.

4. Fortunately, you never have to actually count the number that is equivalent
to a particular date label. In fact, RATS provides a number of instructions that
are helpful for using date manipulation. The two most useful ones are:

%CAL(YEAR,PERIOD) = The entry number PERIOD of YEAR.

SERIES and Dates 183

%DATELABEL(T) = The date string (e.g., 1991:3) corresponding to the entry
value.

To find the date label of the observation 100 periods from 2001:1 use:

dis %DATELABEL(2001:1-100)

1976:01

6.5 Series as Integers

Just as each calendar date has an associated entry value, each series has
its own sequence number. Continue to use Program 5.2 to obtain the summary
statistics of the series using:

tab(pic=‘*.##’)

Series Obs Mean Std Error Minimum Maximum
TB3MO 212 5.03 2.99 0.01 15.05
TB1YR 212 5.58 3.18 0.11 16.32
RGDP 212 7664.75 3390.65 2800.20 13665.40

POTENT 212 7764.87 3511.54 2824.20 14505.40
DEFLATOR 212 61.53 31.59 18.52 116.09

M2 212 3136.84 2648.84 298.70 10317.70
PPI 212 99.97 49.13 33.20 196.20
CURR 212 327.91 309.02 31.83 1147.62

DLRGDP 211 0.01 0.01 -0.02 0.04
RESIDS 100 0.00 0.01 -0.02 0.01

Notice that the series are listed in the same order as they appear in QUAR-
TERLY(2012).XLS. The series numbers are such that tb3mo is series 1, tb1yr
is series 2, and rgdp is series 3. The series dlrgdp created with the SET in-
struction, is series 9 and the resids series is number 10. As discussed above,
you can just use the series number instead of its label anywhere RATS expects
a series name. You do need to make sure that you reference sequence numbers
as integers and not floating point numbers.

Thus, you can print out the first year’s values of rgdp using:

pri 1 4 3

Recall that the syntax for the PRINT instruction is PRINT start end series list.
Thus, pri 1 4 3 instructs RATS to print, from entry 1 through 4, the values

SERIES and Dates 184

of series 3. If you follow the logic, you know that it is possible to print the first
four values of rgdp and dlrgdp using:

pri 1 4 3 9

ENTRY RGDP DLRGDP

1960:01 2845.3 NA

1960:02 2832.0 -0.004685334342

1960:03 2836.6 0.001622976047

1960:04 2800.2 -0.012915308677

Examples:

1. To print the last two years of the rgdp series you can use:

pri 2012:4-7 * 3

2. To estimate an AR(1) autoregression of the logarithmic change in rgdp using
the first 100 observations:

lin 9 * 100

constant 9{1}

There is no need to use the label attached to the series—it is just referred to
as “9”. The first line prepares RATS to estimate a regression with series 9 as
the dependent variable such that the last sample point is observation 100. The
next line instructs RATS to include a constant and the lagged value of series 9
in the regression.

3. Care must be taken if a series is on the right-hand side of a FRML, SET
or COM instruction since RATS will interpret the integer as a scalar. In fact,
whenever it is ambiguous, you can force RATS to use the series instead of an
integer if you use: [series]number. Consider:

set y = log(2) versus set y = log([series]2)

The first instruction sets each entry of y equal to the natural log of 2; hence, all
values of y are 0.69315. The second statement sets each entry of y equal to the
natural log of the corresponding entry of series 2. Suppose that the first four
entries of series 2 are 1, 4, 2 and 6. The second statement sets the first four
values of y to be: 0, 1.38629, 0.69315 and 1.79176.

SERIES and Dates 185

4. Suppose that the series y is the second series in RATS’ memory. All of the
following create the growth rate of y:

set gy = log(y) - log(y{1})

set gy = log([series]2) - log(([series]2){1})

set gy = log(2{0}) - log(2{1})

The first instruction creates gy as the log of the current value of y less the lag
of the previous period’s log of y. The second instruction uses square brackets
to distinguish between the number 2 and series number 2. Notice that it is
necessary to use the construction log(([series]2){1}); log([series]2{1}) creates
an error message. The third instruction is correct since there is no ambiguity
in the meaning of 2{0} and 2{1}. However, log(2) - log(2{1}) would not produce
the desired effect.

6.5.1 Creating Numbered Series and Labels

Since RATS allows you work with a series using its label or its integer value,
you will want to become familiar with creating numbered series, assigning a la-
bel to a series, fetching the integer value of a series from its label, and fetching
the label of a series from its integer value.

In principal, you do not need to assign a label to a series. However, labels make
it easier to remember recall the various steps in your program and to interpret
your output. You can assign a label to each using the EQV instruction. The
syntax of EQV (for Equivalance) is:

EQV integer values of series

list of names for series

For example, you can assign series 1, 2, 3 and 4 the labels resids1, resids2,
resids3, and resids4 using:

eqv 1 to 4

resids1 resids2 resids3 resids4

You can use the labels created with EQV for input and for output. An alter-
native way to assign a label to a series is to use the LABELS instruction. The
syntax for LABELS is:

SERIES and Dates 186

LABELS list of series numbers

‘labels’ for the series (each label in quotation marks)

Hence, to assign the labels resids1, resids2, resids3, and resids4 to series 1
through 4 use:

labels 1 to 4

‘resids1’ ‘resids2’ ‘resids3’ ‘resids4’

Notice that each label is enclosed in single or double quotation marks and that
you use the # symbol to begin the supplementary card for LABELS. There is
an important distinction between EQV and LABELS. EQV produces a label
that can be used for manipulations within a program. However, EQV cannot
be used within a compiled section of a program. LABELS attaches an output
label to a series that RATS displays when printing a series. However, you
cannot manipulate the series using its output label. The main reason to use an
output label is to display strings that cannot be created with the SET or EQV
instructions (e.g., spaces or a mix of upper case and lower case letters).

If you want to retrieve the label of a series, use the %L function. The function
%L(number) returns the LABEL attached to the specified variable. Hence:

dis %l(3)

RGDP

dis %l(rdgp)

RGDP

The SCRATCH instruction provides a simple way to create consecutively num-
bered series. The SCRATCH instruction assigns series numbers beginning
with the highest unused integer value. Since resids is assigned the integer
value of 10, any new series created by SCRATCH will begin with the integer
value of 1‘. The simplest way to create series from SCRATCH is to use:

SCRATCH number start end scr no

where: number The number of series to create

start end The range of entries to allocate to the series

SERIES and Dates 187

scr no: An integer variable equal to the number of existing series
prior to the execution of SCRATCH. Hence, scr no+1 contains the integer value
of the first series created by SCRATCH.

Also note that you can use com a$ = %l(3) to assign the string ‘RGDP’ to the
string variable a$. Once a$ has been computed, it can be manipulated using
the various string handling instruction provided with RATS.

Another way to create series is to use the %S(L) function. Note that %S(L)
returns the series number corresponding to the label L. You can verify that
rgdp is the third series in RATS’ memory by entering the instructions:

com a = %s(’rgdp’) ; dis a
3

A very useful feature of %S(L) is that it creates a series with the label L is it
does not already exist. An alternative way to create the logarithmic change in
rgdp is:

set %s(‘dl’+%l(rgdp)) = log(rgdp{0}) - log(rgdp{1})

The expreaaion ‘dl’ + %l(i) refers to the label dl plus the label rgdp: as such,
the variable is dlrgdp. If the label dlrgdp does not exist, %s(’dl’+%l(i)) creates a
series with the label dlrgdp as the logarithmic change in real gdp. As with EV,
the lable can be manipulated within a RATS program.

6.5.2 Other Loops

1. The DOFOR Instruction
??DOFOR already described in Chap 3, but not for series

The DO instruction forces a particular relationship between subsequent val-
ues of the index. The index of a DO instruction must be an integer and the
index is increased by the same amount from one loop to the next. However,
there are many instances in which we do not want the values of the index to
bear any precise relationship to each other. In such circumstances, DOFOR is
particularly helpful. The syntax for DOFOR is:

DOFOR i = integers

program statements

end dofor

SERIES and Dates 188

Example: To estimate AR{4} models for three series use:

dofor i = 11 13 16

lin(noprint) i

constant i{1 to 4}
dis %label([series]i)

dis %beta

dis %tstats

end dofor
DLRGDP

0.00415 0.29734 0.16635 -0.04196 0.03555

4.56153 4.22671 2.29462 -0.57985 0.51298

DLDEFLATOR

5.92493e-004 0.56064 0.15126 0.09325 0.12863

1.68576 8.00024 1.87948 1.15618 1.83431

DLCURR

0.00803 0.14387 -0.07934 -0.08167 0.56403

4.28421 2.57515 -1.40013 -1.44021 10.14399

Note that series 11 13 and 16 refer to DLRGDP, DLDEFLATOR and
DLCURR,respetively. For each of the three series, an AR(4) model is estimated,
the lable for [series]i, and the %beta and %tstats vectors are displayed. At
this point, you can readily pare down the order of the first two models. We
discuss one simple method when considering WHILE loops below.

You can combine DOFOR with the %S instruction to create labeled series. Con-
sider:

dofor i = rgdp deflator curr

set %s(‘dl’+%l(i)) = log(i{0}) - log(i{1})
end dofor

The key to understanding the instruction is recall that %l(i) is a string equal
to the label of series i. Hence ‘dl’ + %l(i) refers to the label dl plus the label
of series i. The first time through the loop, i = 3. Since the label dlrgdp does

SERIES and Dates 189

not exist, %s(’dl’+%l(i)) creates a series with the label dlrgdp as the logarithmic
change in series i. The second time through the loop, i is equal to the integer
value of the deflator and %l(i) is the string ‘m2’. Since there is no series named
dlm2, %s(’dl’+%l(i)) creates this series as the logarithmic change in m2. Simi-
larly, the third time through the loop, the logarithmic change in curr is created.
Unlike the LABELS instruction, the labels creates by %S(label) can be used for
input and for output.

6.6 Loops for Dates and Series

One of the most powerful features of RATS is that it allows you to perform a
DO loop such that the index refers to a series or to a date. Here is a routine
to create the growth rates of some key variables in QUARTERLY(2012).XLS.
Recall that rgdp is [series]3, potential gdp is [series]4, the deflator is [series]5,
m2 is [series]6, the PPI is [series]7, and currency is [series]8. Now consider:

scratch 6 / scr no

do i = 11,16

set i = log((i-8){0}) - log((i-8){1})
labels i

"DL"+%l(i-8)

end do i

tab(pic=‘##.####’) / 11 to 16
??graph here??

The first line of the routine creates six new series. The series numbers begin
at 11 (since a total of 10 series reside in memory) and run through 16. The
variable scr no contains the integer value 10. Notice that the indices of the
DO loop range from 11 through 16. The first time through the loop i = 11
so that series 11 is set equal to the log of series 3 minus the log of series 3
lagged one period. The next time through the loop, i = 2 so that series 12 is set
equal to the log of series 4 minus the log of series 4 lagged one period. In this
fashion, series 11 – 16 contain the logarithmic changes of rgdp, potential,
deflator, m2, PPI, and currency, respectively. The LABELS instrunction
provides a label for each series equal to the original series label plus the prefix
DL.

To take another example, we could estimate an AR{1} model for each series
using:

do i = 11, 16

SERIES and Dates 190

lin i

constant i{1}

end do i

As an exercise, you should modify the program so that it selects the best lag
length for each series.

Of course, you can instruct RATS to loop over dates. Recall that in Chapter 2,
the inflation rate (as measured by the PPI), was estimated using an expanding
window. Recall that the key program segments were shown to be:

set intercept = 0.

set ar1 = 0.

set sd0 = 0.

set sd1 = 0.

These four lines created the series used to hold the recursive estimates of the
intercepts, AR(1) coefficients, and the standard deviations of each. Next, the
program looped over the 1980:1 to 2012:4 periods and saved the estimated con-
stant, the AR(1) term, and their associated standard errors in the prevously
creted series.

do t = 1980:1,2012:4

box(constant,ar=||1,3||,noprint) dly * t

com intercept(t) = %beta(1), ar1(t) = %beta(2)

com sd0(t) = %STDERRS(1) , sd1(t) = %stderrs(2)

if %converged<>1 ; dis ‘DID NOT CONERGE at ’ %datelabel(t)

end do t

For our purposes, the important point is that the index of the loop (t) increases
from 1980:1 to 2012:4. Each time through the loop, the number of observations
used in the estimation increases by one. As such, all 132 regressions using end
dates 1980:1 through 2012:4 are estimated. Next, it is often beneficial to obtain
the recursive estimates using a rolling window. To use a rolling window with
100 observations in each estimation, use:

do t = 1961:1,2012:4-99

box(constant,ar=||1,3||) dly t t+99

SERIES and Dates 191

com intercept(t) = %beta(1), ar1(t) = %beta(2)

com sd0(t) = %STDERRS(1) , sd1(t) = %stderrs(2)

if %converged<>1 ; dis ’DID NOT CONERGE at ’
%datelabel(t)

end do t

Here the estimation begins with the sample 1961:1 to 1961:1+99. Note that
%datelabel(1961:1+99) = 1985:04. Next, t in incremented by 1 so that the sam-
ple period becomes 1965:2 to 1986:1. The last time through the loop, t = 2012:4-
99, so that the 100 observations in the sample period run from 1989:1 through
2012:4.

6.7 Tips and Tricks

The Instruction SSTATS

SSTATS is a handy instruction which can be used to compute the sum (or mean
or maximum, etc.) of one or more general expressions. Since it accepts a for-
mula, you don’t have to take the extra step of generating a separate series with
the needed values.

It can be used to answer some (apparently) quite complicated questions. For
instance,

sstats(min,smpl=peak+trough) startl endl t>>tp0

gives tp0 as the smallest entry for which either the series peak or trough
(both dummies) is “true”.

sstats 1 nobs p1*y>>p1ys p1>>p1s p2*y>>p2ys p2>>p2s

computes four parallel sums. Without the SSTATS, this would require about
eight separate instructions.

sstats / date<>date{1}>>daycount

computes the number of days in a data set with intra-day data. date<>date1
is 1 when the value of date(t) is different from date(t-1) and 0 if it’s the
same. So the SSTATS is summing the number of changes in the date series.

Chapter 7

Nonstationary Variables

A crucial issue in time-series modeling is to determine whether or not the vari-
ables in question are stationary. Even if a series contains a clear trend, the
trend itself can contain both stochastic and deterministic components. It is in-
appropriate to difference a series with a purely deterministic trend and to de-
trend a series with a stochastic trend. Unfortunately, it is not always straight-
forward to distinguish between stationary and nonstationary series. The auto-
correlations of persistent stationary processes and of I(1) processes both decay
slowly. As such, a slowly decaying ACF can be indicative of a unit root or a
near unit root process. RATS has a number of procedures that allow you to test
for unit roots and for cointegration. In addition, this chapter illustrates several
ways to decompose an I(1) series into its stationary and trend components.

7.1 1. The Dickey-Fuller Test

The data-generating process of a covariance stationary series has a finite
time-independent mean and variance. Moreover all autocovariances are time-
independent in that they do not depend on the time period under consideration.
In contrast, nonstationary processes have time-dependent means and/or vari-
ances.

Consider the time plots of real and potential U.S. GDP(in logs) shown in Fig-
ure ??. Of course, the series cannot be stationary since each is an increasing
function of time. The issue is whether to remove a linear time trend from each
or to difference each in order to attain stationary series. You can read in the
series and reconstruct the graph using the instructions in the file RPM2.6RPF

192

Nonstationary Variables 193

cal(q) 1960 1
all 2012:4
open data quarterly(2012).xls
data(org=obs,format=xls)

*
* Now take the log of each series

*
log rgdp / ly
log potent / lpot

*
* Construct the graph including the labels for the series

*
com l$ = ||"Real GDP","Potential"||
graph(klabels=l$,footer="Fig. 6.1: Real and Potential GDP", $

key=below,nokbox,vlabel="logarithms") 2
ly
lpot

If we regress the log of real GDP on time

set trend = t
linreg ly
constant trend

Variable Coeff Std Error T-Stat Signif

1. Constant 8.0276898730 0.0063575729 1262.69727 0.00000000

2. TREND 0.0076234562 0.0000517586 147.28862 0.00000000

cor(number=8,picture=’##.##’) resids1

Although it might appear that a linear trend provides a good fit for the real
GDP series, any such impression is misleading. The deviations from the trend
(i.e., resids1) exhibit no tendency to revert back to the trend line. If you
construct the residual autocorrelations, you will find that the ACF of resids1
is

cor(number=8,picture=’##.##’) resids1

Autocorrelations

1 2 3 4 5 6 7 8

0.98 0.95 0.91 0.87 0.82 0.77 0.72 0.68

To formally test the null hypothesis of a unit root against the alternative of a
unit root, we can perform an augmented Dickey-Fuller (DF) test using

Nonstationary Variables 194

dlyt = a0 + γlyt−1 + a2t+

p∑
i=1

βidlyt−i + εt (7.1)

where dlyt is the first difference of the lyt series.

If the series is trend stationary, the value of γ will be negative so that the
series reverts to the trend line a0 +a2t. It turns out that two lags of dlyt−i are to
eliminate the serial correlation in the residuals. Hence, we can estimate (???)
using

dif ly / dly

lin dly ; # constant trend ly{1} dly{1 2}

Variable Coeff Std Error T-Stat Signif

1. Constant 0.222564020 0.099957773 2.22658 0.02706890

2. TREND 0.000187860 0.000095954 1.95780 0.05161661

3. LY{1} -0.026996297 0.012480224 -2.16313 0.03169432

4. DLY{1} 0.274240120 0.068466856 4.00544 0.00008670

5. DLY{2} 0.185270940 0.068932447 2.68772 0.00778821

The coefficient on lyt−1 is −0.027 and the t-statistic is -2.16313. Note that
the appropriate critical value for the Dickey-Fuller test in NOT reported in
the column labeled T-Stat. Under the null hypothesis of nonstationary, it is
necessary to use the Dickey-Fuller critical values. For an equation containing
a constant and trend, the 5% critical value for a sample size of 250 is −3.43.
Clearly, we cannot reject the null hypothesis of a unit root and thus conclude
that the log of the real GDP series should be differenced. Some of the critical
values for the Dickey-Fuller test are

T 1% 5% 10%

The ττ−statistic: Constant + Time Trend

50 -4.15 -3.50 -3.18

100 -4.04 -3.45 -3.15

250 -3.99 -3.43 -3.13

The τµ−statistic: Constant but No Time Trend

50 -3.58 -2.93 -2.60

100 -3.51 -2.89 -2.58

250 -3.46 -2.88 -2.57

Nonstationary Variables 195

To test the restriction that the series that γ = a2 = 0, (so that under the null
hypothesis, the series is nonstationary without a time trend) use

exc ; # ly{1} trend
Null Hypothesis : The Following Coefficients Are Zero

LY Lag(s) 1

TREND

F(2,204)= 4.37333 with Significance Level 0.01381264

Again, it is not appropriate to use the significance level reported by the EX-
CLUDE instruction because it involves a restriction on a nonstationary vari-
able (i.e., lyt−1 is nonstationary under the null hypothesis). The Dickey-Fuller
ϕ3−statistic for this test is 6.34 at the 5% significance level. Clearly, we do
not reject this null hypothesis–hence, it is possible to accept the alternative
that the series contains a unit-root with a deterministic trend. To test whether
a0 = γ = a2 = 0 use

exc ; # ly{1} trend constant
Null Hypothesis : The Following Coefficients Are Zero

LY Lag(s) 1

TREND

Constant

F(3,204)= 11.64685 with Significance Level 0.00000045

Now, we reject the joint hypothesis that the deterministic regressors and lyt−1
have coefficients equal to zero. The 5% critical value for the ϕ2−statistic is 4.75.
As such, it seems reasonable to view the series as a unit-root process with a
positive drift.

It is important to ensure that the lag length used in the DF test is correct. Any
remaining serial correlation in the data renders the testing procedure inappro-
priate. Moreover, you do not want to estimate unnecessary coefficients since
each additional lag involves a loss of the two degrees of freedom (one observa-
tion is lost and one extra coefficient is estimated) and a consequent reduction
in the power of the test.

The AIC, BIC and General-to-Specific (GTOS) methods are the most common
ways used to select the lag length. It is straightforward to construct a loop to
select the lag length using the GTOS method. If the maximum lag length is 4
and the minimum is 1, you could use

com lags = 5, signif = 0.10

Nonstationary Variables 196

while signif > 0.05 {

com lags = lags - 1

lin(noprint) dly ; # constant trend ly{1} dly{1 to lags}

exclude(noprint) ; # dly{lags}

com signif = %signif

if lags==1; com signif = 0.01

}

end while

dis lags

2

The first instruction initializes the variable lags at 5 and the variable signif
at 0.10 (or any number greater the desired significance level of the lag length
test (equal to 0.05 in the example). The instructions contained within the braces
are performed as long as the variable signif exceeds significance level of 0.05
used for the lag length test.

The first time in the WHILE loop, the variable lags is set equal to 4 and a
linear regression in the form of (???) is conducted using 4 lags. The significance
level for the exclusion restriction for the last lag term (i.e., %signif) is set
equal to signif. If this value is less than 0.05, RATS exits the loop and
lags is equal to 4. Otherwise, the next instruction executed is com lags =
lags − 1, so that the exercise is repeated using 3 lags of dly. The point is that
the process continues so long as signif exceeds 0.05. Notice the instruction if
lags == 1, com signif = 0.01. This instruction ensures that the process
terminates once the lag length equals 1. On exiting the loop, you can get the
final results using

lin dly ; # constant trend ly{1} dly{1 to lags}

Example You might think that the difference between real and potential GDP
is stationary. After all, it is hard to conceptualize the situation in which real
GDP can drift infinitely far from its potential. To formally test whether the
”output gap” is stationary, form the variable cycle as the difference between
the logs of the two variables

set cycle = lpot - ly

Now difference cycle and run the Dickey-Fuller test. Note that we do not need
to include trend in the regression since the alternative hypothesis is that the

Nonstationary Variables 197

series is stationary around a point. You can verify that two lags is sufficient for
the test.

dif cycle / dcycle

lin dcycle ; # constant cycle{1} dcycle{1 to 2}
Variable Coeff Std Error T-Stat Signif

**

1. Constant 0.000588264 0.000557422 1.05533 0.29251703

2. CYCLE{1} -0.059869225 0.018735466 -3.19550 0.00161648

3. DCYCLE{1} 0.283165322 0.067698566 4.18274 0.00004269

4. DCYCLE{2} 0.195582125 0.068644449 2.84921 0.00482998

The t−statistic for the null hypothesis if a unit root is −3.1955. With 209 obser-
vations, the 5%, 2.5%, and 1% critical values for the test are −2.89,−3.17 and
−3.51, respectively. As such, we can reject the null at the 5% and 2.5%, but not
the 1%, significance level.

7.2 2. DF-testing Procedures

RATS contains a number of procedures that make programming variants of the
Dickey-Fuller test quite simple. DFUNIT.SRC can readily estimate a model in
the form of (7.1). The proper syntax is

@DFUNIT(options) series start end

and the main options are

DET = NONE/[CONSTANT]/TREND
LAGS = Number of augmented lags [0]. Use if you want to fix the lag length
MAXLAGS = Maximum number of augmented lags [T/4].
METHOD = AIC/BIC/GTOS
SIGNIF = Significance level for TTEST or GTOS

Hence, you can reproduce the unit root test in lyt using

@dfunit(det=trend,lags=2) ly
Dickey-Fuller Unit Root Test, Series LY

Regression Run From 1960:04 to 2012:04

Observations 210

Nonstationary Variables 198

With intercept and trend

Using fixed lags 2

Sig Level Crit Value

1%(**) -4.00465

5%(*) -3.43224

10% -3.13959

T-Statistic -2.16313

To check other methods of lag length selection, you can use

@dfunit(det=trend,method=gtos,signif=0.05) ly

@dfunit(det=trend,method=bic) ly

@dfunit(det=trend,method=aic) ly

All three methods of lag length selection find p = 2.

A similar procedure that you can download from the ESTIMA website is
URADF.SRC. The procedure allows you to select the lag length using the AIC,
BIC, GTOS (now called REDUCTION) or the LM or Ljung-Box tests for re-
maining serial correlation in the residuals. The usual syntax is

@URADF(options) series start end

where the most typically used options are the same as in @DFUNIT.SRC except
METHOD is replaced by

CRITERION = AIC/[BIC]/REDUCTION (Instead of GTOS)

As shown below, @URADF reports the same results as those above plus addi-
tional output concerning lag lengths and the ϕ3 and ϕ2 tests

@URADF(det=trend,criterion=reduction,maxlag=4) ly

* TESTING THE NULL HYPOTHESIS OF A UNIT ROOT IN LY

* Using data from 1960:01 to 2012:04

* Choosing the optimal lag length for the ADF regression

* between 0 and 4 lags.

**

Nonstationary Variables 199

Significance of lag 4 : 0.44363

Significance of lag 3 : 0.80548

Significance of lag 2 : 0.00779

* Augmented Dickey-Fuller t-test with 2 lags: -2.1631

* 1% 5% 10%

* -3.99 -3.43 -3.13

* *

* Augmented Dickey-Fuller Z-test with 2 lags: -10.4391

* 1% 5% 10%

* -28.4 -21.3 -18.0

* *

* Coefficient and T-Statistic on the Constant:

* 0.22256 2.2266

* Coefficient and T-Statistic on the Linear Trend:

* 0.00019 1.9578

* *

* Joint test of a unit root and no linear trend 4.3733

* 1% 5% 10%

* 8.43 6.34 5.39

**

Note that the procedure displays the t-statistic for the augmented lags and for
the null hypothesis γ = 0. Also shown is the Dickey-Fuller Z-test (NOTE: This
test is not recommended when lagged changes are included in the estimated
equation).

The Dickey-Fuller critical values depend on the form of the deterministic re-
gressors in the estimating equation. If you are unsure as to which deterministic
regressors to include in the regression, you can test for the presence of a trend
and/or intercept. The procedure URAUTO.SRC performs a Dickey-Fuller test
for a unit root while trying to pare down the deterministic regressors using a
series of t-tests and F -tests. To a large extent, the method uses the schematic
developed in Appendix 4.2 of Enders (2015). The syntax is

@URAUTO(options) series start end

Nonstationary Variables 200

where the most typically used options are

SIZE = ONE/TWO5/[FIVE]/TEN. Size to use for all tests
LAG = Number of augmented lags [0]. You must fix the lag length
[PARAM]/NOPARAM Parametric or Phillip-Perron type tests
TRACE/[NOTRACE] Print all regressions and test statistics

To perform the tests on a regression with a constant, trend, ly{1} and dly{1}
use

@URAUTO(lag=2) ly

REGRESSIONS WITH CONSTANT,TREND

lag > 0 true, lags = 2

t(rho-1)/tao = -2.16313 with critical value -3.41000

Cannot reject a unit root with t(rho-1)/tao

Next is joint test of trend=0 and root=1

psi3 = 4.37333 with critical value 6.25000

PSI3 cannot reject unit root and no linear trend

Notice that in the presence of a constant and trend, the null hypothesis γ = 0 is
not rejected. Next, the procedure performs the ϕ3-test and correctly concludes
that it cannot reject the null hypothesis γ = a2 = 0. At this point, it would be
reasonable to stop and conclude that the log of real GDP is a unit-root process
without a linear time trend. However, the testing procedure goes on to estimate
the following equation (NOTE: trend has been eliminated)

dly = a0 + γlyt−1 + β1dlyt−1 + εt

Clearly, the alternative hypothesis γ = 0 (i.e., stationarity around a point) is
not tenable tor real GDP. Nevertheless, URAUTO.SRC uses the results of the
previous ϕ3-test and reports the following

REGRESSIONS WITH CONSTANT,NO TREND

lag > 0 true, lags = 2

t(rho-1)/mu = -2.20152 with critical value -2.86000

Cannot reject a unit root with t(rho-1)/mu

Next is joint test of constant=0 and root=1

psi1 = 15.34177 with critical value 4.59000

psi1 significant

Nonstationary Variables 201

Again, the null of a unit root is not rejected but the null hypothesis of γ = a0 = 0
is rejected. Hence, either the series is stationary and/or the constant differs
from zero. Next, the procedure performs the test for a0 = 0 and rejects the null
hypothesis.

Testing constant=0 under the unit root

lag > 0 true, lags = 2

Constant=0 test = 5.03619 with Normal distribution

Constant significant under the unit root

Testing unit root

Rho=1 test = -2.20152 using Normal distribution

Unit root rejected. Constant significant

CONCLUSION: Series stationary around a non-zero mean

The results illustrate an important point since it is hardly possible that real
GDP is stationary around a constant time-invariant mean. The problem is
that sequential testing procedures are necessarily problematic. Once the ϕ3-
test for null γ = a2 = 0 was not rejected, it was appropriate to conclude that the
series has a unit-root and a drift-term. Nevertheless, with care, mechanical
testing procedures such as URAUTO.SRC can be useful when we have no a
priori knowledge about the form of the deterministic regressors and are forced
to rely on sequential testing procedures.

2.1 Do and While Loops Again

If you have a number of series that are potentially nonstationary, it is efficient
to nest a unit-root testing procedure within a DO LOOP. Consider the exam-
ple from Enders (2015) using updated quarterly data through 2013:1. The is-
sue is to analyze the time-series properties of the effective real exchange rates
of Australia, Canada, France, Germany, Japan, the Netherlands, the United
Kingdom, and the United States. After all, the theory of Purchasing Power
Parity (PPP) suggests that real exchange rates should be stationary processes.
If it is not possible to reject the null hypothesis of a unit-root in the real ex-
change rates, PPP fails. Read in the data set from the file PANEL(2013).XLS
using

open data panel(2013).xls

calendar(q) 1980:1

data(format=xls,org=columns) 1980:01 2013:01 $

Nonstationary Variables 202

australia canada france germany japan netherlands uk us

Since the theory of purchasing power parity rules out the possibility that the
real exchange rates have time trends, we need not consider the possibility that
the series are trend stationary. As such, we can estimate each real exchange
rate (rt) in the form

∆rt = a0 + γrt−1 +

p∑
i=1

βi∆rt−i + εt

and test the null hypothesis γ = 0. If we reject the null hypothesis of a unit
root, the real exchange rate is stationary and so PPP holds. If we accept the
null hypothesis, the real exchange rates are I(1) processes and do not mean
revert. The standard way to proceed is to first select the lag length p and, for
this lag length, compare the t-statistic for the null hypothesis γ = 0 to that for
τµ. One way to do this is to use a WHILE loop as in the code below. Recall that
the syntax for such a loop is

WHILE condition {

block of statements executed as long as condition is \true"

}

END WHILE (omit if WHILE is nested inside another compiled
section)

Hence, the group of statements within the braces is continually executed as
long as the condition is true. In the code below, lags is initialized at 13 and
signif is initialized at 0.20. During the first pass within the WHILE loop, lags
is decreased by 1 and the Dickey-Fuller test is run using 12 lags. The EXCLUDE
instruction stores the significance level of the coefficient on the last lag of dlx in
the variable %signif. Next, signif is set equal to %signif and, (since lags
= 12), the if lags==1 instruction is ignored. Now RATS returns to the top
of the WHILE loop and checks to determine whether condition is true. If the
significance level of the twelfth lag is greater the 0.05, the process is repeated.
Thus, the value of lags becomes 11 and the test is run using 11 lags. The
process is repeated until the significance level of the last lag exceeds 0.05. Note
that the instruction if lags == 1; com signif = 0.01 ensures that the
process is halted once the lag length reaches 1. You could proceed estimating
the Australian real exchange rate using

log australia / lx ; dif lx / dlx

com lags = 13, signif = 0.20

while signif > 0.05 {

Nonstationary Variables 203

com lags = lags - 1

lin(noprint) dlx ; # constant lx{1} dlx{1 to lags}

exclude(noprint) ; # dlx{lags}

com signif = %signif

if lags==1; com signif = 0.01

}

end while

On exiting the loop, the variable lags contains appropriate lag length so that
the test can be run using

lin dlx ; # constant lx{1} dlx{1 to lags}

Since DFUNIT.SRC performs these tasks you could also use

dofor x = australia to us

set lx = log([series]x)

@dfunit(method=GTOS,maxlag=12) lx

end dofor x

Note that you cannot use set lx = log(x) since RATS will create the se-
ries lx equal to the log of the integer value of log(x). The instruction, set
lx = log([series]x)instructs RATS to use the series x. An equivalent way
to do this would be to use set lx = log(x{0}). To make the output some-
what more readable, it is possible to use the %s and %l functions. Note that
%s(label) has two functions. It will return the series number if the series
already exists. If the series does not exist, %s(label) creates a series named
label; in a sense, the instruction becomes a SET instruction. Hence, you can
jazz up the code above as follows

dofor x = australia to us

set %s("log "+%l(x)) = log(x{0})

@dfunit(crit=GTOS,maxlag=12) %s("log "+%l(x))

end dofor x

Nonstationary Variables 204

7.3 3. A Test with More Power

A problem with the Dickey-Fuller test is that the intercept and the slope of
the trend are poorly estimated. The essence of the problem is that OLS cannot
readily disentangle the persistence of the stochastic trend from the determin-
istic trend. A number of newer papers use the notion that it is possible to
estimate the slope of the trend by first-differencing the series. After subtract-
ing this estimated trend from the series, it is possible test the resultant series
for a unit root. Probably the most popular form is the test is developed in
Elliott, Rothenberg, and Stock (ERS, 1996). They make the point that first-
differencing is actually inappropriate if the alternative hypothesis is correct.
As such, instead of first-differencing, they select a value of c close to unity and
to subtract cyt−1 (instead of yt−1) from yt. Consider the case of the very simple
trend stationary model

yt = a0 + a2t+ εt

since cyt−1 = ca0 + a2(t− 1) + cεt−1, it follows that

yt − cyt−1 = a0(1− c) + a2[(1− c)t+ c] + et

where et = εt − cεt−1
Now, to obtain estimates of a0 and a2, create three variables. Create the vari-
able z0t = (yt − cyt−1), the variable z1t equal to the constant (1 − c), and the
variable z2t = [(1 − c)t + c]. The regression of z1t and z2t on z0t yields the de-
sired estimates of a0 and a2 (a∗0 and a∗2). Since the initial value of y1 = a0 + a2,
set z01 = y1, and z11 = z21 = 1. Given the estimates of a0 and a2, filter the yt
series using

yft = yt − a∗0 − a∗2t

Finally, use the filtered data to estimate the regression equation

yft = γyft−1 +

p∑
i=1

βi∆y
f
t−i + vt (7.2)

where the lag length p should be such that the error term, vt, is not serially
correlated. Note that ERS recommend a value of c = 13.5/T if there is a time
trend in the filter and c = 7/T if an intercept only is used. To perform the
procedure using the real GDP series, you can use the following code. Note that
there are 209 usable observations so that c = 13.5/209.

compute c=1-13.5/209

Next, construct the series z0t, z1t, and z2t as follows

Nonstationary Variables 205

set z0 = ly-c*ly{1}
set z1 = 1-c

set z2 = c + (1-c)*t

Now initialize the initial values of each series

com z0(1) = ly(1) , z1(1) = 1, z2(1) = 1

Regress z0 on z1, and z2 in order to obtain the estimates of a0 and a2. The
estimates are contained in the vector %beta. Use these estimates to create the
filtered series, yf, and then estimate a regression in the form of (??)

linreg z0 ; # z1 z2

set yf = ly - %beta(1) - %beta(2)*t

dif yf / dyf

lin dyf ; # yf{1} dyf{1 2}
Variable Coeff Std Error T-Stat Signif

1. YF{1} -0.012568735 0.009800528 -1.28245 0.20112434

2. DYF{1} 0.293163938 0.068589684 4.27417 0.00002932

3. DYF{2} 0.191551719 0.068889128 2.78058 0.00592912

The t-statistic on coefficient of yf{1} is only −1.28245; conclude that there is
a unit root. You could obtain the test results (including those for the ver-
sion of the test not conditioning on the initial value) using the procedure ER-
STEST.SRC. In this case, the proper syntax is

@erstest(det=trend,lags=2,cbar=13.5) ly
DF-GLS Tests LY

Using Data from 1960:01 to 2012:04

Lags = 2

Detrend = constant and linear time trend, z(t)=(1,t)

1% 2.5% 5% 10%

DFGLS -1.27885 -3.48 -3.15 -2.89 -2.57

DFGLSu -2.27412 -3.71 -2.41 -3.17 -2.91

In circumstances where you wanted to eliminate the trend, use

@erstest(det=intercept,lags=lags,cbar=7) series start end

Nonstationary Variables 206

7.4 4. Tests with Breaks

If there is structural break in a regime-wide stationary series, the Dickey-
Fuller is biased towards falsely accepting the null hypothesis of a unit root.
Section 4.8 of Enders (2010) simulates 100 observations representing the
breaking process

yt = 0.5yt−1 + εt +DL

where DL is a level-shift dummy variable such that DL = 0 for t = 1, ..., 50 and
DL = 3 thereafter.

Notice that the series fluctuates around a mean of zero for the first 50 realiza-
tions and fluctuates around a mean of 2 thereafter. The issue is to appropriately
use Perron’s (1989) test for a unit root against the alternative of stationarity
on each side of the break (i.e., regime wide stationarity). Given that we are
working with 212 observations, we can create a similar series with a break at
the midpoint using

set DL = 3*%if(t.le.106,0,1)

seed 2014

set(first=%ran(1)) sim = 0.5*sim{1} + %ran(1) + DL

The first line sets the default length of all series equal to 100 and the second
creates the variable dummy. Next, the random number generator is seeded and
the {yt} series is created initializing the initial value to a zero-mean randomly
distributed normal variable. If you create the correlations of yt and ∆yt using

cor(number=6,picture=”###.###”) sim
Autocorrelations

1 2 3 4 5 6

0.916 0.873 0.859 0.866 0.859 0.846

As such, the autocorrelations display far more persistence than the data-
generating process. Consider the standard Dickey-Fuller test

dif sim / dsim

set trend = t

lin dsim ; # constant sim{1} trend
Variable Coeff Std Error T-Stat Signif

**

1. Constant -0.381740108 0.182368792 -2.09323 0.03754068

Nonstationary Variables 207

2. SIM{1} -0.251166307 0.045874512 -5.47507 0.00000013

3. TREND 0.010468949 0.002329098 4.49485 0.00001155

The 5% critical value of the ττ -test is −3.45. As such, we marginally reject
the null hypothesis and conslude that the series is trend stationary. However,
Perron (1989) develops a test for the null of a unit-root against a regime-wide
stationary series with the known break date τ . In this case, the first portion
of the test involves regressing yt on a constant, trend and a dummy variable.
(Remember, to use the test, the break date must be known).

If the null hypothesis is a unit root with a pulse shock versus the alternative
of an intercept shift, we have

Ho : yt = a0 + yt−1 + µ1Dp + εt

Ha : yt = a0 + a2t+ µ2DL + εt

where: DP = 1 in t = 51 and equals zero otherwise.

Now, we can nest the null in the testing equation as yt = a0 + a1yt−1 + a2t +
µ1Dp +µ2DL + εt. The key coefficient in this equation is a1; if we reject that null
hypothesis a1 = 1, we can conclude there is not a unit root. Hence, we construct
the two dummy variables and estimate

set dummy = %if(t.le.50,0,1)

set pulse = %if(t==51,1,0)

linreg sim / resids

constant dummy trend pulse sim{1}

Variable Coeff Std Error T-Stat Signif

**

1. Constant -0.346670144 0.190126323 -1.82337 0.06969706

2. DUMMY -0.229365949 0.294370781 -0.77917 0.43677162

3. TREND 0.011918314 0.002986459 3.99078 0.00009153

4. PULSE 0.561666255 1.215804732 0.46197 0.64458978

5. SIM{1} 0.742874552 0.046868028 15.85035 0.00000000

Diagnostic tests indicate no serial correlation in the residuals from this regres-
sion (i.e., %resids). Hence, it is appropriate to conclude that a1 is more than
five standard deviations from unity. Formally, to test whether the coefficient is
equal to unity, use

test 1 ; # 1 ; # 1

Nonstationary Variables 208

t(206)= -5.486159 or F(1,206)= 30.097939 with Significance
Level 0.00000012

Alternatively, it would have been possible to use the PERRON.SRC procedure.
Consider

@perron(det=a,tb=50) sim

PERRON TEST FOR A UNIT ROOT FOR SIM WITH 0 LAGS: -5.486

AT LEVEL 0.05 AND FOR LAMBDA 0.2

THE TABULATED CRITICAL VALUE: -3.77

COEFICIENT AND T STATISTIC ON THE CONSTANT:

-0.34667 -1.823

COEFICIENT AND T STATISTIC ON THE DMU:

-0.22937 -0.779

COEFICIENT AND T STATISTIC ON THE TREND:

0.01192 3.991

COEFICIENT AND T STATISTIC ON THE DTB:

0.56167 0.462

The key options for the procedure are

DET = A, B or C

CRITERION = [LBTEST]/LMTEST

TB = the known break date

Respectively, A, B and C refer to the Crash model, the Changing Growth
model, and the combination of the Crash + Changing Growth model. In the
Crash model, there is a break in the level of the series and in the Changing
Growth model, the slope of the trend changes. CRITERION determines whether
the lag length is chosen by the Ljung-Box test or the LM test. The default sig-
nificance level is 0.05 and TB is the known break date. Here we used the known
break date of 50. Note that DMU refers to level break and DTB refers to PULSE.

The issue is more complicated when the break date is unknown since it needs to
be estimated along with the other parameters of the model. We can illustrate
the Zivot-Andrews (1992) test that allows for a single break (at an unknown
date) in the intercept, trend and/or in both of the deterministic regressors. The
syntax for the procedure ZIVOT.SRC is

@ZIVOT(options) series start end

Nonstationary Variables 209

where the principal options are

BREAK=[INTERCEPT]/TREND/BOTH ; * Indicates the break type.

CRIT=[INPUT]/AIC/BIC/TTEST

PI = [0.15] ; * The trimming fraction

LAGS=number of augmented lags when using CRIT=INPUT

GRAPH/[NOGRAPH] ; * Creates a GRAPH of the unit-root statistics.

To determine whether real U.S. GDP is stationary around a broken trend, we
can use the following. Although the default trimming fraction is 0.15, we can
use pi = 0.10 in order to better capture the possibility of a break at the time
of the financial crisis.

@ZIVOT(BREAK=TREND,CRIT=AIC,pi=0.1,GRAPH) LY * 2012:4

??Insert graph here

The break date yielding the minimum t-statistic for the coefficient of ly{1} is
2004:04. Since the relevant t-statistic is -4.01972, it is not possible to reject
the null hypothesis of a unit root at the 5% level (as shown below, the critical
value is −4.42). Note that the breaks were tested for during the 1965:04 to
2007:03 as PI was set equal to 0.10 and that the AIC selected two augnemted
lags.

Breaks Tested for 1965:04 to 2007:03

Including 2 Lags of Difference

Selected by AIC

Sig Level Crit Value

1%(**) -4.93000

5%(*) -4.42000

Breakpoint TestStat

2004:04 -4.01972

Variable Coeff Std Error T-Stat Signif

**

1. LY{1} -0.069873882 0.017382753 -4.01972 0.00008210

Nonstationary Variables 210

2. Constant 0.564371013 0.138890164 4.06343 0.00006909

3. TREND 0.000545036 0.000139455 3.90833 0.00012661

4. DY{1} 0.267801554 0.066731810 4.01310 0.00008426

5. DY{2} 0.198501696 0.067268650 2.95088 0.00354132

6. BREAKTREND -0.000442479 0.000128193 -3.45166 0.00067782

To replicate the regression, create the trend shift dummy, ts, using

set ts = %if(t.lt.2005:1,0,t-180)

lin dly ; # ly{1} constant trend dly{1 to 2} ts

Note that ts = 1 in 2005:1, 2 in 2005:2, ... , and 32 in 2012:4.

Similar results hold if we allow for multiple endogenous breaks. Lee and
Strazicich (2003) develop an LM test allowing for two endogenous breaks. As
described in Enders (2010) the LM test is similar to the DF-GLS test except
that first differences are used in the detrending stage (i.e., the value of c is
set equal to zero). First estimate the Crash model (so that there is an abrupt
change in level of the series)

@LSUNIT(MODEL=crash,BREAKS=2,lags=2) LY
Lee-Strazicich Unit Root Test, Series LY

Regression Run From 1960:04 to 2012:04

Observations 209

Crash Model with 2 breaks

Estimated with fixed lags 2

Variable Coefficient T-Stat

S{1} -0.0351 -2.8921

Constant 0.0106 8.3275

D(1970:04) 0.0250 3.2399

D(1980:03) 0.0204 2.6187

The value of the lagged- level term S{1} has a t-statistic of −2.8921. Since the
5% critical value reported in Lee and Strazicich (2003) is −3.842, we cannot
reject the null hypothesis of a unit root with a breaking trend. Note that the
estimated break dates are 1965:03 and 2007:03. The results using the more
general BREAK model (so that the intercept and slope of the trend can change)
are

Nonstationary Variables 211

@LSUNIT(MODEL=break,BREAKS=2,lags=2) LY
Lee-Strazicich Unit Root Test, Series LY

Regression Run From 1960:04 to 2012:04

Observations 209

Trend Break Model with 2 breaks

Estimated with fixed lags 2

Variable Coefficient T-Stat

S{1} -0.1280 -4.7369

Constant 0.0086 4.6473

D(1965:03) 0.0120 1.5946

DT(1965:03) 0.0002 0.0976

D(2007:03) 0.0058 0.7571

DT(2007:03)-0.0107 -5.3391

For the BREAK model, the 5% critical value −5.286. As such, we cannot reject
the null hypothesis of a unit root.

7.5 5. Two Univariate Decompositions

Instead of removing a stochastic trend by differencing, Hodrick and Prescott
(1997) develop a procedure to extract a time-varying trend from a nonstation-
ary series. The detrended series is then the stationary part of the series. To use
the Hodrick and Prescott (HP) filter, suppose that you want to decompose {yt}
into a trend component, µt, and a stationary component yt − µt = st. Consider
the sum of squares

1

T

T∑
t=1

(yt − µt)2 +
λ

T

T−1∑
t=2

[(µt+1 − µt)− (µt − µt−1)]2

where λ is a constant and T is the number of observations.

The problem is to select the {µt} sequence so as to minimize this sum of
squares. In the minimization problem λ is an arbitrary constant reflecting
the “cost” or penalty of incorporating fluctuations into the trend. For quarterly
data, Hodrick and Prescott (1984) set λ equal to 1, 600 and for monthly data λ
= 14400. Increasing the value of λ acts to “smooth out” the trend. For example,
if λ = 0, the sum of squares is minimized when yt = µt and as λ → ∞, the sum
of squares is minimized when (µt+1 − µt) = (µt − µt−1). Since the change in the
trend is constant, the HP trend degenerates into a linear time trend.

Nonstationary Variables 212

You can use RATS to calculate the HP trend and cycle in two different ways.
The procedure HPFILTER.SRC has a single option allowing you to set the
value of λ. Although the default value of λ = 1600, the code below shows you
how to use the option. Specifically, for λ = 1600, the procedure filters the lyt
series and returns the trend in the series named hp trend. The next instruc-
tion constructs the cycle as the difference between ly and hp tren. The code
below constructs three graphs. The first, using ly and hp trend, is not shown
below because it is difficult to visually discern the difference between the two
series in a small graph. If you examine the graph of cycle, it does generally
resemble the NBER business cycles. However, it is hard to believe that the
post-2010 period has been one in which the economy operated above its trend.
In the third graph, the difference between the hp trend and potential GDP is
shown to be small except for the most recent period.

@hpfilter(lambda=1600) ly / hp trend

set cycle = ly - hp trend

gra(hea=’GDP and Trend’,patterns) 2 ; # hp trend ; # ly

spg(hfi=1,vfi=3,hea=’HP Filter for GDP’)

gra(hea=’HP Cycle’) 1 ; # cycle

gra(hea=’The HP Trend and Potential GDP’,key=below,nokbo) 2

hp trend ; # lpot

spg(done)
??Insert graph here

The second way to obtain the HP trend is to use the FILTER instruction. If you
use FILTER, the syntax to obtain the HP trend is

FILTER(TYPE=HP) ly / hp trend

5.1 The Beveridge and Nelson Decomposition

Beveridge and Nelson (1981) use an alternative decomposition method that
forces the trend to be the random walk plus drift process

µt = a0 + µt−1 + εt

so that the s-step-ahead conditional forecast of the trend is

ETµT+s = µT + a0s

= yT − cycleT + a0s

Nonstationary Variables 213

where cycleT = yT − µT

As described in Enders (2010), in order to use the the Beveridge and Nelson
(BN) decomposition, you need to

• Estimate the first-difference of yt as an ARMA(p, q) process.

• For each period t = 1, ..., T , find the one- through s-step ahead forecasts
(i.e., find Et∆yt+s for every value of t and s). In practice, s is usually set
equal to 100. For each t, use the estimated ARMA(p, q) model to construct
the long-run forecast µt = Et[∆y100+t + ∆y100+t−1 + ...+ ∆yt+1] + yt. Hence,
the mean at t is the current value of yt plus the sum of the forecasted
changes.

• Form the variable cyclet by subtracting µt from yt.

The process is simple if you use the procedure BNDECOMP.SRC. The usual
syntax is

@BNDECOMP(options) y start end bntrend

where: y = the input series and bntrend is the BN trend

The usual options are

ar = number of AR lags [1]

ma = number of MA lags [0]

As such, we can decompose the log of real GDP with the BN decomposition
using

@BNDECOMP(ar=2) ly / bn trend

For comparison purposes, we can construct the BN cycle and also compare the
BN trend to potential GDP using the code

set bn cycle = ly - bn trend

spg(hfi=2,vfi=1,hea=’The BN Decomposition for GDP’)

gra(hea=’BN Cycle’) 1 ; # bn cycle 3 *

gra(hea=’The BN Trend and Potential GDP’,patterns,key=below,nokbo)
2 ; # bn trend ; # lpot

Nonstationary Variables 214

spg(done)
???Insert graph here

As illustrated in the left-hand panel, it is typical for the BN cycle to be quite
jagged. Nevertheless, the graph of bn cycle does seen to do reasonably well
with the post-financial crisis data. Moreover, the BN trend does seem to fall
sharply at the time of the financial crisis.

7.6 6. Cointegration

Cointegration, in the usual sense of the term, occurs when there is a linear com-
bination of nonstationary I(1) variables that is stationary. Engle and Granger
(1987) show that the existence of such a stationary relationship means that
the dynamic paths of the nonstationary variables must be linked. Let xt be the
(n x 1) vector consisting of the I(1) variables (x1t,x2t,..., xnt)

′ and let β be the (1
x n) vector of parameters (β1, β2, ..., βn). The system is said to be in long-run
equilibrium when

β1x1t + β2x2t + ...+ βnxnt = 0

Denote the deviation from long-run equilibrium as et, so that we can write

et = βxt (7.3)

For the equilibrium to be meaningful, the deviations from equilibrium must
converge toward zero. As such, it must be the case that

∆et = a1et−1 +

p∑
i=1

a1+i∆et−i + vt (7.4)

where −2 < a1 < 0 and vt is an i.i.d. error term.

Since et is a linear combination of the various xit, (7.4) indicates that the time
paths of the cointegrated variables are influenced by the last period’s deviation
from long-run equilibrium. With some manipulation, it can be shown that the
dynamic adjustment mechanism has the form

∆xt = Πxt−1 + A(L)∆xt−1 + εt (7.5)

where π is an (n x n) matrix with elements πij and A(L) is (n x n) matrix with
elements that are polynomials in the lag operator L. For example, consider the
simple first-order VAR xt = Axt−1 + εt. Subtracting xt−1 from each side of the
equation yields ∆xt = (I−A)xt−1+εt. Defining π = I−A, it immediately follows
that ∆xt = πxt−1 + εt.

Given that ∆xt is stationary, each expression on the right-hand side of (7.5)
must be stationary as well. For πxt−1 to be stationary, either all elements of π

Nonstationary Variables 215

must be zero or each row of π must be a cointegrating vector of xt. Hence, a key
feature of (7.5) is the rank of π.

If the rank of π = 0, every element of π is zero so that (7.5) becomes nothing
more than a vector autoregression (VAR) in first differences. This is clearly in-
consistent with the notion that the variables are cointegrated. In such circum-
stances, there is no error-correction since ∆xt does not respond to the previous
period’s deviation from long-run equilibrium. Alternatively, if rank(π) = n, the
variables cannot be I(1). If π is of full rank, the long-run solution to (7.5) is
πxt−1 = 0. As such, there are n independent equations that can be used to solve
for the n long-run values of the xit. For cointegration to occur, it is necessary
that 0 < rank(π) = r < n. Hence, rank(π) is equal to the number of indepen-
dent cointegrating vectors. Since πxt−1 does not vanish, one or more of the ∆xit
must respond to the previous period’s deviation from long-run equilibrium. It
is important to note that cointegration implies that estimating a VAR entirely
in first differences is inappropriate. Estimating (7.5) without the expression
πxt−1 entails a specification error.

To take a specific example, suppose rank(π) = 1 and that we can ignore the term
A(L)∆xt−1 in (7.5). The i−th row of (7.5) can be written in error-correction form

∆xit = πi1x1t−1 + πi2x2t−1 + ...+ πinxnt−1 + εit

If we factor out αi = πi1/β1 = πi2/β2 = ... = πin/βn, we can write

∆xit = αi[β1x1t−1 + β2x2t−1 + ...+ βnxnt−1] + εit (7.6)
= αiet−1 + εit (7.7)

You can see that each ∆xit adjusts in the constant proportion αi of the previous
period’s deviation from long-run equilibrium. In (7.6) the value of αi is the
“factor loading” or speed of adjustment term. The larger is αi, the larger the
response of ∆xit to last period’s deviation from long-run equilibrium. If αi = 0,
the variable xit is said to be weakly exogenous.

6.1 The Engle-Granger Methodology

The Engle-Granger cointegration test entails estimating (7.3) by OLS and sav-
ing the residuals. Then, use the saved residuals to estimate an equation in the
form of (7.4). If you can reject the null hypothesis that a1 = 0, you can conclude
that the deviations from the long-run equilibrium converge toward zero. As
such, the xit series are cointegrated.

To illustrate the Engle-Granger procedure, we will analyze the relationship
between the 3-month and 1-year interest rates. It is anticipated that both of
the series are I(1) and that they are cointegrated. After all, the theory of the
term structure implies that the two rates cannot drift too far apart. Begin with
reading in the data set QUARTERLY(2012).XLS using

Nonstationary Variables 216

cal(q) 1960 1

all 2012:4

open data c:\RatsManual\quarterly(2012).xls

data(org=obs,format=xls)

The first step is to ensure that the interest rates are I(1). This is readily ac-
complished using a standard Dickey-Fuller test. Consider

@dfunit(maxlags=8,method=gtos,signif=0.05) tb3mo

@dfunit(maxlags=8,method=gtos,signif=0.05) tb1yr

Although the output is not shown here, you should find that the general-to-
specific method selects a lag-length of 7 for each variable. More importantly,
for each series, we cannot reject the null of a unit root. Respectively, the t-
statistics from the two tests are -1.61304 and -1.39320.

Given that both variables are I(1), we can use OLS to estimate the long-run
relationship and save the residuals. Since we will refer to this equation below,
we define it as rshort.

linreg(define=rshort) tb3mo / resids

constant tb1yr

Variable Coeff Std Error T-Stat Signif

**

1. Constant -0.186974297 0.047845507 -3.90788 0.00012559

2. TB1YR 0.935603746 0.007456159 125.48065 0.00000000

The choice of name rshort refers to the fact that the short-term interest rate
is taken to be the dependent variable. The alternative would be to use

linreg(define=rlong) tb1yr / resids

constant tb3mo

In order to estimate an equation in the form of (7.4), use the general-to-specific
method to determine the lag length. It turns out that the method selects a lag
length of 6. Hence, you can conduct the test using

diff resids / dresids ;* Obtain first-difference of the
residuals

linreg dresids

resids{1} dresids{1 to 6}

Nonstationary Variables 217

Variable Coeff Std Error T-Stat Signif

1. RESIDS{1} -0.371800057 0.077712165 -4.78432 0.00000335

2. DRESIDS{1} 0.227025861 0.081701928 2.77871 0.00598294

3. DRESIDS{2} -0.029765103 0.079218675 -0.37573 0.70751733

4. DRESIDS{3} 0.112752100 0.077105454 1.46231 0.14524160

5. DRESIDS{4} 0.120913953 0.075398989 1.60365 0.11038410

6. DRESIDS{5} -0.001189432 0.070357067 -0.01691 0.98652891

7. DRESIDS{6} -0.155839468 0.069639909 -2.23779 0.02634888

Since, by construction, the resids sequence has a mean of zero, there is no
need to include an intercept term. The key point is that the coefficient on
RESIDS{1} is -0.371800057 with a t-statistic of -4.78432. Although it
might seem appropriate to use a Dickey-Fuller table to test the null hypoth-
esis a1 = 0, the problem is that the resids sequence is generated from a re-
gression equation; we do not know the actual {et} sequence, only the estimated
deviations from equilibrium. An ordinary Dickey-Fuller table would be appro-
priate if the true values of the βi were used to construct the {et} sequence.
With two variables and about 200 observations, the 5% critical value for the
Engle-Granger test is −3.368. As such, we can reject the null hypothesis of no
cointegration. Note that you can get the identical output using the procedure
EGTEST.SRC

@EGTEST(lags=6,det=constant)
tb3mo tb1yr
Using fixed lags 6

Constant in cointegrating vector

Critical Values from MacKinnon for 2 Variables

Test Statistic -4.78432**

1%(**) -3.95194

5%(*) -3.36688

10% -3.06609

or after saving the residuals from the long-run equilibrium relationship, you
can use

@EGTESTRESIDS(det=constant,nvar=2,maxlags=8,method=gtos)
resids

Nonstationary Variables 218

where DET refers to the number of variables in the cointegrating system and
resids refers to the saved residual series.

The next step is to estimate the error-correction model given by (7.5) and to
obtain the impulse responses and variance decompositions. One simple way
to estimate the lag length is to use the procedure VARLAGSELECT.SRC. Note
that the procedure determines the lag length of a VAR written entirely in lev-
els. Consider the program statement

@varlagselect(crit=gtos,signif=0.05,lags=8) ; # tb3mo tb1yr

If you enter the code as shown, you should obtain a lag length of 7. As such,
there are 6 augmented changes of each variable in (7.5). The estimation of an
error correction model is similar to that of estimating any VAR. The impor-
tant difference is the need to include the error correction term in the model.
Consider the general methodology

Step 1: Estimate the long-run equilibrium relationship, using the DEFINE=
option on the LINREG instruction. This step allows you to pass the estimated
coefficients from LINREG to the VAR system. Thus, in the interest rate exam-
ple, we used

linreg(define=rshort) tb3mo / resids

constant tb1yr

Step 2: Set up the VAR system using the MODEL= option on the SYSTEM
instruction. Moreover, in the SYSTEM to END(SYSTEM) block, include the
instruction

ECT name

where: name comes from the LINREG(DEFINE=name) instruction used to es-
timate the long-run equilibrium relationship.

Hence, for the example at hand, we can use the following statements. Not that
the DETERMINISTIC statement is not included since we have restricted the
constant to be in the cointegrating relationship itself.

system(model=rates)

variables tb3mo tb1yr

lags 1 to 7 ; * We want seven lags in the VAR

* det constant

Nonstationary Variables 219

ect rshort

end(system)

NOTICE THAT WE SET UP THE MODEL IN LEVELS, NOT IN FIRST DIF-
FERENCES. RATS will report the results in first differences along with the
error-correction term. Since we want 6 lags in the first differences, we use 7
lags of the level.

Step 3: Enter the appropriate ESTIMATE instruction. For the interest rate
example, we can use

estimate(noftests,outsigma=v)
Dependent Variable TB3MO

Variable Coeff Std Error T-Stat Signif

**

1. D TB3MO{1} 0.888179056 0.232947909 3.81278
0.00018506

...

6. D TB3MO{6} 0.027826363 0.203517804 0.13673
0.89138991

7. D TB1YR{1} -0.461705290 0.230978920 -1.99891
0.04702895

...

12. D TB1YR{6} -0.148310245 0.194009611 -0.76445
0.44553885

13. EC1{1} 0.728038833 0.227517963 3.19992
0.00160855

Dependent Variable TB1YR

Variable Coeff Std Error T-Stat Signif

1. D TB3MO{1} 0.678080259 0.243901022 2.78015
0.00597428

...

6. D TB3MO{6} 0.257755002 0.213087126 1.20962
0.22791101

7. D TB1YR{1} -0.312250729 0.241839452 -1.29115
0.19820443

Nonstationary Variables 220

...

12. D TB1YR{6} -0.378687316 0.203131861 -1.86424
0.06381387

13. EC1{1} 0.381977001 0.238215762 1.60349
0.11046988

The output shown above is obviously abbreviated. The important point is that
error-correction term in the first equation is highly significant and that the
adjustment toward the long-run equilibrium relationship is quite rapid. In
response to a one unit discrepancy from long-run equilibrium, the short term
rate adjusts by 72.803 percent of the gap. The error correction term is not
significant in the TB1YR equation implying that the long-term rate is weakly
exogenous.

Step 4: As in a standard VAR, you can obtain the impulse response functions
and variance decompositions.

The variance decompositions can be obtained using

errors(model=rates,results=errors) * 24 * s

To graph the impulse responses you can use

com implabels = || ’T-Bill’,’tb1yr’||
impulse(model=rates,results=impulses) * 24 * v

gra(nodates,foo=’Responses to the T-Bill Rate’,key=below,kla=implabels)
2
impulses(1,1); # impulses(2,1)
???Insert graph here

Alternatively, we can obtain all of the impulse responses with 95% confidence
intervals using the two procedures

@MCVARDoDraws(model=rates,draws=2000,steps=24)

@mcgraphirf(model=rates,shocks=||”to 3-month”,”to 1-year”||, $
varlabels=||”3-month”,”1-year”||, $
hea=’Impulse Responses’,center=median,percent=||.025,.975||)

???Insert graph here

6.2 The Johansen Procedure

Unlike the Engle-Granger test, the Johansen procedure seeks to determine the
rank of π. This has three distinct advantages. The first is that there is no need

Nonstationary Variables 221

to treat one of the variables as the “dependent” variable in Step 1. After all, it
would have been possible to estimate the long-run equilibrium relationship by
reversing the role of the two interest rates. Specifically, we could have used the
estimates from

linreg(define=rlong) tb1yr / resids

constant tb3mo

A second problem with the Engle-Granger procedure is that it is a two-step
procedure. Instead, it is preferable to obtain the long-run relationship and the
short-run dynamics using a full information maximum likelihood estimator.
The third disadvantage of the Engle-Granger procedure is that it does not allow
you to determine the number of cointegrating vectors in the system.

The Johansen procedure is generally used as follows

JOHMLE(options) start end

list of endogenous variables

The usual options are

LAGS= #of lags in the VAR

DETERM =NONE/[CONSTANT]/TREND/RC/RTREND

The deterministic variables in the VAR can include a CONSTANT, a constant
and a TREND, a constant restricted (RC) to the cointegrating vector, and a trend
restricted to the cointegrating vector (RTREND).

SEASONAL/[NOSEASONAL]
SEASONAL includes seasonal dummies as deterministic regressors.

LOADINGS= the matrix of factor loadings (i.e., the αi).

VECTORS=coefficients of the π matrix.

To estimate the relationship between the 1-year and 3-month interest rates
using the Johansen procedure, we can use

@JohMLE(lags=7,determ=rc,vectors=vectors)
tb3mo tb1yr
Likelihood Based Analysis of Cointegration

Variables: TB3MO TB1YR

Estimated from 1961:04 to 2012:04

Nonstationary Variables 222

Data Points 205 Lags 7 with Constant restricted to
Cointegrating Vector

Unrestricted eigenvalues and -T log(1-lambda)

Rank EigVal Lambda-max Trace Trace-95% LogL

0 -193.1365

1 0.1523 33.8836 35.4921 20.1600 -176.1947

2 0.0078 1.6085 1.6085 9.1400 -175.3904

Cointegrating Vector for Largest Eigenvalue

TB3MO TB1YR Constant

4.789823 -4.342510 0.051374

Notice that the two estimated eigenvalues, or characteristic roots, of the π ma-
trix are 0.1523 and 0.0078. Recall that the rank of a matrix is equal to the
number of non-zero characteristic roots. The question is whether these two
roots (called λ1, λ2) are statistically different from zero.

Johansen shows that it is possible to construct the λtrace(r) test as

λtrace(r) = −T
n∑

i=r+1

ln(1− λi) (7.8)

where the λi are the estimated characteristic roots ordered from largest to
smallest and T is the number of usable observations.

For a given value of r, the λtrace(r) statistic can be used to test the null hypoth-
esis of r cointgrating vectors against the general alternative hypothesis that
the number of cointegrating vectors is greater than r. If there is no cointe-
gration, the estimated characteristic roots should be small so that the value of
λtrace should be small as well. In our example, we can test the null hypothesis
of zero cointegrating vectors (i.e., r = 0) against the alternative of one or two
cointegrating vectors. If we use equation (7.8) we obtain

λtrace(0) = −205 [ln(1− 0.1523) + ln(1− 0.0078)] = 35.48

Since 35.48 (notice the slight difference from the procedure’s output because
of rounding errors) exceeds the 95% critical value of 20.1600, we can reject
the null hypothesis of no cointegration. To test the null of r = 1 (i.e., one
cointgrating vector) against the alternative of two cointegrating vectors, we
can form

λtrace(1) = −205 ln(1− 0.0078) = 1.61

Since, 1.61 (note the rounding error) is smaller than the 95% critical value of
9.14, we do not reject the null hypothesis and conclude that there is exactly
one cointgrating vector.

Nonstationary Variables 223

An alternative test considered by Johansen is the λmax(r, r + 1) test

λmax(r, r + 1) = −T ln(1− λr+1)

As opposed to (7.8), here the null is that there are exactly r cointegrating vec-
tors against the alternative of r + 1 cointegrating vectors. The test for exactly
one cointegrating vector can be constructed as

λmax(0, 1) = −T ln(1− λ1) = −205 ln(1− 0.1523) = 33.87

Comparing this value to the 95% critical value of 19.96 reported in Osterwald
and Lenum (1992), we reject the null hypothesis of no cointegrating and acept
the alternative hypothesis of exactly one cointegrating vector. The estimated
cointegrating vector, including the constant, is such that

4.789823TB3MO−4.342510TB1YR + 0.051374 = 0

If we normalize with respect to the 3-month rate, we need to divide each term
by 4.789823. Thus,

com c1 = -vectors(3,1)/vectors(1,1)

com c2 = -vectors(2,1)/vectors(1,1)

dis c1 c2

−0.01073 0.90661

As such, the normalized cointegrating vectror is

TB3MO =− 0.01073 + 0.90661TB1YR

In this case, it turns out that the maximum likelihood estimates are quite sim-
ilar to those obtained by OLS estimation of the long-run equilibrium relation-
ship.

Appendix A

Probability Distributions

A.1 Univariate Normal

Parameters Mean (µ), Variance (σ2)

Kernel σ−1 exp

(
−(x− µ)2

2σ2

)
Support (−∞,∞)

Mean µ

Variance σ2

Main uses Prior, exact and approximate posteriors for param-
eters with unlimited ranges.

Density Function %DENSITY(x) is the non-logged stan-
dard Normal density. More gener-
ally, %LOGDENSITY(variance,u). Use
%LOGDENSITY(sigmasq,x-mu) to compute
log f

(
x|µ, σ2

)
.

CDF %CDF(x) is the standard Normal CDF. To get
F(x|µ, σ2), use %CDF((x-mu)/sigma)

Draws %RAN(s) draws one or more (depending upon the
target) independent N

(
0, s2

)
.

%RANMAT(m,n) draws a matrix of independent
N (0, 1).

224

Probability Distributions 225

A.2 Univariate Student (t)

Parameters Mean (µ), Variance of underlying Normal (σ2) or of
the distribution itself (s2), Degrees of freedom (ν)

Kernel
(
1 + (x− µ)2 /

(
σ2ν
))−(ν+1)/2

or(
1 + (x− µ)2 /

(
s2(ν − 2)

))−(ν+1)/2

Support (−∞,∞)

Mean µ

Variance σ2ν/ (ν − 2) or s2

Main uses Prior, exact and approximate posteriors for param-
eters with unlimited ranges.

Density Function %TDENSITY(x,nu) is the (non-logged) density
function for a standard (µ = 0, σ2 = 1) t.
%LOGTDENSITY(ssquared,u,nu) is the log den-
sity based upon the s2 parameterization.
Use %LOGTDENSITY(ssquared,x-mu,nu) to com-
pute log f

(
x|µ, s2, ν

)
and

%LOGTDENSITYSTD(sigmasq,x-mu,nu) to com-
pute log f

(
x|µ, σ2, ν

)
.1

CDF %TCDF(x,nu) is the CDF for a standard t.

Draws %RANT(nu) draws one or more (depending upon
the target) standard t’s with independent nu-
merators and a common denominator. To
get a draw from a t density with variance
ssquared and nu degrees of freedom, use
%RANT(nu)*sqrt(ssquared*(nu-2.)/nu).

Notes With ν = 1, this is a Cauchy (no mean or variance);
with ν ≤ 2, the variance doesn’t exist. v →∞ tends
towards a Normal.

1%LOGDENSITYSTD and %TCDF were added with RATS 7.3. Before that, use
%LOGTDENSITY(sigmasq*nu/(nu-2),x-mu,nu) and %TCDFNC(x,nu,0.0).

Probability Distributions 226

A.3 Chi-Squared Distribution

Parameters Degrees of freedom (ν).

Kernel x(ν−2)/2 exp (−x/2)

Range [0,∞)

Mean ν

Variance 2ν

Main uses Prior, exact and approximate posterior for the pre-
cision (reciprocal of variance) of residuals or other
shocks in a model

Density function %CHISQRDENSITY(x,nu)

Tail Probability %CHISQR(x,nu)

Random Draws %RANCHISQR(nu) draws one or more (depending
upon the target) independent chi-squareds with NU
degrees of freedom.

Probability Distributions 227

A.4 Gamma Distribution

Parameters shape (a) and scale (b), alternatively, degrees of free-
dom (ν) and mean (µ). The RATS functions use the
first of these. The relationship between them is

a = ν/2 and b =
2µ

ν
. The chi-squared distribu-

tion with ν degrees of freedom is a special case with
µ = ν.

Kernel xa−1 exp
(
−x
b

)
or x(v/2)−1 exp

(
−xν

2µ

)
Range [0,∞)

Mean ba or µ

Variance b2a or
2µ2

ν

Main uses Prior, exact and approximate posterior for the pre-
cision (reciprocal of variance) of residuals or other
shocks in a model

Density function %LOGGAMMADENSITY(x,a,b). Built-in with RATS
7.2. Available as procedure otherwise. For the
{ν, µ} parameterization, use
%LOGGAMMADENSITY(x,.5*nu,2.0*mu/nu)

Random Draws %RANGAMMA(a) draws one or more (depending upon
the target) independent Gammas with unit scale
factor. Use b*%RANGAMMA(nu) to get a draw from
Gamma(a, b). If you are using the {ν, µ} parameter-
ization, use 2.0*mu*%RANGAMMA(.5*nu)/nu.
You can also use mu*%RANCHISQR(nu)/nu.

Moment Matching %GammaParms(mean,sd) (external function) re-
turns the 2-vector of parameters ((a, b) parameteri-
zation) for a gamma with the given mean and stan-
dard deviation.

Probability Distributions 228

A.5 Multivariate Normal

Parameters Mean (µ), Covariance matrix (Σ) or precision (H)

Kernel |Σ|−1/2 exp

(
−1

2
(x− µ)′Σ−1 (x− µ)

)
or

|H|1/2 exp

(
−1

2
(x− µ)′H (x− µ)

)
Support Rn

Mean µ

Variance Σ or H−1

Main uses Prior, exact and approximate posteriors for a collec-
tion of parameters with unlimited ranges.

Density Function %LOGDENSITY(sigma,u). To compute log f (x|µ,Σ)
use %LOGDENSITY(sigma,x-mu). (The same func-
tion works for univariate and multivariate Nor-
mals).

Draws %RANMAT(m,n) draws a matrix of independent
N (0, 1).
%RANMVNORMAL(F) draws an n-vector from a
N(0,FF′), where F is any factor of the covariance
matrix. This setup is used (rather than taking the
covariance matrix itself as the input) so you can do
the factor just once if it’s fixed across a set of draws.
To get a single draw from a N(µ,Σ), use
MU+%RANMVNORMAL(%DECOMP(SIGMA))
%RANMVPOST, %RANMVPOSTCMOM, %RANMVKRON and

%RANMVKRONCMOM are specialized functions which
draw multivariate Normals with calculations of the
mean and covariance matrix from other matrices.

Appendix B

Quasi-Maximum Likelihood Estimations (QMLE)

The main source for results on QMLE is White (1994). Unfortunately, the book
is so technical as to be almost unreadable. We’ll try to translate the main
results as best we can.

Suppose that {xt}, t = 1, . . . ,∞ is a stochastic process and suppose that we have
observed a finite piece of this {x1, . . . , xT} and that the true (unknown) log joint
density of this can be written

T∑
t=1

log gt(xt, . . . , x1)

This is generally no problem for either cross section data (where independence
may be a reasonable assumption) or time series models where the data can be
thought of as being generated sequentially. Some panel data likelihoods will
not, however, be representable in this form.

A (log) quasi likelihood for the data is a collection of density functions indexed
by a set of parameters θ of the form

T∑
t=1

log ft(xt, . . . , x1; θ)

which it is hoped will include a reasonable approximation to the true density.
In practice, this will be the log likelihood for a mathematically convenient rep-
resentation of the data such as joint Normal. The QMLE is the (or more tech-
nically, a, since there might be non-uniqueness) θ̂ which maximizes the log
quasi-likelihood.

Under the standard types of assumptions which would be used for actual max-
imum likelihood estimation, θ̂ proves to be consistent and asymptotically Nor-
mal, where the asymptotic distribution is given by

√
T (θ̂−θ)→

d
N(0,A−1BA−1),

where A is approximated by

AT =
1

T

T∑
t=1

∂2 log ft
∂θ∂θ′

and B by (if there is no serial correlation in the gradients)

BT =
1

T

T∑
t=1

(
∂ log ft
∂θ

)′(
∂ log ft
∂θ

)
(B.1)

229

Quasi-Maximum Likelihood Estimations (QMLE) 230

with the derivatives evaluated at θ̂.1 Serial correlation in the gradients is han-
dled by a Newey-West type calculation in (B.1). This is the standard “sandwich”
estimator for the covariance matrix. For instance, if log ft = − (xt − ztθ)

2, (with
zt treated as exogenous), then

∂ log ft
∂θ

= 2 (xt − θzt) z′t

and
∂2 log ft
∂θ∂θ′

= −2z′tzt

and the asymptotic covariance matrix of θ̂ is(∑
z′tzt

)−1 (∑
z′tu

2
t zt

)(∑
z′tzt

)−1
the standard Eicker-White robust covariance matrix for least squares. Notice
that, when you compute the covariance matrix this way, you can be somewhat
sloppy with the constant multipliers in the log quasi likelihood—if this were
the actual likelihood for a Normal, log ft would have a 1

2σ
2 multiplier, but that

would just cancel out of the calculation since it gets squared in the center factor
and inverted in the two ends.

This is very nice, but what is the θ0 to which this is converging? After all,
nothing above actually required that the ft even approximate gt well, much
less include it as a member. It turns out that this is the value which minimizes
the Kullback-Liebler Information Criterion (KLIC) discrepancy between f and
g which is (suppressing various subscripts) the expected value (over the density
g) of log(g/f). The KLIC has the properties that it’s non-negative and is equal to
zero only if f = g (almost everywhere), so the QMLE will at least asymptotically
come up with the member of the family which is closest (in the KLIC sense) to
the truth.

Again, closest might not be close. However, in practice, we’re typically less in-
terested in the complete density function of the data than in some aspects of it,
particularly moments. A general result is that if f is an appropriate selection
from the linear exponential family, then the QMLE will provide asymptotically
valid estimates of the parameters in a conditional expectation. The linear ex-
ponential family are those for which the density takes the form

log f(x; θ) = a(θ) + b(x) + θ′t(x) (B.2)

This is a very convenient family because the interaction between the parame-
ters and the data is severely limited.2 This family includes the Normal, gamma
(chi-squared and exponential are special cases), Weibull and beta distributions

1The formal statement of this requires pre-multiplying the left side by a matrix square root
of AB−1A and having the target covariance matrix be the identity.

2The exponential family in general has d(θ) entering into that final term, though if d is
invertible, it’s possible to reparameterize to convert a general exponential to the linear form.

Quasi-Maximum Likelihood Estimations (QMLE) 231

among continuous distributions and binomial, Poisson and geometric among
discrete ones. It does not include the logistic, t, F , Cauchy and uniform.

For example, suppose that we have “count” data—that is, the observable data
are nonnegative integers (number of patents, number of children, number of
job offers, etc.). Suppose that we posit that the expected value takes the form
E(yt|wt) = exp(wtθ). The Poisson is a density in the exponential family which
has the correct support for the underlying process (that it, it has a positive
density only for the non-negative integers). Its probability distribution (as a
function of its single parameter λ) is defined by P (x;λ) = exp(−λ)λx

x!
. If we de-

fine ω = log(λ), this is linear exponential family with a(ω) = − exp(ω), b(x) =
log x!, t(x) = x. There’s a very good chance that the Poisson will not be the cor-
rect distribution for the data because the Poisson has the property that both its
mean and its variance are λ. Despite that, the Poisson QMLE, which maximizes∑
− exp(wtθ) + xt(wtθ), will give consistent, asymptotically Normal estimates

of θ.

It can also be shown that, under reasonably general conditions, if the “model”
provides a set of moment conditions (depending upon some parameters) that
match up with QMLE first order conditions from a linear exponential family,
then the QMLE provides consistent estimates of the parameters in the moment
conditions.

Appendix C

Delta method

The delta method is used to estimate the variance of a non-linear function of
a set of already estimated parameters. The basic result is that if θ are the
parameters and we have

√
T
(
θ̂ − θ

)
d−→ N (0,Σθ) (C.1)

and if f(θ) is continuously differentiable, then, by using a first order Taylor
expansion (

f(θ̂)− f(θ)
)
≈ f ′(θ)

(
θ̂ − θ

)
Reintroducing the

√
T scale factors and taking limits gives
√
T
(
f(θ̂)− f(θ)

)
d−→ N

(
0, f ′(θ)Σθf

′(θ)′
)

In practice, this means that if we have

θ̂ ≈ N(θ,A) (C.2)

then
f
(
θ̂
)
≈ N

(
f(θ), f ′(θ̂)Af ′(θ̂)′

)
(C.3)

(C.1) is the type of formal statement required, since the A in (C.2) collapses to
zero as T → ∞. It’s also key that (C.1) implies that θ̂ p−→ θ, so f ′(θ̂)

p−→ f ′(θ)
allowing us to replace the unobservable f ′(θ) with the estimated form in (C.3).
So the point estimate of the function is the function of the point estimate, at
least as the center of the asymptotic distribution. If θ̂ is unbiased for θ, then it’s
almost certain that f(θ̂) will not be unbiased for f(θ) so this is not a statement
about expected values.

To compute the asymptotic distribution, it’s necessary to compute the partial
derivatives of f . For scalar functions of the parameters estimated using a
RATS instruction, that can usually be most easily done using the instruction
SUMMARIZE.

232

Appendix D

Central Limit Theorems with Dependent Data

The simplest form of Central Limit Theorem (CLT) assumes a sequence of i.i.d.
random variables with finite variance. Under those conditions, regardless of
the shape of the distributions (anything from 0-1 Bernoullis to fat-tailed vari-
ables with infinite fourth moments),

√
T (x̄− µ)

d−→ N(0, σ2) (D.1)

Those were extended to allow independent, but non-identically distributed,
random variables as long as there was some control on the tail behavior and
the relative variances to prevent a small percentage of the summands from
dominating the result. The assumption of independence serves two purposes:

1. It makes it much easier to prove the result, since it’s relatively easy to
work with characteristic functions of independent random variables.

2. Independence helps to restrict the influence of each element.

In time series analysis, independence is too strong an assumption. However,
it’s still possible to construct CLT’s with weaker assumptions as long as the
influence of any small number of elements is properly controlled.

One type of useful weakening of independence is to assume a sequence is a
martingale difference sequence (m.d.s.). {ut} is an m.d.s. if

E(ut|ut−1, ut−2, . . .) = 0

It’s called this because a martingale is a sequence which satisfies

E(xt|xt−1, xt−2, . . .) = xt−1

so, by the Law of Iterated Expectations (conditioning first on a superset)

E(xt − xt−1|xt−1 − xt−2, xt−2 − xt−3, . . .) =

E (E(xt − xt−1|xt−1, xt−2, . . .)|xt−1 − xt−2, xt−2 − xt−3, . . .) = 0

thus the first difference of a martingale is an m.d.s. An i.i.d. mean zero process
is trivially an m.d.s. A non-trivial example is ut = εtεt−1, where εt is an i.i.d.
mean zero process. ut isn’t independent of ut−1 because they share a εt−1 factor;
as a result, the variances of ut and ut−1 will tend to move together.

233

Central Limit Theorems with Dependent Data 234

The ergodic martingale CLT states that if ut is a stationary ergodic m.d.s. and
Eu2t = σ2, then

1√
T

T∑
t=1

ut
d−→ N

(
0, σ2

)
We can write this (somewhat informally) as

1√
T

T∑
t=1

ut
d−→ N

(
0, Eu2t

)
and very informally, this is used as∑

t

ut ≈ N

(
0,
∑
t

u2t

)
(D.2)

This is the form that is useful when we have serially uncorrelated (though not
necessarily serial independent) summands. However, it won’t handle serial
correlation. A basic CLT which can be applied more generally is the following:
if

xt =

q∑
s=0

csεt−s (D.3)

where εt has assumptions which generate a standard N(0, σ2), then

1√
T

T∑
t=1

xt
d−→ N

(
0,
(∑

cs

)2
σ2

)
(D.4)

If we write xt = C(L)εt, then we can write C(1) =
q∑
s=0

cs, so the limiting dis-

tribution can be written C(1)2σ2. This is known as the long-run variance of x:
if εt were subject to a permanent shift generated by a random variable with
variance σ2, the variance that would produce in xt is C(1)2σ2.

The somewhat informal restatement of this is

1√
T

T∑
t=1

xt
d−→ N (0, lvar(x))

where lvar(x) is the long-run variance of the x process, and in practice we use∑
t

xt ≈ N

(
0,
∑
t

L∑
l=−L

wlxtx
′
t−l

)
(D.5)

where the variance in the target distribution uses some feasible estimator for
the long-run variance (such as Newey-West).

The approximating covariance matrix in (D.2) can be computed using the in-
struction CMOMENT (applied to u), or with MCOV without any LAG options, and

Central Limit Theorems with Dependent Data 235

that in (D.5) can be computed using MCOV using LAG and LWINDOW options.
Note that both these are written using sums (not means) on both sides. That
tends to be the most convenient form in practice—when you try to translate a
result from the literature, you need to make sure that you get the factors of T
correct.

Bibliography

BOLLERSLEV, T. (1986): “Generalized Autoregressive Conditional Het-
eroskedasticity,” Journal of Econometrics, 31(3), 307–327.

CHAN, K. (1993): “Consistency and Limiting Distribution of the Least Squares
Estimator of a Threshold Autoregressive Models,” Annals of Statistics, 21,
520–533.

DIEBOLD, F. X., AND R. S. MARIANO (1995): “Comparing Predictive Accuracy,”
Journal of Business and Economic Statistics, 13, 253–263.

ENDERS, W. (2010): Applied Econometric Time Series. Wiley, 3rd edn.

ENGLE, R. F. (1982): “Autoregressive Conditional Heteroscedasticity with Es-
timates of the Variance of United Kingdom Inflation,” Econometrica, 50(4),
987–1007.

ENGLE, R. F., AND C. W. J. GRANGER (1987): “Co-integration and Error Cor-
rection: Representation, Estimation, and Testing,” Econometrica, 55, 251–
276.

ENGLE, R. F., D. M. LILIEN, AND R. P. ROBINS (1987): “Estimating Time
Varying Risk Premia in the Term Structure: The Arch-M Model,” Economet-
rica, 55(2), 391–407.

GRANGER, C. W. J., AND P. NEWBOLD (1973): “Some Comments on the Evalu-
ation of Economic Forecasts,” Applied Economics, 5, 35–47.

HYLLEBERG, S., R. F. ENGLE, C. W. J. GRANGER, AND B. S. YOO (1990):
“Seasonal Integration and Cointegration,” Journal of Econometrics, 44, 215–
238.

TERASVIRTA, T. (1994): “Specification, Estimation and Evaluation of Smooth
Transition Autoregressive Models,” Journal of American Statistical Associa-
tion, 89(425), 208–218.

TONG, H. (1983): Threshold Models in Nonlinear Time Series Analysis. New
York: Springer Verlag.

WHITE, H. (1980): “A Heteroskedasticity-Consistent Covariance Matrix Esti-
mator and a Direct Test for Heteroskedasticity,” Econometrica, 48, 817–838.

(1994): Estimation, Inference and Specification Analysis. Cambridge:
Cambridge University Press.

236

Index

Additive outlier, 150
AIC, 23
Akaike Information Criteria, 23
%ALLOCEND function, 45
@ARCHTEST procedure, 124

Bayesian Information Criterion, 23
BFGS algorithm, 135
BIC, 23
Bilinear model, 98
@BJAUTOFIT procedure, 33, 36
@BJDIFF procedure, 38
@BJIDENT procedure, 27
BOXJENK instruction, 28

DEFINE option, 42
BREAK instruction, 156
Burn-in, 80

CDF instruction, 137
%CDSTAT variable, 16, 138
Chan, K., 161
Chi-squared distribution, 226
%CHISQR function, 138
CLEAR instruction, 179
CMOMENT instruction, 153
Compiled language, 144
COMPUTE instruction

for series elements, 45
%CONVERGED variable, 28, 69
CORRELATE instruction, 14

Delta method, 232
Diebold, F., 48
@DMARIANO procedure, 48
DO instruction, 34
DOFOR instruction, 84
Double precision, 101

@EGTEST procedure, 25
Enders, W., 26, 79
@EndersGranger procedure, 169
@EndersSiklos procedure, 169

Engle, R., 22, 38, 124
%EQNPRJ function, 171
%EQNREGLABELS function, 170
%EQNRESID function, 171
%EQNRVALUE function, 171
%EQNSIZE function, 170
%EQNVALUE function, 171
%EQNXVECTOR function, 170
ESTAR model, 77
EXCLUDE instruction, 16
%EXP function, 86
EXTREMUM instruction, 89

FIX function, 162
FORECAST instruction, 43
%FRACTnn variables, 84
FRML instruction, 65, 68

LASTREG option, 94
%FTEST function, 138
%FUNCVAL variable, 121

Gamma distribution, 227
Gauss-Newton algorithm, 66
@GMAUTOFIT procedure, 40
@GNEWBOLD procedure, 47
Granger, C.W.J., 22, 38, 47
GRAPH instruction, 10

NODATES option, 22
NUMBER option, 22

Grid search, 83

@HEGY procedure, 38
Hylleberg, S., 38

Identification
lack of, 64

Innovational outlier, 148
INQUIRE instruction, 169
Inter-quartile range, 86
Interpreted language, 143
%INVNORMAL function, 49

lag length tests, 1

237

Index 238

Least squares
nonlinear, 64

LINREG instruction, 12
DEFINE option, 164

Ljung-Box Q statistic, 15
%LOGDENSITY function, 119, 228
%LOGISTIC function, 79
%LOGL variable, 121
%LOGTDENSITY function, 119, 225
%LOGTDENSITYSTD function, 225
Loss of precision, 101
LSTAR model, 77

Mariano, R., 48
Martingale difference sequence, 233
MAXIMIZE instruction, 117
%MINENT variable, 89
Multivariate Normal distribution, 228

%NARMA variable, 31
%NDFTEST variable, 16
Newbold, P., 47
NLLS instruction, 65, 69

PARMSET option, 95
NLPAR instruction, 102
NONLIN instruction, 65, 67
Nonlinear least squares, 64
Normal distribution, 224
Numerical derivatives, 104

ORDER instruction, 162
Outlier

additive, 150
innovational, 148

Overflow, 101

PARMSET data type, 94
PITERS option, 134
PMETHOD option, 134
Precision

double, 101
loss of, 101

Probability distributions
chi-squared, 226
gamma, 227
multivariate normal, 228

normal, 224
t, 225

Q statistic, 15

%RANMAT function, 228
%RANMVNORMAL function, 228
%RANT function, 225
Recursive formula, 98
Recursive residuals, 51
@REGCORRS procedure, 32
@REGCRITS procedure, 25
%REGSTART function, 23
@REGSTRTEST procedure, 93
%RESIDS series, 20, 69
RESTRICT instruction, 17
RLS instruction, 51

SBC, 23
Schwarz Bayesian Criterion, 23
SEED instruction, 105
%SEQA function, 84
%SIGNIF variable, 16, 138
Simplex algorithm, 133
Smooth Transition Regression, 87
SPGRAPH instruction, 11
SSTATS instruction, 191
STAR model, 77

problems with outliers, 96
@STARTEST procedure, 93
STATISTICS instruction

FRACTILES option, 84
STR model, 87
%SUMLC variable, 17
SUMMARIZE instruction, 16

t distribution, 225
TAR model, 159
@TAR procedure, 169
%TCDF function, 225
%TDENSITY function, 225
Terasvirta, T., 93
TEST instruction, 17, 73
Threshold autoregression, 159
@THRESHTEST procedure, 169
Tong, H., 159

Index 239

%TTEST function, 138

UFORECAST instruction, 42
Underflow, 101
UNTIL instruction, 157

VAR, 1
%VARLC variable, 17
Vector autoregression, 1

White, H., 20, 229

Yoo, B.S., 38

%ZTEST function, 138

	Preface
	Introduction
	What Are Your Options?
	Which Should You Use?
	Three Words of Advice
	General Stylistic Tips
	About This E-Book

	Regression and ARIMA Models
	The Data Set
	Linear Regression and Hypothesis Testing
	Examples using RESTRICT

	The LINREG Options
	Using LINREG and Related Instructions
	ARMA(p,q) Models
	Estimation of an ARMA(p,q) process with RATS
	Identification
	Estimation
	Diagnostic Checking

	An Example of the Price of Finished Goods
	Automating the Process
	Introduction to DO Loops

	An Example with Seasonality
	Forecasts and Diagnostic Checks
	Examining the Forecast Errors
	Coefficient Stability
	Tips and Tricks
	Preparing a graph for publication
	Preparing a table for publication

	Introduction to basic instructions
	Engle-Granger test with lag length selection
	Estimation and diagnostics on ARMA models
	Automated Box-Jenkins model selection
	Seasonal Box-Jenkins Model
	Out-of-sample forecasts with ARIMA model
	Comparison of Forecasts
	Stability Analysis

	Non-linear Least Squares
	Nonlinear Least Squares
	Using NLLS
	Restrictions: Testing and Imposing
	Convergence and Convergence Criteria
	ESTAR and LSTAR Models
	Estimating a STAR Model with NLLS
	Smooth Transition Regression
	An LSTAR Model for Inflation
	Functions with Recursive Definitions
	Tips and Tricks
	Understanding Computer Arithmetic
	The instruction NLPAR
	The instruction SEED

	Simple nonlinear regressions
	Sample STAR Transition Functions
	STAR Model with Generated Data
	Smooth Transition Break
	LSTAR Model for Inflation
	Bilinear Model

	Maximum Likelihood Estimation
	The MAXIMIZE instruction
	ARCH and GARCH Models
	Using FRMLs from Linear Equations
	Tips and Tricks
	The Simplex Algorithm
	BFGS and Hill-Climbing Methods
	The CDF instruction and Standard Distribution Functions

	Likelihood maximization
	ARCH Model, Estimated with MAXIMIZE
	GARCH Model with Flexible Mean Model

	Standard Programming Structures
	Interpreters and Compilers
	DO Loops
	IF and ELSE Blocks
	WHILE and UNTIL Loops
	Estimating a Threshold Autoregression
	Estimating the Threshold
	Improving the Program

	Tips and Tricks
	Illustration of DO loop
	Illustration of IF/ELSE
	Illustration of WHILE and UNTIL
	Threshold Autoregression, Brute Force
	Threshold Autoregression, More Flexible Coding

	SERIES and Dates
	SERIES and the workspace
	SERIES and their integer handles
	Integer Arithmetic and Variables
	Dates as Integers
	Series as Integers
	Creating Numbered Series and Labels
	Other Loops

	Loops for Dates and Series
	Tips and Tricks

	Nonstationary Variables
	1. The Dickey-Fuller Test
	2. DF-testing Procedures
	3. A Test with More Power
	4. Tests with Breaks
	5. Two Univariate Decompositions
	6. Cointegration

	Probability Distributions
	Univariate Normal
	Univariate Student (t)
	Chi-Squared Distribution
	Gamma Distribution
	Multivariate Normal

	Quasi-Maximum Likelihood Estimations (QMLE)
	Delta method
	Central Limit Theorems with Dependent Data
	Bibliography
	Index

