3 ARIMA Impact
Assessment

The time series quasi-experiment was proposed originally by Campbell
(1963; Campbell and Stanley, 1966) as a means of assessing the impact of a
discrete social intervention (or an “event” as we shall soon call it) on behav-
ioral processes. The reader must not assume that a time series quasi-
experiment is always the best method of impact assessment for it requires a
rather simple theory of impact. There appear nevertheless to be many sit-
uations in which simple theories of impact are justified and, in these situa-
tions, the time series quasi-experiment may be the most useful of all designs.

Time series quasi-experiments have been used to measure the impacts of
new traffic laws (Campbell and Ross, 1968; Glass, 1968; Ross et al., 1970);
the impact of decriminalization (Aaronson et al., 1978); the impact of gun
control laws (Zimring, 1975); and the impact of air pollution control laws
(Box and Tiao, 1975). The widest use of this design has clearly been in the
arca of legal impact assessment. Time series quasi-experiments have also
been used by political scientists to measure the impacts of political realign-
ments (Caporaso and Pelowski, 1971; Lewis-Beck, 1979; Smoker, 1969),
however, and by experimental psychologists to measure the impacts of
treatments on behavior (Gottman and McFall, 1972; Hall et al., 1971; Tyler
and Brown, 1968). This list is representative (but by no means exhaustive) of
the situations in which time series quasi-experiments have been used to
assess social impacts.

Our major concern in this chapter is with the analysis of time series quasi-
experiments: impact assessment as we call it. Time series analysis cannot be
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divorced from the design of the time series quasi-experiment, however.
According to Cook and Campbell (1979), the design of any quasi-
experiment must recognize the threats to four types of validity: internal,
external, statistical conclusion, and construct validities. We know of no
statistical methods for correcting or controlling flaws in design. Our devel-
opment of statistical models thus assumes an adequately designed quasi-
experiment. Design is the sine qua non. The reader who is unfamiliar with
quasi-experimental design is directed to Cook and Campbell for an authori-
tative treatment.

We will use the term impact assessment to refer to the statistical analysis
of an adequately designed time series quasi-experiment. More generally, we
define this term as “a test of the null hypothesis that a postulated event
caused a change in a social process measured as a time series.” Acknowledg-
ing the faults and limitations of this definition, we must comment on its two
key elements.

First, impact assessment is concerned with the effects of a “postulated
event.” An event for our purposes is a qualitative change in state or, in
common terms, “something that happens.” Events can be represented as
binary variables which indicate the absence of the state prior to the event
and the presence of the state during and (possibly) after the event. In the
parlance of experimental psychology, for example, introduction of a treat-
ment is the event associated with a change in state from “no treatment” to
“treatment.” In legal studies, enactment of a new law is the event associated
with a change in state from “no regulation” to “regulation.”

Qualitative changes in states (events) are often indistinguishable from
quantitative changes in levels (processes). In studying national arms expen-
ditures over time, for example, some social scientists prefer to think of
“war” as an event which affects expenditures. Other social scientists prefer
to think of “the propensity to war” as a continuous process which affects
expenditures. We will develop multivariate ARIMA models for the case in
which the causal agent is a continuous process (as measured by an indepen-
dent variable time series) in Chapter 5. For now, however, it is important to
remember that an impact assessment analysis is concerned with the effect of
an event on some social or behavioral process.

Because the change agent is an event, it is represented in the impact
assessment model as a “dummy” variable or step function such that

I; = O prior to the event
= 1 thereafter.

If the change process is not an event in the technical sense, however, the

ARIMA Impact Assessment 143

impact assessment may lead to invalid conclusions. As a general rule, the
independent variable of an impact assessment model should give as accurate
arepresentation of the change agent as possible. In an analysis of a Washing-
ton, D.C., gun control law, for example, Zimring (1975) had information on
the actual level of enforcement. Using this information, Zimring defined the
event in terms of [; as

L

0 prior to enactment
1/6 in the first month after enactment
2/6 in the second month

6/6 = 1 in the sixth and subsequent months.

With this definition of I, the event corresponding to a change 1in state from
“no regulation” to “regulation” is distributed across a six-month period. The
fundamental principle illustrated here is that an impact assessment requires a
theory of change. If the change agent is an event, then it can and must be
represented by a simple step function. If the change agent is not an event in
the strictest sense, however, the analysis may lead to invalid conclusions. A
more valid analysis can be ensured by modifying the step function, as
Zimring did, to accommodate known properties of the change agent.

A second element of the “impact assessment” definition is the a priori
specification of the onset of an event. A null hypothesis that an event
“caused” a change in some behavior can be tested only because the time of
the event is known a priori. It would indeed be possible to search the length
of a time series for statistically significant changes but it would be logically
impossible to then associate each change with the infinite number of events
which might be the causes. An impact analysis based on a blind search (see,
e.g., Deutsch, 1978; also, Section 4.3 below) might generously be called
“exploratory analysis.” Its results are quite uninterpretable. An impact as-
sessment based on an event whose onset is specified a priori, in contrast, is a
“confirmatory analysis.” It is used only to test theoretically generated hy-
potheses according to a rigorous set of validity criteria.

These two elements of the definition are so important that we reiterate
them. First, impact assessment is concerned only with events and, second,
impact assessment requires that the onser of an event be specified a priori.
Lacking these two elements, the results of an impact analysis will be unin-
terpretable.

Impact assessment (or the time series analysis of impacts) begins with an
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ARIMA model for the time series. Since this ARIMA model describes the
stochastic behavior of the time series process, we refer to it as the “noise
component” of the model. An intervention component is then added to the
model. The full impact assessment model may be written as

Y. =1y + N,

where N, denotes the noise component, an ARIMA model, and where {(I;)
denotes a “function of the variable I,,” the intervention component. The
intervention component itself describes the deterministic relationship be-
tween an event (as represented by the variable 1) and the time series. The
noise component describes the stochastic behavior of the time series around
the Y, = f(I;) relationship.

The general principles of ARIMA modeling which we developed in
Chapter 2 apply as well to impact assessment modeling. Analysis begins
with construction of an ARIMA model for the Y, time series. In some cases,
the real impact in the time series may be so large that it overwhelms and
distorts the ACF and PACF,; this phenomenon is similar to distortions asso-
ciated with outliers. To avoid problems in identification, the analyst may
have to estimate ACFs and PACFs from the preintervention series only.

After an adequate ARIMA model has been identified, its parameters
satisfactorily estimated, and its residuals diagnosed, an intervention compo-
nent is added. The intervention component will ideally be selected on the
basis of a theoretically generated null hypothesis. The parameters of the full
impact assessment model (both noise and intervention components) are then
estimated. If a parameter estimate is not statistically significant or is other-
wise unacceptable (if the estimate of a noise parameter lies outside the
bounds of stationarity-invertibility, for example), the tentative model must
be respecified and its parameters reestimated.

Once a tentative model has been specified and significant, acceptable
parameter estimates have been obtained, the impact assessment model must
be diagnosed. As in the case of univariate ARIMA models, residuals must
not be different than white noise. Although the noise component alone may
have white noise residuals, it sometimes happens that the full impact assess-
ment model (noise and intervention components) does not. When this hap-
pens, a new tentative model must be specified, its parameters estimated, and
its residuals diagnosed. The model-building procedure continues iteratively
until a parsimonious but statistically adequate impact assessment model is
generated.

Impact parameters may then be tested for statistical significance and,
more generally, the model may be interpreted. We will illustrate the general
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model-building strategy for impact assessments with several example anal-
yses. These will not be as definitively instructive as the example analyses of
the previous chapter, however. While ARIMA models per se (the noise
component of the impact assessment model) are atheoretical and unin-
terpretable, an impact assessment model (noise and intervention compo-
nents) is built for no reason other than interpretation. The analyst must draw
conclusions from the impact assessment analysis and, in every case, these
conclusions must be reconciled with the prevailing theory of a substantive
area. An impact assessment model may then be the “best” possible model in
a statistical sense but not in the substantive sense. Interpretability is every-
thing, and for this reason, impact assessment modeling cannot be reduced to
a set of objective, mechanical steps.

3.1 The Zero-Order Transfer Function

Denoting the full impact assessment model as
Y= f(I) + Ny,

we are now concerned with the “function of I;,” that is, with the intervention
component of the full model. Some writers refer to the intervention compo-
nent as a “transfer function,” a term derived from engineering contexts. We
will use both terms synonymously here, although our preference is for the
more straightforward “intervention component.”

The simplest possible intervention component is the zero-order transfer
function

#;Arv = SOHm

This is a zero-order transfer function because the highest power of B in the
function is zero. Where the variable I, is defined as a step function such that

1; = 0 prior to the event

1 thereafter,

il

the impact assessment model is:
<~ = ecmﬁ + Zn.

Now because the impact assessment model is linear in its components, the
noise component, N;, may be subtracted from the time series:

%ﬂ”<~|2~

SOHT
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So long as the N component is statistically adequate, that is, so long as it has
been built along the lines described in the previous chapter, subtracting it
from the Y, time series results in a deterministic intervention component.
Working with the Y§ series (instead of the Y, series), the deterministic
effects of the transfer function may be examined.

Prior to the event, when I; = 0, the level of the Y series is:

Y = wo(0)
=0.

But with the onset of the event, when 1; = 1, the level of the Y% series is:

Y§ = wp(1)
= qQ-

The zero-order transfer function thus determines an abrupt, permanent shift
in process level from pre- to postintervention, a pattern of impact such as

o o o o o After

Before o o o o o

At the onset of the event, the level of the process increases by the quantity w
(or decreases if wg is negative).

A few comments on the concept of “level” may be helpful here. An
impact assessment model describes a change in level and/or (sometimes)
trend for the generating process of the time series. Some writers use the term
equilibrium rather than “level,” but whichever term is used, it is important
to remember that a statistical concept (not a substantive concept) is implied.
For a stationary time series process, the parameter wy is an estimate of the
difference between the pre- and postintervention process levels.

For a nonstationary series, an analogous interpretation is possible. Non-
stationary time series generated by ARIMA(p,d,q) processes can be repre-
sented by stationary ARIMA(p,0,q) models after an appropriate differenc-
ing. As noted in Chapter 2, the inverse relationship between differencing
and summation operators (or filters; see Figure 2.13) allows for a mapping
between the stationary model and the nonstationary process. This is also true
of impact assessment models. An abrupt, permanent pattern of impact, for
example, as determined by the zero-order transfer function, in a trending
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FIGURE 3.1(a) Directory Assistance, Monthly Average Calls per Day

series may appear as
After

o

Before o

The interpretation of the parameter wq is more or less the same, then,
whether the N component is a stationary ARIMA(p,0,q) model or a nonsta-
tionary ARIMA(p.d,q) model.

Using the simple zero-order transfer function, we will now demonstrate
the impact assessment model-building strategy. Figure 3.1(a) shows a
monthly time series of calls to Directory Assistance in Cincinnati, Ohio, as
reported by McSweeny (1978). The first observation of this series is Janu-

(text continued on p. 152)
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FIGURE 3.1(f) Diagnosis: ACF for the Model Residuals

ary 1962 and the 180th and last observation is December 1976. In March
1974, the 147th month, Cincinnati Bell initiated a 20-cent charge for each
call to Directory Assistance. Prior to this time, there was no charge for these
calls. The impact of this event is visually striking. In the 147th month, the
level of this time series drops abruptly and profoundly.

When an impact is as large as the one in this example, the change in
process level complicates identification of the noise component. The change
in level is a significant proportion of the series variance which tends to
overwhelm the ACF and PACF. To avoid biased estimates of the ACFs and
PACFs, only the first 146 observations of the series will be used. ACFs and
PACEFs used in the identification are shown in Figures 3.1(b) to 3.1(f).

Identification

The ACF and PACEF estimated from the raw series indicate a nonsta-
tionary ARIMA process. The ACF and PACF estimated from the regularly
differenced series, shown in Figure 3.1(c), indicate the ARIMA process is
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seasonally nonstationary as well. The ACF and PACF estimated from the
regularly and seasonally differenced series, shown in Figure 3.1(d), suggest
an ARIMA(0,1,0)0,1,1)}» model:

_ @o + (- ®_Nw_wv
Ne= (1 — B)1 — B12)

at.
This is an interesting model and somewhat rare. The only autocorrelation is
at the seasonal lags.

Estimation

Parameter estimates for the N, model are:

6, = —.70 witht-statistic = — 1.51
O,= .85witht-statistic = 15.30.

The estimate of O is not statistically significant, so it is dropped from ﬁ.rm
tentative model. The estimate of Oy is statistically significant and lies
within the bounds of invertibility.

Diagnosis

The residual ACF and PACF, shown in Figure 3.1(e), indicate that the
residuals of this model are not different than white noise. There is a signifi-
cant spike at ACF(5) but nothing else: Q = 12.52 with 24 degrees of freedom
is not statistically significant, so the tentative model is accepted. As an
aside, we note that another analyst might be concerned about the spike at
ACF(5) which might indicate the need for a more elaborate model. Also, the
estimated value of O is “marginally” significant and some other analyst
might decide to keep that parameter in the model. The reader is invited to
explore these possibilities.

Impact Assessment

The full impact assessment model is tentatively set as

1-6pBl2
<~ = SOHKQ + A~ . wVAH . wwwv at

where 1,47 = O for the first 146 observations
= 1 for the 147th and subsequent observations.
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Parameter estimates for the tentative mode] are:

O, = .81 with ¢ statistic
wo = —39,931 with t statistic

11.21
—17.41.

Il

Both estimates are statistically significant and the estimate of O, lies within
the bounds of invertibility. A final diagnosis indicates that the estimated
model is statistically adequate. The residual ACF, shown in Figure 3.1(1),
has no significant spikes at all; the Q statistic for this ACF is not statistically
significant.

Our interpretation of these findings is obvious. In the 147th month, the
level of this series dropped by nearly 40,000 average daily calls to Directory
Assistance.

The model-building strategy outlined in this example can be followed
generally in all analyses. Each analysis will present a unique set of prob-
lems, however, which may require a slight adaptation of the strategy. We
note finally that, in this example, a test of the null hypothesis was notat all in
question. The impact was visually obvious. Impact assessment analysis

nonetheless provided a precise estimate of the form and magnitude of the
effect.

3.2 The First-Order Transfer Function

When impacts are as abrupt and dramatic as the one in the Directory
Assistance example, the zero-order transfer function will adequately model
the impact. Such abrupt, dramatic patterns of impact are rare, however.
Most social impacts will be realized gradually, so the zero-order transfer
function will not adequately reflect the expected impact. Returning to

Zimring’s reformulation of the step function in an impact assessment of a
gun control law as

Iy = O prior to enactment
1/6 in the first month after enactment
2/6 in the second month

= 6/6 = 1 in the sixth and subsequent months,

the reformulation of I reflects a gradual impact of the new law. Zimring
could have measured such an impact by using a first-order transfer function
rather than a zero-order function with areformulated I, variable.
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To date, most social science impact assessments have :.mma H.:o zero-order
transfer function exclusively. There are two reasons for this. .anr there has
been little discussion in the methodological :SBER of any impact patterns
other than the abrupt, constant pattern associated with %w Nm:.u-oamn H.S:m-
fer function; and the computer software Rniaa for estimation of .Em:o.n
order transfer functions has not been widely m<m:.m@._o. m.wowsav social .mom
ence time series are often reported as annual mﬂm:mco.mw an impact Rmﬁ_vﬁo”
gradually over an eight-month period, for example, will appear ﬂm mm mﬁ Ewo
impact if annual (rather than monthly) data are msw_vﬁma. Hmcﬁ oﬂ a mxwma
aggregated in a way that obscures the form of an _B.wmﬁ @:Ew <M8_
gradual, for example), the zero-order transfer function will a M@: %\
model the impact. If the data are aggregated so that the form is not o .moczw._w
however, and if an impact is not abrupt, the zero-order transfer function wi

model the impact. .
=O~MQMMMMMN permanent oﬂm:mo in process level is implied by the first-
order transfer function

wq

—29
1-8B !

fly) =

where the parameter 8, is constrained to the interval
-1<8 <+ 1.

These constraints are called the bounds of system .nBE\.N.Q. If the value wm 31
lies outside these bounds, the impact assessment model is unstable. H.H ;::. be
demonstrated later that system instability is Eo.sao& EE :oES:o:mw:v.\.
When §; = 1, the postintervention time series is nonstationary .MSQ z:.m is
generally interpreted to mean that the event has affected a trend in the time
SS.

monMWM”%,o Moom:mm the impact assessment model is linear in its two compo-
nents, a Y time series can be defined as

%ﬂ”<~|2~

=TT e b It

1- 8B

So (1 — m_mv<mx = wol;
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This formulation of Y} can be used recursively to examine the behavior of
this first-order transfer function. Prior to the event, when I, = 0, the Y¥
series has a zero level:

It

%ﬂ m_M\M_AI_ + wgl;

=8,(0) + wp(0) = 0.

Now if the final preintervention observation of the series is f__ﬁ, the event

occursatt = i+1and I;4.; = 1. The value of Y%, | is thus

%ﬁl = ®_<v_w + wgli+
=381(0) + wp(l) = wyg.
In the next postintervention observation, I, = 1, and the value of Y%, is
Y, =aY), | + woliy,
81 (wo) + wo(1) = 8w + wo.

And in the next postintervention observation, I;;3 = 1, and the value of
Y* . is:
i+3
Y =85, +ooliys
=8, (0 wg + wo) + wo(l) = mWSO + m_eo + wg.

Continuing this procedure, it can be shown that, in the nth postintervention

observation, 1, = 1, and the value of Y¥ s

Y =81YH ) +oolisg

=81(87 lwo + ... + 81wg + wg) + wo(1)
n
= WWO m__anco.

The importance of constraining the value of 8] to the bounds of system
stability may now be obvious. So long as 8, is a fraction,

_mql_eo_ > _mqso_‘

n
Each successive term of the series 3 8kwq is smaller than the pre-
k=0

vious term. As time passes then, the postintervention series level continues
to change (increasing or decreasing, depending upon whether wy is positive
or negative) but by smaller and smaller increments (or decrements).
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Figure 3.2(a) shows the change expected in the Y} time series with each
observation. At the moment of intervention, the series level changes from
zero to wy, and in the next moment, from wy to (wg + 81wg). The change in
level of Y from the n— 15t to the nth postintervention moment is:

n n—1
| 3 8fwg| — | 3 Sfwo| = [8fwol.
k=0 k=0

This will be a very small number, approaching zero as a limit.
The asymptotic or eventual change in the level of Y§ can be calculated by
summing the infinite series

8K wop= asymptotic change in level.

i
oM 8

k

Because 8, is smaller than unity in absolute value, this infinite series can be
evaluated as

S X wp= 20 = asymptotic change in level.

k=0 1 - mw
The asymptotic impact is generally realized at a rate determined by the
value of 8;. Figure 3.2(b) shows the expected patterns of impact for various
values of this parameter. When 8 is small, near zero for example, the

N 5
+ 8w
2 + 810 reo

+ 8quwg

+ Sywp

FIGURE 3.2(a) Pattern of Impact Expected of a First-Order Transfer
Function
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6, =1 asymptotic impact is realized quickly. When 8, is larger, however, near
A unity for example, the asymptotic impact is realized slowly. The parameter
- 8, is thus interpreted as a rate parameter.

It is of some interest to note the behavior of this first-order transfer
function at two values of 8. First, when 8; = 1, the level of the Y¥ series
changes by the quantity wgq in each postintervention moment. This is so
because when 8; = 1, the first-order transfer function becomes:

@o

.%M_A = QHT

Prior to the event, when I; = 0, Y} is an ARIMA (0,0,0) process, but when
I; = 1, Y¥ becomes an ARIMA(0,1,0) process. The interpretation here is .
that, prior to intervention, the series is trendless, whereas postintervention, ¢
the series follows a trend with the parameter w interpreted as the slope. 4
Intuitively, the case where 8; = 1 may seem useful. When examined !
more closely, however, the substantive implications of this model would m
seem to limit its utility. In its simplest form, the model describes a fixed- y
level (or stationary) process which, at the moment of intervention, begins to
grow at a constant rate. Such a radical change (from a state of equilibrium to ”
a state of growth) would rarely be observed in the social sciences in our -
opinion; and if observed, it is unlikely that this change would be associated
with a manipulable social intervention.
Nevertheless, it is possible to observe an impact of this sort when the
; postintervention time series segment is too short to encompass the equilib-
rium state of the process. For example, the intervention may be such that the
postintervention process reaches its equilibrium level slowly (the value of §;
may be quite large, that is, near unity). If the postintervention time series is
23 too short, however, the postintervention change in level may have the ap-
— pearance of a change in trend and the analyst may mistakenly conclude that
A i the postintervention process is nonstationary and trending.
A ] ‘ , » The only real solution to this dilemma is to wait for more postintervention
datato become available. As these data become available, the analyst will be
better able to decide whether the value of 8; is unity (and thus, that the
8 =0 - . . . . L .
postintervention process is trending) or slightly less than unity (in which
ﬂ xﬁ Jﬁ case the postintervention process is not trending). Lacking these data, the
| | analyst must depend upon informed substantive knowledge of the social
process under analysis. If a change in slope seems to be a substantively
reasonable impact, the parameter wy is interpreted as the postintervention

FIGURE 3.2(b) Pattern of Impact Expected for Several Values of 8 slope.
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A second case of interest occurs when 61 = 0. Asshownin Figure 3.2(b),
asymptotic impact is realized instantaneously in this case. This is so because
when 8; = 0, the first-order transfer function reduces to

wo
b J— =
U= 1= 08 wol.
the zero-order transfer function which we developed in the preceding sec-
tion. We will make use of this relationship at a later point.

3.2.1 Chlorpromazine Impacts on Perceptual Speed

We are now concerned with the problem of selecting an appropriate
intervention component. What are the consequences of using a zero-order
transfer function to measure an impact that is not abrupt? Figure 3.2.1(a)
shows a time series of 120 daily “perceptual speed” scores for a single
schizophrenic patient as reported by Holtzman (1963; see also, Glass et al.
1975). On the 61st day, the patient was placed on a chlorpromazine regi-
men. Chlorpromazine is a radical tranquilizer, so one might expect a drop in
perceptual speed for this patient coincident with the regimen. But is the
impact abrupt or gradual? Figure 3.2. 1(a), i’ our opinion, shows a gradual
impact with perceptual speed dropping for several days before a new level is
realized.

Using only the first 60 observations, we have estimated the ACF and
PACF shown in Figure 3.2.1(b). These statistics would seem to indicate an
ARIMA (1,0,1) model for the noise component. The basis of this identifica-
tion is decay in both the ACF and the PACF. As noted in Section 2.9,
ARIMA(p,0,q) processes are rarely encountered in social science time se-
ries. The ACF and PACF shown in Figure 3.2.1(b) nevertheless support
identification of a mixed process.

Although the visual evidence supports a first-order transfer function for
the intervention component, we will use a zero-order transfer function to
demonstrate our point. The impact assessment model is:

1-6,B

<~ = wolg; + %m?

Parameter estimates for this model are:

¢ = .96 with t statistic =  32.43
0, = .15 with t statistic =  9.75
@o = —27.09 with t statistic = — 4.40.

1
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FIGURE 3.2.1(a) Daily Perceptual Speed Scores for a Schizophrenic
Patient

While all three parameter estimates are wﬁmamao&_%.mwmaﬁomi,.Em estimate
of ¢ is dangerously close to the bounds of m~mac:an.. This :.a_omﬂom that an
ARIMA(1,0,1) model is inappropriate. The 95% confidence interval around
this estimate includes the value of ¢ = 1, but, more 56985., because the
estimates of ¢ and O are both large and positive, a problem with parameter
redundancy is indicated.

In fact, the villain here is an outlier. Returning to Figure 3.2.1(a), we note
that the 31st observation of the series is an order of magnitude smaller than
neighboring observations. This outlier explains the aberrant >.9u and N>Om
shown in Figure 3.2.1(b). The outlier has oxmmmﬁmﬁwa the variance estimate
used in these statistics and thus has biased the estimates of the ACF and
PACF downward. .

On the basis of the initial estimation, the noise component can be respeci-
fied as ARIMA(0,1,1). This leads to the impact assessment model

B0+ (1-6,B)

ﬂlw m.ﬁ.

Y, = wpolg1 +
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Parameter estimates for this model are:
SERIES.. SPEED (NOBS= [ FEFCEPTUAL SPEED - PRE INTERVENTION A . . . _ O@
NO. OF VALID OBSERVATIONS = 69, @o = .01 with t statistic = .
AUTOCORRELATIONS OF LAGS 1 - 25. ®_ = 77 with t statistic = 12.93
Q( 25, 68) = 84.676 SI1G = .pog N ) T
wo = —22.13 with t statistic = — 3.37.
LAG CORR SE -1 -.8 -.6 -.4 =-.2 %) .2 .4 .6 W&+ . . . . ».
. . . rom
L ey e T---T---T---T--.AT---wwmw“%mwmm--l----?--- As the estimate of Oy is not statistically E.m:.&om:r. it H.:cﬂ be &M@ﬁﬂ& .
20 -38e 151 ( IXXXXXXX) XX the model. All other parameters are statistically significant and ot roésmo
3,471 .167 ( IXXXXXXX) XXKX . . : indi ey are
4 404 187 ( IXXXXXXXX) X acceptable. Diagnostic checks of the model residuals Ma_oma that they
5 .428 .201 ( IXXXXXXXXX}X . 3 H 3 1
6 .239 .216 ( IXXXXXX ) not different than white noise, so this model is %ooowwo . usion that the
7 .347  .228 ( IXXXXXXXXR ) is i ssment lead to the conclusion tha
8 267 .229 X IXXXKKKX ) The results of this impact asse e ol speed
L cise M Do) chiorpromazine regimen affected a drop of over 22 units in perceptual spe _
1 me W M s ) This result is consistent at least with what is known about the physiologica g
. . X . : : n-
13158 .246 ( [xxxx ) effects of chlorpromazine . However, the model implies an nv:%.“ ma :Mﬁw : £
14 .90 .248 ( IXX ) : i i ith what is
. 15 .188 .248 ( IXXXXX ) taneous drop to the new level and this may be inconsistent w {
. 16 ~.008 .258 { I ) .
, 17 128 .258 ( 1xxx ) known about treatments in general. * we now m ]
, 18 .899 .251 1XX . i we 1
o 19 .e86 .252 M I w Using the same ARIMA(0,1,1) model for a noise component, T v
o Soe . i i . This ;
. 8 .03 152 M x ) specify a first-order transfer function for the intervention componen s
22 -.pl8 .252 { I ) 3 ent model
oy 23 -.816 .252 ( T ) leads to the impact assessm .
24 .81l .252 ( 1 ) a
25  .865 .252 ( IXX ) wg . 1-6,B p
~2SE +2SE Y, = 61 + at L
- 1T 1-5B 1-B )
! -
i PARTIAL AUTOCORRELATIONS OF [ALS & - 25. Parameter estimates for this model are: w
~ . . 4 i
LAG CORR 8B -1 -8 -6 -4 .2 0 .2 46 B O, = .77 with t statistic = 13.01 g1
5 e A A et ~ . . L4
, 1 .427 .129 ( IXXXXX) XXXXX 5, = .53 with t statistic = 2.37 3
2 .249 .129 ( IXXXXX* L. =
300314 129 ( IXXXXX) XX wg = —13.39 with tstatistic = — 2.23. L,
4 142 .129 ( IXXXX ) y
5 L1750 0129 ( IXXXX . . . ¢
V S Ty e L k) All parameter estimates are statistically significant and otherwise accept- 1
S A Cosr able. Diagnostic checks of the model residuals indicate that they are not {
18 166 .129 (T ) different than white noise, so this model is accepted. H 1
- 5 ( XX . . . . 1c 3 -
te .el2 .129 { 1 ! As a first step in interpreting the results of this impact assessment ana m
' 13 -.0068 .129 1 ) . .. . .
| 14 -.827 .129 M X1 ) ysis, the asymptotic impact 18 estimated as
15 .@86 .129 ( IXX ) L
! 16 -.689 .129 { XX1 ) o —
o 17 .@68 .129 ( IXx ) . . wWo _ 13.39 /
18 -.804 .129 ( I ) asymptotic change = 8 1-.53
19 -.832 .129 ( X1 ) 1 — 0 .
28 -.100 .129 { XXXI ) _ .
21 .@74 .129 ( IXK ) = —28.49 units.
22 -.157 .129 ( XXXXI )
23 .869 .129 { IXX ) ) . . .
24 .@73 .129 ( XX ) The model implies an impact amounting to a drop of over 28 @Qoov.ﬁcﬂ
25 .853 .129 ( IX ) . . . .
~2SE +2SE speed score units. This impact 1s realized gradually, however. On the sixt

FIGURE 3.2.1(b) ACF and PACF for the Raw Preintervention Series
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day of the regimen, for example, the change from preintervention is:
change = &g(1 + &, + 67 + &) + & + &)

—13.39(1 + .53 + .281 + .149 + .079 + .042)

—27.86 units,

which is 98 % of the asymptotic change. On the seventh and successive days,
this patient’s perceptual speed continues to drop but by negligible amounts.

Now having conducted two impact assessment analyses of the same time
series data, we must note that the analyses lead to slightly different conclu-
sions. To be sure, both models imply a drop in perceptual speed as a result of
the chlorpromazine regimen. Assuming an abrupt response to treatment,
however, the estimated reduction is 22.13 units while assuming a gradual
response to treatment, the estimated reduction is 28.49 units. This is a
substantial difference which must be reconciled. One of these estimated
impacts must be judged more correct than the other.

If there were no substantive issues involved, the analyst could decide
between these two estimates by statistical criteria alone. But whereas purely
statistical criteria (such as the RMS statistics) can be used to compare two
ARIMA noise models, these same criteria are less important in comparing
two impact assessment models. If a model makes the best substantive sense,
the analyst may judge it the “best” model regardless of its relative statistical
properties. In this case, the first-order transfer function model is “better”
than the zero-order transfer function model in both the statistical sense (its
RMS statistic is the lower of the two; it fits the time series better) and the
substantive sense.

At a later point, we will develop a strategy for comparing various low-
order transfer function components by statistical criteria. For the time being,
however, the analyst should understand that an estimate of impact will vary
in quality according to how well the model represents the substantive
process.

I

3.2.2 Sutter County Workforce: Temporary Impacts

A useful model of impact can be generated by applying the first-order
transfer function to a differenced step function. For the step function I;,

...0, 0, 0, O, 1, 1, 1, 1,.
differencing results in

.. (0=0), (0-0),(0-0, 1-0, A=D1, A-1),.
0, 0, 0, 1, 0, 0,.
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a pulse function, (1 — B)I, defined such that

(1 — B)I; = O prior to the event
= 1 at the onset of the event
0 thereafter.

Applying the first-order transfer function to (1 — B)I;, the impact assess-
ment model is:

__wo .
Yo =755 1Bl + N,
or
wo
[ _
Yi=1—s5 (B

(1 - 8B)Y* = wg(1 — B,
Y* =8 Y5 | + wo(l — B,

This formulation may now be used to examine the behavior of the first-order
transfer function applied to the differenced step function. Prior to the inter-
vention, the step function and the Y7 series are both zero. If Y* is the last
preintervention observation, then I; = 0 and I;4.; = 1. Hence,

A=-Blit =Ly —Li=1-0=1

and the value of ﬁ_ﬂi is:

Y*

= m_<u_.w + wo(l — B)lj4;

= U;_AOV + SOA: = wq.

In the next postintervention moment, the differenced step function is equal
to zero:
A-Bli, =l - liy=1-1=0
and the value of <v.~_ﬂ+m is:
<N_A+N = m_<v~_ﬂ+~ + wo(1 — B)lj4»
= 81(wg) + wo(0) = 8, wy.

And in the next postintervention moment, the differenced step function is
zero again and

<Mw+m = m_%w_ﬂ.w + wo(l — B)lj43

= 81(8100) + wo(0) = Swg.
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A progression begins to emerge. Continuing this procedure, it can be shown

that the nth postintervention observation of the series, %mw en ? is:

Y =8YE | +wol— B,
8181 2wp) + wo(0)

@wl_nco.

And as the value of 8; is constrained to the bounds of system stability, this
term will be very small, nearly zero.

Figure 3.2.2 shows the expected impacts for various values of 8. The
pulse function is distributed across the postintervention time series as a
decaying spike. The value of the parameter 8; determines the rate at which
the process returns to its preintervention equilibrium level. When 8, is large,
near unity, return to the preintervention equilibrium level is slow. When §;
is small, return is rapid.

Friesema et al. (1979) used this abrupt, temporary impact model to assess
the economic recovery of small communities from natural disasters. Like
the pulse function, disasters are abrupt in onset and short in duration. Even
though a natural disaster is short-lived, however, its impact remains for
some time afterward. Using atemporary impact model, the parameter 6; can
be interpreted as the rate of recovery during the disaster aftermath.

In Section 2.12.1, we built an ARIMA(0,1,1) (0,1,1);; model for the
Sutter County Workforce time series. In December 1955 the 120th month of
this series, a flood forced the evacuation of Sutter County. To assess the
impact of the flood on the Workforce time series, we can use the
ARIMA(0,1,1) (0,1,1);2 model as the noise component. The impact assess-
ment model is thus

_ w( . @o +(1— @lwv: — @BWMNV
“T-g T Bhat (1 - B)(1 — B12)

%a at.

Parameter estimates for this model are:

0y =— .52 withtstatistic = — .22
6, = .60 with t statistic = 11.38
6, = .68 with t statistic = 13.33
5 = .84 with t statistic =  2.64
@g = —276.44 with t statistic = — 1.36.

The estimates of Og and w( are not statistically significant. All parameter
estimates are otherwise acceptable and a diagnostic check of the residuals
indicates that they are not different than white noise.
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85, =.75

FIGURE 3.2.2 Pattern of Impact Expected for Several Values of 3,

The parameter 6 must be dropped from the model. A decision on the
parameter wy is not so easily made. Because the estimate of this parameter is
not statistically different than zero, one might conclude that the flood had no
effect whatsoever on the economy of Sutter County. This conclusion would
be unsatisfactory, however. It is known in this case that there was an inter-
ruption in the local economy and, given this, the analysis must come up with
a “best estimate” of the interruption.

According to Friesema et al., the economy of Sutter County is largely
agricultural, and as the flood struck in December, after the normal growing
season, there was little disruption. By the time of the next growing season,
there was little unrepaired damage to local farmlands. Using the estimated
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values of 8 and wq from this analysis, a “best estimate” of the flood’s impact
is:

January 1956: displacement = g = —276.44
February 1956:  displacement = 809 = —232.21
March 1956: displacement = m”_w og = —195.06
April 1956: displacement = 8@ = —163.85
December 1956:  displacement = 8}'@y = — 40.61

and so forth. A year after the flood, the economy of Sutter County had
returned to its normal condition. The displacement figures are given in
worker-months. To estimate the total number of worker-months lost due to
the flood, the infinite series

S sk
3 e
k=o1 ™0

can be evaluated with the formula

lnmp,! = —1727.75 worker-months.

total displacement =
I -9

This total is interpreted geometrically as the area under the decaying spike.
As there are approximately 36,000 worker-months in an average year, the
impact of the flood on the Sutter County Workforce time series is substan-
tively trivial.

Note finally that, because the interruption in this time series was rela-
tively small, the noise component was identified with an ACF estimated
from the entire time series.

3.2.3 Testing Rival Impact Hypotheses

In preceding sections, we developed three intervention components, each
associated with a distinct pattern of impact. These include (1) an abrupt,
constant pattern of impact determined by the zero-order transfer function

»;AMHV = SOHﬁw
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(2) a gradual, constant pattern of impact determined by the first-order
transfer function

mQL =

wo
1 — Hﬁw

5B

and (3) an abrupt, temporary pattern of impact determined by applying the
first-order transfer function to a differenced I,

f(Iy) =

e E (=B,

61B
In an ideal situation, the analyst works from a body of theory which points to
one of these three patterns of impact, and hence, to one of these three
intervention components. In many cases, for example, theory will define the
impact as abrupt or gradual, permanent or temporary, and so forth. When
theory is lacking, however, logical relationships between these three inter-
vention component models (and between the three patterns of impact) will
permit a test of rival hypotheses. This is a crucial aspect of impact modeling
because, as demonstrated in the Perceptual Speed example of Section 3.2.1,
two different intervention component models may often lead to two substan-
tially different estimates of impact.

To illustrate the logical relationships between the three patterns of im-
pact, consider the behavior of the abrupt, temporary impact pattern at the
bounds of system stability. Referring to Figure 3.2.2, recovery is instan-
taneous when §; = 0. When 8; = 1, however, there is no recovery at all.
Writing out the first-order transfer function associated with this pattern of
mmpact,

fIy=—20 g _pp=L"B
Whenever 8, = 1, the operator terms cancel out and the first-order transfer
function reduces to

f(Iy) = woly,

the zero-order transfer function.

This relationship suggests a rather simple method for checking the appro-
priateness of an intervention component. First, if the analyst has no a priori
notions about the expected impact, an abrupt, temporary pattern of impact is
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hypothesized. If the estimated value of 8, is too large, near unity, a tempo-
rary impact is ruled out. .
Next, the analyst hypothesizes a permanent but gradual pattern of im-
pact based on the first-order transfer function
w
fdy) = _|||m_|M:.
If the estimated value of 8; in this model is too small, near zero, a gradual
pattern of impact is ruled out. When 8, = 0, in fact, the first-order transfer
function reduces to the zero-order transfer function associated with an
abrupt, constant impact pattern.

To illustrate this procedure, we return to the Directory Assistance time
series analyzed in Section 3.1. Eyeballing the plotted time series, Emﬁ.m
3.1(a), there is no question but that an abrupt, constant pattern of impact is
appropriate. But suppose now that the pattern of impact is unknown. The
“plind” analysis begins with the model

(Oh)] 1— ®_NW~N

The noise component is the one identified in Section 3.1. The intervention
component hypothesizes an abrupt, temporary pattern of impact. Estimates
for the transfer function parameters are:

70.64

8,= .99295 with t statistic
@ —13.47.

o= —38,034 with t statistic

The 95% confidence intervals about this estimate of 8; lie well outside the
bounds of system stability. The parameter estimate is clearly “too large” to
support the temporary effect hypothesis.

As a second step in the “blind” analysis, a permanent but gradual pattern
of impact is hypothesized based on the model

_ w( 1- Q_MW_N
=i—sBlt =B -BR)

Yi

Estimates for the transfer function parameters are:

- .56
—13.38.

8= — .0396 with t statistic
®o= —37,900 with t statistic

Il
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The estimated value of 81 is clearly “too small” to support the hypothesis of a
gradual effect. The only alternative remaining is the abrupt, constant pattern
of impact associated with the zero-order transfer function.

The procedure by which competing patterns of impact are ruled out
requires a theory in which only a limited number of distinct impact patterns
are plausible. In almost all situations, the analyst can invoke the rule of
parsimony, “Occam’s razor,” to make such a theory plausible. In the general
case, there are infinitely many possible patterns of impact. There is no
logical reason, for example, why second-, third-, and nth-order transfer
functions (and their associated patterns of impact) should not be considered
by the analyst. The differences among these many patterns of impact are
small, however, so for the purposes of ruling out alternative hypotheses, it
will be helpful to collapse the infinitely many possible effects into two or
three distinct classes of impact.

Figure 3.2.3 shows a scheme which we have found useful inr practice. An
impact is assumed to be either permanent or temporary, either gradual or
abrupt. With this simple theory of impact, four distinct effects are possible.
Three of these four are associated with zero- and first-order transfer func-
tions. If our experiences are typical, almost all social interventions will have
impacts reasonably well represented as one of these three models. Because
the zero- and first-order transfer functions are related in the extreme, two of
the three models can almost always be ruled out through analysis.

The fourth pattern of impact in Figure 3.2.3 is a gradual, temporary
effect. The impact pattern cannot be easily modeled with a low-order trans-
fer function applied to a step or pulse.! This model would seem to be the least
useful of the four, so we will not develop it here.

When theory demands it, of course, the impact analysis should not be
restricted to the lower order transfer functions. At a later point, we will
develop compound lower order and higher order transfer functions which
enable the analyst to model virtually any pattern of impact. We will also
demonstrate the techniques of impact fitting (rather than modeling) which
lead to uninterpretable impact assessments. In almost all situations, how-
ever, it will be possible to restrict the impact assessment analysis to the
patterns of impact shown in Figure 3.2.3 and this restriction will generally
pay off in terms of interpretability.

3.3 Interpreting Impact Parameters in the Natural Log Metric

In Chapter 2, we noted that a log transformation of a time series was
appropriate when the series variance was proporticnal to change in the
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FIGURE 3.2.3 A Simple Theory of Impact

series level. The log-transformed series was then stationary in the larger
sense and an appropriate ARIMA model could be fit. In estimating an impact
model of such a transformed series, the wq coefficient is interpreted as the
pre- to postintervention change in the natural logarithm of the time series.

However precise and correct this interpretation may be, it lacks the easy
interpretability of parameters estimated in the raw metric. Any social scien-
tist who has tried to explain transformations and transformed effects to an
audience of policy makers will immediately see the practical issue raised
here. On one hand, in order to-make a proper and correct assessment of
impact, we must work in the natural log metric. Yet, on the other hand, by
working in the log metric, we lose the easy interpretability of the model
parameters.

Fortunately, a simple convention allows us to perform the analysis in the
log metric but state our findings in terms of the raw metric. To demonstrate
this convention, we must first develop the relationship of impact and
ARIMA components in the log metric. Using the simplest intervention
component in the log metric, we have
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The inverse procedure of the natural log operator is exponentiation, that is,

Ln(x) =k
@HLZCC = OW = X.
To transform the model back into the raw metric then, we exponentiate it:
eln(Y) = e(woly + ARIMA)
<~ = OASO:V ®A>E7\—>v

The term e(ARIMA) merely denotes a multiplicative shock form of the
ARIMA model. For example, an ARIMA(0,1,0) process in the log metric is:

Ln(Y,) =Yp+ar tas+ ... +a—1+a

and exponentiating this,

<H||.®3\o+m_+m~+...+3|_+mc
but let a* = e(a0) and then
Yy =Y§@j)@y). .. (a*_| )a¥),

which is a multiplicative shock model. Similarly, an ARIMA(1,0,0) process
in the natural log metric is:
(1 — ¢1B)Ln(Yy) = a.

As we demonstrated in the previous chapter, the ARIMAC(1,0,0) process can
be written as an infinite series of past shocks,

Lo(Y) = a + dja 1 + dlaa + ... + & laiqo1 + dlacn + -
and exponentiating this process, we have
0.
Y, = mﬁmcmeJ L (€91,

which is a multiplicative shock model. Finally, an ARIMA(0,0,1) process in
the log metric is:
FSA%L = d — @BAI_

__

e Ora—1)
which is a multiplicative shock model. By exponentiating the ARIMA
model, then, we merely change from additive to multiplicative shocks. The
exponentiated model still describes the preintervention equilibrium state of
the process.

sO Y,
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.1;@ ~BE.§ component of the model multiplies the equilibrium state. But
prior to the intervention, when [, = 0, the model is:

Y, = e(@ole(ARIMA) = ¢(0)¢(ARIMA) = ¢(ARIMA),
After the intervention, when I; = 1, the model is:
<~ = mﬁucorv@ﬂ}w:(h}v = elwp)e(ARIMA).

Hm 1s 85.6:.65 to think of pre- and postintervention equilibrium levels of the
time series process. The ratio of post- to preintervention equilibrium is:

postintervention equilibrium e(@0)e(ARIMA)
= = e(wp),

preintervention equilibrium e(ARIMA)

In fact, while the parameter wy is not easily interpreted in the log metric, the
term e(@0) can be interpreted as the ratio of the postintervention series N,ﬁi
to the E.mi%ém::.@: series level. This ratio can be expressed mm,ﬂro cnnon:w
change in the expected value of the process associated with the intervention:

percent change = (e(@0) — 1) 100.

For example, in Section 2.12.2 we identified a noise model for the log-
transformed Boston Armed Robbery series. Using the abrupt, permanent

pattern of impact proposed by Deutsch and Alt (1977 i
tentative impact model A e spectly the

(1—.43B)(1+.19B12)
1-B

Ln(Y;) = wol; + a;.

The estimated impact parameter is:

wg = —.2070 with t statistic = —1.33,
so e—-2070 = 8130

and percent change = (.8130 — 1) 100 = —18.7%.

,EEP. we find that introduction of a gun control law in the 112th month is
m.mmoﬁu._maa with an 18.7% reduction in armed robberies; however, this reduc-
tion is not significantly different from zero at the .05 level. w::m result
oom.:SmHm sharply with that of Deutsch and Alt who, using an inappropriate
noise model as previously discussed, found a statistically significant de-
cline. The reader is referred to Hay and McCleary (1979) for a detailed

Qw.ocmm_on. of ﬁ.ro effect of inappropriate noise models on impact parameter
estimates in this and other related series.
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Interpreting log impact as percent change can be easily applied to dy-
pamic models of impact. To illustrate this, consider the time series plotted in
Figure 3.3(a). These are monthly public drunkenness arrests for Minneap-
olis. In June 1971, the 66th month of this series, public drunkenness was
decriminalized in Minnesota. Aaronson et al. {(1978; McCleary and
Musheno, 1980) claim that decriminalization affected an abrupt and pro-
found drop in the level of arrests and, given the visual appearance of the
data, their claim seems reasonable. Starting in the 67th month, the level of
this series appears to drop substantially.

A less notable impact (but an impact which is nevertheless noticeable)
concerns the series variance. Prior to the intervention, month-to-month
fluctuations are relatively large, while postintervention, month-to-month
fluctuations are relatively small. Of course, this postintervention change in
variance is not a unique impact of decriminalization, but rather is due to a
«“floor” effect of the sort we alluded to in Section 2.4. As a result of de-
criminalization, the process drops to a new equilibrium level near the
“floor.” At this new equilibrium level, the series variance is constrained (see
McCleary and Musheno, 1980). The log-transformed series is shown in
Figure 3.3(b). In the natural logarithm metric, variance is more nearly
constant throughout the length of the series.

As a preliminary step to impact analysis, we will build an ARIMA model
for this time series. Due to the magnitude of the intervention, only the 66
preintervention observations will be used for identification.

Identification

An ACF and PACF estimated from the first 66 observations of the log-
transformed series, Figure 3.3(c), indicate that the series is seasonally non-
stationary. The ACF and PACEF for the seasonally differenced log series,
Figure 3.3(d), suggest an ARIMA (0,0,0) (0,1,1)12 model for the noise

OOB@OSODﬁ .

Estimation
To this noise component, we add an impact component to reflect a grad-
val, permanent effect pattern. The full model is thus

t t 12
1 -8B 1-B

(text continued on p. 181)
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Parameter estimates for this tentative model are:

@g = — .992 with tstatistic = — 4.17
8, = .190 with tstatistic = .99
6, = — .007 with t statistic = — .77

O > = 1.039 withtstatistic = 24.73.

This tentative model is clearly unacceptable. The estimate of O lies out-
side the bounds of invertibility.

Diagnosis

There is little to be gained returning to the ACFs and PACFs used to
identify the ARIMA (0,0,0) (0,1,1,);2 noise component. The problem here
is that a model identified from the preintervention series only will not
adequately reflect the stochastic behavior of the entire series. The noise
component in this example appears to be too complicated to be identified
with such a short series. We can nevertheless make some educated guess as
to the appropriate noise component on the basis of the information available
at this point.

First, the unacceptable estimate of ©, suggests that seasonal differen-
cing is not required. Second, the ACF and PACEF of the model residuals,
Figure 3.3(e), indicate a nonstationary process. We thus tentatively specify
an ARIMA (0,1,0) (0,0,1);, model for the noise component.

Estimation

For the tentative model

Ln(Y)=—2 1+ 6 +(1 - 62B7) a,
1 —&B 1-B
parameter estimates are:
®g = —.543 with t statistic = —2.76
8 = .451 withtstatistic = 1.71
O, = .004 with tstatistic = .21
O, = —.153 with t statistic = —1.80.

Two parameter estimates are only marginally significant while the estimate
of O is clearly insignificant. The estimate of O, now lies within the
bounds of invertibility.
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Diagnosis

.,:._m residual ACF and PACF, Figure 3.3(f) now indicate stationarity
Spikes at the first and fourth lags, however, indicate unmodeled Boi:w
average terms of those orders. A OB and a ©,4B* term must be incorporated
into the noise component but there is no indication in the ACF or PACF as to

how this should be done. There are three possibilities including the two-
factor models

Lo (Yy) = “o r+®o+:I®_WI®Awuv:l®_mm_Nvm
and
Ln(Yy=—20 4 Qo108 - 0:8' ~ 03B

and the three factor model

Ln (Y;) =—20 :+®o+:|®_wv:n@»w&:nmvswsvm

To be m:n.o, these three models are nearly identical whenever Oy is small;
%:n.: Oy is zero, they are identical. Judging from the size of the lag-4 >Qm
:.~ Figure 3.3(f), however, the estimated value of O4 will not be small. The
differences in these three models are in their cross-product terms mxmmza-
ing the first two-factor noise component, .

(1-6,B—-6,8Y(1~-6,B") =
(1 — 6,B— @Lw.ﬁ - ®_N_w_w + ®_®_NW: + @&G_mw_ov.
Expanding the second two-factor noise component

(1-6B)(1 — 6,8 - OB =
(1-6:B - @AW# - ®_ww_w + QHQAWM + ®_®_NWCY
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And expanding the three-factor noise component

(1 - 6B (1 - 089 (1 - 6B =
(1-©0B— 0,8 — 0B + 0,048 + ©,0,,B"
+ 0,0,B'® — 6,0,0,,B'.

The analyst might ordinarily look to the residual ACF in Figure 3.3(f) for
evidence favoring one of these three components. A spike at ACF(17), for
example, would argue for the three-factor model. We see nothing in the ACF
to inform this decision, however. Lacking information from this source, the
analyst is advised to estimate all three models, deciding the competition with
a comparison of residual statistics. Following this advice, the “best” model

of the three is:

wo Oy +(1—6B— 0,81 - 0,,B'%)
~+ ag.

This model is the “best” because, of the three competing models, it has the
lowest residual mean square (RMS) statistic. To learn this fact, of course,
the analyst must estimate all three models.

Estimation

Parameter estimates for this tentative model are:

@y =—.6116 withtstatistic =—4.16
§, = .5186 withtstatistic = 4.30
O, = .0040 with tstatistic = 1.09
&, = .5052 withtstatistic = 8.14
O, = .5727 withtstatistic = 8.94
6, =—.2384 with t statistic =—2.74.

With the exception of the O estimate, all parameter estimates are statisti-
cally significant and otherwise acceptable. A diagnostic check of the model
residuals indicates that they are not different than white noise.
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Whenever a statistically insignificant parameter is dropped from a tenta-
tive model, the remaining parameters must be reestimated. The estimate of
Oy is not statistically significant and must be dropped from the model for this
series. The new estimates of the impact component parameters are:

—.6070 with t statistic = —4.05
41287 with t statistic = 2.83,

an

81

which is a substantial change. This should warn the reader to always esti-
mate all parameters of a model simultaneously. In all cases, when a parame-
ter is dropped from a model, estimates of the remaining parameters will
change if only slightly.

We can now interpret this result. In the first month following decriminali-
zation, the level of the log-transformed time series process changed by the
quantity @o. This amounted to a decrease and, in successive months, the
process level continued to drop. Log levels for the first six months following
decriminalization are expected to be:

first month:  @yg = — .607
second month: 6 (1 + &) = — 858
third month: & (1 + &; + &) = — 961
fourth month: &g (1 + &; + 5 + 57) = —1.004
fifthmonth: &g (1 + &, + 87 + & + &% = —1.021
sixth month: &g (1 +8; + 87 + & + 81 +§) = —1.029

and so forth. The postintervention level of the log process continues to drop

but by smaller and smaller increments. The asymptotic change in log level
is:

. wo
asymptotic change H_lml = —1.034.
— 0

And thus, by the end of the sixth postintervention month, the log process has
achieved 99.52% of its asymptotic change in level. While the process level
continues to drop after the sixth month, this change is negligible.

To translate this finding into the raw metric, the analyst needs only to
exponentiate the asymptotic change in level:

postintervention equilibrium
preintervention equilibrium

=e 1034 = 35558
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This result in turn is translated into a percent change estimate of impact:
percent change = .35558 — 1.0 = — 64.44%.

As the preintervention mean for this series is approximately 651 arrests per
month, the percent change represents a reduction of approximately 420
arrests per month. This interpretation is consistent with the visual evidence
in the plotted time series, Figure 3.3(a).

We urge the reader to replicate this analysis. The manner in which a full
model was built is typical of the iterative procedure except, of course, that
the preintervention series was not long enough to permit a confident identifi-
cation of the noise component. Through a conservative series of model-
building steps, we were nevertheless able to arrive at an adequate but parsi-
monious representation of the process underlying this time series.

3.4 Higher Order and Compound Intervention Components

In Section 3.2.3, we developed a modeling strategy based on two charac-
teristics of an impact: onset and duration. An impact can be either abrupt or
gradual in onset and either permanent or temporary in duration. Using the
zero- and first-order transfer functions associated with three distinct patterns
of impact, almost any problem in any substantive area can be analyzed.
There are two advantages to working from this perspective. First, the results
of the analysis are easily interpreted and, second, because the transfer func-
tions are related at the bounds of system stability, alternative impact hy-
potheses can ordinarily be ruled out through analysis. But should an impact
assessment require a more complicated effect model, higher order and com-
pound intervention components can be used. Unfortunately, interpretability
of the impact assessment may suffer in many cases.

A higher order intervention component is defined as one with powers of B
higher than zero or one. For example,

@9

f) =——-—
Y -8B - 5B

I

is a second-order transfer function. The bounds of system stability for higher
order transfer functions are identical with the bounds of invertibility for
higher order autoregressive operators (see Section 2.5). For this second-
order transfer function then, the bounds are:

1< &< +1

6, +d < +1

6 — 8 < +1.
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The behavior of this or any higher order transfer function can be determined
by expanding the inverse operator as an infinite series. A simpler recursive
method is more practical, however. Working with the Y7 time series in this
case .

* (&)

Yi=———1

" 1-5B -8B
(1 |~w~w |MNWNV <VHHEOH~
Yi=8,Yi_1+8 Yi_s+ wpl.

Prior to onset of the event, when I; = 0, ﬁﬂ = 0. Ati + 1, however, the step
function changes from zero to one and the value of Y’ 4 is expected to be:

Yis1 = 8Y; + Y1 + wolig,
81 (0) +62(00  + awp(l) = wy.

In the next moment,

Yiio=8Y] +8Y; + wolisn
=01(wp) +86(0) +wp(l) =38jwp+ wy.

And in the next moment,

Yi3=8Yis2+8Yi 1+ woliss
= 81 (81wg + wp) + 8 (wg) + wg (1),
= mwnco + m_nco + MNSO + woq,

and so forth. The reader may use this recursive method to determine the
behavior of any higher order transfer function. In this case, two rate parame-
ters, 8; and 8;, determine the rate at which the process achieves a new
equilibrium level. The interpretability of this model is somewhat lessened by
including an extra rate parameter, however.

As a general strategy, the analyst canfit a higher order transfer function to
the time series: 8- and w-parameters are added to the model until a desired
degree of fit is achieved. In model fitting, however, the analyst must be
conscious of what has been lost. First, the impact assessment is no longer a
confirmatory analysis based on a null hypothesis. Second, the estimate of
effect is likely to be biased. Model fitting takes advantage of properties of
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the specific realization and it may be incorrect to attribute those properties to
the generating process itself. We will demonstrate a model-fitting procedure
in the next section.

While the use of higher order transfer functions often reduces model
interpretability, the use of compound intervention components may increase
model interpretability. A compound intervention component is defined for
our purposes as a sum of two low-order transfer functions. Suppose, for
example, that a time series has been impacted by two distinct interventions at
two different times. A model reflecting this compound effect would be:

Y, = f(Ip) + f(Ii1n) + Ny

The sense of this compound intervention component is that the generating
process is impacted once and then is impacted again n observations later.
The distinct impacts of a compound intervention component need not
occur at different times, of course. There are many situations in which, on
the basis of theory, a single intervention may have two distinct impacts, and
in these situations, a compound intervention component can be used as a
model of the effect. One of the most useful compound components in our
experience is the one composed of the zero-order transfer function

f(ly) = woly
and the first-order transfer function applied to a pulse

@9

fdp)=77—"=
) I~ 5B

(1-B)I,.

FIGURE 3.4 Pattern of Impact Expected of a Compound Intervention
Component
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Combining these two components, a compound component is formed as

.
f (Ip) = wol; + ~||Mcwﬁ[w .

An asterisk (*) is used only to denote the fact that these two zero-order w-
parameters are not the same. Figure 3.4 shows the pattern of impact deter-
mined by this compound model. In a literal sense, this impact is the sum of
the impacts expected of the two component elements.

We have found this compound intervention model useful in many situa-
tions in which an intervention may produce an abrupt but short-lived demon-
stration effect as well as a larger permanent effect. By accounting for the
temporary demonstration effect with a decaying spike, this model permits a
more precise estimate of the permanent effect.

To illustrate the use of this compound model, we return to the Perceptual
Speed time series. In Section 3.2. 1, we used a first-order transfer function to
estimate a gradual, permanent reduction in perceptual speed scores due to
the onset of a chlorpromazine regimen. In many psychological phenomena
such as learning, habit formation, and so forth, gradual impacts are expected
theoretically as a result of a simple growth process. A “learning curve,” for
example, may result from a gradual accumulation of correct responses or,
alternatively, from a gradual decay of incorrect responses.

There is another mechanism which can result in a gradual, permanent
impact, however. First, a treatment itself can result in an abrupt, constant
impact of the sort

Beforeoooooo

0 0 0o oo After.

Associated with the treatment, however, might be a placebo (or trauma;
novelty; reactivity; and so forth) effect of the sort

(o]

o
o
Beforeocooooo o o o After.

This temporary effect is due only to the novelty (from the perspective of the
single schizophrenic patient in this case) of the change in state from “no
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treatment” to “treatment.” After a few days, the effect wears off, leaving
only the true physiological effect. When these two distinct impacts are added
together, a gradual, permanent impact is realized. For all practical pur-
poses, of course, the analyst cannot tell whether the observed impact is due
to a single process (attenuation of a natural resistance to chlorpromazine in
this case) or due to two distinct processes (physiological impact plus nov-
elty).

Apologizing for this simplification of theory, we can reanalyze the Per-
ceptual Speed time series with an assumption that there are two distinct
impacts of the chlorpromazine regimen. Using the same noise component
selected in Section 3.2.1, the impact assessment model corresponding to a
double impact theory is:

1-B « 1-6,B
Y=o+ ——— +————a,.
1= lwo ﬂlmﬁwnco:a_ 1—-B A
Parameter estimates for this model are:
6,= .77 with t statistic = 12.97
@y = —28.8 with t statistic = —3.50
0] = .51 withtstatistic= .56
@0 = 18.05 with tstatistic = 1.72.

The estimates of §; and w{j are not statistically significant so, strictly speak-
ing, these parameters should be dropped from the model. There are a number
of reasons which have nothing to do with the null hypothesis which might
explain the lack of statistical significance, however. We will address these
reasons shortly.

Assuming that statistical significance is not an issue here, and accepting
the estimated parameters of this model at face value, the impact on the nth
day of the chlorpromazine regimen is given by

impact on day n = & + 87 &y
—28.8 + (.51)" "1 (18.05),

H




190 APPLIED TIME SERIES ANALYSIS

which is merély the sum of the two simple impacts. In Section 3.2.1, on the
other hand, impact on the n'" day of the chlorpromazine regimen was given
by

,_?
31y
0

impact on day n =

TMs

1
| M=

(.53)% (—28.49).
k=0

If the results of these two models are compared for the first seven days of the
regimen,

Compound Model Gradual Model
First day ~10.75 units —13.30 units
Second day —19.64 units —20.08 units
Third day —24.15 units —23.87 units
Fourth day —26.44 units —25.89 units
Fifth day —27.60 units —26.96 units
Sixth day —28.19 units —27.53 units
Seventh day —28.49 units —27.83 units,

it is clear that these two models give similar estimates of the impact. Esti-
mates of asymptotic effect (—~28.8 units for the compound model versus
—28.49 units for the gradual model) are nearly identical. There is neverthe-
less a substantive difference between the impact estimates of these two
models. Whereas the gradual model predicts the effect based on a single
mechanism, the compound model predicts the effect based on two distinct
mechanisms. Unique treatment and novelty effects are untangled and esti-
mated.

Because the transfer function parameter estimates for the compound
model were statistically insignificant, one might argue that the compound
impact theory is unjustified. Multicollinearity is always a problem with
compound models, however; we will discuss this problem at some length in
Chapter 6. Another problem affecting this particular time series is the outlier
in the 31st observation. We will discuss the problem of outliers generally in
impact assessments at the end of this chapter but, in all cases, transfer
function parameter estimates will be sensitive to outliers. Finally, depending
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upon theoretical perspective, statistical significance may be a minor con-
cern. Given a theory where the compound impact model is “true,” the
transfer function parameter estimates will be interpreted without qualifica-
tion. In the next section, we will demonstrate the procedures of model fitting
(as opposed to model building). A comparison of these two sections will
illuminate the role of theory in impact assessment.

3.5 U.S. Suicides

The examples preceding this have been straightforward impact assess-
ment analyses, aimed at estimating the effects of discrete interventions
(events) on time series. We will now address a related use of impact assess-
ment models. Figure 3.5(a) shows a time series of annual U.S. suicide rates
for the 1920—1969 period. The series begins at a level of approximately
seventeen suicides (per 100,000 total population), jumps up to approxi-
mately 29, and then returns gradually to the starting level. A striking feature
of this plot is the set of observations for the 1930s. These are outliers but, in
this case, recording errors are not suspected as in the Hyde Park Purse
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FIGURE 3.5(a) U.S. Suicide Rate, 1920-1969
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FIGURE 3.5(b) ACF and PACF for the Raw Series

Snatchings time series. These extreme values are instead attributed to the
obvious exogenous effect of the Great Depression.

Referring to these observations as “outliers” should not imply a substan-
tive and/or theoretical argument about the sociological relevance of eco-
nomic depression. Some would argue that the Depression was an unfortu-
nate “accident” caused by the improbable intersection of several economic
and political events. Others would argue that the Depression was merely an
extreme instance of the periodic crises which characterize capitalist eco-
nomic systems. Although time series analysis could certainly be used profit-
ably to illuminate these questions, that is not our purpose here. We are
concerned only with the statistical issues associated with these Depression
outliers.

During the 1920-1969 period, the time series appears to be relatively
flat, fluctuating about a mean of (approximately) 17 suicides. The exception
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SEKIES.. SUICIDES (NOBS= 58) U.S. SUCILE KATE, 19208-19%69
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FIGURE 3.5(c) ACF and PACF for the Regularly Differenced Series

to this, of course, is the period of time during and following the Depression
onset. While the process as a whole may be stationary (or trendless at _om.mc,
these observations change the appearance of the series. They are oE:.Qm
and, in a statistical sense only, they violate the assumption of mgcosmaa.\.
The generating process itself may well be a stationary process but this
realization of the process is not. From this series alone, the analyst could not
infer a stationary property of the generating process. . o

The consequences of these outliers for identification and omcamcos.mao
similar to those we discussed in Section 2.12.4 for the Hyde Park time
series. Figure 3.5(b) shows the ACF and PACF omaBmSﬂ from the raw
suicide time series. While these statistics suggest a nonstationary process,
that appearance may be due only to the Depression outliers. Em.:n.m w.%&
shows the ACF and PACF estimated from the differenced suicide time

— s
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FIGURE 3.5(d) ACF and PACF for the Raw Series (1943-1969 Only)

series. These indicate white noise but this appearance too may be due only to
the Depression outliers.

It is instructive to compare the effects of multiple outliers in this series
with the effect of a single outlier in the Hyde Park series. Here the outliers
give an overall trend to the series which is reflected in the ACF shown in
Figure 3.5(b). Once this trendlike component is removed through differenc-
ing, however, the ACF, shown in Figure 3.5(c), indicates a white noise
process. The differenced suicide series and the undifferenced Hyde Park
series in fact have almost identical ACFs and this should not be surprising. /n
both cases, outliers inflate the estimate of process variance and, as a result,
understate the values of low-order ACFs.

Since the Depression observations of this time series are not due to
recording error (and hence cannot be “corrected” or adjusted), a noise com-
ponent must be built around the outliers.
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Identification

Figure 3.5(d) shows an ACF and PACF estimated from the 1943-1969
segment of the series. This series is too short to permit a confident identifica-
tion. Although the ACF and PACF indicate an ARIMA (1,0,0) process, the
large standard errors give us little confidence in estimates of the high-order
ACF (k) and PACF (k). The reader who replicates our analysis will discover
that deleting one or two observations from this segment changes the appear-
ance of these statistics markedly. Acknowledging the weakness of this iden-
tification, we tentatively select an ARIMA (1,0,0) model for the noise
component.

Estimation

Parameter estimates for the noise component model are:
¢ = .67 with t statistic = 4.47.

Although this estimate is based only on the last 27 observations of the series,
the estimate is statistically significant and otherwise acceptable. Diagnostic
checks of the residuals indicate that the residuals of this model are not
significantly different than white noise.

Accepting the ARIMA (1,0,0) model for a noise component, the exoge-
nous shock of the Great Depression will be represented by animpact assess-
ment model of the form

a4
1-¢B

In this case, social theories suggest an abrupt, temporary pattern of impact
associated with the transfer function

Y. =fdp +

wg
=—2(1-B)I
) =1 —sp Bk

where I; = O prior to 1930
1 from 1930 on.

visual inspection of the plotted time series raises questions as to the ade-
quacy of this model, however. Note that the series does not reach its highest
point in 1930, but continues to climb higher in 1931 and 1932 before
starting 1o decav. Also, decay from the 1932 zenith is interrupted by an
increase in 1937. (By many accounts, 1937 was the worst year of the
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Depression.) To incorporate these impacts into the model, we specify the
compound model

wp — SHW — W) WM - Squ
1 -8B

f{Iy) = (1-B)I,.

As we have not encountered a higher order transfer function up to this point,
this model requires some explanation.

The exogenous shock of the Great Depression is represented by a pulse
function, (1 — B)Ijg3¢, visited upon the economic-social system in 1930.
The scalar weight, wg, translates this pulse into an increase in the suicide rate
which begins immediately to decay. The rate of decay is determined by the
parameter 8;. The scalar weights @, w;, and w7 translate the pulse into
delayed spikes, one each occurring in 1931, 1932, and 1937. Each of these
delayed spikes also begins immediately to decay at a rate determined by the
parmeter &;. The seventh-order transfer function is thus identical to four
decaying spikes. The transfer function in fact can be rewritten as

wp
f(l) = —2—(1 —B)I, — ||:|w:7
1 -8B 1-6B

w?

~Ts5(1 ~Bha-

e Bk,

which makes this point clear. To draw the expected pattern of impact deter-
ntined by the transfer function, the reader need only draw four decaying
spikes (beginning in 1930, 1931, 1932, and 1937) one on top of the other.

Estimation

Parameter estimates for the full intervention model are:

é, = .87 withtstatistic = 8.21
8 = .80 withtstatistic = 8.00
@o = 2.08 with t statistic = 3.12
@1 = —1.94 with t statistic = —3.21
@y = —1.60 with t statistic = —2.62

~

w7 = —1.26 with t statistic = —2.19.

All coefficients are statistically significant and otherwise acceptable. Our
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estimate of ¢ is dangerously close to the bounds of invertibility, however.
When autoregressive parameters are so large, we prefer to respecify the
noise component. The noise component is thus respecified as ARIMA
(0,1,0) and parameters are reestimated as

wo = 1.855 with t statistic = 3.26
w; = —1.851 with t statistic = —3.29
wy = —1.614 with t statistic = —2.69
w7 = —1.117 with t statistic = —2.04
8, =  .733 with tstatistic = 5.43.

All parameters are statistically significant at a .05 level and are otherwise
acceptable.

To intrepret this finding, we begin with a zero level in the year preceding
the Depression. Increases in successive years are expected to be:

1930: &y = + 1.855
1931: &

Gy — @ = +3.210
1932: 8700 — 8,0 — @ = + 3.967
1933: 8 — 876 — 8, @2 = + 2.908
1934: §1ay — 516 — 8162 = +2.131
1935: 8@¢ — 81 — &l @y = + 1.562
1936: 88w — 16 — 8fH, = + 1.145
1937: 8]ag — 896 — Haa — Q,: =+ 1.956
1938: 8§y — 8{d; — N2 — & 67 = + 1.434

and so forth. The pattern of impact from this transfer function is isomorphic
to the effect seen in the plotted time series, Figure 3.5(a). Diagnostic checks
of the model residuals indicate that they are not different than white noise.
This model must now be interpreted. The use of a seventh-order transfer
function as a model of the Great Depression had only one justification: it fit
the data well. There is no theoretical basis for assuming that depressions
generally will have an impact of this sort on suicide rates. This use of a
compound intervention component may be contrasted with the use of a
compound intervention component in the analysis of the Perceptual Speed
time series in Section 3.4. There a compound intervention component was
justified by a theory which predicted that there would be rwo distinct impacts
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from a single intervention. The results of that analysis could be interpreted
within the context of that theory. In this present example, however, no
confident statement can be made about the impact of the Depression on
suicides except this obvious one: There appears to be a substantial effect.

In a broader sense, this impact assessment model has no interpretation
whatsoever. The model built here nevertheless may be seen as a “clean”
picture of the suicide rate generating process and may be used for a number
of purposes not related to impact assessment.

Vigderhous (1978) and Mark (1979), for example, have suggested causal
models for this time series, using a time series of annual U.S. unemploy-
ment rates to predict suicide rates. A causal model requires a “clean” picture
of both unemployment and suicide time series. In the simplest case, a causal
model might be diagramed as

unemployment —— — ——————— — suicide.

Yet if the Depression outliers are not removed from both time series, a more
complicated causal model,

unemployment — ————————— — suicide,

might lead to spurious causal inferences. There is no doubt that both unem-
ployment rates and suicide rates were at their highest levels during the Great
Depression (and at their lowest levels during World War I1). This does not
mean that “unemployment causes suicides,” however.

In Chapters 4 and 5, we develop the use of ARIMA models and methods
for univariate forecasting and multivariate causal analysis. In both of these
applications, the analyst must assume that the generating process of a time
series in invariant; that the process will continue to generate realizations that
are identical with one another within the limits of sampling variance. To be
sure, wars and depressions are part of any social science generating process.
When only one short realization of the process is available, however, and
when that realization includes a war or depression, a number of practical
problems arise.

Here it may be instructive to compare social and industrial processes. In
the field of industrial control, generating processes are always invariant.
Manufacturing processes are relatively constant over time. Error in the
process is usually due only to slight variations in the quality of process inputs
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(electricity, water, oil, and so on), and as the quality of these inputs is tightly
controlled, errors are slight. Input variance is so relatively small, in fact, that
it is always well described as white noise.

In the social sciences, on the other hand, generating processes are subject
to a wide range of exogenous (input) forces which are not tightly controlled.
So long as no single exogenous force exerts a primary influence on the
process, the analyst is justified in treating the sum of many exogenous forces
as white noise. When a dormant force suddenly asserts itself, however, the
effect of that variable cannot be treated ideally as “just another random
shock,” part of the white noise process. This is apractical dictum, of course,
for in an infinitely long realization of the suicide rate process, the Great
Depression would indeed be “just another random shock.”

‘Wars and depressions commonly exert primary influences on most social
indicators. Interaction among nations is ordinarily a stochastic process
whose impact on social indicators is adequately described as white noise;
except, as a practical matter, in the extreme case of a declared war. Eco-
nomic fluctuations are similarly stochastic, exerting no strong deterministic
influence on social indicators except, as a practical matter, in the extreme
case. When only a finite realization of a social process is available, wars and
depressions are best thought of as cataclysmic events rather than as points on
a continuum.

This point is brought home by the analysis of the U.S. Suicide rate time
series. While there is no problem fitting an intervention component to the
series, it would be incorrect to say that this component is a model of the Great
Depression impact. It is not. Nevertheless, the results of this analysis give a
“clean” picture of the suicide rate generating process which may then be used
in forecasting or causal modeling.

3.6 A Final Note on the Outiier Problem

In Section 2.12.4, we discussed the problem of outliers in identification.
As illustrated by the Hyde Park Purse Snatchings time series, outliers inflate
the estimate of process variance and thus understate low-order autocorrela-
tion. This problem is analogous to the problem of estimating a noise compo-
nent from an impacted series. If the impact is large, as in the Directory
Assistance time series, forexample, the estimated ACF is practically mean-
ingless. A noise component must be estimated from the preintervention time
series only. Identification notwithstanding, outliers cause another specific
problem for impact assessment analyses: Transfer function parameter esti-
mates may be unduly influenced by outliers.

The Hyde Park Purse Snatchings time series had an outlier (due to a
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recording error which was later corrected). In the 42nd observation of the
series, a community whistle alert program was implemented (see Reed,
1978). We will estimate the impact of that program on purse snatchings both
with and without the incorrect deviant observation.

First, with the outlier: In Section 2.12.4, we identified an ARIMA
(0,0,0) model for this series; the raw series was not different than white
noise. Reed proposed an abrupt, constant impact for the program, so the
impact assessment model is set tentatively as

yi = wolap + a,

where Iy = 0 for the first 41 observations

1 for the next 30 observations.

The parameter estimate for this model is:

~

wg = — 4.17 with t statistic = — 1.78.

The sign of the parameter estimate is negative, as one would expect if the
program had any impact at all, and it is statistically significant at the .10
level. Diagnostic checks of the model residuals indicate that they are not
different than white noise. However, given our discussion of ACF distortion
associated with outliers, this is to be expected.

Second, with the corrected observation: Considering the effect of a large
outlier on the estimation of impact parameters, one might suspect that,
because the outlier is in the postintervention segment, it would inflate the
estimate of postintervention level and thus deflate the estimate of impact. By
this line of reasoning, one would expect an analysis of the corrected time
series to show a larger drop in purse snatchings coincident with the interven-
tion.

But in practice this line of reasoning is flawed. Outliers bias estimates of
both the noise and impact component parameters, resulting in a joint effect.
Replacing the incorrect deviant observation (66 purse snatchings) with its
correct value (12) might nevertheless be expected to result in a larger esti-
mate of impact. Using the statistically inadequate ARIMA (0,0,0) noise
component, this is indeed true. For the model

Yo = wo lap + ay,
the parameter estimate is:

wg = — 5.97 with t statistic = — 3.50.
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A diagnostic check of these model residuals would reveal that the model is
not statistically adequate, however. Using the more appropriate ARIMA
(2,0,0) for a noise component, parameter estimates are:

¢ = .28 withtstatistic = 2.37
¢, = .36 with t statistic = 3.09
@o = —3.07 with t statistic = — .87.

Both autoregressive parameters are statistically significant and otherwise
acceptable. The transfer function parameter is not statistically significant,
however. Diagnostic checks of the model residuals indicate that they are not
different than white noise, so the model is statistically adequate.

An interpretation of these results is thatthere is no evidence to support the
hypothesis that this program had an impact on purse snatchings.

A more important result of this analysis concerns the effect of an outlier
on the estimate of impact. Using the same statistically inadequate noise
component, the estimate of effect changed by over 40% when the outlier was
removed from the time series. The degree of distortion attributable to out-
liers will depend upon their size and number, the size of the effect, and upon
the length of the time series. There will always be some distortion, however.

3.7 Conclusion

We have required a mental leap of the reader from Chapter 2 to Chapter 3.
We developed an atheoretical, mechanical model-building strategy in Chap-
ter 2 which leads to an adequate, parsimonious ARIMA model. In Chapter
3, however, we developed a subtler strategy which is not amenable to
description as a rigid series of steps or as a flow chart, see Figure 2.11(a).
Unlike univariate ARIMA modeling, the use of ARIMA models and
methods in impact assessment requires a thoughtfully flexible strategy
which may change from situation to situation.

The impact itself causes real practical problems for the identification of a
noise component. In analyzing the Sutter County Workforce series, for
example, the impact was so slight that noise component identification was a
simple task. In analyzing the Directory Assistance time series, on the other
hand, the impact was so profound that the noise model had to be identified
from the 146 preintervention observations. The impact was equally pro-
found in the analysis of the Minneapolis Public Drunkenness series, but in
that analysis, only 66 preintervention observations were available. In effect,
the noise component had to be identified from the residuals. The procedure
in each case was determined by idiosyncracies of the time series under
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analysis. The decisions involved in a general modeling procedure are too
many to be described in a simple flow chart.

The considerations involved in selecting an appropriate intervention
component are even more complicated. The impact assessment model must
be interpretable, so the “best” model is always the statistically adequate
model whose substantive implications make the most sense. Whereas two
competing ARIMA noise components can be compared absolutely by purely
statistical criteria (their RMSs, for example), two impact assessment models
cannot always be compared along purely statistical dimensions.

In cases in which the analyst can theoretically justify the simple form of
the expected impact, an intervention component can be selected a priori. The
results of the impact assessment analysis then constitute a testing of the
theoretically generated null hypothesis. When theory does not point to a
single expected impact, however, it is often possible to narrow the possibili-
ties to a few alternatives. A logical system that we have found useful as-
sumes that an impact will be either abrupt or gradual, either permanent or
temporary. Given these possibilities, the analyst can select a zero- or first-
order transfer function for the intervention component. Because these trans-
fer functions are related at their extremes, alternative models can almost
always be ruled out in the analysis.

When the expected pattern of impact cannot be limited to a few alterna-
tives, the repertoire of intervention components can be expanded to include
compound components. The compound intervention component is the sum
of two low-order transfer functions and the expected impact of the com-
pound component is simply the sum of the expected impacts of its element
components. The compound intervention component is thus easily interpret-
ed. At the extreme, the analyst may fir an intervention component to a time
series by simply adding 8- and w-parameters to the intervention component
until the fit is complete. An impact assessment analysis based on a fitred
model is uninterpretable, however. As demonstrated in our analysis of the
U.S. Suicide Rate time series, fitted models may be useful but they are not
generally interpretable.

These theoretical considerations make ARIMA impact assessment mod-
eling a “confirmatory” analysis. In the analysis of the Sutter County
Workforce time series, for example, only one pattern of impact was consid-
ered because, on theoretical grounds, only one pattern of impact was plausi-
ble. The findings of that analysis were interpretable only in the context of the
theory. Similarly, the Perceptual Speed time series was analyzed from two
different perspectives. Neither analysis was more or less correct than the
other outside of the theoretical context. While the results of these analyses
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could be used to illuminate the theoretical context, the results will require a
theoretical interpretation.

For Further Reading

The design of time series quasi-experiments is thoroughly discussed by
Cook and Campbell (1979: Chapter 5) or Glass et al. (1975: Chapters 1-4).
The Glass et al. work also has an extensive bibliography of published
research. The analysis of time series quasi-experiments is developed by
McCain and McCleary (1979), McDowall and McCleary (1980), Hibbs
(1977), Glass et al. (1975: Chapters 5-7), or Box and Tiao (1975). Glass et
al. do not develop seasonal ARIMA models or dynamic intervention compo-
nents. This work is now outdated and is not generally recommended. The
Box-Tiao article must be regarded as the source work for this field. Unfor-
tunately, it may not be accessible to the mathematically unsophisticated
reader. The Hibbs article has proved to be extremely influential and is highly
recommended.

NOTE TO CHAPTER 3

1. A gradual, temporary pattern of impact can be determined by mapping any unimodal
function (Normal, Poisson, and so forth) to a pulse. The function will ordinarily be determined
by theory in a substantive area. As theory varies tremendously, we have not covered these
methods. For an instructive example, however, the reader should see Izenman and Zabel
(1980).




4 Univariate ARIMA
Forecasts

In this chapter, the shortest one of the volume, we describe univariate
i ARIMA forecasting methods. While ARIMA methods give the “best” short- !
range forecasts for a wide variety of time series, there are other univariate ,
forecasting methods which, for some data and in some situations, give
“better” forecasts. Much of the forecaster’s work involves' preparing the
, “best” forecast in a particular situation. Preparing the forecast itself is not a
difficult task and requires little experience. Recognizing the idiosyncracies
of each situation, however, and accounting heuristically for these idio-
syncracies in the forecast, requires some experience. The reader who is
interested primarily in forecasting will not benefit greatly from our treatment
of this area. We direct those readers to other sources, particularly to Makri-
dakis and Wheelwright (1978) and to Pindyck and Rubinfeld (1976), where
univariate forecasting methods are developed in a richer context.
] Our decision to de-emphasize univariate ARIMA forecasting methods in
y this volume is based on two points. First, almost every book written on the {
, topic of applied time series analysis is concerned exclusively with forecast- ]
| ing. We would have little original thought to add to this body of work. i
Second, univariate forecasts are usually reliable only in the short range (two
or three periods into the future, that is), so univariate ARIMA forecasting is
not itself likely to become a widely used method of social research. In the
fields of business and management, short-range forecasts can be extremely
useful. Managers use month-to-month forecasts to optimize control of in-
ventories, to allocate and schedule salesmen, and so forth. Social scientists,
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of course, do not ordinarily have such well-defined problems. Unlike the
firm, the economy or the social system is seldom representable by a few
crucial indicators. More important, economies and social systems are so
relatively cumbersome that it would be practically impossible for a policy
maker to react to monthly changes in a social indicator.

In contrast to univariate ARIMA forecasts, multivariate ARIMA fore-
casts can be extremely useful in social research. A multivariate forecasting
model will ideally account for the joint variation of several social indicators
and, based on this structure, will give reliable long-range forecasts of a
time series. We will develop multivariate ARIMA forecasting methods in
the next chapter but that presentation will assume a knowledge of the univar-
iate material developed in this chapter. Beyond this, by learning the algebra
of univariate ARIMA forecasting models, the reader will gain a final crucial
insight into the nature of the general ARIMA model. Finally, univariate
ARIMA forecasts are useful as metadiagnostic tools in many situations.
Other things equal, the relative utility and validity of two competing
ARIMA models can be compared by contrasting the forecasting abilities of
the two models. We will discuss this technique in the concluding section of
this chapter.

4.1 Point and Interval Forecasts

All univariate forecasting methods (including ARIMA methods) are
based on the same logic. First, the expected value of the time series process
is calculated and, second, the expected value is extrapolated into the future.
The underlying assumption of this logic is that the process is invariant and
this may not always be a wise assumption. It is nevertheless an assumption
which the forecaster must be willing to make.

If the current time series observation is Y,, then we are interested in
predicting the values of Y+ 1, Y42, . - ., Y+ We will denote our ARIMA
forecast of Y., by Yi(n). We call Y((n) the origin-t forecast of Y with a lead
time of n observations.

As a first step in generating an estimate of Y(n), we calculate the ex-
pected value of the Y process. Our calculations will be simplified considera-
bly if we work in terms of the deviate process, y;. Noting that the Y, and y,
processes are related by

Y=y + O,

we can translate our calculations back into the Y; metric simply by adding a
constant to our result.

Univariate ARIMA Forecasts 207

Now there are actually »wo expected values of a time series process which
can be used for univariate forecasts: the unconditional and the conditional
process expectations. To illustrate the differences between these two expec-
tations, consider the ARIMA(1,0,0) process

(1 - 1By, = a.

As demonstrated in Chapter 2, this process can be expressed identically as an
exponentially weighted sum of past shocks:

Ye=(1-¢B)a
- 2n2 nRN
=(1+¢pB+dpB °+ ... +¢1B"+..)a
=a+da +dla o+ ... +la,+.
Taking the expected value of this expression,
Ey, = Ea, + ¢,Ea,_ + ¢iEa_» + . . . + ¢fEacn + .

Because the expected value of any random shock is zero, the expected value
of the infinite series is zero and
Ey;=0+¢ 0+ IO +...+1O0) + ...
=0
and thus
EY, = Ey, + Oy = Oy.

This is the unconditional expectation of an ARIMA (1,0,0) process. Extrapo
lating this term into the future,

yi(l) =Ey 41 =0
yi(2) = Ey42=10

yi(n) = Eyt4n = 0.

When the unconditional expectation of the process is used as a univariate
forecast, the process mean is the forecast regardless of lead time.

The problem with forecasts based on the unconditional expectation of a
process is that much valuable information is ignored. While each past ran-
dom shock of the process was expected to be zero, for example, almost all of
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these shocks will not be exactly zero. (A time series process in which each
shock is zero will have zero variance.) In fact, we know the precise values of
some of these shocks (indirectly) and this information could be useful if it
were incorporated into the forecast model.

The conditional process expectation uses this information. The condi-
tional expectation of y; 1 is:

E(Yie1 | Yo Yeets - -5 Y2, YD

The conditional expectation of y,; is conditional upon the t preceding
observations of the time series process. Expressing the ARIMA (1,0,0)
process again as the exponentially weighted sum of past random shocks, the
conditional expectation of y; is:

Eyi+1=Ea) + dra+ dfa—1 + ... + a1+ ...

Now, to be sure, only t random shocks of this process are known. The value
of a;1 1, the next shock of the process, and the values of ap, a1, . . . , a—x,
which predate the start of the observed time series, are unknown. While
distantly past shocks have not been observed, however, and thus are un-
known, the sum of these shocks is known. Specifically,

—_ 2
yi=a;+ dra—1+ pfa—o+ ... + dpla—p + ...

and this known quantity can be substituted into the expression for the condi-
tional expectation of y; ;. Thus,

Eyi+1 = Eayy ) + by,
and as the expected value of a; ; is zero,
Eyi+1 = o1yt
Conditional expectation forecasts of the ARIMA (1,0,0) process are, then,

yi() =E (a1 + é1y)
= o1yt

ye () =E(arn + 1acn—1+ ... + &1 La) + dlyp
= &qv\?

It should be intuitively plausible that the “best” forecast of a time series
process is the conditional expectation of the process. What we mean by
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“best” in this context is that the conditional expectation forecast has the
lowest possible mean-square forecast error (MSFE) of any expectation-
based forecast.!

The notion of MSFE is that point estimates (as opposed to interval estima-
tes which we will discuss shortly) of yi(1), y¢(2), . . ., yi(n) will be com-
pared with their observed values. When sufficient time has elapsed so that
values of Yi+{, ¥t+2, - . -, Ye+n are known, MSFE is computed from the
formula

MSFE = 10 V'3 [yesi — y )P,

i=1

The MSFE can be used to compare two forecast models of the same time
series. A more important use, however, is in the estimation of interval
forecasts.

It will ordinarily be of some use to set confidence intervals around each
point estimate of y(n). While the analyst is naturally interested in the ex-
pected value of Y., this value is meaningless without some idea of how far
away the real value of y; ., is likely to be from this expected value. The point
estimate forecast of the process may be generated directly from the differ-
ence equation form of the ARIMA model (though this may be computa-
tionally inefficient in some cases). To generate interval estimates, however,
the model must be solved for Y;. Solved, the ARIMA model expresses Yy as
a weighted sum of past shocks which, by convention, is expressed as

%~”N~+€~NH|_ +GNN~|N+ ce ..T&s_nm.ﬂl_nl_l e

The -weights in this solved ARIMA (p,d,q) (P,D,Q) s model are deter-
mined by the model structure (the values of p, d, q, P, D, Q, and S, that is)
and by the values of the ¢ and O parameters. An ARIMA (1,0,0) (1,0,0)4
model, for example,

(1~ ¢1B) (1 — 4By = a,
is solved as
yi=(1=¢B)" (1 - ¢4BH 'a
(1+¢B+diB2+..)(1+ B+ 3B + .. )a
at dra—1+ ...+ (dF + da) a—y
+ (&) + drdba) a—s + . . ..

I

Il
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so the Y-weights of an ARIMA (1,0,0) (1,0,0)4 model are:

Y=

W = ¢

¥ = ot

Ya =} + s
s = &7 + diohs

and so on. Any ARIMA (p,d,q) (P,D,Q)s model can be rewritten in its Y-
weight form. To do this in the general case, the model is first solved for y,
and then the common powers of B are collected as in this example. Rewrit-
ing an ARIMA model in its y-weight form involves tedious arithmetic
which we will avoid from this point on. Of course, in preparing forecasts,
the analyst will always use a computer forecasting program to estimate the
y-weights required for interval estimates of y(n).

So long as the ¢ and O parameters of the ARIMA model lie within the
bounds of stationarity-invertibility, the infinite sequence of {-weights con-
verges to zero. The value of the k' weight, Y, is thus approximately zero
and this is a fortunate (though inevitable) consequence. As there are only t
values of a time series available for computation, the -weight form would
not always be useful in preparing interval estimate forecasts. The sequence
of Y-weights is infinite but ay and all preceding shocks are unknown. Be-
cause the sequence of y-weights converges to zero, however, we may usu-
ally take advantage of the fact that

Yra—k = Ea = 0.

So the expected values (zero) of distantly remote shocks may be substituted
into the Y-weight form without appreciably affecting the precision of inter-
val estimate forecasts.?

To derive interval forecasts, we note that y,.| can be expressed as the
series

Y+l T a FdacFdna— . F a1 -

As the value of the future random shock, a; |, is unknown, we must substi-
tute its expected value (zero) into this expression. Then assuming that all
Y-weights and past shocks are known (or, alternatively, assuming that
Ynear—x+1 is approximately zero), the conditional expectation of y( | is:

Eyir1 =EBap +djac+ ..o+ dgagg .
”.,\:m:lT... +€_Am~\r+_+....
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Using this conditional expectation as a forecast of y41, the error in fore-
casting 1is:

€+1=Yi+1 — E¥i+1
=Y+1 — Ye (1) = a4y,

The forecast error in other words is equal to y,+ 1 minus its forecasted value.
This error will always be equal to the random shock, a; + {, and the forecast
variance is thus

VAR(1) = Ee?,| = a3,

which is the variance of the white noise process and, also, a function of the
expected MSFE. An interval forecast of y; is thus

—1.96 VVAR(1) <y(1) < + 1.96 VVAR(1).

We expect yy4 | to lie in this interval 95% of the time.
If we now wish to forecast the next value of the process, we begin with the
Y-weight expression for y; ¢ 2,

Yit2 = a2 T Pjag F¥oact o Prdg2 t o

The first two shocks are unknown. Substituting their expected value, we
obtain the conditional expectation

Eyipo=tna+ ... +¥agks2t .-

Using this conditional expectation as a forecast, the error is:

€12 =Yi+2~ ¥t(2)
= a2 + P1a+1-

And variance of this forecast is

VAR (2) = Ee?.) = E [(ar42 + Y1ai+1)°]

=E (al+2 + 2aco¥a + Wity
mmw+w + 2y Eary 28p41 + %mmwmi
= a2 +fos = (1 + Y] o3

i

Interval estimates of y;(2) are thus
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'~ 1.96 VVAR(2) < y,(2) < + 1.96 VVVAR(2)

with the same 95% interpretation. We note finally that VAR(2) will always
be larger than VAR(1) except when ,RH 0.

To forecast the next value of the process, we begin with the expression for
Yt+3,

Yi+3 = a+3 + Ynao + o + Yrag + .

The first three shocks of this expression are unknown, so substituting their
expected value, the conditional expectation of y, 3 is:

Eyirs=vsat ... + g3+ ...
Using this conditional expectation as our forcast, the error is:
et+3 = Yt+3 — ¥t (3)
= a3 + Yrago + Yoae -

Forecast variance is thus

Il

Ee?.3 =E[(a+3 + Y1ai+2 + Yoas 1)
(1 + i + ¢d) o2

VAR (3)

Continuing this procedure, we can demonstrate that the forecast variance for
yi(n) is:

VAR (n) = Ee? 1, = E[(agsn + 1aien—t + - - - + Yn_1a041)°]

=(1+¥¥+... .+

As lead time increases, forecast variance increases and the width of interval
estimates of yy(n) increase. This is an intuitively satisfying result. The
farther out into the future we predict, the farther out on a limb we climb.

In the next section, we will examine forecast variances of several
ARIMA processes. First, however, we must note that our discussion of
VAR(n) has assumed that the true values of the y-weights are known. As
these weights are determined by the ARIMA structure and by the values of ¢
and © parameters, this amounts to an assumption that we know the true
structure of the process. This assumption is never satisfied. In practice,
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ambiguity in identification and errors in estimation always leave some doubt
as to the true yr-weights. When we are dealing with only an approximation of
the true ARIMA structure (albeit a close approximation), the true value of
VAR(n) may be larger than the expected values we have given here.

This understimation of VAR(n) is especially a problem when forecasting
relatively short time series. In general, identification and estimation of an
ARIMA model becomes easier and more definite as the length of the time
series increases. For a sufficiently long series, due to the approximate
equivalence of the various ARIMA models, any model selected through the
iterative identification/estimation/diagnosis strategy outlined in Section
2.11 will give Y-weights quite close to their true values. When a time series
is relatively short, however, we will have less confidence in the model
selected and, as a consequence, we will expect our estimates of VAR(n) to be
understated.

Denoting an estimate of the kth Y-weight by i, the estimation error due
only to a poor ARIMA model is:

E3
ug = g — Yk.
The true error associated with yy(n) is:

* *
€+n = 8r+n T (Y1 T DB+ .+ (P Fup—pagt

The true forecast variance is:

VAR () = [1 + W] +up)?+ ... + Wy + uy—g)?] o2

The estimated forecast variance will understate this true VAR(n) by the term
ACW + N—:%M + ...+ :wl_ + N::I~$“I:Q‘w.

Underestimation of VAR(n) due to a poor model is thus a function both of the
size of each uy error and the size of each true . This points out a salient
difference between ARIMA modeling generally and ARIMA modeling for
forecasts. When a model is to be used strictly for forecasting, the analyst
may conclude that the “best” model is one in which the standard errors of ¢
and O parameters are smallest. Other things equal, such models will have
the smallest uj terms.

4.2 ARIMA Forecast Profiles

We have demonstrated that the origin-t forecast with lead time of n
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observations for an ARIMA (p,d,q) (P,D,Q)s process is given by the condi-
tional expectation of yi4p

yim) = g+ Ppija—p + ..o+ ¥npaekt o
The forecast variance of yy(n) is:
VARM) = (1 + W + 5 + ... + i o2

The characteristic behavior of an ARIMA forecast, the “forecast profile,” is
thus determined solely by the yi-weights of the process. Since the y-weights
are determined by ARIMA structures, each class of ARIMA models has a
characteristic profile.

White Noise
An ARIMA (0,0,0) process written as
Yi= &
has uniformly zero Y-weights:
Yr=dp=...= Y =0.
Point forecasts of an ARIMA(0,0,0) process are thus
ye(1) =Eay; =0
yi(2)=Ea2=0

yi(n) = Eagsn = 0.
Because all Yi-weights are zero, variance about these point estimate forecasts
is constant for all lead times:

il

o
o

VAR (1)
VAR (2)

VAR (n) = o7.
For white noise processes, the conditional and unconditional expectations
are identical. The best forecast is thus the process mean and the history of the
process yields no information which can be used to improve upon this
prediction.
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Integrated Processes
An ARIMA (0,1,0) process, or random walk, written as

Y=Y +a
has unit y-weights
Yr=yYr=...=yf=1
Point forecasts of an ARIMA (0,1,0) process are thus
YD =EY +ay4) =Y,
Yi2)= EYtta tag) =Y,

Yym)=E(Y;+a1+...+ a4y =Y
The best forecast of a random walk is the last observation. If the random
walk is differenced, the forecast profile of the z; process is a white noise
profile. In terms of the Y, process, however, forecast variance increases at a
linear rate with respect to lead time:

VAR (1) = Ea? = o2
VAR (2) = E[(ay42 + a+1)*] = 207

VAR (n) = E[(ag4n + 8en_1 + . .. + a2 )] = nos.
For each observation increase in lead time, VAR(n) increases by one unit of
white noise variance.

In Figure 4.2(a), we show forecasts of “Series B,” a time series of IBM
stock prices introduced in Section 2.1. This series follows a random walk
with a forecast profile typical of all integrated processes. After two or three
steps into the future. the confidence intervals (set at 95% in this figure)
become so large as to render the interval forecast meaningless. A nonsta-
tionary process in fact is defined as one with no finite variance. The limit of
VAR(n) for an integrated process as lead time increases to infinity is infinity.

Autoregression
An ARIMA (1,0,0) process written as

Vi=@1yi—1 + &
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FIGURE 4.2(a) Forecast Profile: Series B

has exponentially decaying s-weights:
i = ¢
Point forecasts of the ARIMA (1,0,0) process are thus
yo(1) =E (as1 +éra + dfay + ... + a1+ .. )
= o1yt
Vi) =E @2+ dragr +da, + .+ da_ ot .. )
= Gwv:

ye() = E(@gtn + dr1agin-1 + ... +dfa+ .. )
dlye.

Forecast variance about these point estimates is a function of the exponen-

tially decaying -weights:
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VAR (1) = o2
VAR (2) = (1 + ¢}) 2

VAR ()= (1+¢7+ ...+ dpP" d ol

Confidence intervals about successive forecasts increase at a rate deter-
mined by the value of ¢p;. When ¢, is small, the increase in VAR(n) for an
increase in lead time is small. When ¢ is large, the increase in VAR(n) for
an increase in lead time is large. In any event, it is clear that successive lead
time increments produce smaller and smaller increments in forecast vari-
ance. Noting that the expression for VAR(n) is a geometric progression,
forecast variance approaches a limit of
A VAR (n) T
1 - ¢

which is the variance of the y, autoregressive process. In fact, the limit of
VAR(n) as n approaches infinity will always be the variance of the ARIMA
(p,d,q) (P,D,Q)s process. For the ARIMA (0,0,0) white noise process, the
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FIGURE 4.2(b) Forecast Profile: Hyde Park Purse Snatchings
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limit of VAR(n) is Qm and for the ARIMA (0,1,0) process, VAR(n) increases
without bound.

In Figure 4.2(b), we show forecasts of the Hyde Park Purse Snatchings
time series. The noise component of this model is ARIMA (2,0,0) with
small values of ¢»; and ¢,. The forecast profile is typical of autoregressive
profiles. As lead time increases, forecasts regress to the process mean;
confidence intervals about each point forecast increase with increases in lead
time.

Moving Averages

An ARIMA (0,0,1) process written as

ye=a — Oja-)
has only one nonzero y-weight:

Yr=-6
=Y3=...=Y=0.
Point forecasts for the ARIMA (0,0,1) process are thus
yi(1) = E(a+; — O1a9) = — Oy
yi(2) = E(ai42 — O1a4) =0

yin) =E(ai45 — ©12140-1) = 0.

Forecast variance is determined by the single nonzero y-weight:

VAR (1) = Ea?, | = o2
VAR (2) =E[(a42 — O1211))]1 = (1 + 6 02

VAR (n) = E [(a+n — ©12c10-1%] = (1 + 69) 02.

After the second step into the future, forecast variance is constant. The limit
of VAR(n) is thus
lim
n—% VAR (n) = (1 + 6}) o3,
which is the variance of the ARIMA (0,0,1) process.

In Figure 4.2(c), we show forecasts of the Swedish Harvest Index time
series which we analyzed in Section 2.12.3. Here we see the distinctive
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FIGURE 4.2(c) Forecast Profile: Swedish Harvest index

forecast profile of a moving average process. With lead times greater than
one observation, yy(n) is the process mean; VAR(n) remains constant.

As the reader may suspect by now, univariate forecasts of simple ARIMA
models (as well as all univariate forecasts) tend to be statistically trivial. The
best point forecast is often the process mean; and for substantial lead times,
interval forecasts often approach infinity. Forecasts of complicated ARIMA
seasonal models are somewhat more useful. The forecasts track the seasonal
pattern of the process quite well for at least one seasonal period and thus may
be used to assess “turning points” in the series. In Figure 4.2(d), we show
forecasts of the Sutter County workforce series which we modeled in Section
2.12.1 as an ARIMA (0,1,1) (0,1,1), process. Both moving average pa-
rameters are relatively large. The forecasts appear to track the pattern of
seasonal variation quite well, although because the model is nonstationary,
confidence intervals about the point forecasts grow large rapidly

4.3 Conclusion: The Uses of Forecasting

The reader who now understands how interval estimate forecasts are
generated has no doubt gained a deeper insight into the nature of ARIMA
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FIGURE 4.2(d) Forecast Profile: Sutter County Workforce

models. Beyond this not insubstantial value, however, the reader who in-
tends to apply the principles of time series analysis to social science prob-
lems will likely see no use for univariate forecasts. In fact, however, univari-
ate forecasts can be extremely useful as a tool of model diagnosis. We will
conclude this chapter with a description of this use and with a comment on
another use of forecasting which, in our opinion, is improper.

Forecasting as a Diagnostic Tool

It will often happen that two roughly identical ARIMA models produce
radically different forecasts of the same time series. When this is true, the
analyst will be justified in selecting the model with the “better” forecasting
ability.

An example of this is seen in our analysis of the U.S. Suicide Rate time
series (Section 3.5). The analysis first lead to an ARIMA (1,0,0) model for
the Ny component:

A

=f(l —_—
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Due to the relatively large estimated value of ¢, however, we respecified
the N; component as ARIMA (0,1,0):

a
Y, =fd) + —_.
=1y — R

In practice, it is almost always better to work with an ARIMA (0, 1 ,0) model
rather than an ARIMA (1,0,0) model with a large autoregressive parameter.
(We will discuss the problems of estimating these parameters in Chapter 6.)
There is nevertheless one situation in which the ARIMA (1,0,0) model
would be preferred to the ARIMA (0,1,0) model: when the true noise
process is autoregressive. The analyst can never know the true stochastic
process underlying a time series. Yet there are many sensible procedures
which the analyst can use to rule out competing models and one of these is
forecasting.

While there are few major differences between ARIMA (1,0,0) and
ARIMA (0,1,0) models in many contexts, this is not at all true in the context
of forecasting. Using 1969 as the origin, forecasts of the two models are:

ARIMA (1,0,0) ARIMA (0,1,0) ACTUAL RATE?

1970 11.08 11.10 11.6
1971 11.06 11.10 not available
1972 11.05 11.10 not available
1973 11.03 11.10 12.0
1974 11.02 11.10 12.1
1975 11.01 11.10 12.7
1976 11.00 11.10 12.5

The forecasts of these models are remarkably close to each other but this is
expected: The two models are nearly identical. Yet forecasts of the ARIMA
(1,0,0) model regress gradually to the estimated process mean (approxi-
mately 10.9 suicides per 100,000 total population) while forecasts of the
ARIMA (0,1,0) model remain constant for all lead times. The actual rate
does not regress to the population mean, as would be expected of an autore-
gressive process, but rather continues to move upward. A random walk in
fact is characterized by wide swings away from the process mean. Overall,
the ARIMA (0,1,0) model has a lower MSFE statistic than the ARIMA
(1,0,0) model; and on this basis alone, we would select ARIMA (0,1,0)
model as the “best” one for this time series.

Nevertheless, the differences between the forecasts of these two models
is small and other analysts might choose the ARIMA (1,0,0) model in spite
of its lesser forecasting power. In the end, model selection will hinge on a
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great many statistical and substantive concerns. Forecasting power is only
one of these concerns and it need not be more important than any other.

Forecasting as an Impact Assessment Tool

If our experiences are typical, students of time series analysis are more
fascinated with univariate forecasting than with any other application of
ARIMA modeling. There seems to be a fundamental (almost spiritual)
human interest in “predicting the future” which is aggravated by a course in
time series analysis. The fact remains that univariate forecasts are essentially
trivial and often disappointing. One can predict the future only for short lead
times and in limited contexts.

Students of time series analysis often “discover” a means of assessing
impacts with univariate forecasts. These methods are actually quite old and
widely used in industrial engineering and quality control applications. While
these methods are valid and useful in manufacturing contexts, however, they
are not generally suited to social science problems and data.

As an illustration of the use of these methods in quality control engi-
neering, consider a machine that manufactures ball bearings. Each ball
bearing will vary slightly in diameter and this variance from ball bearing to
ball bearing is a stochastic (time series) process. An ARIMA model of the
process is used to set forecast confidence intervals around the process real-
ization. When the manufacturing process is “in control,” 95% of the ball
bearings produced by the machine will lie within these confidence intervals.
If a run of three or four ball bearings are observed to lie outside the confi-
dence intervals, the quality control engineer infers that the process is “out of
control.” The machine is turned off and repairs are made.

The strong forecast-based inference here is possible because of certain
given characteristics of the manufacturing process. One, the quality control
engineer knows a priori what a “bad” ball bearing is. A “bad” ball bearing is
one that is a few thousandths of an inch too small or too large; one that cannot
be sold to customers. Two, process realizations are relatively long. The
quality control engineer may have one thousand or more observations
available for building an ARIMA model of the process. Three, process
inputs are tightly controlled and known. White noise inputs to the manufac-
turing process arise from relatively small variations in the quality of raw
materials (water, oil, electricity, steel, and so on). The quality control
engineer knows not only the sources of white noise inputs but also their
relative magnitudes.

These characteristics of the manufacturing process are not ordinarily seen
in social processes. There is no definition of a “high” or “bad” unemploy-
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ment rate, for example; social science time series realizations are ordinarily
short; process inputs are unknown and erratic and there are quite often
seasonal inputs which are unheard of in manufacturing processes. Forecasts
of social processes are thus less certain and more prone to error than fore-
casts of industrial processes.

In Chapter 3, we developed impact assessment models from a foundation
of scientific validity. Certain “threats to validity” are controlled through
design while others are controlled through analysis. This distinction is not
always clear and this is particularly true when alternative patterns of impact
are compared and ruled out. When an intervention component has been
misspecified, Type I or Type II decision errors are a likely result. To control
this threat to validity, we have recommended a conservative strategy of
model building. The strategy leads generally to a more confident statement
of impact but it does so at a real cost: A relatively long postintervention time
series segment is required.

Impact assessments based on forecasting do not require this great cost.
Deutsch (1978) has recently proposed a variation of the time series quasi-
experiment which allows for an impact assessment within a few weeks or
months of the intervention. At the simplest level, Deutsch proposes to build
an ARIMA forecasting model from the preintervention time series. Postin-
tervention forecasts of the model are then compared with the actual observa-
tions. If the postintervention observations fall outside the forecast confi-
dence intervals, Deutsch concludes that the social system has gone out of
control or that the intervention has had an impact on the time series.

If “early detection methods” should prove generally reliable, Deutsch’s
work will represent an important advance in social science methodology. In
the first published use of these methods, however, Deutsch and Alt (1977)
found a statistically significant drop in gun-related crime after introduction
of a strict gun-control law. In our reanalysis of those data (Sections 2.12.2
and 3.6; see also, Hay and McCleary, 1979), we found no evidence of the
effect claimed by Deutsch and Alt. We attribute this difference in findings
to, among other things, weaknesses of the early detection methods used by
Deutsch and Alt.

A major deficiency of forecast-based impact assessments is that confi-
dence intervals about each point estimate are subject to error. As noted.in
Section 4.1, the Y-weight models used to set confidence limits about each
point estimate require that the analyst know the rrue ARIMA structure of the
time series process. Yet in practice, this is never the case.

Compared to industrial process time series, social science time series are
relatively short. A weak seasonal component, for example, may go unde-
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tected or may have statistically insignificant parameter estimates for a time
series of only 100 observations. When a few more observations are added to
the time series, however, the seasonal component may suddenly assume
statistical significance. Nonstationary processes present an analogous prob-
lem. With a weak trend, estimates of O are likely to be statistically insignif-
icant unless the time series is relatively long.

When a run of postintervention observations fall outside the forecast
confidence intervals, there are always two equally plausible explanations:
the process may have been impacted by a social intervention and/or the
forecast confidence intervals may have been underestimated. With a rela-
tively short time series, the latter explanation is always more plausible than
the former.

But a greater problem with forecast-based impact assessments is that
threats to validity cannot be controlled. A confident statement of impact
requires not only a statement as to whether an impact occurred or not (which
forecast-based assessment may or may not adequately give) but also a state-
ment as to the nature of the impact. In the first place, abrupt temporary
impacts will almost always “fool” a forecast-based impact assessment.* As
an exercise, the reader may wish to try a forecast-based assessment for the
Sutter County Workforce time series. In Section 3.2.2, we demonstrated
that the Sutter County flood had only a substantively and statistically insig-
nificant impact on this time series. Yet if the preintervention series is used to
forecast the postintervention observations, the analyst will arrive at a radi-
cally different conclusion. The “reactive intervention” threat to internal
validity will also “fool” a forecast-based impact assessment. For most
ARIMA models, the last observation of the series has the greatest weight in
determining forecasts, and if the last preintervention observation is an ex-
treme value, forecast-based impact assessments will indicate a statistically
and substantively significant effect.

To guard against these threats, impact assessment requires a relatively
long postintervention time series segment. There is a fundamental difference
between detecting and modeling an impact. Even in the more “applied”
social sciences (evaluation research and policy analysis, for example), im-
pact assessment must be concerned with the dynamic structure of social
change. This concern can be addressed only from a foundation of scientific
validity and from the conservative impact model-building strategy we out-
lined in Chapter 3.

For Further Reading

Nelson (1973: Chapter 6—8) develops univariate ARIMA forecasting at
an introductory level. Granger and Newbold (1977: Chapters 4-5) develop
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the same material at a slightly higher level. More comprehensive treatments
of forecasting which consider non-ARIMA methods as well are given by
Pindyck and Rubinfeld (1976) and Makridakis and Wheelwright (1978).
Makridakis-Wheelwright is written for graduate students in business while
Pindyck-Rubinfeld is written for graduate students in economics. While
both works are outstanding, there is a clear difference in the levels of
sophistication assumed of the reader. Granger and Newbold (1977: Chapter
8) compare the performance of a variety of forecasting methods. This work
is absolutely essential for any reader who plans to do forecasting. Finally,
Vigderhous (1978) or Land and Felson (1976) are excellent examples of
forecasting in a social science context.

NOTES TO CHAPTER 4

1. The proof of this claim is obvious when one considers that the conditional expectation
uses all of the available information about the process. See Pindyck and Rubinfeld (1976: 498 —
499) for a formal proof.

2. The assumption is that s, is zero (or some infinitesimally small number) is satisfied
whenever the time series is long, say 50 observations or more, or whenever the low-order Y-
weights are so small that the sequence converges to zero within a few weights. When this
assumption is not satisfied, the minimum MSFE forecasts are generated by backcasting the
series to obtain estimates of y,, y_; , . . ., y_,.. For relatively long time series, of course, the
conditional expectation of y,,, is the same whether the expected values or the backcasted
values of distant random shocks are used. See Box and Jenkins (1976: 199—200) for a detailed
description of backcasting.

3. The values of this time series are taken from the U.S. Department of Commerce publica-
tion Historical Statistics of the United States: Colonial Times to 1970. The values after 1970 are
taken from the /978 Statistical Abstract of the United States. The rates for 1971 and 1972 are
not given in that volume.

4. Hay and McCleary (1979: 309-310) show that one of the time series analyzed by
Deutsch and Alt has an abrupt, temporary impact effect. Using the early detection method,
however, Deutsch and Alt conclude that the effect is a permanent reduction in gun-related
crime.



