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FOREWORD

Social scientists have been confronted with revolutionary developments
in a variety of areas of statistical theory and methodology during the 1970s,
including Bayesian statistical inference, exploratory data analysis, log-
linear and related models for categorial data, robust statistics, structural
equation models in unobservable variables, and time series analysis. Two
characteristics of these developments are noteworthy. First, they make the
repertoire of available statistical tools considerably more adaptable to the
substantive concerns and empirical data limitations encountered in social
science research. But, second, this increase in adaptability typically is
bought at the expense of increased computational complexity-—in the form
of iterative estimation algorithms that are manageable only with the assist-
ance of modern electronic computers.

One consequence of these two qualities is that the “cookbook” approach
of introductory statistical methods courses (in which statistical recipes are
stated in closed form and applied to simplified, often artificial, data sets) no
longer is a feasible mode of instruction. Rather, the emphasis must be on the
application of sophisticated computer algorithms to real data sets. While the
algorithms may remain essentially “black boxes” to the student, the fact that
they are computerized facilitates their application to a large and diverse array
of empirical data sets. In this way, the student can obtain an intuitive “feel”
for the types of problems likely to be encountered in applications.

This new didactic style is exemplified in the present volume by Profes-
sors McCleary, Hay, Meidinger, and McDowall. Their subject matter is the
synthesis of time series analysis and forecasting methods brought together in
1970 by George E.P. Box and Gwilyn M. Jenkins (Time Series Analysis:
Forecasting and Control, San Francisco: Holden-Day; 1976, revised edi-
tion). While these AutoRegressive Integrated Moving Average (ARIMA)
models (popularly called “Box-Jenkins” models) have been widely applied
in engineering, economics, and business for nearly a decade, social science
applications outside of economics still are relatively rare. One obvious
reason for this is the fact that available textbooks typically assume a mathe-
matical and statistical maturity greater than appropriate for social science
audiences outside of economics (which has a long tradition of econometric
analyses of time series).

It is precisely this void in the statistical time series textbook literature that
McCleary and his coauthors seek to fill. Assuming no training in statistics
beyond intermediate statistical methods (at, say, the level of H.M. Blalock,
Ir., 1979, Social Statistics, revised second edition, New York: McGraw-
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Hill), the authors take the reader through a gentle introduction to univariate
ARIMA models (emphasizing the Box-Jenkins iterative cycle of model
identification, estimation, and diagnosis), impact assessments, and fore-
casts. This is followed by chapters on multivariate ARIMA models and
ARIMA estimation algorithms. The text is noteworthy for its clear, concise
exposition punctuated by numerous analyses of real time series. These
pertain to a diverse array of noneconomic topics. By including listings of the
time series and references to the available ARIMA software, the authors
encourage readers to develop “hands on” experience in the didactic mode
described above. For the highly motivated student, the authors also include
annotated bibliographic references to more advanced literature.

In addition to its value as a didactic aid, this book is a timely and welcome
addition to the professional social science literature for two reasons.

First, there is a wide and growing interest in the study of social change via
the analysis of historical time series. This has been stimulated, in part, by the
“social indicators movement” and the increased availability of time series
data on noneconomic social conditions resulting therefrom. (See, for exam-
ple, Kenneth C. Land and Seymour Spilerman, eds., 1975, Social Indicator
Models, New York: Russell mmmm Foundation, for a statement of some of the
analytic problems created by social indicator time series. ) Although annual
social indicators time series often are too short for the application of ARIMA
models and methods, this is less likely to be the case for social indicator time
series collected at quarterly, monthly, weekly, or daily intervals. In any
case, for sufficiently long series in areas in which there exists little prior
theory or research, the ARIMA models described in this book provide
powerful analytic tools.

Second, as the authors note, there has been a convergence in recent years
between the “statistical time series” and “dynamic structural equation mod-
els” literatures (popularly called the “Box-Jenkins” and “econometric” liter-
atures, respectively). For dynamic structural equation modelers, this con-
vergence has taken the form of a greater sensitivity to the stochastic
properties of the error or disturbance terms in time series models. Con-
versely, time series analysts have come to recognize that lag structures need
not always be identified de novo from the time series to be modeled in areas
in which substantial prior theory and/or research exists. The present volume
should give nonspecialist readers the background in statistical time series
analysis necessary to appreciate more fully the nature of this convergence.

—Kenneth C. Land
University of Illinois at Urbana-Champaign
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1 Statistical Models

for Time
Series Analysis

| Monographs on time series analysis ordinarily address either theoretical
issues (e.g., Doob, 1953; Feller, 1971; Anderson, 1975) or practical issues
(e.g., Nelson, 1973; Glass et al., 1975; Pindyck and Rubinfeld, 1976;
Makridakis and Wheelwright, 1978). This volume is of the latter type. We
will be concerned largely with the practical or applied aspects of time series
_analysis and especially with applications of interest to economists, political

scientists, psychologists, and sociologists.
i Time series analysis can similarly be divided into two methodological
W areas: harmonic analysis and regression analysis. These two methods are
, sometimes called analysis in the frequency domain and analysis in the time
f domain, respectively. We will not cover harmonic methods at all in this
W volume. While there are no practical limitations on the use of harmonic
methods with social science data (see, e.g., Mayer and Arney, 1974), this
| type of analysis ordinarily requires a background in the calculus and algebra
7 of complex variables (imaginary numbers). We suspect that most readers
| will lack this mathematical preparation. Regression approaches to time
f series analysis, in contrast, have been widely used in the social sciences. All
of our readers will have had some training in multiple regression methods.
We have consciously addressed our development of time series analysis to

this level of understanding.

Readers with broad backgrounds in re gression methods may nevertheless
, find this volume novel. The time series models developed here are not the
models ordinarily developed in econometrics texts, but rather are stochastic
17




18 APPLIED TIME SERIES ANALYSIS

process models. The particular class of stochastic process models to be
developed are the AutoRegressive Integrated Moving Average (ARIMA)
models of George E. P. Box and Gwilym M. Jenkins (1976; Box and Tiao,
1965, 1975). Although elements of ARIMA modeling can be traced back
some 50 years, Box and Jenkins (and George C. Tiao) must be credited with
integrating the elements into a comprehensive theory, extending it greatly,
and popularizing it. ARIMA modeling has rightly been called the “Box-
Jenkins approach to time series analysis.”

It will be instructive at this early point to make the tenets of the Box-
Jenkins approach explicit. ARIMA models posit a random shock, a, as the
driving force of a time series process, Y;. As an analogy, consider a coffee-
brewing machine of the sort widely used in university departments at
present. To brew a pot of coffee, 12 cups of cold water are fed into one end of
the machine. A few moments later, 12 cups of coffee are delivered from the
other end. Of course, we do not always wish to brew 12 cups of coffee.
Sometimes we feed only 6 cups of cold water into the machine with the
expectation that only 6 cups will be delivered at the otherend of the machine.
And of course, sometimes we expect to receive 12 cups of coffee from the
machine, but for some reason receive only 11.5 cups. We can diagram the
coffee brewing process as an input-output process:

(Cold Water) a; — _H_ — Y, (Hot Coffee),

Both the a, input and the Y; output are measured in cup units. To some
extent, there is a prescribed relationship between the size of each input and
the size of each output. Inputting 6 cups of cold water, for example, we
would be surprised if 12 cups of coffee were delivered at the other end of the
machine. On the other hand, we might be equally surprised if exactly 6 cups
of coffee were delivered. Inside the coffee machine, the unobserved and
often mysterious brewing process is at work, sometimes delivering slightly
more than 6 cups of coffee and sometimes delivering slightly less.

If we were interested in this mysterious internal process, we could per-
form an experiment with the aim of unraveling the relationship between a
and Y,. We would first hire a graduate student to do nothing but brew coffee
under scientific conditions. Every 15 minutes, the graduate student would
input a precisely measured amount of cold water, and after a few minutes
brewing time would receive an amount of hot coffee from the machine to be
measured precisely. To ensure experimental control, each input to the ma-
chine would be randomly determined. Our graduate student would consult a
table of Normal (Gaussian) random numbers to determine how many cups of
cold water to feed into the machine for each trial.

Statistical Models 19

After many trials (say, 500 pots of coffee), we could analyze the Y;output
series to draw inferences about the brewing process. We would no doubt
discover the following:

(1) The most important determinant of Y, is a,. Other things being equal, the more
cold water input, the more hot coffee output.

(2) To alesser extent, Y, may be also be determined by a,_,, the previous input. A
small percentage of each input, for example, may remain inside the machine
to be delivered in the next output. The larger the input on one trial, the larger
the residual remaining inside the machine to be delivered in the next output.

(3) Toalesser extent, Y, may be also be determined by Y,_ |, the previous output.
A particularly large output, for example, as a result of a particularly large
input, may somehow reduce or increase the efficiency of the brewing process.
This change in efficiency will show up in the next output.

(4) To a much lesser extent, and for the same reasons, Y, may be determined by
inputs and outputs further removed in time, suchas a,_, and Y,_»_

These are the basic tenets of the Box-Jenkins approach to time series anal-
ysis, or ARIMA modeling. In general, we may say that a pot of coffee has its
size determined by the few immediately preceding outputs and inputs, that
is,

Yi = 1Y + oY +a— Ora—1 — bra .

Inputs and outputs further removed from the present, a,_3 and Y;_3, for’
example, may also play some role in the process but their influence will be so
small as to be statistically insignificant. In practice, of course, the number of
past inputs and outputs required in the model will be determined empirically,
butin almost every case, no more than two prior inputs and outputs will have
a statistically significant influence on the present output.

The most important tenet of the ARIMA model is that the present input,
a;, will have a greater impact on the present output than any earlier input.
This means that the parameter #; must be a fraction. The parameter 6,, also a
fraction, will ordinarily be smaller than 6y, so in general

1>60,>6,>...> 86,

This is the most important principle of the ARIMA model. The influence of
a past event (or input) on present events diminishes as time passes. This

same principle applies to the influence of past outputs:

1>¢>¢r> ... > o)

T




20 APPLIED TIME SERIES ANALYSIS

But if there is a single guiding principle of the Box-Jenkins approach, it is
parsimony. This principle reflects not only a view of nature but also a view of
the relationship between a time series model and nature. In almost all cases,
a social science time series process can be modeled as a probabilistic func-
tion of a few past inputs (random shocks) and outputs (time series observa-
tions). As we develop the algebra of ARIMA modeling in the next chapter, it
will become clear that there is a real difference between parsimony and
simplicity. While parsimonious, univariate ARIMA models also give a
surprisingly sophisticated representation of nature.

The reader who is familiar with the more widely used regression ap-
proaches to time series analysis (structural equation or econometric models)
should not assume that ARIMA models are substantially different than
regression models. While ARIMA models require the novel input-output
explanation, the two approaches are in fact identical. The only real differ-
ence between ARIMA and regression approaches to time series analysis is a
practical one. Whereas regression models can be built on the basis of prior
research and/or theory, ARIMA models must be built empirically from the
data. Because ARIMA models must be identified from the data to be mod-
eled, relatively long time series are required. No time series that we analyze
in this volume is shorter than 50 observations long. The reader may use this
rule of thumb when deciding whether to analyze time series data from an
ARIMA or regression approach. When relatively long time series are availa-
ble, an empirical ARIMA approach will ordinarily give the best results. But
when relatively long series are not available, regression approaches in-
formed by prior research and/or theory will give the best results.

1.1 Caveat: The Limits of Time Series Analysis

If our experiences as teachers are typical, there is a danger to learning any
sophisticated statistical method. The power of the method may desensitize
the student to the more fundamental questions of interpretation. Though
absorbing, the statistical problems of analyzing time series data are gener-
ally less important than the problems of interpreting the results of an anal-
ysis. Lacking an easy interpretation, the time series analysis has failed.

To emphasize this point, we note first that, while the statistical methods
of time series analysis are relatively new, the logic of time series analysis is
not. In his classic investigation into the causes of suicide, for example,
Emile Durkheim wrote:

It is a well known fact that economic crises have an aggravating effect on the
suicidal tendency. . . . In Vienna, in 1873 a financial crisis occurred which
reached its heightin 1874; the number of suicides immediately rose. . . . What

Statistical Models o1

proves this catastrophe to have been the sole cause of the increase is the special
prominence of the increase when the crisis was acute, or during the first four
months of 1874 (1951:241].

We would like to believe that Durkheim actually plotted the annual suicide
rates of European cities, searched for peaks and valleys in this time series
plot, and then compared the peaks and valleys with the economic histories of
the cities. In the most general sense, this is a time series analysis.

Aside from an increase in methodological sophistication, nothing has
changed. Contemporary economists, political scientists, psychologists, and
sociologists share an interest with the early social philosophers in the change
of social phenomena over time. At the most pragmatic level, this traditional
preoccupation with the temporal ordering of things can be explained as a
function of “cause.” When causal relationships are an issue, social scientists
have traditionally resorted to longitudinal research designs. Time series
analysis is a statistical method for interpreting the results of certain longitu-
dinal research designs. When used appropriately, time series analysis brings
a powerful inferential logic to bear on questions of social cause. When used
inappropriately, however, the relative weaknesses of time series analysis far
outweigh its strengths.

Assuming that time series analysis is the appropriate method for address-
ing a particular research question, the analyst must pay some attention to
defining the time series. On the face of it, a time series is a set of N time-
ordered observations of a process. Each observation should be an interval ?
level measurement of the process and the time separating successive obser- -
vations should be constant. Minimal violations of these requirements are
acceptable. Monthly time series observations, for example, are sometimes
separated by 28 days and sometimes by 30 or 31 days. This minimal depar-
ture from the ideal presents no real problems for the analysis, however.

By this definition, a time series is a discrete data set. Figure 1.2 shows a
plotted time series. The observations of this series, the data that is, are the
equally spaced symbols (0) strung out along the time dimension. It is often
more realistic (and aesthetically pleasing) to connect the symbols with a
broken line as we have done in Figure 1.2. The analyst should nevertheless
be conscious that the time series is actually a discrete data set.

To be sure, the discrete time series may be a measure of some underlying
continuous process. Stock market time series, for example, are usually ,
Teported as daily closing prices. The price of a stock fluctuates more or less
continuously throughout the trading day. Closing price is the value of the
mﬁoo.w at 3:00 P.M. when the New York Stock Exchange “closes” or ends its
g.m_:omm day. We might instead choose to record the daily opening or noon
Price but the principle is still the same. So long as the continuous process is

-
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FIGURE 1.2 ATime Series

recorded consistently, a discrete time series is likely to give a good approx-
imation to the continuous process.

Many other time series will approximate processes that are actually dis-
crete. For example, a discrete (but rare) event process can be aggregated
into a time series. An illustration of this would be a time series of monthly
traffic fatalities. Traffic fatalities are discrete, rare events and thus might be
best analyzed as Poisson outcomes. If the data are aggregated into monthly
totals, however, the resulting time series will ordinarily capture the essence
of the rare event process. The average “waiting time” between fatalities in a
given month will be roughly proportional to the total number of fatalities in
that month.

While there are many other ways in which continuous or discrete social
processes can be represented by a time series, the principles of logic are the
same. The social scientist is interested in making inferences about the pro-
cess underlying the time series. The time series must thus always give an
adequate representation of the true social process. Lacking this quality,
inferences based on a time series analysis will be invalid.

But assuming that a time series analysis is the optimal research method,
and assumiing that an adequate data set is available, some attention must be
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paid to the limits of logical inference. For all practical purposes, the time
series analyst is interested in “predicting the future” of a social process, that
is, in measuring the past “change” in a social process to extrapolate that
“change” into the future. Extrapolation cannot be accommodated outside a
well-defined axiomatic foundation, however: a theory of the process. Dis-
cussing the measurement of economic growth, for example, Simon Kuznets
has noted that:

The difficulties in measuring economic growth, supply of empirical data
apart, lie precisely in this point: modern economic growth implies major
structural changes and correspondingly large modifications in social and insti-
tutional conditions under which the greatly increased product per capita is
attained. Yet for purposes of measurement, the changing components of the
structure must be reduced to a common denominator; otherwise it would be
impossible to compare the product of the economy of the United States with
that of China, or the product of an advanced country today with its output a
century ago before many of the goods and industries that loom so large today
were known {1959:15].

Kuznets’s point here is that we cannot compare apples with oranges unless
we have some theoretically sound dimension on which they are comparable.
To measure change in the output of any process, we must work from a set of
axioms that allows a comparison of today’s social and economic structures
with yesterday’s social and economic structures. Gross national product, for
example, must be defined in such a way that its meaning is not appreciably
time-bound.

In many substantive areas, the interpretation of measured change in a
time series presents no significant problems. Even when serious problems
arise, however, interpretability can be increased through appropriate
changes in operational definitions. There is ordinarily a smaller probtem
interpreting change over a few months or years, for example, than over a few
decades or centuries. Interpretability can thus sometimes be increased by
narrowing the time frame of the analysis. Of course, there is a trade-off here:
Making the time series more interpretable may also make it more trivial. The
limitations of time series analysis in this sense must be clearly understood.
Time series analysis is generally more appropriate for gauging incremental
change than for gauging structural change. In some cases, meaningful indi-
Cators of structural change can be found and, in these cases, the analytical
Power of time series analysis can be brought to bear. But meaningful indica-
tors of structural change are sometimes not available and, in these cases, any
time series analysis will be absurd.

Itis also ordinarily easier to understand change in relatively concrete time
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series than irr relatively abstract time series. It would be easier to measure
change in “work-related accidental fatalities,” for example, than in “unem-
ployment.” Our definition of the first indicator has changed little over a long
period of time—although it has changed. Our definition of unemployment,
on the other hand, changes constantly as a result of changing social norms.
What would have been an unthinkably high rate of unemployment during
one eramay be seen as an absurdly low rate of unemployment during another
era. While the absolute meaning of an unemployment rate may not change at
all over time, the social meaning of unemployment changes constantly.

We may say the same thing of “crime.” Social scientists cannot agree
among themselves whether rates of crime and unemployment are higher or
lower today than they were 50 years ago. The crux of this disagreement can
be eliminated by simply conducting analyses of concretely defined time
series. But again, to insist upon concrete, objective indicators may sacrifice
substantive importance. We are not arguing that the analyst should ignore a
time series problem when the available data are not obviously concrete. But
the analyst must always be conscious of and acknowledge the limitations of
an analysis.

We have intended this short essay to be a caveat, warning the reader that
the problems of analyzing time series data are relatively unimportant com-
pared to the problems of interpreting analytic results. Without interpretabil-
ity, there is nothing. More specifically, the reader has been warned (1) to use
time series methods only when those methods are appropriate to the research
question; (2) to be sure that a time series gives an adequate representation to
the underlying process; and (3) to recognize the limits of each analysis.

1.2 An Outline of the Volume

We might have called this section “How To Use Our Book.” Here we
explain our motives, describing as best as possible what material will be
presented in subsequent chapters, in what order this material will be pre-
sented, and why. Some readers may become anxious and confused in subse-
quent chapters, perhaps understanding the material presented, but question-
ing its relevance to the overall scheme of time series analysis. A careful
reading of this outline may reduce anxiety levels, permitting the reader to
concentrate more fully on the elements of time series analysis.

ARIMA models and Box-Jenkins time series analysis are not necessarily
more difficult a topic than other statistical models and methods used in the
social sciences. ARIMA models are nonetheless “different” than most other
statistical models and methods in terms of their underlying principles, statis-
tical properties, and applications. One major difference which we have
already noted is that ARIMA models are not arbitrarily fit to data, but rather
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are built empirically. The analyst selects a particular model for a given time
series from the general class of ARIMA models. The decision is based on
empirically derived characteristics of the series. To make a wise decision,
however, the analyst must be aware of the statistical properties of ARIMA
models and must be adept at relating these properties to information about
the series.

These two concerns, statistical knowledge or understanding and practical
application, have determined the orientation of this volume. In each chapter,
we first develop the statistical properties of the time series models. We have
attempted to do this in a manner that is accurate and thorough and yet lucid to
a reader with only an elementary statistical background. When some eso-
teric or mathematical point must be made, we use footnotes. For all practical
purposes, these footnotes may be disregarded in the first reading of a chap-
ter. After developing statistical properties, we apply the time series models
to several time series which, in our opinion, are typical of those encountered
in the social sciences. Each of these example series has been carefully
selected to illustrate a variety of characteristics. Each of these series is listed
in an Appendix to this volume and our intention is that the reader will
replicate our analyses.

The volume is divided into six chapters, each covering a distinct topic in
time series analysis and each building on material developed in preceding
chapters. Chapter 2 is the core of the volume and an understanding of the
material presented there is absolutely essential. Chapters 3, 4, and 5 extend
the basic ARIMA model developed in Chapter 2 to a particular application.
These chapters may be read out of order, although we do not recommend it.
Chapter 6 deals with several practical issues of parameter estimation which
will be of most interest to those readers who are about to start a time series
research project.

In Chapter 2, we present the basic concepts of univariate Box-Jenkins
time series analysis. The univariate ARIMA model is the baseline “building
block” which we use in subsequent chapters for impact assessment, forecast-
ing, and causal modeling. Separate and distinct components of the ARIMA
model (the autoregressive, integrated, and moving average components) are
developed in sequence and then integrated into the general ARIMA model.
Once developed, the general ARIMA model is used in an analysis of four
example time series.

Chapter 3 presents a general impact assessment mode] for the analysis of
an “interrupted time series quasi-experiment.” This model has been widely
used to analyze or assess the effects of planned and unplanned interventions
on social systems. The impact assessment model consists of a noise model,
as developed in Chapter 2, coupled to an impact model. After developing the
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algebra of a general impact model, we illustrate its use by analyzing several
example time series.

In Chapter 4, we develop the use of ARIMA models for forecasting future
values of a time series. Our treatment of this topic is intentionally brief.
Most of the books written about applied time series analysis are oriented
exclusively to forecasting applications and we would have little original
thought to add to this body of literature . Readers still may gain some under-
standing of ARIMA models and algebra from our treatment of forecasting.
After presenting the forecast profiles for several time series, we conclude
this chapter with a discussion of the uses (both proper and improper, in our
opinion) of forecasting in social science research.

Chapter 5 extends the Box-Jenkins approach to multivariate time series
analysis. One or more independent variable time series (inputs) may be used
to explain the stochastic behavior of a dependent variable time series (out-
put). Multivariate ARIMA time series models are a rather novel concept in
social science research although, in our opinion, they have a great potential.
Once again, we present the underlying statistical concepts of multivariate
ARIMA models, develop a model-building strategy, and conduct several
example analyses.

As in many other areas of quantitative social research, Box-Jenkins time
series analysis depends upon sophisticated computer software. ARIMA
models are nonlinear, for example, so parameters must be estimated with
numerical routines. In Chapter 6, we derive the likelihood function, illus-
trate the solution procedure, and discuss related topics that may affect the
analysis. Several available software packages for the analysis of time series
data are reviewed and the use of interactive software is discussed. It may
seem unusual to relegate a chapter on “estimation” to the the end of the book.
Yet most social science graduate students are able to use multiple regression
software packages without actually understanding how parameter estimates
are generated inside the computer. The same principle holds for Box-Jenkins
parameter estimation. While most readers will have no trouble conducting
time series analyses without understanding the mechanics of parameter
estimation, the reader who intends to go further in this area must at least
understand the general principles of nonlinear estimation. For all readers,
Chapter 6 is likely to be insightful. For readers who intend to do major work
with time series analysis, Chapter 6 is necessary reading.

A Note to the Instructor

A graduate seminar in time series can finish the material presented here in
8 to 12 weeks, depending upon many obvious factors. Our seminars have
typically included no more than 12 students drawn from several graduate
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social science departments. To be admitted to the seminar, students have
been required to have a set of time series data and a short research proposal.
Grades are based on an article-length research report. The time series data
listed in Appendix B, and analyzed in the volume, provide an excellent
practicum experience for the seminar. After analyzing these data, however,
students must generalize the experience to their own time series data. Of
course, the seminar requires access to an appropriate software package,
preferably one that is interactive. In Section 6.4, we describe several time
series software packages that are available at almost all academic computing
centers.




£ Univariate ARIMA
Models

If this volume has a single most important chapter, it is this one. Here we
develop a general ARIMA model-building strategy for a single time series.
In subsequent chapters, we develop methods for applying the univariate
ARIMA model to problems of social research. An understanding of these
applications will require an understanding of the material developed here.

We have divided this chapter into two distinct parts. The first part (Sec-
tions 2.1 to 2.9) deals mainly with abstract issues, especially with the
statistical properties of univariate ARIMA time series models. This material
(and, indeed, the rest of the volume) presumes a knowledge of fundamental
statistical concepts and a familiarity with algebra. In general, the reader
should have a working knowledge of the material ordinarily presented in a
first-year social statistics course: measures of central tendency, variance,
covariance, correlation, expected values, the Normal distribution, ordinary
least-squares (OLS) regression, and so forth. A short appendix at the end of
this chapter summarizes the rules for applying expectation operators to
random variables. The reader who is unfamiliar with the concept of expected
values may read this appendix before starting the chapter.

We try to present the material in the first half of this chapter in an
illustrative manner that is both intuitively plausible and technically correct.
Readers are urged not to rely on our algebra, but to work through each
demonstration or derivation. Although this may become tedious at times, an
understanding of abstract concepts will open the door to an understanding of
the general class of ARIMA models. More important, the derivation of
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model algebra is in its own right an intellectually challenging and satisfying
exercise which should not be missed.

In the second part of this chapter (Sections 2.10 to 2.13), we describe the
concrete procedures used to build univariate ARIMA models for given sets
of time series data. After developing a general model-building strategy, we
apply it step by step to the analysis of four time series, each typical of those
encountered in social science research. These analyses illustrate how such
problems as nonstationarity, seasonality, outliers, and ambiguous identifica-
tion information can be handled within the general ARIMA model-building
strategy.

As an introduction to the first part of this chapter, we now return to the
most crucial of all definitions, a time series is a set of ordered observations:

Y, Yo, Y3, 0, Yo, Yy, Yigg

In cross-sectional analyses, the order of observation is not of any great
consequence and may even be undefined. If the analyst is measuring the
performance of subjects in an experiment, for example, it usually makes no
difference which subject was tested first and which subject was tested last.
Indeed, it is often the case that all subjects are tested simultaneously, so no
order of testing is defined.

In longitudinal analyses, on the other hand, the order of an observation is
crucial. If the analyst is measuring the improvement in performance from
test to test, for example, the order of an observation is as important as the
observation itself. The order of an observation is conventionally denoted by
a subscript. The general observation is written as Yy, meaning the t" obser-
vation of a time series. This implies that the preceding observation is Y_
and the subsequent observation is Y. ;.

We will make a distinction throughout this chapter between process and
realization. An observed time series is a realization of some underlying
stochastic process. In this sense, the relationship between realization and
process in time series analysis is analogous to the relationship between
sample and population in cross-sectional analysis.

A related and equally important concept is the model. A realization, or
time series, is used to build a model of the process which generated the
series. The procedures used to build this model are broadly referred to as
time series analysis, which implies that the series is being “picked apart” o
decomposed into its components, ARIMA models are built around three
process components: the autoregressive, integrated, and moving average
components. The first component to be considered is the integrated compo-
nent which is closely related to the concept of trend.
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2.1 Trend and Drift

Our discussion of ARIMA algebra begins with the concept of trend.
When we think of the component parts of a time series process, we tend not
to think of ARIMA structures, but rather of more fundamental, commonsen-
sical component parts. Trend is one such component. Even those of us who
have no experience with longitudinal analysis have a fundamental under-
standing of what a trend is. A trend is motion in a specific direction, usually
(to simplify matters) upward or downward. We can say thus that the trend in
government during this century has been away from the state level and
toward the federal level. Not surprisingly, our notion of trend in terms of
ARIMA structures is almost identical to this commonsense notion.

More specifically, we define trend as any systematic change inthe level of
a time series. While this definition lacks the mathematical rigor we might
like, it is the best definition we (and mathematicians) can construct. A time
series SM: is Qo:a F& can o&_:mz_v\ be Bvaowoioa by the model
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where the parameter by is interpreted as the level of the time series. N is a
“noise” component or a stochastic process. The most 5%03:: type of
stochastic process in time series analysis is ,5:8 noise,” which we repre-

sent as a,. Assuming a white noise process, we we can fewrite the model for a
trendless time series process as

<~”~UO + ag.

A white noise process has the statistical @8@90\_

~ 256 o5 v
that is, white noise consists of a series of random shocks, _cach distributed
Zo::m:v\ and independently about a zero mean with constant variance, Qw
As the mean of white noise is zero, the expected value of a trendless process

is:
EY, = by + Ea, = bg.
The parameter by, is the level about which the realized time series fluctuates.

As the level of the time series process is constant throughout its course, the
time series is trendless with a “flat” appearance.
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If a time series process is trendless, the parameter bg is the arithmetic
mean of the series, estimated as

o N
bg=Y=1UNZ3Yj,

i=1

for a time series of N observations.
Unfortunately, most social science time series processes are not well

represented by this simple model. A time series process following a linear

trend, for example, requires a model with an extra parameter:

<~ = .UO + Uﬂm + ag.
x o~
For this model, the expected value of Y is:

EY,=bg + bjt + Ea; = by + bit,

aregression of Y, onthe time seriest(t = 0,1, . . ., N). The level of the time

series process is thus expected to change systematically throughout its
course. Starting att = 0, R

EYy = bg
EY; =bg + by

EY, = by + 2b;

EYn= bg + Nbj.

The parameter by is the intercept of the model, that is, the expected level of
the process when t = 0. The parameter b, is the slope of the model, that is,
the expected change in level from one observation to the next.
Unfortunately, few social science time series processes appear to be
trendless and this presents a problem for the time series analyst. Trend must
be removed or modeled. One common (but almost always inappropriate)
method of detrending a time series is to use a linear regression model for the
trend. With this method, the analyst defines the order of each observation
t=1,2,...,N)asan independent variable. Then, using the time series
itself as a dependent variable, the parameters by and b, are estimated with
OLS formulae. For a linear trend, this method yields the detrended series:

o= Y — @7

The detrended series, ¥, is then analyzed.
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FIGURE 2.1(a) German Immigration to the United States (in Thousands)
1870-1914 .

As there are a number of problems with this method, it is not generally
recommended. One major problem with OLS trend models is that the param-
eters bp and b; cannot be estimated with any accuracy. In Figure 2.1(a), for
example, we show a time series of total immigration (in thousands) from
Germany to the United States during 1870-1914 as reported by Fried
(1969). Does this series follow a trend? Reasonable people might agree that
total immigration decreased steadily durifig this period. The OLS trend line
for this series is:

Y= 124.78 — 2.37t.

w& note the abnormal spike in this series starting in 1881. If we ignore this
spike, the OLS trend line becomes:

¥, = 98,82 — 2.01t.

<<o. have superimposed these trend lines over the time series in Figure 2.1(a)
to w_._:wqm:o the estimation problem: OLS trend estimates are sensitive to
outliers. e ;

The underlying problem is that the OLS linear regression model of trend
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But there is a more basic problem with QLS detrending methods. Figure
2.1(b) shows what is perhaps the most famous of all time series: “Series B,”
from Box and Jenkins ( 1976), 369 consecutive daily closing prices of IBM

<~ = _uo + U_ﬂ + _UNHN.

Commenting on this procedure, however, Box and Jenkins note that:

One of the deficiencies in the analysis of time series in the past has been the
ween fitting a series and forecasting it. For example, suppose
that a time series hag shown a tendency to increase over a particular pe-
riod. . . . A common method of analysis is to decompose the series arbitrarily
into three components—a “trend,” a “seasonal component,” and a “random
component.” The trend might be fitted by a polynomial and the seasonal
component by a Fourier series. . . Such methods can give extremely mis-
leading resuits. . | . Now, it is true that short lengths of Series B do look as if
they might be fitted by quadratic curves. This simply reflects the fact that a
sum of random deviates can sometimes have this appearance [1976: 300].

In fact, the IBM series does ot follow atrend. For want of 3 better word, we

say that this series “drifts,” first upward and then downward.
The real difference between trend and drift is that trend js deterministic
behavior while drift is stochastic behavior, Deterministic behavior can be

intervention op the series behavior.

We do not mean to im
science time series proc
8raphic time series proc
growth; economic time s

ply that trend does not exist. Indeed, many social
esses increase or decrease systematically. Demo-
esses, for example, may trend due to population
eries processes may trend due to inflation; and time
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series measures of human performance may trend due to learning. In each
case, a few known causal forces underlie the trend. In Chapter 5, we will
develop bivariate and multivariate methods that can account for trends of
this sort. Our point here is that a time series can drift upward or downward
for extremely long periods of time due only to random forces. Unless there is
a strong theoretical basis (or empirical evidence) for assuming that a time
series process trends deterministically, there are great advantages to be
gained by modeling it stochastically.

As Box and Jenkins note, the issue of trend versus drift is really the issue
of fitting versus modeling a time series. OLS detrending methods always
require an assumption that change in the realized process is due to the
constant, deterministic effects of a few causal forces. If the analyst can make
this assumption, then it will be best to include these exogenous forces in the
time series model directly rather than attempting to exclude them indirectly
through detrending.

The alternative to detrending a time series is to build a dynamic model
which accounts for what appears to be (or may actually be) trend. In the next
section, we develop difference equation models for drift and trend. A differ-
ence equation model accounts for both trend and drift without requiring an a
priori distinction between the two. Unlike OLS detrending parameters, the
parameters of a difference equation are easily estimated. But most important
of all, difference equation models are dyramic models. Trend or drift is
determined by the entire set of observations, not by the first or last observa-
tions.

2.2 The Random Walk and Other Integrated Processes

The IBM stock series can be thought of as the result of a random walk. A
random walk process is a stochastic process wherein successive random
shocks accumulate or integrate over time and thus a random walk is called
anintegrated process. -

To illusifite the random walk, suppose a gambler bets on the flip of a fair
coin. When a coin flip results in heads, the gambler wins one dollar; for tails

the gambler loses one dollar. We can then define

+8$1 if the t™ coin flip results in a head

a

—$1 if the t* coin flip results in a tail.

Because the flip of a fair coin results in heads as often as tails, the series of
coin flips is a series of binomial experiments. This means that

P(heads) = P(tails) = %
Ea, = 12(+ $1) + 2(—$1) =0,
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in the long run, the gambler expects to break even, winning exactly as much
money as he or she has lost. Also,

Eaf = (1) (%) = 1
mm:mwmAT_A = O

The Nmmmm@:mao:.nxwamm% the notion that successive flips of the coin are
expected to have independent outcomes, that is, a; and a,, are not related.
The outcome of successive coin flips thus approximates white noise. Now

Mwmso the total amount of money won or lost by the gambler after the t™ coin
ip as

Y = total money won (or lost) at the end of t coin flips.

With this definition, we have a random walk process. At the end of the first
coin flip,

%4_ = ai,

that wm. 80.88._ money won (or lost) consists of the money won (or lost) on
the first coin flip. At the end of the second coin flip,

Y, =a; + a,
that is, the total money won (or lost) consists of the money won (or lost) on

Ew first flip plus the money won (or lost) on the second flip. At the end of the
third coin flip,

Y3 =g + ap + as,
and at the end of the fourth coin flip,
<&Hm_ +mw+mw+m¢u
and at the end of the ¢ coin flip,
Yi=a+a + coot @+ ag

iEo: is the random walk. Y, is the sum of the money won (or lost) on t flips

om,ms:m fom_m,.x»m each random shock is expected to be zero (even though no

single random shock can be zero), the sum of t random shocks is also
expected to be zero, that is,

EY, = Ea; +Ea) + . .. + Ea,_, + Ea, = 0.

If we had to guess the value of the gambler’s holding at the end of t flips, we
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would guess that the gambler had broken even. This guess would be correct
in one sense but incorrect (or at least misleading) in another sense. While the
expected value of Yy is zero, the process will almost always drift high above
or below its expected value. In fact, it is quite unlikely that the gambler will
break even by the t™ flip.

This random walk gambling example illustrates a major difference be-
tween cross-sectional and longitudinal stochastic processes. If 1000 people
each flip a coin simultaneously, we expect to observe 500 heads and 500
tails. It is unlikely that we would observe this exact outcome, of course, but
the observed frequencies will ordinarily be quite close to the expected. On
the other hand, if one person flips a coin 1000 times, the short-run gain (Y,)
is expected to be zero also, that is, we would expect 500 heads and 500 tails.
However, the observed frequencies are quite likely to be much different than
the expected. Heads or tails is likely to be in the lead throughout most of the
1000 flips. If two gamblers each have only a finite amount of cash, say $25,
one of the gamblers is likely to win all of the other’s money long before the
1000th flip. This phenomenon, “gambler’s ruin,” is a surprising property of
the random walk process.?

In Figure 2.2(a), we show the results of a coin flip gamble. This result is
typical of a random walk process. The random variate (Y,) makes wide
swings away from its expected level. It drifts, and if we had only a short
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FIGURE 2.2(a) Coin Flip Gamble: A Random Walk

Univariate ARIMA Models 39
realization of the process, we might conclude that the process follows a
trend. ﬁ.ﬁ probabilistic forces underlying this drift have a straightforward
explanation. If positive and negative shocks were roughly equal in the short
run, we would see no drift whatsoever. Relatively long runs of positive or

negative shocks can occur, however. In coin flip gambling, the probability
that a run of eight heads will be realized is:

P(eight consecutive heads) = A_\Nvm = .0039063,

which is a n.n_mméa\ slight probability. Yet when a run of eight heads does
occur, as it inevitably will, the Y, process drifts far above its expected value
cm.Nnno.. The level of the process stays at this zenith until a run of eight tails
drives it back down. Of course, we would expect to wait a long time before
realizing a counterbalancing run of eight tails.
wz.vnammom that can be thought of as random walks are frequently encoun-
tered in the social sciences. A major difference between the random walks
&\o encounter in social science processes, however, and the random walk
E:m:&oa by the coin flip gamble is the size of each random shock. In coin
flip gambling, random shocks are equal in absolute value because a shock
must be +$1. In the typical social science process, on the other hand
random shocks vary in size as well as in sign. There are large mroﬁnm“

Bomﬂ_:a,mno shocks, and small shocks in the typical social science random
walk.

As an example, consider this sim

le model for th i
o phex p or the population of a small

Y = the town population at the end of the ! month

a; = number of births minus the number of deaths in the ¢! month.

Then, for some “starting point,” Y, we have the random walk process:

Y = the town population at the end of month zero
Y| =Yg+ a

Yo=Yy+a; +a

Y3 =Y, + a +a; + a3

MDHM\OL.EITNN.T....TPIM.TN?

which describes how the

population of this small town cha
o monts nges from month
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If birth rates and death rates are equal in the long run, then the expected
value of each random shock is zero. Actually, the number of births and the
number of deaths in a month will seldom be exactly equal, so most random
shocks will not be exactly zero. A plausible assumption is that the random

shocks will be normally and independently distributed about the mean zero
,S,% constant variance, that is,

a, ~ NID(0,02).

So the random shocks are a white noise process. If this model of the town
population is realistic, the expected population after  months is3:

MWAWH = on + mwm_ + mme + ...+ mMmﬁlx_ + Mwmﬁv

which was the population at the “starting point.” However, we would expect
to see the town population drift upward or downward for long periods of
time. This feature of the realized time series is only drift, however, nottrend.

It might be valuable at this point to explain exactly what a random shock
is. In_the town population model, random shocks are the thousands of
variables which “cause” birth and death. These many factors vary across
time and interact in complex and complicated patterns which we call “ran-
dom.” None of these factors alone could explain the birth or death rates
which maké up an observation of the process. But jointly, the effects of these
“many factors are aptly described as white noise.

Because arandom walk observation is the sum of all past random shocks,
there is a rather simple way to model the random walk. The series is simply
differenced. Differencing a time series amounts to subtracting the first ob-

servation from the second, the second from the third, and so forth:

Z) = JWH — on

=(Yp+a)) — Yg=q
NNH<N|<~

=(Yp+a +a)—(Yo+a)=a
723=Y3—Y>

=(Yg+a;+ay+a3)—(Yg+a +ap =az
2t = Ye— Yo
=(Yp+tayta+...+a-+a
—(Yo+ayt+a+...+a-2+a-y) =a.
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FIGURE 2.2(b}) Coin Flip Gamble: A Random Walk Differenced

In the remainder of the volume, except where explicitly noted, we will
represent the differenced Y, series by .Nv ,

By &.mmoaosow:m the random walk process, we obtain a time series whose
observations are the contemporaneous random shocks, aj,a,..., a. In
other words, differencing transforms the random walk into m.é::o, :“.&mm
process. In Figure 2.2(b), we show the coin flip gambling series after it has
been differenced. The differenced series no longer drifts away from its
expected value, but instead fluctuates about its mean level.

. >, random walk is an example of an integrated process in which “integra-
tion means “addition.” If a time series is the realization of an integrated
process, _m can be modeled by simple differencing. The random walk, for
example, is well represented by an ARIMA (0,1 ,0) model whered = | mw the
number of differences required to make the series stationary.
ha So far, the random shocks or white noise process has been assumed to

Ve a zero mean. m.:Evan now that the white noise process has a nonzero
:BmMMmmwMoHWo MOE mmv gambling example, S.mm implies that heads and tails
bt en w.mv@ fs. In the 8&5 population example, this implies that

I'th and death rates are not equal in the long run. Representing the nonzero

Tevel of the white noise process by the constant Oy, then,

e mm: = @O,
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Successive realizations of the integrated process are now expected to be:
Yo =Yy
EY,; =Yy +Ea; = Yy + O
EY, = Yy + Ea; + Eay = Yo + 20,
EY; =Yy + Ea; + Ea, + Eay = Yy + 36

EY,= Yo+ Ea; + ... + Ea, = Yo + t6,.

So when the white noise process has a nonzero mean, a random walk follows
a linear trend. What happens when the Y, process is differenced?

mNH HmAA\_ l<ov mm_ H@o

me = MA%N - %Mv mww = @o

Ezz = E(Y3; — Y;) = Eay = Og

i

il

mNm = mA<~ - <~Iuv = mmﬁ = ®O

The differenced series, z;, is expected to equal a nonzero constant, Og. This
leads to the difference equation model of linear trend:

Yi— Y1 =6
<” = <~|_ + @O

To illustrate the difference equation model of linear trend, consider the

sequence of integers:
1,2,3,4,...,¢t.

This sequence has a perfect linear trend which we can represent as
Y =Yg+ @c?

where Yy = 0 and O = 1. But if we difference this sequence,

2-1,3-2,4-3,...,t—(t—1)
1, 1, 1, ol
the differenced series is equal to the constant, Oy = 1. We may thus write a
difference equation model for this sequence of integers as
<~ - <~'_ =1

%.An%qn(_ + 1.
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It :.:m? be ﬁma :o.am to draw an analogy between the OLS trend equations
which we discussed in Section 2.1 and difference equation models of trend
In the OLS model, we solved the equation )

<~”mo+m_ﬂ+m~?

:WEW t as an independent variable. The parameter by is interpreted as the

w o%o or _Eomq. trend of zﬁ. Y; process. As noted, it is practically impossible

% nMMﬁ w mmwmmmoﬂod\ estimate of b;. In the difference equation model, on
€ other hand, we use the value of Y i ]
the o t~1 (rather than t) as an inde end

valu ent

variable. The constant of the difference equation, 6y, is Eﬁoa@nﬂom in the

same way that b; of the OLS equation is inte ,
, rpreted: as the sl i
trend of the process. But while the OLS trend equation riope or finear

wﬁ = mo + WHH
and the difference equation
Yo=Y + 6,

aamﬁ.&o exactly the same deterministic trend (when m: =0y, th ti

a major practical difference between these two oa:maozw 4 ,_,m: _mv,.ﬂrono
mmmmm.mm@‘kﬂn%oa ofestimating the parameter by in the Oﬁm.:ozmoao tion
but the analogous parameter of the difference equation, Oy, is nmmm_.n_%m%m:

mated as Y

N -
», Far's - ;

T ~ - Z
@O” z = —\ZM Zy,
t=1
that i i i
o %m&@? 1s estimated as the mean of the differenced series. Beyond this
point, there are substantive issues which make the difference equa-

t1 n ZHQ HVN.QM:OH.HQQ M..OH:,ZL @
NCOB . €
(9) (( C(H: Nﬁmaﬁﬂmm H—H@mﬂ 1Ssues at a mmﬂﬂm oint in

£

¢

)

;

e

Atime serj .
€ series process that does not require differencing (because it neither

e DI

drift IS sai ]
1S mor trends) is said to be stationary in the homogeneous sense A time

Th i

o\%wm:mo of S._m >W:/.\~> (0,1,0) model is quite simple. The best predicrion

. current time series observation ( Yo) comes from the preceding obser-
n (Y1) and a constant. To distinguish between drift and trend, the

-
-
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analyst may examine the estimated value of g with the null hypothesis:
H,: 6 =0.

The hypothesis may be tested with a t statistic. If @o is not statistically

- different from zero, the analyst must conclude that the process is drifting,

not trending.

Inthe general case, an ARIMA (0,d,0) model implies that a time series is
white noise after being differenced d times. There are two types of integrated
processes which will be well represented by ARIMA (0.d.0) models, ath.
order random walks and time series processes with d"-order polynomial

trends. \w‘,mooosamoaﬁ random walk, for example, would be:

Y, =a;+ 2a—| +3a,_, +4a,_3+. ...
N R . A . \v n EERF B!

And differencing this process,
Yi— Y =a+ 2a_|+3a_,+4a_3+ ...
- a—y— 289383~ ...
=a+a-|+a-2+a—_3+....
And differencing this process,
=YD - Y~ YD) =ata_ +ao+a-3+...

T 8] T 2T @37

mwﬁ.

Thus, a second-order random walk will be well represented by an ARIMA
(0,2,0) model. To demonstrate how a dM_order polynomial trend can be
accommodated by an ARIMA (0,2,0) model, consider the sequence of
squared integers

1,4,9,16,25, ...,

If we diftference this sequence,

4—1,9-4,16-9,25—16, ..., — (t=1)
3, 5, 7, 9, N
and if we difference it again,
5-3,7-5,9-7,...,2t—1) — (2t=3)

2, 2, 2, ....2

This expression does not mean
operates on Y to shift it backward one point in time.”
other logical operators such as the derivative or int .
or the natural logarithm operator in algebra.
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s% obtain a sequence of constants. Again, to distinguish d™-order drift from
d"-order H.hm.mav the analyst need only test the statistical mmmimomzom, of &
In the social sciences, a time series will ordinarily have to be Emﬁoso%m
only once. While ARIMA (0,1,0) processes are quite common higher order
random walks and higher order polynomial trends are rare. ,

. We will close this discussion of integrated processes by applying an
Sw:.?o::uﬁ analogy to the ARIMA (0, 1 ;0) process. White noise is oO:Mn -
tualized as the “driving force” of a time series process. We may view %:
ARIMA Aom 1,0) model as a “black box” in which the input is white noise and
the output is a time moaom‘fmm: processes that drift or trend, the ARIMA
BL,Q Emo_.ﬂ box integrates random shocks. Once a shock os,ﬂﬂ‘w the black
box, it remains inside, influencing all future outputs. We represent this as

All future outputs of the \.ya?r» (0,1,0) black box will contain the random
shock a; as well as all prior random shocks back into the infinitely distant
past. To unlock this black box, we simply difference the time series.

2.3 The Backward Shift Operator
At this point, we introduce the backward shift operator, B, such that
B(Y) =Y,_,.

“B multiplies Y,,” but rather, means that “B
B is thus similar to
egral operators in calculus

The properties of the backward shift operator are:

wsﬁﬂv =Y, ,
and
w:w—dﬁ<~v — mw:+3ﬁ<ﬁv — <~|:

-m-

The operat .
ia] perator obeys all the laws of exponents that we routinely use in polyno-

diffe

algebra. We will make immediate use of the b
rence a time series. For this pur

s S

ackward shift operator to
pose, we use the operator expression

T=BYe=(DY ~B)Y, =Y, ~ Y,_, = 4,
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Second differencing 1s accomplished by .<<o will cw using E.o natural logarithim operator at a ater point. F
(1 - wvwﬂ —(1-2B+ B2)Y, = Y, — 2Yi—1 + Yoo, introduce it only to :._:mqm:o the principle of an inverse o_uoa:o.n %w:oé' we
o . . . . . of the backward shift operator, B, is the forwar J shift . The inverse
which is the same e ult we obtain by differencing a time series and then forward shift operator has the same properties as the operator, F. The
tor, that is, s the backward shift opera-

differencing it again. To demonstrate this identity, we difference the time
F'(Y) = Yitn

series, obtaining
z1= Y1~ Yo and
Zy = %w - <_
: FIFT(Y) = F™ (YY) = Yesnem.
2 = Y- Yi1. The inverse relationship between B and F is defined by
We then difference this series, obtaining (B) (F) = (F)(B) = 1,
71 =171 20 , BYE) Y = B)Y iy =Yy,
G=z—n=M - YD - (Y1= Y0 , wwa
* — pm-—
Gi=z3-=Y3-Y2)~ (Y- YD FY = F"0) = Yoo
: In n_:rﬂ words, “F undoes what B has done.”
Tk : : n the remainder of thi .
S =z —z1= Y~ Yo —~ (Y1 — Ye=2) ‘ of this volume, w )
e *A ﬁ o0 T = operator, B. To denote the forward wE% o,wwwmwww w:_v\ :5. @mnwimma_ shift
We see that the general term Z is: thus, . F, we willuse B~ ", and
B™B=1.

2= (Y~ Yeen) = (Y1 = Ye2)

lm|+<|u<lw<| + Y- Wh .
-1 t=2 t =1 -2 en the backward shift operator is used to difference a time serie
s, we

=Yy~ Y11
-+ By, denote the inverse operation by (1 — B)™', and thus
_ 1 _my
= (1 =By Y, I =B)Yi=z
(1-B) 'z =Y,
$O

(1-B)~ ' -BY, =Y.

of the backward shift operator is £
ows us to move forward and packward 1n
s inverse to a time series. We see an

ural logarithm operator, Ln, and (1 -=B) !z, =2/(1-B)

w TR Sther useful property
The property of invertibility all
time by applying the operator and it
analogous relationship between the nat
exponentiation. For example,

In practi i i
practice, the inverse of the differencing operation implies division

and division b
y the backward shif . -
The inve ift operator is a difficult con
s cept to
Ln(K) = X ov € operator can be evaluated with a Taylor seri ptto grasp.
er, as the infinite series es expansion, how-

then
(1-B)y '=0+B+B*+... +B" 1+B" + . ..)
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We will not go into the derivation of this identity but instead direct the

interested reader to any introductory calculus text. However, we will dem-

onstrate the identity by showing that the differencing operator, (1 — B), and

the infinite series are inverses. First, differencing a Y, process, we obtain
(1-B)Y=Y— Y =z.

Then, applying the inverse operator to the z, process, we obtain

(1-B) Iz

i

z(1+B+B>+...B" ' +B"+..)
=zttt ...+ Zipt1 T Z—n T .
Y=Y D)+ (Y1 = Y2) + (Y2 = Yi3) +.
+ (Yi—n+1 = Yen) + Yien = Yi—n—p + .
Y+ Vo1 = Yoo ) + (Y2 = Yio) + .
T (Yin = Yi—p) +.
=Y,

W

I

which demonstrates the identity of (1 — B) ™! and the infinite series.

In the following sections of this chapter and in the following chapters, we
will routinely use the backward shift operator to describe time series models.
The operator greatly simplifies our algebra and, indeed, some of the higher
order ARIMA models cannot be written economically without the operator
convention.

2.4 Variance Stationaritys

As noted in Section 2.2, ARIMA models require a time series process to
be stationary in the homogeneous sense. While homogeneous sense sta-
tionarity is a necessary condition of an ARIMA model, however, it is not a
sufficient condition. Before we can properly represent a time series with an
ARIMA Boao_ the time series must also have a stationary variance.

Our working definition of homogeneous sense stationarity is based on the
process level. If a time series process is stationary in the homogeneous

sense, then that process has a single constant level throughout its course, that
is,

for all t. By this working definition, if a process drifts or trends, it is not
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stationary in the homogeneous sense. This presents no real problem, how-
ever, because when the process is differenced,

2, = (1 — BYY,
and

”@O

for allt. As the differenced process has a single constant level throughout its
course, it is stationary in the homogeneous sense. From this working defini- -
tion, we might say that a process that is stationary in the homogeneous sense | ¢
is stationary in its level. Finite realizations of such processes appear “flat” or ~
trendless. If we divide the series into two segments of equal length, the first
segment will have the same level as the second segment.

A process that is stationary in the homogeneous sense (or one that has
been made so by differencing) need not be stationary in its variance, how-
ever. A process that is stationary in variance 2__»%@@ _constant

\/\
variance throughout ifScourse, that is, T

o e~
E(Y, — 60)° = o2

foralltor
E(z — 6p)* = o3

for all t. Because the expression for variance is based on the process level,
Oy, it follows that any process that is stationary in variance is also stationary
in level (or has been made so by differencing). The converse is not true,
however. A process that is stationary in level need not be stationary in
variance.

In Figure 2.4(a), we show a time series of nonfatal disabling mine injuries
for the United States during the period 1930-1977. Nonfatal disabling
injuries decreased systematically during this period, trending downward.
We can guess (correctly) that this series is nonstationary in the homogeneous
sense and must be differenced. In Figure 2.4(b), we show the first-
differenced time series. Differencing has effectively detrended the series,
that is, has made the series stationary in the homogeneous sense. Note,
however, that in both Figures 2.4(a) and Figures 2.4(b), the process é:-
ance decreases steadily throughout the length of the series. Year-to- v\oma
fluctuations are much larger in the first half of the series than in the second
half. We can guess (correctly) that this series, even after differencing, is not
stationary in its variance. ..

It our experiences are typical, most of the time series that social scientists
will be interested in are either stationary or else nonstationary only in the
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FIGURE 2.4(a) Nonfatal Disabling Mine Injuries, 1930-1978
7000
T
m 1000 4
&
I T
[
&
e
a J
&
o 11000 +
o
2
= 1
=
o -17000 1
4
+
-23000 + —t———t + +— —+ —t ——
o 10 20 30 40 SC
BBSERVATION
FIGURE 2.4(b) Nonfatal Disabling Mine Injuries, Differenced

homogeneous sense. In practice, then, the analyst will find that most time
series can be made stationary in the larger sense (in level and variance) by
differencing. Time series of the sort shown in Figure 2.4(a) are not totally
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uncommon, however. Many social processes have naturally defined “floors”
which constrain the stochastic behavior of the process. As the process ap-
proaches its floor, process variance is constrained. In the case of the mine
injury series, process variance is roughly proportional to the process level, a
relationship which we express as

and
2
Ta o Ogt.

What this means simply is that, first, the level of the process decreases from
observation to observation by the quantity ©g. Second, as the level de-
creases, process variance decreases proportionally.

Fortunately, there is a rather simple transformation which may be applied
to such processes to make them stationary in the larger sense. In Figure
2.4(c), we show a time series of natural logarithms of the nonfatal disabling
injuries. The log-transformed series still follows a downward trend, that is,
is still nonstationary in the homogeneous sense. However, log-
transformation has made the year-to-year fluctuations roughly the same in
both halves of the series. In Figure 2.4(d), we show the first-differenced log-
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9.890 1
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FIGURE 2.4(c) Nonfatal Disabling Mine Injuries, Logged

.
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FIGURE 2.4(d) Nonfatal Disabling Mine Injuries, Logged and Differenced

transformed series. After differencing, the series has a single level and

: single variance throughout its course. We may guess (correctly) that the
first-differenced log-transformation series is stationary in the larger sense.

In general, whenever the variance of a time series decreases (or increases)
as the level of the series decreases (or increases), the series can be made
stationary in the larger sense (in both level and variance) by log-
transformation and differencing. Log-transformation is effective in such
cases because the absolute value of successive random shocks changes
systematically. Thus,

aj = Kaj_|
for some constant of proportionality K. From this we see that
Ln(a?) = Ln(a?_;) + Ln(K)
Ln(a?) — La(a?_ ;) = Ln(K).

Log-transformation and differencing results in a constant variance. Readers
who are familiar with variance stabilizing transtormations in the context of
regression models (e.g., Draper and Smith, 1966: 131-134) will recognize
similarities in the approach taken here.

\

i
i

ap
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We note in conclusion that the analyst must always be able to assume that
atime series process is stationary in both its level and variance. A series that
is bosmﬁwmoswc\ in variance must be transformed prior to analysis. If the
analyst ignores this problem (and if the assumption of larger sense stationar-
ity is not satisfied), the analysis may lead to incorrect inferences about the
time series process. These assumptions are similar in kind to the assump-
tions typically required of aregression analysis. Homoskedasticity of distur-
bance terms must be assumed to derive least-squares estimates of regression
model parameters, for example, and ARIMA models are not different in this
respect.

2.5 Autoregressive Processes of Order p: ARIMA (p,0,0)
Models

Autoregressive processes of order p may be modeled by using p lagged
observations of the series to predict the current observation, that is,

Yo = $1yi—1 + doyi—2 + ...+ dpyi—p + 2,
which, using the backward shift operator, may be rewritten as
(1= ¢1B — $2B* —. .. — $BPy, =a.
As a convention, we will use y; to denote a deviare time series, that is,
Y=Y — 69

for the stationary process, Y. Autoregressive processes are always station-
ary processes and ARIMA (p,0,0) models are always stationary models.
Should a process be nonstationary, however, it may happen that its differ-
ence will be well represented by an ARIMA (p,0,0) model. Thus, for the
nonstationary process, Y,

7= (1 - B)Y,
Ye =17 — 6o
G1yi—1 + dayr2 + .+ pyi—p t .
The process is well represented by an ARIMA (p,d,0) model.
There is no essential difference in the algebras of ARIMA (p,0,0) and
ARIMA (p.d,0) models except, of course, that ARIMA (p,d,0} models

imply a nonstationary process. To simplify our discussion, then, we will
deal only with ARIMA (p,0,0) models and only with deviate time series.

H
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When a process is nonstationary, of course, our argument will apply to the
differenced process.

The most commonly encountered autoregressive processes in the social
sciences are first-order autoregressive processes. First-order autoregression
is well represented by an ARIMA (1,0,0) model:

Vi =d1yi—1 +
(1 — 1By = a.

It may be instructive to think of the ARIMA (1,0,0) model as an OLS
regression model in which the current time series observation is regressed on
the preceding time series observation. Unlike the OLS regression model,
however, the parameter ¢p; must be constrained to the interval

-1 < Qwu <+ 1.
The purpose of these constraints will be soon made clear.

Tracking a random shock through time, the ARIMA (1,0,0) model ex-
hibits a distinctive pattern of stochastic behavior called autoregression. Let

Yo = ay,

then,

Y1 =d1yo t a
= ¢jap + aj

Y2=¢iy1 ta

= ¢i(drap +a)) + a
= ¢fag + Pra; + a
¥3 = d1ya+ a3
= ¢1(bTag + braj + ) + a3
= ¢iag + Ppia; + pray + a3

yo=dlag+ ¢l lag + ...+ dra +a
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Recalling that ¢ is a fraction, successive powers of ¢b| converge to zero. If
¢, = .5, for example, then

b1 = .25
1 = .125
T = .0625
&“ =0

for t large. So while the initial random shock stays in the process indefini-
tely, its impact diminishes exponentially. After one observation, the impact
of a is only a fraction of its initial impact. By time t, the impact of aq is so
small that we may think of it as zero. Returning to the black box input-output
analogy used in Section 2.2 to describe integrated processes, we see that a
portion of the random shock “leaks” out of the autoregressive black box as
time passes:

%
i
g ——————— d AM_A?mﬁlm IIIIIII —> Vi
i=

———> 3 (1 - bl ay
“leakage” i=1 D) 2

The autoregressive black box accumulates random shocks in the same man-
ner as the integrated black box accumulates random shocks. There is a
significant difference between these two black boxes, however. Random
shocks leak out of the autoregressive black box over time. For an initial
random shock, ay, the portion remaining in the black box at successive
points in time is:

Time Portion Remaining Portion Lost Through Leakage
t=0 agp .

t=1 IEN (I = dag

t=2 Tag (1= ¢hag

t=t diag=0 (1 = ¢hap = ap.
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After t moments, the portion of ag remaining in the black box is so small that
we may think of it as zero. The portion of ag lost through leakage is so large
that we may think of it as 100% of ag.

To be perfectly correct in this analogy, the y, process must then be passed
through another black box:

Yo ———— -1 +6) | ———————— - Yy

which adds a constant to each observation, thus transforming the y, process
into the Y, process. Of course,for an ARIMA (p,d,0) model, a nonstationary
process is implied and the sequence of black boxes is:

Yoo = |+6 |-~ -7

and then,

x<
Zi—————————— — 22| ——m——————— e
i=1

Thus, while we have confined our discussion to ARIMA (p,0,0) models and
to deviate time series, it is clear that any argument can be generalized to
ARIMA (p,d,0) models and to the raw Y; process by simply defining an
appropriate black box filter.

“hs  Autoregression refers to a stochastic behavior in which a random shock
“has an exponentially diminishing impact over time. While it may not be

N obvious, this aspect of autoregression is determined by the bounds placed on
{_ the parameter ¢

- These are called the bounds of stationarity for autoregressive parameters. I
an ARIMA (1,0,0) model is written as

A~ - AV_HWVV\H = N?

the implications of these bounds became apparent. If ¢p; = 1

s
%) / 3

(1 = B)y, = a, NI ,

the ARIMA (1,0,0) model coooBmm an ARIMA (0,1,0) E,oa& which re-
flects a nonstationary process. Nonstationary processes result from an inte-
gration of random shocks over time: I o

Yi=Yg+a +ta+...+a-1+a.
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The impact of shocks from the distant past do not diminish over time and this

. not consistent with autoregressive cm:mSo.h . . .

® :%Em implication may be demonstrated again by introducing an important
roperty of the ARIMA (1,0,0) model: The ARIMA :.,o“ov Bwao_ can c,m

Mx?wmmom identically as the infinite sum of m\«weﬁmmﬁmw‘w weighted_past

random shocks. To deduce this important “property, write the ARIMA

pdvdi

(1,0,0) model as
Y= d1ye-1 T &
and
yio1 = d1ye—2 T -1
Substituting for y¢—1,
yi=di(Pryi—2t a1 T a
Pyi—2 + dra—y + ar

Similarly,
Vi = P1y-3 T a2
which we may substitute into the expression for y to obtain
y = dpi(dr1yi—3+ a—2) T a1+ &
= $ly3+ a2 + dra-1 +a

Continuing the substitution process back into the infinite past,

I M 8

Q»?IT

Yt o .

1

which demonstrates that an ARIMA (1 ,0,0) process is identical to the infi-

i i i hocks.
nite sum of exponentially weighted past s :
This is a rather important point. In Section 2.3, we demonstrated that the

inverse difference operator was identical with the infinite series

k
:|wvx_n~+w+w~+...+w + .

Writing the ARIMA (1,0,0) model as an infinite sum of exponentially




l
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29%.:3 past Q:aoa shocks, it is clear that the inverse first-order autore-
gressive factor is identical with the infinite series

(1—¢B)"!

1+ @B+ diB2+ ...+ pBK+ .

f

S #BK.
k=0

This identity gives a “solution” of the ARIMA (1,0,0) model as

1+ é1By = a
yi=(0-¢B" "

=(1+¢ B+ B2+ ...+ B+ .. )a

=a;+ ¢ra— + &mem.T . +$_?:|w+ B
Moreover, as the infinite series formulation of the inverse autoregressive
owoam:.un converges to zero, it may be truncated after a few terms without
appreciably changing an evaluation of the solution. Forexample, if 1 = .5

ye = ag + Sa;,— + .25a,_7 + .0625a,_3 + .03125a;.4
+ o (5

After a few 8&:? the value of &_M is approximately zero. All successive
terms of the series could be ignored.

5.5:.@ the infinite series identity is important in and of itself, it gives a
crucial insight into the nature of process stationarity. Whenever ¢p; = 1, an
.>W:<_> (0,1,0) model is implied but when ¢ > 1, a growth %xeqaw is
implied. Suppose, for example, that p; = 1.5. The ARIMA (1,0,0) E%m%

is then
A_ - Hmwvvxﬁ = a
yi=(1+1.5B) g
=(1+1.5B+ 2.25B* + ... + (1.5"BX + .. )a,
=a + 1.5 +2.25 2+ ... (155, +....

Past random shocks have larger weights and, thus, are more important to the

y¢ process than the current random shock. As time passes, the random shock
becomes more important.

As an example of such a process, consider the hypothetical situation in
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which a savings account earns 5% monthly compounded interest. If the
monthly deposit to the account is essentially random, that is,

a, = deposit in the t™ month
and

y; = savings and accrued interest in the " month,
then the level of the savings account is given by
ye = 1.05y;—1 + a.

In other words, the level of the savings account in this month is equal to
105% of the previous month’s level (y;—1) plus the current month’s deposit
(ay). The current level of the account can be expressed identically in terms of
past deposits only.

y; = a; + 1.053_| + 1.1025a,_5 + 1.157625a-3 + . . .
+(1.05Ka_ + - - -

When expressed in this form, it is apparent that the most important determi-
nant of the current level of the savings account is the first deposit. This is
contrary to the principles of autoregression, and to avoid this situation, the
value of ¢»; must be constrained to the bounds of stationarity for autoregres-
sive parameters.

The principles of autoregression can be generalized to higher order pro-
cesses. An ARIMA (2,0,0) model, for example, is: X

yi = d1yi—1 T doyi—2 t &
or

(1— ¢ B — $2BIy = a.

For p = 2, the current series observation is equal to a portion of the two
preceding observations. In the general case, an ARIMA (p,0,0) model
reflects a type of stochastic behavior in which the present observation is
equal to portions of the p preceding observations. In practice, however, we
have found that most autoregressive social science processes are well repre-
sented by ARIMA (1 ,0,0) models. ARIMA (2,0.0) processes are less com-
mon and higher order ARIMA (p,0,0) processes are quite rare. Indeed, in
the next section, we will describe a class of moving average ARIMA models
which will parsimoniously represent hi gher order autoregressive processes.

To demonstrate the principles of autoregression for an ARIMA (2,0,0)
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process, we begin with the expression for y, and then substitute backward

into time:

V1= dyyi— + oy 2 +
= ¢1(d1yi—2 + doyi-3 + ar-1)
+ $Piyi-3+ dayi—a + a-2)
=a + dra—1 + doa—»
+ dlyi—2 + 201h2yi-3 + dlyi—4
=at+ dra—| + dra—)
+ &W@_qu + boyi—a + a-2)
+ 201b2(br1yi—a + d2yi-5 + a-3)
+ BHb1yi—s + bayi6 + a-1)
=a + dja_y + (dy + %mvm:!m +2¢1dra-3 + da—q
+ B1yi-3 + 3dTayi—4 + db1d3yi—s + DIyi—s

and so forth and so on. Clearly, with enough arithmetic, we can write the
ARIMA (2,0,0) process as the infinite sum of exponentially weighted past
shocks. Unlike the ARIMA (1,0,0) process, however, the infinite series is
not a simple function of ¢, and ¢,.

Of course, like the ARIMA (1,0,0) process, the parameters ¢; and ¢,
must be constrained to the bounds of stationarity for autoregressive parame-

ters. On commonsense grounds, one might think that the bounds of sta-
tionarity for an ARIMA (2,0,0) model should be:

—1 AA\:,GMA +1.

But there are a number of ¢;¢, interaction terms in the infinite series, so
these simple bounds will not ensure stationarity. While we will not do so

here, it can be demonstrated that the bounds of stationarity for an ARIMA
(2,0,0) mode] are:®

|~A&NA+_
1 + pyp < +1
dy — Py < +1.
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So long as the values of ¢; and ¢, satisfy these bounds, a stationary process
is implied. To demonstrate this, let

o+ d2=1
or
dr=1-d1

which violates the bounds of stationarity. The ARIMA (2,0,0) process then
becomes:
(1 — &1B — ¢2B)y = a
(1 - ¢:B — (1 = dDBIW:
(1- B+ B —BHyi=a
yi — iz = P1(—1 ~ ¥i=2) T Ao

il

ag

Ln

which is a difference equation representation of a :o:ﬁ.mﬂo:w@. Enomww.:o:
ARIMA (p,0,0) models describe a type of mHo&Sm:.o behavior ﬁozm "
the current observation is a weighted sum of p .@Roma_:m ova?.\w mc& "
general ARIMA (p,0,0) processes can be written as an infinite m o
exponentially weighted past shocks. As Mmmﬂwmyn%mw m%o%aommmmwm:w RV
can be well represented by 0, )
Mﬂwmw%vmwwonmmmom are less common. Higher order >W:<_>. A?Mrov EMMMMMM
are extremely rare and, in any event, are more @mn.mcdoEocm y 1epr
by the ARIMA (0,0,q) models which we will now introduce.

2.6 Moving Average Processes of Order q: ARIMA (0,0,9)
Models

A white noise process is conveniently thought of as the “driving mOnMM mww
all ARIMA (p,d,q) models. We have shown that integrated Eoo%mﬂoa N
realized as the sum of all past shocks and, thus, are well n.%Momm: : QN
ARIMA (0,d,0) models. >c~0nomﬂmmm,w<o processes are Rm:N% mw Mosﬁoa
ponentially weighted sum of all past shocks and, thus, are we rep Mu\a e
by ARIMA (p,0,0) models. The unifying mwnaoq between 58%3: ¢
autoregressive processes is the persistence oﬁ.m random wroﬁm. Fac : shock
wo,mwwma indefinitely, although for autoregressive processes, the imp Lo
shock diminishes rapidly. Moving average processes, in ooszwwsw e
characterized by a finite persistence. A random mroa_.a enters the mv\ﬁm J
then persists for no more than q observations before it vanishes mﬂ \“zm ov\o v

Moving average processes are well represented by ARI ,0,9
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models. An ARIMA (0,0,1) model is written as

yi=2a — Oja_
or

yi= (1 — O;B)a,.

As are autoregressive processes, moving average processes are stationary.
Again, there is no essential difference between ARIMA (0,0,q) and ARIMA
(0.d,q) models except, of course, that ARIMA (0,d,q) models reflect a
nonstationary process. To simplify our discussion, we will deal only with
stationary processes and ARIMA (0,0,q) models, noting that when a process
is nonstationary, our argument applies to the differenced process.

The general principle of moving average processes is that a random shock
persists for exactly q observations and then is gone. Using the black box

input-output analogy again, we can think of a first-order moving average
process as

—Oja-

L (1=O6pa—1 + % a;.
leakage i=2

Here the random shock a; enters the black box, is joined with a portion of the
preceding random shock, a;_{, and leaves the black box as the time series
observation y;. A portion of the preceding random shock, a;_1, has already
leaked out of the system along with all prior random shocks back into the
distant past.

This basic principle of the moving average process can be generalized to

Emro::aﬂ?oﬁmmwom.moxxm:%_?m=>EZ>Ao.o,Nonowmmmmia:o:
as T

yt=a;— 0131 — O,
yi = (1 — OB — ©;B)a,.

Here the current time series observation consists of the current shock, a,, and
portions of the two preceding shocks, a,| and a;_,. A shock persists for

only two observations and then is gone. In the general case, an ARIMA
(0,0,q) process is written as

yi=(1—-0;B-0,B2— ... -0y B — OB,

JH‘H|
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And in the general case, a shock persists for exactly q observations m.:ﬁw then ,
i acti hat most moving average social pro-
is gone. In practice, we have found t ..\
éesses are well represented by ARIMA (0,0,1) models. ARIMA (0.,0,2) |
models are less common and higher order moving average models are ex-
tremely rare. . .

In Section 2.5, we noted that ARIMA (p,0,0) processes 1n cﬁ:or p>2
will be more parsimoniously represented by lower order moving average
models. This hints at an instructive relationship between ARIMA (p,0,0)
and ARIMA (0,0,q) models. Writing an ARIMA (0,0,1) process mﬁ.,ﬁ.io
points in time, -

o

yi = a — 013
and Ye—1 = -1 7 O1a;-2
thus a1 = yi-1 + O1a-2-
If we substitute the expression for a;_ 1 into the expression for y,
ye = a — O1(yi—1 + O12-2)
=a — O1yi—1 — @mmTw.

Similarly, for a;—2,

a — O1yi-1 — Of(yi—2 + O1a-3)
3
a — O1yi-1 — Ofyi—2 — Ofa-s.

yt

And continuing this substitution back into time,

V= mgl.M QWSIT

i=1

So an ARIMA (0,0,1) process can be expressed identically as the Emaﬁo
sum of exponentially weighted past observations of the process. While we
will not do so here, it can be demonstrated that any ARIMA (0,0,q) process
can be expressed as an infinite series of exponentially weighted past obser-
vations. .

Given this relationship, it is clear that we must constrain the values of
moving average parameters. These constraints are identical to the con-
straints placed on autoregressive parameters. For an >W:<_> (0,0,1) model,

—1< 6, < +1
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and for an ARIMA (0,0,2) model,

-1 <O, < +1
0, +6,<+1
0,-0;<+1.

These are called the bounds of invertibility for moving average parameters.
While the name is different, the bounds of invertibility play much the same
role as the bounds of stationarity for autoregressive parameters. Suppose,
forexample, that O = 1.5 for some ARIMA (0,0,1) process. Then, writing
this process as the infinite series,

ye=a;— 1.5y —2.25y,_9 - 3.37y;—3 — . ..

the weights associated with observations in the distant past become greater
and greater.

In practice, when ¢, or 6 parameters exceed the bounds of stationarity
or the bounds of invertability, the analyst may assume either that the series is
nonstationary and must be differenced or that it was differenced too many
times. Even if the parameters do not exceed their bounds, however, large
values of ¢ or O may indicate that the model selected for the time series is
inappropriate. We will return to these issues at a later point.

2.7 The General ARIMA (p,d,q) Model

Our development so far has treated p and q, the ARIMA autoregressive
and moving average structural parameters, separately. Our development of
autoregressive processes, for example, considered only ARIMA (p,0,0)
models, models in which q = 0. Likewise, our development of moving
average processes considered only ARIMA (0,0,q) models, models in
which p = 0. This development reflects our experience with social science
time series. If our experiences are typical, only a few social science time
series in a thousand will have both p and q # 0.

While ARIMA (p,0,q) models are not logically impossible, the relation-
ships between ARIMA (p,0,0) and ARIMA (0,0,q) models which we have
discussed place some logical limits on ARIMA (p,0,q) models. These limi-
tations are ordinarily referred to as the limitations of parameter redundancy.
To illustrate parameter redundancy, write the ARIMA (1,0,1) process as

Yi=d 1yi-1 T a— Ora
or (1 — ¢ By = (1 — O1B)a

' ‘
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and solving for y;
ye=(1—-¢B)7'(1 - 6B,

In Section 2.4, we demonstrated that the inverse autoregressive operator,
(1 — ¢ B)~!, is identical to an infinite series:

(1-¢B) '=1+¢B+¢B2+...+¢B"+...

0 y=(+dB+dIB*+ ... +¢IB "+ .. )1 — OB,

We can use this infinite series form of the ARIMA (1,0,1) model to examine
the problem of parameter redundancy under certain conditions.

When ¢; = 61, both parameters are completely redundant. Substituting
¢, for O in the infinite series form of the ARIMA (1,0,1) process,

ye=(1+&B+ B2+ ...+ $IB" + .. )1 — ¢;B)a,
=[(1+ B+ dIB2+ ...+ "B "+ .. )
—$1B(1+ ¢ B+ TB2+. .. + 1B+ .. )]a
=(1—¢ B+ ¢ B - B>+ B2~ ... — 1B "+ ¢IB — .. )a
= a;.

(" Sowhen | = O1, an ARIMA (1,0, 1) model reduces to an ARIMA (0,0,0)
/ model.
£

. Now suppose that ¢; # O but that the parameters are close to each other
invalue. If ©) = ¢; + ¢, where c is a very small number, the infinite series
form of the ARIMA (1,0,1) model is:

(1+¢B+ @B+ ...+ ¢IB +...)1 — B —cB)a
[(1+¢B+¢piB>+...+¢1B"+..))
~$B(L+ B+ IB2+ ...+ B+ .. )
—cB(1+ &B + ¢1B*+ ... + 1B "+ .. )]a
=(1 —cB—c¢ B> — cp?B — . .. —cdIB™ 1 4+ . a,.

Now when both ¢ and ¢ are small, cé will be approximately zero and the
ARIMA (1,0,1) model reduces approximately to an ARIMA (0,0,1) model:

Yt

Yo = A~ - a_wvmﬂu

where ¢ = ©,. And if ¢ is not approximately zero, then the ARIMA

g

Y
i
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(1,0,1) model reduces approximately to an ARIMA (0,0,2) model:
yt=(1 — OB - O,B%)a,

where ¢y = O,. And of course, whenever ¢ = ¢, the ARIMA (1,0,1)
model reduces approximately to an ARIMA (1,0,0) model. In practice, the
analyst must always remain skeptical of ARIMA (p,0,q) models. ARIMA
~(0,0,0), ARIMA (p,0,0), and ARIMA (0,0,q) models should always be
B “ruled out before ARIMA (p,0,q) models are entertained.

2.8 The Autocorrelation Function

We have discussed the general ARIMA model so far without paying any
attention to the task of model building. For a given time series, that is, how
can the analyst select an appropriate ARIMA (p,d,q) model? [dentification,
the procedure whereby the values of p, d, and q are determined for a given
time series, relies on a statistic called the autocorrelation function (ACF).
For a time series process, Yy, the ACF is defined as

ACE(k) = COV(Y, Y ;1) / VAR(Y)).

Given a realization of the Y, process, a finite time series of N observations,
the ACF is estimated from the formula

N—k _ _
Wm Y= Y)Y — Y)

N
ACF (k) = . HZI wu.
2 (Y- Y)Y
t=1

The ACF(k) is a measure of correlation between Yy and Y, ;. Fora given lag
k, however, variance (the denominator of the formula) is estimated over all
N observations while covariance (the numerator of the formula) is estimated
over only N—k pairs of observations. Strictly speaking, then, ACF(k) is not
the familiar Pearson product-moment correlation coefficient between time
series observation k units apart.

To illustrate the formula for estimating ACF(k), lag the Y, series forward
In time.

HmmuO <_ *N %w e %Z
Mmmuw <_ wa e %42'_ %Z
_m.muN 4_ e %ZIN %ZRH %‘Z
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and so forth. ACF(1) is the correlation coefficient estimated between the
time series cmmuov and its mz lag (lag-1); ACF(2) is the correlation coeffi-
cient estimated between the time series (lag-0) and its second lag (lag-2);
and, in general, ACF(k) is the correlation coefficient estimated between the
time series (lag-0) and its k'™ lag (lag-k).

There are three points to be noted about the ACF. First, by definition,
ACF(0) = 1; atime series is always perfectly correlated with itself. Second,
also by definition, ACF(k) = ACF(—k); in other words, the >Omc& is the
same whether the series is lagged forward or backward. Because the ACF is
symmetrical about lag-0, only the positive half of the ACF need be ex-
amined. Third, each time the series is lagged, one pair of observations is lost
from the estimate of ACF(k). ACF(1) is estimated from N—1 pairs of obser-
vations: ACF(2) is estimated from N—2 pairs of observations; and so forth.
As the value of k increases, confidence in the estimate of ACF(k)
diminishes. < v

In theory, each time series process has a unique ACF. The Y, process is
fully determined by its ACF, and if two processes have the same ACF, they
are identical. In Section 2.11, we will describe a procedure whereby the
ACF estimated from a realization of the process (from a finite time series,
that is) is used to identify the ARIMA structure of the underlying process. In
this section, we will derive the theoretical or expected ACFs for a variety of
ARIMA (p,d,q) processes.

First, an ARIMA Ao‘,owov or white noise process written as
,%«ﬁ - NA + @O

is expected to have a uniformly zero ACF. This follows from the definition
of white noise. For all k, e

. -

OO/\ANA WTTWV = O
Second, an ARIMA (0,1,0) process written as

SRR
oo T, T

(1-B)Y,=a +6, °

is expected to have an ACF that is positive and dies out slowly from lag to
lag, that s, R MR

ACF(1) = ACF(2) = . . . =~ ACF(k). +
A trending process, for example, has the expected value

m<~ = @oﬁ.
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A realization of this process will have a mean, Y, approximately equal to
some middle observation of the series. When Y is subtracted from each
observation of the series, the resulting deviate series has the expected form

.., =200, —16y, 0, +16q, +26y, .

The first half of the deviate series will be negative numbers and the second
half will be positive numbers. Thus, for a series of N observations, the
estimate of ACF(1) will be based on N—2 pairs of observations with the
same sign; the estimate of ACF(2) will be based on N—3 pairs of observa-

tions with the same sign; and so forth.

. Figure 2.8(a) shows the expected ACFs for several ARIMA processes.
-, The ACF of a nonstationary process is expected to have a relatively high

positive value for ACF(T)and successive lags of the ACF are expected to die
out slowly to zero. In particular, ACF(k) is expected to be approximately

ARIMA (0,0,0): White Noise ARIMA (0,d,0): Integrated Process

gl

| ]

[N EENE NN |

iy

ARIMA (0,0,1): First-Order Moving
><m3mm_®; <0

ARIMA (0,0,1): First-Order Moving
Average, P >0
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GURE 2.8(a) Expected ACFs for Several ARIMA Processes

o:m_ »@
wmoﬁ,am~mo.>@u?+ CmOam:_mmm.Fmosoam_wﬁm\yomg any nonstationary’ *
hog 1s expected to have the form indicated in Figure 2.8(a) y:

ird, an ARIMA (0,0,1) process written as 7 .

ye=(1—0OB)a, |

3

is expected to have a nonzero ACF
(D). All
.vm.oﬁoa to be zero. This is easily de v Loy notag o g 7€

b monstrated by noting that COV (¥t Yev 1)
E(yyi1y) = El(a — ©1a_)(a, — O1ay)]
= E(aacy; — 0123 — O1a— 121 + Ofa,_ay)
=Eaa, | — O Ea} - O\Ea;_ a1 + O%Ea,_a,.
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As the property of white noise is that each random shock is independent of
every other random shock, Ea;a; . = 0 and all terms except one are zero:

E(yiyer1) = — O1Ea} = ~ 0,02

To obtain the expected value of ACF (1), this result must be divided by the y,
process variance. VAR (y) is:

E(y}) = E [(a — Oja-)?]

=E (a} — 2028 + Oai_))
Ea? — 20,Eaa,_, + OEal_,
= (1 + 69).

I

From these two results,
~0,02 -6
E [ACF (I)] = — 1 = #N.
Q.m: +- @: 1+ ®~

Through the same procedure,

E (ytyt+2) = E [(a ~ O1a- )ai+2 — Ora4 1)}
= E (42 ~ 01224 — 01— 1242 + Oa_1a141)
= Eagac» — O1Ba@r; — O1Ba a4 + OfEa,_ja.; = 0.

From this,

0

S
a1+ 6)

E[ACF(2)] =

Through this same procedure, it can be demonstrated that ACF (3), ACF (4),

..., ACF (k) are all expected to be zero.
" It is important to note that an ARIMA (0,d,1) process is nonstationary
" and is thus expected to have an ACF typical of all :o:mSmm:m@ processes. If
" the process is differenced, however,

2= (1 -BYY, = a — Oja.

An ACF for the 7, process will be that expected of an ARIMA (0,0,1)
process.
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Fourth, an ARIMA (0,0,2) process written as )

Yi=(1- 6B - 6,B?)q,

is expected to have nonzero values for ACF (1) and ACF (2). The values of

ACF (3) and all successive ACF (k) ar
( e
(i, ot e P ) are expected to be zero. To demonstrate

E (ytyi+1) = E [(a — Oa | - O2a; 9) (a4, - 613, — B2, )]

=E@a1 - 037 — 0,00, - Oar-jacs | + Ofa_ja,
+0,05a7f_| - O2ai_rar, ) + 620 3,52,
+ ®mmTNm7:

= -~ O,Ea{ + 0,0,Ea}_,

= 036,(0, - 1),

The process variance js:

2
E(yp) =E [(a, —~ Oa_) - @mmTNvm_
= 2 _
E(a - 26128 — 6,300, + Ofal_| + 20,053, _a,
~ s + 037, :
=Ea? + @wmmwl_ + ®mmmwlm
o1 + 07 + 03).

2

il

From these two results,

2
E[ACF (1)] = wwa:@ic _616,-1
o1+ 01+ 03 1+02+03

For the second lag of the ACF,

m =
(Ve Yi+2) = E (a — ®HPL - @wmﬁlmv (A1 — ®_m~+_ - @mmﬂv
= - @wmmm

= - @NQ.W.

This gives the result

- @No‘m - @M

o3l + 61 + 03 1+6}+03

E[ACF (2)] =
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For the third lag of the ACF,

E (yiyi+3) = El(a — Oqa-) — 0,a,_) (a3 — O1812 — O2ar41)]
=0
)

E[ACF(3)] = 0.

The values of ACF (4), ACF (5), . . ., ACF (k) are all expected to be zero
for the same reason.

Continuing this procedure, it can be demonstrated that an ARIMA
(0,0,q) process is expected to have nonzero values for ACF (1), . . ., ACF
(q) while ACF (q+1) and all successive lags are ,oxwooﬁa to be zero.

Fifth, an ARIMA (1,0,0) process written as

(1 — 1By = & ,M

is expected to have an ACF that decays exponentially beginning with the
first lag. To demonstrate this, note that COV (y yi+1) is:

E (yoi+1) = E[(y) (ye+-D] = EL(Y0) (1yt + 2+ 1]
= E (1y? + Year+1)-
As y; and a4 are independent, Eyq;+1 = 0, so
E (yoyis 1) = 1Eyt = d103.

. .2 c s . .
The variance of the process, of course, is oy. Dividing covanance by vari
ance,

E[ACF ()] = = ¢.

For lag-2 of the ACF,

E (yy1+2) = E [(y0 (d1ye+1 T as2)]
=E [(y) (@1(d1ye + ai+1) + a+2)]
= E (¢pIy? + d1yias1 + Yide+2)
= $iEyt = dioy.

Dividing covariance by variance again,

E[ACF (2)] = ioi/ oF = ¢7 .
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By the same procedure,

E [ACF (3)] = ¢

E [ACF (k)] = &}.

This gives the ACF of an ARIMA (1,0,0) process a distinctive pattern of

exponential decay from lag to lag. If | = .5, for example, then,
ACF ()= .5
ACF (2) = (.5)* = .25

ACF(3) = (.5 = .125

ACF (k) = (.5X=0.

Should ¢, be negative, however, successive lags of the ACF are alternately

negative and positive. Soif ¢ = — .5,
ACF(1)=-.5
ACF (2) = (- .5)2 = 25
ACF(3) = (- .5 = — .125

ACF (k) = (— .5¢=0.

For both positive and negative values of ¢, the expected ACF (k) grows
smaller and smaller from lag to lag until, after three or four lags, ACF (k) is
approximately zero.

Sixth, an ARIMA (2,0,0) process written as

(1 = ¢1B — dBy, = a

is also expected to have an ACF that decays exponentially beginning with
the first lag. For higher order ARIMA (p,0,0) processes, COV (y; yi+x) is

difficult to derive. It can be demonstrated, nevertheless, that the expected

ACF for an ARIMA (2,0,0) process is given by’

ACF (k) = ¢y ACF (k — 1) + ¢y ACF (k — 2).
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Recalling that ACF (0) = I and that ACF (—k) = ACF (k), the ACF of an Examining the expected ACFs in Figure 2.8(a), a method for identifying
ARIMA (2,0.0) process is expected to be: ’ the ARIMA structure of a time series process can be seen. Given a realiza-

tion of the process, a finite titne series, the ACF can be estimated and used to

ACE (D) = ¢ ACE(0) + ; ACE (=1) = &) + ¢ ACF (1) infer the process mHEQ:R.Jm the estimated ACF is zero for all lags, the
_ o analyst can infer that the time series was generated by an ARIMA (0,0,0)
1 - anomm.dm the estimated ACF (1) is large and positive, say ACF (1) =7,
and if the ACF dies out slowly from lag to lag, the analyst can infer that the
ACF (2) = $1ACF (1) + ¢2 ACF (0) process is nonstationary; the series must be differenced *If the estimated
Avm ACEF (1) is nonzero but ACF (2) and all successive lags are zero, the analyst
=——+d¢; . can infer that the time series was generated by an ARIMA (0,0,1) process.
1= , ¥Finally, if the estimated ACF dies out exponentially from lag to lag, the
ACF (3) = ¢, ACF (2) + ¢, ACF (1) analyst can infer that the time series was generated by an ARIMA (1,0,0)
process.
_ di(dr + dD But in practice, identification may not always be a simple task. The ACFs
= 2L T PV + 1 P P
1 — oy shown in Figure 2.8(a) are expected ACFs which presume either a knowl-
ACF (4) = ¢; ACE (3) + ¢ ACF (2) edge of .%n process :mm_,m or m_.mo an infinitely long Bm:Nmao:. o.m the process.
In practice, the process itself is always unknown and only a finite realization
Qmﬁﬁvm + QWV 2 of the process (an N-observation time series) is available. To be sure, the
=272 T VU o (@7 + o) . o . g
1 — ¢ estimated ACFs of white noise and nonstationary processes are so distinc-

tive that the mm,&%mﬁ cannot mistake them. m:::w:vw the estimated ACFs of &
higher order ARIMA (0,0,q) and ARIMA (p,0,0) processes are so different

ACEF (k) = ¢1 ACE (k=1) + b2 ACF (k=2). that the analyst will not ordinarily mistake one for the other. The estimated .

To illustrate this expected ACF, let ¢ = ¢ = .4, then, ACFs of ARIMA (0,0,q) and ARIMA (1,0,0) processes are quite similar, ol
however, and in practice, it is nearly impossible to distinguish between these
ACF (1) = .677 two processes on the basis of an estimated ACF alone. .
ACF (2) = .677 Fortunately, another identification statistic, the partial autocorrelation
ACF (3) = .533 function (PACF), can be used to distinguish a higher order ARIMA (0,0,q)
ACF (4) = .479 process from an ARIMA (p,0,0) process. The PACF has an interpretation
ACF (5) = .343 not unlike that of any other measure of partial correlation. The lag-k PACF,
ACF (6) = .329 PACF (k), is a measure of correlation between time series observations k
and so forth. Alternatively, if ¢, = 4 and ¢y = — 4, m::m m.ﬁmz :\Rx:%m correlation at intermediate lags has been controlled or
partialed out.
ACF (1) = .286 ) Unlike the ACF, the PACF cannot be estimated from a simple, straight-
ACF (2) = —.286 forward formula: PACF (k) is estimated from a solution of the Yule-Walker
ACF (3) = —.229 equation system (See Box and Jenkins, 1976:64).® While we will not do so
ACF(4) = .023 here, it can be demonstrated that the solution gives the values of
and so forth. The pattern of decay in the expected ACF is always determined PACF (1) = ACF (1)
by the values of ¢ and ¢;. In the general case, an ARIMA (p,0,0) process is ACF (2) - [ACF (1)2
. expected to have an ACF that decays from lag to lag with the rate of decay PACF (2) =
i determined by the values of ¢;. o, . . . | bp.- I ~ [ACF ())?

ACF (3) + ACF (1) [ACF (2))* + [ACF (1)]?
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— 2ACF (1) ACF (2) — [ACF (1)]* ACF (3)
1 + 2[ACF (1))> ACF (2) — [ACF (2)]* — [ACF (1)}

PACF (3) =

and so forth. Expressing the expected PACF in this form, the role of the
PACF as a measure of partial correlation is made explicit. The PACF in fact
is a “partial” (or “partialed”) ACF. Expressing the PACF in this form also
makes explicit the tedious arithmetic involved in its estimation. Without the
proper software, the estimated PACF would be of little use to the time series
analyst.

As the expected PACF is a function of the expected ACF, and as the
expected ACFs of several ARIMA processes have already been derived, the
expected PACFs are as given.

First, an ARIMA (1,0,0) process whose ACF is expected to be

ACF (k) = ¢}

is expected to have a nonzero PACF (1) while PACF (2) and all successive
lags are expected to be zero:

PACF (1) = ¢,
¢T -t _
1 - ¢

PACF (3) = d + d1dt + dF — 20167 IN&W&
1+ 2611 — ¢ - 247

PACF (2) = 0

_2i+di-20i -
I+ ¢f - 247
Successive lags of PACF (k) are also expected to be zero.
Second, an ARIMA AN,obv process whose ACF is expected to be

>o§:u_|%wm
>nm§nﬁ|w_+§
1 — ¢
+ 2
ACF (3) = [nili_ew sw_v + b1y
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is expected to have nonzero values of PACF (1) and PACF (2) while PACF
(3) and all successive lags are expected to be zero. Substituting the expected
ACF (k) in the formula (too tedious a procedure to be presented here),

PACF (1) = 21—
1—d¢;
— 12 _
PACF (2) = $a(dr — )" — 1o
(1 = ) — of
PACF(3) = 0.

Successive lags are all expected to be zero. In the general case, an ARIMA

(p,0,0).process is expected to have nonzero values for PACF (1), . . .,

PACF (p) while PACF (p+ 1) and all successive lags are expected to be zero.
Third, an ARIMA (0,0,1) process whose ACF is expected to be

|®_
1+67
...=ACF (k) =0

I

ACF (1)

il

ACF (2)

has a decaying PACF, that is, all PACF (k) are expected to be nonzero:

PACF (1) = —6
1+ 67
yaY
PACF (2) = o1
1+6f+06f
03
PACF (3) = oi

1+ 61+ 0} + 6.

Successive lags of the expected PACF grow smaller and smaller in absolute
value. If ©; = .7, for example,

PACF (1) = — .469
PACF (2) = — .283
PACF (3) = — .186

and so forth. In the general case, the PACF of an ARIMA (0,0,q) process is
expected to decay in this same manner but at a rate determined by the values

Om@? e ,Qn.
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ARIMA (0,0,1)  0,>0 ARIMA (0,0,1) 0, >0 ARIMA (1,000 ¢ >0 ARIMA {100) ¢ >0
ACF PACF : ACF PACF
| J : w
]m - — 1 U o . M - A _ _ S W S ) E _ B
{1 A A ]
m : ‘ #
ARIMA (0,0,1) 6, <0 ARIMA (0,0,1)  §,<0 n ARIMA (1,0,0) $1 <0 ARIMA (1,000 ¢ <0
ACF PACF ACF PACF

@Ih L x_ ‘ w N U TLJ{I ;
w ;

(Figure 2.8(b) continued on p. 80)

N N

L

ARIMA (0,0,2) 6,.0, >0 ARIMA (0,0,2) 0,.0,>0

ACF PACF processes are characterized by spiking ACFs and decaying PACFs. An

ARIMA (0,0,q) process is expected to have exactly q nonzero spikes in the
first q lags of its ACF. All successive lags of the ACF are expected to be !
zero. Finally, an ARIMA (p,0,q) process is expected to have both decaying ~
- ACF and PACF. o

_ ‘ﬁ’ﬁjlj There is one more theoretical issue to be covered before the practical
issues of model identification can be considered. In Section 2.11, we will
describe the procedures required to identify an appropriate ARIMA (p.d,q)
model from estimated ACFs and PACFs. In Section 2.12, we will present
four example analyses which illustrate in detail the model-building proce-
dure.

|
vty

Ly

(Figure 2.8(b) continued on p. 79)

Figure 2.8(b) shows the expected ACFs and PACFs for several ARIMA
(p,0,0) and ARIMA (0,0,q) processes. Autoregressive processes are charac- 2.9 Seasonality
terized by decaying ACFs and spiking PACFs. An ARIMA (p,0,0) process
is expected to have exactly p nonzero spikes in the first p lags of its PACF.

All successive lags of the PACF are expected to be zero. Moving average

If it were not for seasonality, time series analysis might become a rather
simple, pleasant task. Most social science time series would be well repre-
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ARIMA (2,0,0) 1.9 >0 ARIMA (2,0,0) ®q. 05 >0
ACF PACF

H_;____. lhi

ARIMA (1,01)  ¢; <0, ¢, >0 ARIMA (1,0,1)  ¢7<0,0; >0
ACF PACF

il

el
i
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il

[

FIGURE 2.8(b) Expected ACFs and PACFs for Several ARIMA Processes

sented by lower order models such as ARIMA (1,0,0), ARIMA (0,0,1), and
ARIMA (0,1,1) which are easily identified in most cases. But it is an
unfortunte fact that almost all monthly or quarterly social science time series
have strong seasonal components. This seasonality complicates the task of
time series analysis generally and ARIMA modeling specifically.

We define seasonality as any cyclical or periodic fluctuation in a time
* series that recurs or repeats itself at the same phase of the cycle or period.
Retail sales indicators, for example, normaily peak in December when
families shop for Christmas presents. If we knew nothing else about a retail
sales indicator, then, we could guess that the series would reach a highpoint
in each December.
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To the time series analyst, seasonality is process variance which must be”
removed or controlled. One method of controlling for seasonal variance is to *
deseasonalize the time series prior to analysis. Johnston (1972: 186) de-°
scribes a multiple regression deseasonalization method wherein dummy
variables are used to estimate the seasonal variance of each month or quarter
of the cycle. This estimated variance is then subtracted from the series.
Makridakis and Wheelwright (1978: Chapter 16) describe similar (though
more complicated) deseasonalization methods used by the U.S. Labor and
Commerce Departments. All of these deseasonalization methods require
that seasonal variation be “adjusted” or subtracted from the series prior to
analysis. In Design and Analysis of Time Series Experiments, Glass et al.
(1975) recommended deseasonalization, noting that it was the only practical
means of handling seasonality. This recommendation was based on the limi-
tations of time series software, however. Since that time, the state of the art
in time series software has advanced to the point at which deseasonalization
cannot generally be recommended. Our comments in Section 2.1 about
detrending a time series apply as well to deseasonalizing a time series: No
adequate deseasonalization methods are available .

The absolute “best” method of handling seasonality is to build a causal
model of seasonal forces. On this point, we cite Nerlove:

In one sense, the whole problem of seasonal adjustment of economic time
series is a spurious one. Seasonal variations have causes (for example, varia-
tions in the weather), and insofar as these causes are measurable they should
be used to explain changes that are normally regarded as seasonal . . . Ideally,
one should formulate a complete econometric model in which the causes of
seasonality are incorporated directly in the equations. . . . On the practical
side the problems include the lack of availability of many relevant series, the
non-measurability of key items, and the lack of appropriate statistical method-
ology . . . Inaddition, the precise structure of the model will very much affect
the analysis of seasonal effects . . . On the conceptual side, the problem is
basically one of continuing structural change, which is essentially the sort of
thing which causes seasonality to show up [1964: 263].

In Chapter 5, where we develop bivariate ARIMA models, it will be clear
that two time series

<~”2~+w~
X, =Ni + S;

may share the same set of seasonal causors. That is, for the seasonal compo-
hents S; and S;- there is some relationship
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Wi

So in the bivariate model,
<~ = Au Axﬁ|ﬂv + m AZTZNV

the two seasonal components, S; and §;, will cancel each other out.

In the univariate situation, however, which is our only concern in this
chapter, seasonality must be accounted for in the univariate ARIMA model.
The seasonal ARIMA model, in contrast to deseasonalization methods,
controls seasonal variance by incorporating seasonal correlations into the
model. To illustrate this general principle, we may write out an N-month

time series as

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Y, Yo Y5 Yy Ys Y Y5 Yy Yo Yy Yy, Yy
Yis Yiu Yis Y Y Yz Yo Yy Yo Yy Yy Yy

YN o ..
Ynoii. .. Yy

Now an ARIMA ( _.,o,ov model uses the prior observation to predict the
current observation, that is,

Ye = b1ye-1 + 2.
The ARIMA (1,0,0) model defines a relationship between Y; and Y5,
between Y, and Y3, and so forth. Similarly, an ARIMA (0,0,1) model
ye=a — Oja,4

defines a relationship between Y| and ap, Y, and a3, and so forth. If a time
series is seasonal, however, it makes good sense to suspect that there will be
similar relationships between Y, or January of the first year, and Y3,
January of the second year; between Y;, February of the first year, and Y 4,
February of the second year, and so forth.
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Seasonal ZO:wﬁmzosm:?

production series tend to exhibit no
to the prominence of Crop seasons
drift or trend, difference the series
subtract Y; from Y5, Y from Y,
dure by the difference operator ,

o €, we assume,
L the process. To account for seasonal

seasonally. That is, for monthly data
and so forth. We represent this proce-

(1-BR?y =g,
or Y=Y 1+ 6,

Processes that are Seasonally nonstationar

o y drift or trend in annual steps such

_—
—_—
—_—

rather than as ocmwz\mmo:-ﬂo-ocmw?m:.on steps

Seasonal Autoregression

Umoc:wzﬁcvmgc i d nd to OIne exten on th
T ationof a TOCESS ma P

oo:m%oz&:mog@?maoz?oB E i
- . ; m .
this relationship for monthly data as proceding cycleor period. We express

Y= &5315 + a
or (1 - &_Nwsv Yr = a.

€ncountered.
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Seasonal Moving Averages ence between the additive and

Finally, the current observation of a time series process may depend to
some extent upon the random shocks from a year or two years earlier:

7 , ; : . . i . .
v =(1 — 61;B")a, e S:,“,Ma_:m:q 8ive a better fit to seasonal data than Mwwwmmmo?m:o:, o
or yo=(1— @Gw_w . @Ewﬁvmﬁ. € model we have just demonstrated is an ARIMA ive model.
model. Other common seasonal (1,0,0) (1,0,0),,

And, of course, the seasonal ARIMA structure may be any combination of

integrated, autoregressive, and moving average components. Ye=(-6B)(1 - @SmtmvmH
The general ARIMA seasonal model is denoted by ARIMA (p,d,q) =(1-6B- 01,812+ o 0,,B13
(P,D,Q) s where P, D, and Q are analogous to p, d, and g. The structural =a,-—0.a . _ 19125 ),
parameter S indicates the length of the naturally occurring period or cycle. ! 18-1 = Opa_; + 010a,_ 5
‘Thus, for monthly data, S = 12. For quarterly data S = 4, and for weekly (2) the ARIMA (0,1,1) (0,0, Dpa
data§ = 52. (- )
Most time series with scasonal ARIMA behavior will exhibit regular B)Ye=60+(1-0,B)(1~ 0,812,
ARIMA behavior as well. It might seem commonsensical to Eoo._ﬁoﬂm:o =0+ (1 - 0B - 0,82 4 ®~® .
regular and seasonal structures additively into the ARIMA model. For ex- =Op+a -0 19128 )a,
ample, a time series with both regular and seasonal autoregressive structures 0T 18—1 = Opa;_ ), + STICIPT:I 3
incorporated additively would be written as and (3) the ARIMA 0,1,1)(0,1,1 )12
(1= ¢:B—¢1B D)y =a =B A=B%Y =00 +(1-60,8)(1- 6,812,
t
or Yi=d1yi—1 + brayi—12 + =6+(1-6,B-0,,B2+ 616,,B1%),
. B0+ 2a - 0a,_, - Ona-12+ 6,650, 5.

2 However, regular and seasonal ARIMA structures are ordinarily incorpo-
* rated multiplicatively. A time series with both regular and seasonal autore- In the ARIMA (0,1,1) (0,1,1);, model

; gressive structures would be written as . .
In practice (that is

| k , regular diffe i 4
(1 - 2B (1 = By, = a. Vice versa) does not matter cmnmcwwzo_:m and then seasonal differencing or
The two autoregressive terms in this expression are called factors. The (1-B)(1—-BI2 = =
difference between additive and multiplicative seasonal models is made )= =B~ B)

explicit by expanding the two-factor model: . =(~-B~B"? 4+ B3
5 So we difference the series regularly

(1= ¢12B9) (1 = ¢ By = 1q
(1= $iB ~ d12B” + 1612y = a A=Y= Y,

and then di :
Yo = $1yi—1 + Prayi-12 ~ P1diayi-13 + ac n difference it seasonally

k)

*

The multiplicative model has a cross-product term, @?v_wmaw which an Zy =2z~ 7,
additive model lacks. Clearly, when both ¢ and ¢, are small, their prod- Or vice versa without cha
uct, ¢y, is approximately zero and, as a result, there will be little differ- plish both differences s

langing the result. And, of course, we could accom-
Imultaneously with the operation
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Zi=(1-B)(1-B?Y,
Zy=(1-B-B2+BYY,
Ze=Yi— Y1 — Y2+ Yo gs.

Our comments about regular autoregression and moving averages are gen-
eral to the seasonal cases as well. In particular, the ARIMA (p,d.q) (P,.D,Q)s
model must have parameters constrained to the bounds of stationarity which,
for autoregressive models, are®

and for the ARIMA (0,d,1) (0,D,1)g model, the bounds of invertibility are
—-1<0;,05 < +1.

Also, ARIMA (p,0,0) (P,0,0)s models may be written as an infinite series of
exponentially weighted past shocks. Similarly, ARIMA (0,d,q) (0,D,Q)s
models may be written as an infinite series of exponentially weighted past
observations. The reader may demonstrate these truths by substitution. We
will not do so here because it involves too much arithmetic. Nevertheless, it
can be demonstrated that the seasonal autoregressive factor has as its inverse
the infinite series

(1—¢sBS) ™! =1+¢sBS + ¢3BS + ... + $IB™ + .. ..
So to “solve” an ARIMA (1,0,0) (1,0,0);7,

(1 - ¢1B)(1 - $12B D)y, = a,
ye=(1—¢B)~" (1 - 2B la
=(1+¢B+¢pB>+ ... + B " +..)
(1+ ¢1oB2 + ¢p1B* + ... + LB+ . )a,.

As both infinite series converge, their product converges.

There should be some transfer of understanding here. The principles
demonstrated for ARIMA (p,d,q) models generalize one-to-one to ARIMA
(P,D,Q)s models. ARIMA(p,d,qP,D,Q)s models imply a stochastic be-
havior determined by the polynomial multiplication of ARIMA (p,d,q) and
ARIMA (P,D,Q)g models. In the general case, the reader who understands
the behavior of ARIMA (p,d,q) models and the rules of polynomial multipli-
cation can deduce the behavior of ARIMA (p,d,q) (P,D,Q)s models. We

e ceecsutl
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will turn our attention to a more practical matter: identifying an appropriate
seasonal model for a time series.

2.10 Identifying a Seasonal Model

As one might suspect, an ARIMA (P,D,Q)s model can be identified for a
time series through an inspection of the seasonal lags of the ACF and PACF.
For monthly data, the seasonal lags are -12, -24, and -36. For quarterly data,
the seasonal lags are -4, -8, and -12. And in general, for the cycle S, the
seasonal lags of the ACF and PACF are lags-S, -2S, and -3S. In Figure
2.10(a), we show the expected ACFs and PACFs for several ARIMA
(P,D,Q)2 processes. The patterns of spiking and decay for these ARIMA '
(P,D,Q)12 processes are identical with the patterns expected of the analo-
gous ARIMA (p,d,q) processes—except that the spiking and decay occur at’
seasonal lags.

First, seasonal nonstationarity is indicated by large and nearly equal
values of the ACF at seasonal lags, that is,

ACF (S) = ACF (2S) = . . . = ACF (kS).

Seasonal differencing will make an ARIMA (0,D,0)s process stationary.

Second, ARIMA (0,0,Q)s processes are expected to have Q spikes at the
first Q seasonal lags of the ACF. All successive lags are expected to be zero.
The PACF of an ARIMA (0,0,Q)s process is expected to decay from sea-
sonal lag to seasonal lag. The rate of decay is determined by the values of
@mw @va e, @Om.

Third, ARIMA (P,0,0) processes are expected to have a decaying ACF,
the rate of decay determined by the values of ¢g, ¢os, . . . , ¢ps. The PACF
of an ARIMA (P,0,0) process is expected to have P spikes at the first P
seasonal lags. All successive lags of the PACF are expected to be zero.

Of course, ARIMA (P,D,Q)s processes are rarely encountered in the
social sciences. Most social science processes, if seasonal at all, are best
represented by ARIMA (p.d,q) (P,D,Q)s models. The identification of an
ARIMA (p,d,q) (P,D,Q)s model is complicated by interaction terms.
Whereas an ARIMA (p,d,q) model can be identified on the basis of the first
few lags of the ACF and PACF, and whereas an ARIMA (P,D,Q)g model
can be identified on the basis of the first few seasonal lags of the ACF and
PACF, an ARIMA (p.d,q) (P,D,Q)s model must be identified on the basts of
the entire ACF and PACF.
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ARIMA(0,0,1),, vao

ARIMA{0,0,1),, 8,,>0
12712 PACF
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ARIMA (1,0,0),, ¢, >0 ARIMA (1,00}, 5 15 >0
ACF PACF \
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ACF PACF

FIGURE 2.10(a) Expected ACFs for Several ARIMA (P,D,Q),, Processes

Univariate ARIMA Models 89

If it were not for the rather simple nature of social science time series
processes, the identification of an ARIMA (p.d,q) (P,D,Q)s model would be
an infinitely complicated task. There are a number of features which sim-
plify the task, however.

For example, the analyst usually knows the value of S. For monthly data,
S = 12. For quarterly data, S = 4, and so on. In other substantive areas, time
series analysts may not know the value of S and this complicates model
identification. Because we know the length of the seasonal cycle, we need
only examine a few specific lags of the ACF and PACF to identify a model.

Similarly, social science processes typically have small integer values
(almost always O or 1, sometimes 2) of p, q, P, and Q. If the ARIMA (p,d,q)
(P,D,Q)g structural parameters took _mwmoq integer values, as seems to be the
case in other substantive areas, the analyst would be forced to assess the
statistical significance of many dozen lags of the ACF and PACF. This in
turn would require much longer time series (say 300 observations or more)
than are ordinarily available to the social scientist.

Finally, as a general rule, the regular and seasonal factors of an ARIMA
(p.d,q) (P,D,Q)s model will be of the same type, that is, either autoregres-
sive or moving average. If the regular factor is autoregressive, the analyst
can usually rule out seasonal factors that are not autoregressive. As our
discussion of parameter redundancy in section 2.7 suggests, ARIMA (p,0,0)
(0,0,Q)s and ARIMA (0,0,q) (P,0,0)s models will often reduce to simpler
ARIMA (p,0,0) (P,0,0)s and ARIMA (0,0,q) (0,0,Q)s models.

In Figure 2.10(b), we show the expected ACFs and PACFs of the most
commonly encountered ARIMA (p,d,q) (P,D,Q);; processes. As shown,
ARIMA (0,d,0) (0,D,0);; processes are characterized by persistently high
values of the ACF at the regular and seasonal lags. The ACF shown indicates
that the time series must be differenced both regularly and seasonally. Many
social science time series processes are nonstationary only in the regular
factor or the seasonal factor and, thus, should be differenced only regularly
or seasonally. The ACFs of regularly, seasonally, and joint regularly/
seasonally nonstationary processes are so distinctive that, in practice, the
analyst will seldom mistake the type or number of differences required to
make a process stationary.

An ARIMA (0,0,1) (0,0,1)15 process is expected to have spikes at lags-
11,-12, and - 13 of the ACF. Higher lags of the ACF are expected to be zero.
The PACF is expected to decay at both regular and seasonal lags but the key
to identification is clearly the ACF. In the general case, an ARIMA (0,0,q)
(0,0,Q)s process has a distinctive ACF with
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FIGURE 2.10(b) Expected ACF or PACF for Several ARIMA (p.d,q)
(P,D,Q)45 Processes

ACF (1), ..., ACF (q) expected to be nonzero
ACF(g+1), ..., ACF(S—q) expected to be zero

ACF (S—q+1), ..., ACF (S+q) expected to be nonzero
ACF (S+q+1), ..., ACF (25—q) expected to be zero
ACF (2S—q+1), ..., ACF (2S+q) expected to be nonzero

and so forth. For Q>2, the process repeats itself. An ARIMA (0,0,1)
(0,0,2)1> process then is expected to have nonzero spikes at lags-11, -12,
and -13 of the ACF and at lags-23, -24, and -25 of the ACF.

An ARIMA (1,0,0) (1,0,0);; process is expected to have an ACF which
decays exponentially from seasonal lag to seasonal lag. The key to identifi-
cation, however, is the PACF which will have a spike at lag-1 and at lags-12
and -13. In the general case, the PACF of an ARIMA (p,0,0) (P,0,0)»
process is expected to have spikes at the first p lags, atlags S, . . ., SP, and
at lags PS+p. For an ARIMA (2,0,0) (2,0,0), process, then, we expect to
see spikes at lags-1 and -2, at lags-12 and -13, and at lags-24 and -25 of the
PACF. All other lags of the PACF are expected to be zero.
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In theory, the identification of an ARIMA (p.d,q) (P,D,Q)s model for a
time series reduces to a set of logical steps. First, use the estimated ACF to
determine whether the series is stationary. If not, difference it appropriately.
Second, use the ACF and PACF to determine the integer values of p and/or
q. Third, use the ACF to determine the value of Q or the PACF to determine
the value of P. Having thus identified an ARIMA (p,d,q) (P,D,Q)g model for
the time series, we are ready to build the model.

2.11 Model Building

ARIMA modeling has been called an “art” by many authors. This seems
to imply that one must be an artist (either by virtue of innate talent or lengthy
training) to successfully create a model. We disagree. We prefer to think of
ARIMA modeling as a craft, similar perhaps to carpentry. As a craft activ-
ity, basic ARIMA techniques are accessible to everyone after only a rela-
tively short apprenticeship (usually an intensive workshop or a half-
semester of coursework). And after acquiring a firm grasp of the essentials,
one can develop journeyman skills by working with different types of data
and more challenging substantive applications.

An ARIMA model is custom-built to fit a particular time series. Like a
carpenter, the time series analyst uses tools (the statistical models we have
developed), materials (the data), and plans (a model-building strategy) to
create a model. In this section, we develop a detailed model-building strat-
egy which, when followed by the analyst and supplemented by skills, will
usually produce a sturdy, craftlike model. Our model-building strategy is
essentially the one recommended by Box and Jenkins (1976) with the addi-
tion of several procedures we have found valuable in the analysis of social
science data.

Our model-building strategy is generally conservative. We prefer to see a
simple, robust model rather than a flimsy, flashy one. If a model does not fit
the data well, we expect the craftsman to acknowledge that fact (rather than
trying to force a fit by bending the model parts out of shape). Having built
the model, the craftsman will critically evaluate its quality and, if found
wanting, will make appropriate adjustments or will report its shortcomings.

ARIMA models are built through an iterative identification/estimation/
a_mm:om_m strategy which we have outlined as a flow chart in Figure 2.11(a).
* Before starting, the analyst should inspect a plot of the raw time series.
Particular attention should be paid to sources of nonstationarity which may
be visible in the series plot. While nonstationarity due only to m%maamao
trend or drift is easily detected in an inspection of the series ACF, honsta-
tionarity associated with other causes (variance nonstationarity, for exam-
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> | (1) IDENTIFICATION

(2) ESTIMATION: Parameter estimates must be statisti-
cally significant and must lie within the bounds of
stationarity-invertability. If either criterion is not
met, return to IDENTIFICATION. If both are met,
proceed to DIAGNOSIS.

A

(3) DIAGNOSIS: Model! residuals must be white noise as
judged by two criteria. First, the residual ACF must
have no spikes at key lags. Second, the Q-statistic
must not be significant. 1f either criterion is not met,
return to IDENTIFICATION, If both are met, accept
the model.

METADIAGNOSIS

USE THE MODEL: After a tentative mode! has been accepted, it
may be used for impact assessment (Chapter 3), for forecasting
(Chapter 4), or for causal analysis (Chapter 5).

FIGURE 2.11(a) The ARIMA Model-Building Strategy

ple) can usually be detected only through an inspection of the time series
plot.
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The iterative identification/estimation/diagnosis strategy begins with the
identification of a tentative ARIMA model for the series. Patterns of auto-
correlation observed in the data are compared with the patterns expected of
various ARIMA models. If nonstationarity is indicated—by an ACF which
fails to “die out”; see Figure 2.8(a)—it will be necessary to difference and/or
transform the series prior to identifying a tentative mogel.

Next, the parameters of the tentative model are estimared. All parameter
estimates must lie within the bounds of stationarity-invertibility and must be
statistically significant. If the parameter estimates do not satisfy these crite-
ria, a new model must be identified and its parameters estimated.

After a tentative model has been identified and its parameters satisfacto-
rily estimated, it must be diagnosed. To pass diagnosis, the residuals of the
tentative model must be white noise. If this criterion is not satisfied, the
tentative model is inadequate and must be rejected; the model-building
procedure begins anew. Another model is identified, its parameters esti-
mated, and its residuals diagnosed. The iterative identification/estimation/
diagnosis procedure continues until an adequate model has been created for
the time series.

The strategy we recommend is a model-building strategy. It leads to a
model that is statistically adequate and yet parsimonious for a given time
series. Alternative strategies might be better described as model-firting
strategies. The analyst might begin, for example, by fitting a general
ARIMA (p,d,q) (P,D,Q)s model to the time series and then deleting unnec-
essary terms from the model. This alternative strategy will generally lead to
a model that is statistically adequate (that “fits” the data, that is) but that is
not necessarily parsimonious. A model that is adequate but not parsimonious
is arbitrary and may lead to a set of confused and confusing inferences.

Our treatment of ARIMA modeling so far has been in the abstract. We
have been concerned primarily with “expected” statistics and “general”
cases. We will now consider the more practical aspects of modeling, starting
with a more detailed description of the general model-building strategy.

Identification

Identification is the key to model building. An ARIMA model must have
some empirical basis. That is, put simply, there should be some reason for
selecting one tentative model over another. The empirical basis will ordinar-
ily be the patterns of autocorrelation found in the ACFs and PACFs esti-
mated from the time series. If two competing models are both adequate, the
model that best fits the ACF and PACF is the “better” of the two models.
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In practice, estimated ACFs and PACFs will not be identical to the
expected ACFs and PACFs shown in Figures 2.8(a), 2.8(b), 2.10(a), and
2.10(b). An ARIMA (1,0,0) process, for example, is expected to show
“perfect” exponential decay in the ACF and to have a single spike at
PACE(1). These expected patterns can be counted on only when the process
realization (the time series, that is) is infinitely long, however. If a time
series is not infinitely long, the estimated ACF and PACF will not “per-
fectly” match the expected ACF and PACF of the underlying process.

Ambiguity in identification sometimes amounts to differences of opinion
or interpretation. One analyst may see two spikes in the estimated ACF
whereas some other analyst may see only one spike. The first analyst will
then conclude that an ARIMA (0,0,2) model adequately represents the series

y=(1-6B- 0,B%)a,

while the second analyst will conclude that an ARIMA (0,0,1) model ade-
quately represents the series

ye= (1 — O;B)a;.

When we discuss parameter estimation, it will be apparent that differences
of opinion such as this can be decided absolutely. For the time being,
however, we note that ambiguity in estimated ACFs and PACFs can be
lessened somewhat by placing confidence bands around the ACFs and
PACFs. For the ACF, standard errors (SE) of the ACF(k) are estimated from
the formula

k
SE [ACF (k)] = ; 1+23 [ACF ().

i=1
For the PACF, standard errors of the PACF (k) are estimated from the
formula

SE [ PACF (k)] = VI/N.

In the example analyses of Section 2.12, we will plot confidence intervals
around the ACF and PACF at = 2 SE. Values of ACF (k) and PACF (k)
which lie inside this interval will be considered not significantly different
than zero.

The difference between the pattern of autocorrelation in the theoretical
ACF of an infinitely long series and the pattern generated by finite samples is
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vividly illustrated in Figures 2.11(b) and 2.11(c). Figure 2.11(b) presents
lags 1 to 10 of the theoretical ACF of the ARIMA (1,0,0) model

Y = 5¥t—1 + a.

Using this same model, we have generated six realizations of the process,
each 100 observations long. Each realization was generated with NID (0,1)
random shocks. Figure 2.11(c) shows the first 10 lags of the ACF for these
realizations.

Note that, even though these six realizations were generated by the same
ARIMA (1,0,0) process, there is a wide range in their estimated ACFs. The
distinctive exponential decay pattern of an ARIMA (1,0,0) ACF is clearly
seen in some of the estimated ACFs but is largely obscured in others. The
estimated PACFs for these six realizations (not presented) clearly indicate an
ARIMA (1,0,0) process, however, with statistically significant estimates of
PACEF(1) and all other lags not statistically significant. It is alsoimportant to
note that, as the length of realization increases, the pattern of decay in the
estimated ACF converges to the pattern expected of an ARIMA (1,0,0)
process. If these six realizations were 200 observations long, identification
of an ARIMA (1,0,0) model from the ACF would be more certain.

These simulated identifications illustrate the value of using all available
data. The analyst should also use both the ACF and the PACF to identify a
tentative model, rather than relying solely on the ACF and its SE. In general,
a conservative approach to identification is urged. The more parsimonious
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FIGURE 2.11(b) Expected ACF for the Process Y, = .5y, 1 + a; to aid
comparison with figure 2.11(c), standard errors have
been calculated with T=100 observations
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models (p,P,q, and Q = 0 or 1) should be ruled out before more complicated
models are entertained. Should a more parsimonious model prove inade-
quate, the inadequacy will become apparent at a later stage of the model-
building strategy. An overly complicated model, on the other hand, may
pass through all subsequent stages of the strategy without notice.

The conservative approach is especially urged when differencing is an
issue. The impatient analyst may difference a time series generated by a
stationary process and, as a result, may select an overly complicated, cum-
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bersome model. The costs of overdifferencing a time series are easily de-
monstrated. A relatively simple ARIMA (0,0,1) process, for example,

vt = (1 — O1B)a,

when differenced becomes

(1—-0;B)a, — (1 - 9Ba,—
=a — O3 —a-1 + Ora
=a—(0;+ Da—; + O3,

Yo — V-1

an ARIMA (2,0,0) process. Moreover, as the parameters of this process are
likely to exceed the bounds of invertibility, the analyst may end up with a
high-order ARIMA (p,0,0) model for the time series. Whenever the realiza-
tion of a stationary process is differenced (when the time series is overdif-
ferenced, that is), autoregressive or moving average structures must be
incorporated in the model to remove the effects of differencing. This is a
classic example of parameter redundancy. To avoid this problem, a time
series should not be differenced unless its ACF clearly indicates a nonsta-
tionary process. And of course, a time series should never be differenced
before its ACF is examined.

Estimation

Estimation follows identification. Having tentatively identified an
ARIMA (p.d,q) (P,D,Q)s model for the time series, the ¢, ¢y, 6y, and
O parameters of the tentative model must be estimated. An ARIMA (p,d.q)
(P,D,Q)s model is generally nonlinear in its parameters and this means that
standard OLS regression software such as SPSS cannot be used for estima-
tion. All university computing centers will have either a general nonlinear
regression program or a software package designed especially for ARIMA
estimation.!® The analyst will input the time series and an ARIMA (p,d,q)
(P,D,Q)s model and will receive parameter estimates as output. The analyst
will have two major concerns here.

First, the estimated autoregressive and moving average parameters
should be statistically significant. Any parameter whose estimated value is
not significantly different than zero should be dropped from the tentative
model. In our discussion of identification, we cited a hypothetical situation
in which ARIMA (0,0,1) and ARIMA (0,0,2) models were posited for the
same time series, noting that this type of disagreement could be resolved
absolutely. In fact, if the estimate of O, for the ARIMA (0,0,2) model is not

statistically significant, the ©, parameter should be dropped from the
mode].
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Second, the estimated autoregressive and moving average parameters ~ Ifthe tentative model is not statistically adequate by this criterion, the
must lie within the bounds of stationarity and invertibility. 1f the estimated ; analyst may often remedy the situation by increasing the values of p,P,.q,or
parameters of the tentative model do not satisfy the stationarity-invertibility L Q. In the hypothetical situation of ARIMA (0,0,1) and ARIMA (0,0,2)
i conditions, then the tentative model must be rejected. If a stationary time ” models posited for the same time series, we see that the disagreement could
series has been differenced incorrectly, or if a nonstationary time series has ( besettledat the diagnosis stage also. If the analyst posits an ARIMA, (0,0, 1)

Mw i et o

not be ditferenced, autoregressive and/or moving average parameter esti-
mates will invariably exceed the bounds of stationarity or invertibility.
Whatever the cause of the problem, however, the tentative model must be
rejected if the estimated parameters do not satisfy the stationarity-
invertibility conditions.

Diagnosis

Having identified a tentative ARIMA (p,d,q) (P,D,Q)s model, and hav-
ing satisfactorily estimated its parameters, the model must be diagnosed. A
statistically adequate model is defined as one whose residuals (&;) satisfy
two diagnostic criteria.

First, the residuals of the tentative model must be independent at a first
and second lag, that is,

E(a48+1) = E(8,4142) = 0.

To evaluate the statistical adequacy of the tentative model by this criterion,
we estimate an ACF for the residuals. If the tentative model is statistically
adequate by this criterion, then

ACF (1) = ACF (2) = 0.

The ACF for the model residuals must have no statistically significant values
at the first two lags, that is, ACF (1) and ACF (2) must lie within the
confidence intervals we have plotted around the ACF. For seasonal data, we

will also require
ACF (S) = ACF (2S) =0,

that is, the model residuals must be free of autocorrelation at the seasonal
lags. Box and Jenkins (1976: 291) note that the standard error of the ACF
may significantly underestimate the true standard error of the residual ACF
depending on model form and parameter values. Therefore, in residual
diagnosis, the ACF standard error should be considered an upper limit. If a
low-order lag autocorrelation is slightly less than two standard errors in
magnitude, then the prudent analyst may wish to consider it significant for
diagnostic purposes.

model but finds statistically m_.mn_.momsﬂ autocorrelation at lag-2 of the resid-
ual ACF, then the ARIMA (0,0, 1) model must be rejected. Similarly, if the
analyst posits an ARIMA (p,d,q) model for a time series but finds statisti-
cally significant autocorrelation at seasonal lags of the residual ACF, then
the ARIMA (p,d,q) model must be rejected in favor of an ARIMA (p.d,q)
(P,D,Q)s model.

ﬂwmx,\mwme:&\gnmlez of statistical adequacy is that the residuals of the
tentative model must be distributed as white noise. The ACF of a white noise
process is expected to be uniformly zero. For 20 or 30 lags of an ACF,
however, given a .05 level of statistical significance, we anticipate that there
will be two or three significant spikes by chance alone. To test whether the
entire residual ACF is different from what would be expected of a white
noise process, the analyst may use a Q statistic given by the formula!!

3 PP ;

v F

o
s

K
Q =N 3 [ACF (i)]?
i ——— i=1
i_ﬁﬁ: bﬂ w — P —q— P — Q. The Q statistic is distributed approximately
or_.umw%_.oixr the degrees of freedom as indicated. A null hypothesis that
the model residuals are whité noise is:

Ho: ACF(1)= ... = ACF (k) = 0.

That is, the null hypothesis states that the residual ACF is not different than a
white noise ACFIf the Q statistic for the residual ACF is significant, the
null hypothesis must be rejected; the model residuals are not white noise, so
the tentative model is not statistically adequate and must be n&.ooﬁoaw: the Q
statistic is not statistically significant, the null hypothesis is not rejected; the
model residuals are not significantly different from white noise and the
tentative model is accepted.

. The Q statistic is sensitive to the value of k, that is, to the number of lags
In the residual ACF. For a relatively long ACF, say 50 lags, the Q statistic is
likely to understate the serial correlation in the model residuals. Even if the

residuals are not white noise, the Q statistic for a relatively long ACF is not

N

J

likely to be statistically significant. The problem here is that, using an ACF °

of 20 lags, the null hypothesis might be rejected. For the same set of

i
|
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i residuals, using an ACF of 40 lags, the null hypothesis might not be rejected.

(> To solve this problem, one should use an ACF that is neither “too long” nor

| VAN

w‘,rw»

-

»

In the example analyses in Section 2.12, we usually use ACFs of
25 _wmm This length allows us to examine the seasonal lags of monthly data
(lags 12 and 24 of the ACF and PACF) while still allowing a fair test for the
Q statistic. In our experience, 25 lags is usually neither “too long” nor “too
short” for most data but, of course, this length is somewhat arbitrary.
Granger and Newbold (1977) do, however, recommend that a minimum of
20 lags always be used in the calculation of Q.
M We note finally that each of the two criteria of statistical adequacy is

“t00 short.

7 necessary but not sufficient grounds for accepting a tentative model. Ob-

viously, a set of model residuals can meet one criterion but not the other. To
be accepted, however, the tentative model must be statistically adequate;
and to be statistically mao@cmmov the tentative model must meet whm.%r of these
diagnostic criteria. ’

A variety of other residual checks may prove useful in diagnosing the
estimated model. Box and Jenkins (1976) suggest methods for checking for
Normality and for investigating possible seasonal dependencies in the resid-
uals. The latter are often of doubtful utility given the limited length of many
social science time series. We strongly recommend inspecting a plot of the
residual series and a plot of the predicted values versus the observed values.
Both of these are invaluable for assessing the fit and adequacy of the model,
particularly with regard to potential sources of variance nonstationarity such
as outliers and variance proportional to the series level.

Metadiagnosis

After the tentative model has been identified, its parameters estimated,
and its residuals diagnosed, the analyst may accept the tentative model.
However, the prudent analyst may wish to consider a set of factors over and

“above those implied by the identification/estimation/diagnosis strategy. We
call this procedure metadiagnosis.

Having accepted the tentative model, the analyst can be sure only that the
model is statistically adequate and parsimonious. These are relative qualities
of the model which say very little about certain absolute concerns. In build-
ing an ARIMA model for a time series, the analyst plans to use the model for

some purpose. We do not discuss the uses of ARIMA models in this chapter.

= But generally, the analyst plans to use the ARIMA model for impact assess-
/”/

, ment (which we awmocmm in Chapter wv,%oﬂk - forecasting (which we cover in

Chapter 4), or for multivariate causal analyses (which we cover in Chapter
{ 5). If the ARIMA model is used for any or all of these purposes, the analyst

Univariate ARIMA Modeils 101

should consider the mﬁm,o_:ﬁ qualities of the model in light of its projected

use.
First, in absolutg terms, how good is the ARIMA model? There are a

number of criteria which could be used for this assessment. However, the

most reasonable criterion would seem to be the RZ statistic computed as

N .2

> residual sum of squares = 1 — 3, 3t
Re=1- t=1 2
total sum of squares Y§

The R statistic has the same interpretation here as in cross-sectional multi-
ple regression analysis. It is the percent of variance in the time series that is
“explained” by the model. The reader who is not familiar with time series
methods may be surprised to learn that time series models routinely have R?
statistics higher than .9. Of course, the greatest portion of this explained

variance is due to the parameter Op. A more realistic R2 statistic, then, will
be:

RZ=1-

Mz
o>

-
-

Y

—rl\)'-.»l\)

where y; = Y; — O for a stationary process and y, = zy — Oy for a
nonstationary process. By subtracting the parameter O from each time
series observation, the analyst obtains an R statistic which measures the
percent variance explained only by the autoregressive and/or moving aver-
age parameters of the model. Naturally, the analyst will require a relatively
high R? statistic for the model.

A statistic related to the R? is the residual mean square (RMS) statistic
computed from the formula e e e

N
RMS = 1/N M_ at
H”

@n aset of N residuals. Like the R%, the RMS statistic gives a “goodness-of-
fit” measure for the model. Unlike the WN, however, the RMS statistic is not
wﬁmwaﬁamwoa. By tradition, the RMS statistic is more widely used in time
series analysis than the R> and we will follow that tradition so far as possible.
) .Zﬁm&mmso&m ordinarily begins with overmodeling. If the iterative iden-
:m_omaos\nmmw:m:oz\&mmsomi procedure has lead to an ARIMA (0,1,1)
model for a time series, the analyst should try to fit an ARIMA (0,1,2)
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model. If the ARIMA (0,1,1) model has been judged statistically adequate
in diagnosis, the estimated O, parameter of the ARIMA (0,1,2) model
should be statistically insignificant. In general, overmodeling amounts to
increasing the values of p, P, g, and Q for the ARIMA (p,d,q) (P,D,Q)s
model and, in general, if the accepted model has been judged statistically
adequate, the estimated parameters of the higher order model should be
statistically insignificant.

Another dimension of overmodeling might be called undermodeling. In
Sections 2.5 and 2.6, we demonstrated that an ARIMA (1,0,0) model could
be expressed as an infinite order ARIMA (0,0,q) model, that is,

Yo = d1ye-1 + &
_ 2
- W~+S_m.~‘_ +$_N~]N+ . e +AVM~N~|=IT ve ey

and that an ARIMA (0,0,1) model could be expressed as an infinite order
ARIMA (p,0,0) model, that is,

Ve =a; — Qa1
=a;— O1y1—1 I@mv:lw - = Oy,

and due to the conditions of stationarity-invertibility, the infinite series both
converge absolutely to zero. More to the point, after two or three terms, for
small values of ¢ and O, the values of ¢ and OF are approximately zero.
Given this, it is possible that an ARIMA (0,0,2) model might be approxi-
mately identical with an ARIMA(1,0,0) model. In practice, then, if the
accepted model is ARIMA(0,0,2),

yi =2 — O1a—1 — Ora-»

and if 6, = 61, the analyst can almost always find a statistically adequate
ARIMA (1,0,0) model for the series

Y= d1yi—1+ &

where ¢ =~ O; Now which of these two alternative models is the “better?”

In this case, the competition might be decided on the basis of parsimony
alone. The ARIMA (1,0,0) model has only one parameter and this is “better”
than the ARIMA (0,0,2) model. The analyst must remember, however, that
the ARIMA (1,0,0) and ARIMA (0,0,2) models are only approximately
identical. In fact, if the underlying process is ARIMA (0,0,2), an ARIMA
(0,0,2) model will be the “better” under all circumstances. Parsimony not
withstanding, the RMS statistics of the two models can be used as a measure
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of quality. If the ARIMA (1,0,0) model has a lower (or even approximately
equal) RMS statistic, it must be deemed the “better” model because it is the
more parsimonious of the two. But if the ARIMA (0,0,2) model has a
significantly lower RMS statistic, the rule of parsimony may be waived.

The rough equivalence of autoregressive and moving average models
becomes more of a problem when seasonal factors are considered. An
ARIMA (0,0,1) (0,0,2);7 model, for example,

yt = (1 = ©|B) (1 — O;B'2 — ©,,B )a,
will be approximately identical with an ARIMA (0,0,1) (1,0,0);> model
(1 — ¢12B")y, = (1 - ©,B)a,

whenever Oy =~ @ww. The reader may demonstrate this simple fact by
“solving” the ARIMA (0,0,1) (1,0,0);» model. Whenever P or Q is greater
than one,then, the prudent analyst will undermodel the series, comparing
alternatives.

Metadiagnosis is perhaps the most critical stage of the model-building
strategy. In metadiagnosis, the analyst plays the role of devil’s advocate,
criticizing and arguing as best as possible that a “better” model can be found.
Failing, the analyst should be convinced that the “best” possible model has
been built for the time series. We will return to this topic in the next few
chapters, discussing metadiagnostic techniques which pertain to the specific
applications of ARIMA modeling: impact analysis, forecasting, and
multivariate analysis.

2.12 Example Analyses

We suspect that, after digesting the material preceding this, the reader
still has a number of unanswered questions. In this section, we hope to
answer many of these questions by presenting a few in-depth example
analyses. The series we will analyze here are listed in an appendix to this
volume and the reader is invited to replicate our analyses, checking (or
challenging) our results. If our experiences in teaching time series analysis
are typical, many questions the reader may have can be answered only
through personal experience. The surest way to learn time series analysis is
through informed practice.

We have selected these series for analysis because each illustrates one or
more practical problems that the analyst is likely to encounter. Collectively,
we have analyzed hundreds of social science time series in the last few years
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and the series‘we analyze here are “typical.” We include stationary series and
nonstationary series and one time series that is nonstationary in both level
and variance. One of the series is “not a time series” in the strictest sense and
another is distorted by a deviant value or outlier.

The ACFs and PACFs for these analyses are the printed output of
SCRUNCH (Hay, 1979), an interactive software package for Box-Jenkins
time series analysis. The output of SCRUNCH is similar to most Box-
Jenkins time series packages. Parentheses about the ACFs and PACFs indi-
cate confidence intervals of *2 standard errors. Hence, any estimated
ACF(k) or PACF(k) within the parentheses are not significantly different
than zero. The values of each ACF (k) or PACF (k) along with their respec-
tive standard errors are listed alongside the correlogram plot.

2.12.1 Sutter County Workforce

The time series plotted in Figure 2.12.1(a) are monthly workforce statis-
tics (the total number of people employed in the workforce) for Sutter
County, California. The first observation of this series is January, 1946. The
252nd observation is December 1966. From an eyeball inspection of the
plotted series, it seems obvious that this series is nonstationary and seasonal.
Infact, as the series level appears to increase in annual steps, we suspect that
this series may be seasonally nonstationary. We will reserve judgment on
this issue until after we have inspected the ACFs and PACFs, however. And
of course, we will follow the model-building strategy we have outlined in
Figure2.11(a).

Identification. The ACF of the raw time series shown in Figure 2.12.1(b)
indicates nonstationarity as we had suspected. There is no evidence of decay
and the high-order lags remain significant. The series must be differenced.
The ACEF of the regularly differenced series shows seasonal nonstationarity
as well. The basis for this identification is seen at lags—12 and —24 of the
ACF. Bothlags are large and nearly equal. After differencing this series both
regularly and seasonally, the ACF and PACF suggests an ARIMA (0,1,1)
(0,1,1);2 model. We arrive at this identification by noting the ACF spikes at
lag—1 and lag—12 while the PACF exhibits rough patterns of decay begin-
ning at lag—1 and lag~12. We write this tentative model as

(1-B)(1—B?)Y, =0y + (1 — 6;B) (1 — 6B,

or

6y + (1 —0,B)(1 — 63B'?)
(1 —B)(1 — B

Y=

a.
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FIGURE 2.12.1(a) Sutter County Workforce

The model has three parameters, 6y, O}, and ©,, which must now be
estimated.

Estimation. Parameter estimates for the tentative model are'?:

O¢ = .52 with t statistic = .22
6, = .60 with t statistic = 11.38
6, = .68 with t statistic = 13.33.

First, we note that both © | and © 12 lie within the bounds of invertibility for
moving average parameters, so both parameters are acceptable by that crite-
rion. Using a .05 level of significance, however, we require a t statistic of
*1.96 and, at this level, the estimated value of Oy is not statistically differ-
ent than zero. What this means is that the upward motion of this time series is
not significantly different than drift and, as a result, © is dropped from our

tentative model. Both © 1 and 6 12 are statistically significant, so our tenta-
tive model is:

(1-B)(1 -B'2)Y,=(1 - .60B) (1 — .68B!2)a,.

{text continued on p. 110)
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SERTES.. EMPLOY  (NOBS= 252) SUTTER COUNTY EMPLOYMENT, 1/45 TO 12/66 GERIES.. EMPLOY  (NOBS= 252) SUTTER COUNTY EMPLOYMENT, 1/45 TO 12/66
NO. OF VALID OBSERVATIONS =  252. DIFFERENCED 1 TIME(S) OF ORDER 1.

NO. OF VALID OBSERVATIONS =  251.
AUTOCORRELATIONS OF LAGS 1 - 38.
Q( 38,-252) = 2277.8 SI1G = 8.000 AUTOCORRELATIONS OF LAGS 1 - 38.
o( 38, 251) = 296.02 5IG = 0.800
LAG  CORR SE -1 -.8 ~-.6 -.4 -.2 @ 2 4 .6 .o+l
B i I e S ek Aatetntu vl LAG  CORR SE -1 -8 -.6 -.4 -.2 B .2 .4 .6 .8+l
1 .874 .863 { IXX)XXXXXXXXXXXXXXXXXXX T et T R e et ettt
2 .757 .lee ( IXXXX) XXXXXXXXXXXKXX 1 -.e45 .863 (X1 )
3 .664 L1211 ( IXXXXX) XXXXXXXXXXX 2 -.116 .863 *XX1 )
| 4 .585 134 { IXXXXXX)XXXXXXXX 3 -.962 .064 (XXI )
5 .514 .144 ( IXXXXXX) XXXXXX 4 -.066 .64 (XXI )
6 .484 151 ( IXXXXXXX) XXXX 5 -.124 .065 *XXI )
7 L4998 .157 ( IXXXXXXX) XXXX 6 -.151 .PB66 X(XXI )
8 .534  .163 ( IXXXXXXX) XXXXX 7 -.116 .867 *XXI )
9 588 .17@ { IXXXXXXXX) XXXXX g8 -.841 .@68 ( XI )
1e .633  .178 { IXXXXXXXX) XXXXXXX 9 -.P43 .0868 ( XI )
11 722 .186 { IXXXXXXXX) XXXXXXXXX 18 -.157 .@68 X(XXI )}
12 .792  .197 ( IXXXXXXXXX)XXXXXXXXXX 11 .pBe  .869 (IXX)
13 .788  .209 ( IXXXXXXXXX)XXXXXXX 12 .713 .e7¢ { IXX)XXXXXXXXXXXXXXX
14 .595 .219 { IXXXXXXXXXX)XXXX 13 .45 .894 { IX )
15 .512 .225 ( IXXXXXXXXXX) XX 14 -.896 .095 ( XXI )
16 .432  .229 { IXXXXXXXXXX* 15 -.@851 .895 ( X1 )
17 .368  .233 ( IXXXXXXXXX ) 16 -.B74 .095 ( XXI )
18 .341 .235 ( IXXXXXXXXX ) 17 -.181 .895 ( XXXI )
19 .347  .237 ( IXXXXXXXXX ) 18 -.l144 .0896 (XXXX1 )
28 .392  .239 ( IXXXXXXXXXX ) 19 -.127 .897 ( XXXI )
21 L444 241 ( IXXXXXXXXXXX) 28 -.249 .897 ( XI )
22 .499  .245 ( IXXXXRXXXXXX* 21 -.832 .097 (X1 )
23 .578  .249 ( IXXXXXXXXXXX) XX 22 -.111 .@897 { XXXI )
24 .653 .254 ( IXXXXXXXXXXXX) XXX 23 .e21 .p98 ( X )
25 .578 .261 ( IXXXXXXXXXXXX)X 24 .651 .898 ( IXXXX)XXXXXXXXXXX
26  .486 .266 ( IXXXXRXXXKXXXX) 25 .874 114 ( XX )
27 .485  .26Y { IXXXXXXXXXX )} 26 -.857 .114 ( XI )
28,333 .272 ( IXXXXXXXX ) 27 -.872 .114 (X1 )
29 .278  .273 ( IXXXXXXX ) 28 -.869 .114 ( XXI )
38,243 .274 ( IXXXXXX ) 29 -.877 .114 ( XXI )
-2SE +25E 3¢ -.171 .115 ( XXXX1 )
-2SE +25E
PARTIAL AUTOCORRELATIONS OF LAGS 1 - 38.
PARTIAL AUTOCORRELATIONS OF LAGS 1 - 30.
LAG  CORR SE -1 ~-.8 =-.6 -.4 -.2 @ 2 .4 .6 .8+l
B STV ATV AV LAG  CORR SE ~1 -.8 -.6 -.4 ~-.2 @ 2 .4 L6 B +]
1 .874 .063 { IXX)XXXXXXXXXXXXXXXXXXX O S e S G S G O
2 -.827 .@63 ¢ XI ) 1 48  .@63 ( XI )
3 .838  .063  IX) 2 -.119 .0863 *XXI )
4 .eB7  .063 1 3 -.875 .863 (XX1 )
5 -.008 .063 I 4 -.099 .963 (XXI )
6 .l142 .263 ( IXX)X 5 ~.156 .63 X(XXI )
7 .l49  .063 tIXX)X 6 -.206 .863 XX(XXI )
8 .217  .263 ( IXX)XX 7 -.221 .963 XXX (XXI )
9  .114 .863 CIxxx 8 -.199 .863 XX (XXI )
18 .1le5 .863 ( IXX)X 9 -.249 .063 XXX (XXI )
11 .336  .063 { IXX)XXXXX 18 -.472 .863 XXXXXXXXX (XX )
12 .224 .863 ( IXX)XXX 11 -.496 .63 XXXXXXXXX (XXI )
13 -.512 .063 XXXKXAXXXX (XXI ) 12 .486 .63 { IXX)XXXXXXX
14 -.163 .063 X(XXL ) 13 .183 .63 ( IXX)XX
15 -.885 .063 . 14  .028 .p63 ( IX )
16 -.B47 .063 ( XI 15 .019 .@63 (1 )
17 .824 063 ¢oIx 16 .008 .863 (1
i 18 .883 .063 (1) 17 .see .63 ¢ o1x)
19 -.084 .063 [ 18 .866 .263 ( IX)
28 062 063 (o 1xx) 19 -.813 .63 (1)
21 .le6  .063 (o IXx® 20 -.893 .063 (XXI )
22 .852 .963 ( IX) 21 -.955 .B63 T
23 -.089 .063 [ 22 .855 .063 ( 1X )
24 .288  .063 { IXx)XX 23 -.257 .863 XXX (XXI )
25 -.ls2  .963 XX (XX1 ) 24 .066 .063 ( IXX)
26 -.872  .063 (R2L ) 25 .833  .863 ( IX )
27 -.018  .063 A 26 .829  .063 ¢ oIx )
28 .812 .063 toro 27 -.835 .63 (X1 )
29 .822 .063 Ix 28 -.026 .063 (X1 )
3¢ -.e50  .063 (X1 29 L8280 .06}  IX )
-28E  +2SE 35 -.875 .0863 (XXT )
-2SE +28E

FIGURE 2.12.1(b} ACF and PACF for the Raw Series FIGURE 2.12.1(c) ACF and PACF for the Regularly Differenced Series
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If the residuals from this tentative model fail to meet our diagnostic criteria,
we will return to the identification stage.

Diagnosis. The ACF and PACF—Figure 2.12.1(d)—for the residuals of
our tentative model show no spikes at lag-1 or at the seasonal lags. The Q
statistic for the ACF is not statistically significant. With 28 degrees of
freedom, the value of Q = 28.3 is associated with a .448 level of signifi-
cance. The residuals of the tentative model meet both diagnostic criteria, so
the model is accepted.

This time series, as well as the others used as examples, are listed in
Appendix A of this volume. We suggest that the reader reanalyze the series
as an exercise. The Sutter County Workforce series is a textbook example of
an ARIMA (0,1,1) (0,1,1);, process. The ACFs and PACFs give clear and
unambiguous evidence for this model.

In December 1955, the 120th observation of this series, a major flood
forced the evacuation of Sutter County. In the next chapter, we will use the
ARIMA model we have identified here to assess the impact of this flood on
the level of the Sutter County Workforce series.

2.12.2 Boston Armed Robberies

The monthly number of reported armed robberies in Boston, Massachu-
setts, is plotted in Figure 2.12.2(a). The first observation is January 1966
and the 118th observation is October 1975. Deutsch and Alt (1977: Deutsch,
1979) analyzed this series along with a large number of other Uniform Crime
Report time series. In our opinion, the model proposed by Deutsch and Alt
does not adequately represent the series. By following the iterative model-
building strategy presented in Section 2.11, we will contrast the inade-
quacies of their model with the empirical characteristics of the data.

It should be noted that there are a number of ways to construct an ARIMA
model other than the empirically based procedure we have outlined. We
refer to these other methods as arbitrary methods and emphasize that they
usually will not result in a parsimonious and statistically adequate model.
Forexample, an analyst might have identified the same ARIMA model for a
number of series all belonging to the same substantive class, such as crime
series. The analyst might then be tempted to assume that all other similar
substantive time series (e.g., all crime series) could best be fit by the same
ARIMA model. Furthermore, the analyst may attempt to infer that identifi-
cation of the same ARIMA model for a number of series provides evidence
that the same social process was generating all of the series.

These are fallacies, of course. A univariate ARIMA model is a stochastic
or probabilistic description of the outcome of a process operating through
time. It provides no information about the inputs generating that process. As
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FIGURE2.12.2(a) Boston Armed Robberies

Hibbs (1977) succinctly points out, “[Univariate] Box-Tiao or Box-Jenkins

i i,

models are essentially models of ignoraiice tat are not based in theory and,

in this sense, are devoid of explanatory power.” As in other areas of the
social sciences, inference of a causal relationship in time series analysis can
only be made through assessment of covariation betweeen one or more
explanatory variables and a dependent variable—a crime rate in this case.
We develop the methodology for this type of analysis in Chapter 5.

A careful reading of Deutsch and Alt does not clearly reveal their model
selection procedure. They do not report identification statistics such as the
ACF and PACF and this makes it difficult to assess the adequacy of their
models. We recommend that such statistics be routinely reported in time
series research so that the social science community may make informed
appraisals of the quality of ARIMA models. Although we cannot second
guess the Deutsch-Alt model selection procedure, their results are not incon-
gruous with the arbitrary procedure described above. We will now contrast
these results with those produced by use of the model-building procedure
presented in Section 2.11. The reader is referred to Hay and McCleary
(1979) for a more detailed discussion of these issues.

(text continued on p. 115)
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SERIES.. BAk (NOBS= 115) BOSTON / MONTHLY ARMEL RUBBERY
NC. OF VALTD OBSERVATIONS = 118.
AUTOCGRRELATIONS OF LAGS 1 - 25.
Q( 25, LlB) = 1221.4 S1G = v.0v0
LAG  CURR SE -1 -8 -.6 -.4 -.2 D 2z .4 .6 .8+l
B e e e e et S e
1 L9268 .092 { TXXXX}XXXXXXKKXXXKKXKKKX
z 881 .152 { IXKAXKXK) KXXXXXXXXKXKKX
3 853 .190 [ IXXXXXXXXX) XXXXXXXXXXX
4 L8885 .220 ( IXXXXXXXXXX ) XXKRXXKXXX
5 L7197 244 ( IXXXXXXXXXXK) KXRXKKKX
6 L7174 L269 ( IXXXXXXXXXXXK) XAXXKX
7 .749 .24 ( IXXXXXXXXKXXXK) XXXKX
] .744 L300 ( IXXXXXXXXXXXKXX ) XXXX
9 L7120 L0315 ( IXXXXXXXXXXXXKXX) XX
19 L68L  .329 ( IXXXXXXXXXXXXXXX) X
11 .64 .340 ( IXXXXXXXXXXXXXXXX*®
12 .668  .352 ( IXXXXXXXXXXXXXXXXX}
13 L628  .362 ( IXXXXXXXXXXXXXXXX }
14 .599  .372 ( IXXXXXXXXXXXXXXX )
15 .550  .380 ( IXXXXXXXXXXXXXX )
16 .519  .386 ( IXXXXXXXXXXXXX )
17 .505  .392 ( IXXXXXXXKXXXXK )
18 L4830 398 ( IXXXXXXXXXXXX )
19 .478  .483 ( IXXXXXXXXXXXX )
20 L4655 .407 ( IXXXXXXXXXXXX )
21 434 412 { IXXXXXXXXXXX )
22 .428 -416 ( IXXXXXXXXXXX )
23 L4112 .420 ( IXXXXXXXXXX )
24 .394  .423 ( IXXXXXXXXXX )
25 L377 L4286 ( IXXKKXAXXX )
_2SE +2S5E
PARTIAL AUTOCORRELATIONS OF LAGS 1 - 25.
LAG CORR SE -1 -.8 -.6 -.4 -.2 %] .2 .4 .6 .6+l
B el e e e el ik Sttt e e 4
1 L9286 .@92 ( IXXXR ) XXXXKXXXKXXXRXXKKXX
2 .147  .e92 ( IXXXX)
3 .145  .@92 { IXXXX)
4 -.892 .092 (XK1 )
5 L217  .p92 ( IXXXX*
6 -.034 .092 { X1 }
7 .832  .892 { IX )
8 892 .992 { IXX )
9 -.116 .¢92 { XXXI )
18 -.632 .892 { X1 )
11 .188  .992 ( IXXXX*
12 -.0067 .892 { I ]
13 ~-.245 .892 X (XXXXI )
14 .025  .89z2 { X1 i
15 ~.124 092 { XXX1I )
16 .831  .992 ( IX )
17 .965  .892 t IXxF
18 665  .092 ( IXX )
19 -.p85 .@92 { 1 )
286 -.817  .pyz ( I )
21 -.982 .092 ( 1 )
22 .lee  .e9z2 { IXXX )
23 ~-.B6@ .992 ( Xl )
24 816 .p92 ( i J
25 .B78  .892 { XXI ]
-I5E +25E

FIGURE 2.12.2(b) ACF and PACF for the Raw Series
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SERIES.. BAR (NOBS= 1138} GSTON / MONTHLY ARMED ROBBEKRY
DIFFERENCED 1 TIME(S) OF ORDEkK 1.

NC. OF VALID OBSERVATIONS = 117,
AUTOCORRELATIONS OF LAGS 1 - Z5.
of 25, 117) = 63.874 51G = .00
LAG CORR SE -1 -.8 -.6 -.4 -.2 [} .2 -4 .6 .8 41
et i bt e e e L T S
1 -.259 .8%2 X (XXXXI }
2 -.137 .89%s { XXXI )
3 .15%6  .1¢9 ( IXXXX)
4 -.238 .182 X (XXXX1 bl
5 L1130 0187 ( IXXX )
6 -.B855 .los ( X1 }
7 -.215 .1@8 *XXXXT )
8 L1770 .112 { IXXXX )
9 -.892 .114 ( XX1 )
16 -.205 .115 (XXXXX1 )
11 L1113 .118 ( IXXX )
12 .19¢  .119 ( IXXXXX)
13 L840 121 ( 1X )
14 876 .121 { IXX )
15 -.882 .122 ( XXT )
16 -.882 .122 ( XX1 )
B 17 .135  .123 { IXXX )
18 -.163 .124 { XXXX1 )
19 .823  .126 { IX )
28 114 .126 { IXXX )
21 -.251 .127 *XXXXX1 )
22 .879  .131 ( IXX )
23 L824  .131 ( IX )
24 .9¢8  .131 ( I }
25 L1740 .131 ( IXXXX )
-Z5E +28E
PARTIAL AUTOCORRELATIONS OF LAGS 1 - 25.
LAG CORR SE -1 -.8 -.6 -.4 =-.2 ] .2 .4 .6 .8 +1
R R e kAt etk T TP RUCEU ST
1 -.259 .@892 X (XXXX1 )
2 -.219  .992 *AXXXL )
3 862,092 { IXX )
4 ~.229 .g92 X(XXXXT }
5 .826 .92 ( Ix )
6 -.125 .892 ( XXXI }
7 -.235 .892 X{XXXXI )
8 -.042 .092 { X1 }
9 -.131 .@092 ( XXXL )
18 -.338 .892 XXX (XXXXI )
11 -.253  .892 X {XXXXT )
12 .898 .092 ( IXX )
13 .858 .892 { IX }
14 .883 892 { IXX )}
15 -.081 .£92 { I )
16 -.139 L0892  XXXT[ )
17 -.011 092 { I )
18 -.894 .042 ( XXI \
19 .024 .892 { X )
20 .851 .892 ( IX )
21 -.132 .992 ( XXXT )
22 998  .892 ( 1 i
23 .836  .092 ( IX )
24 .878  .0892 ( IXX )
25 L8286 .092 ( 1 }
-25 +2SE

FIGURE 2.12.2(c) ACF and PACF for the Regularly Differenced Series
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SERIES.. RESIDUAL {(NOBS= 189%) BUSTUN AKMLL RUBBERY RESIDUALS

NOC. OF VALID OBSERVATIONS

105,

AUTOCORRELATIONS OF LAGS 1 - 25.

C( 23, 185) =

LAG CORR

1 .a18
2 -.033
3 .158
4 -.215
5 .009
6 -.135
7 -.387
8 894
9 -.088
18 -.193
11 .78
12 .825
13 114
14 .198
15 -.043
16 -.18¢
17 .082
18 -.185
19 -.pl8
20 046
21 -.137
22 122
23 .006
24 ~.137
25 2146

LAG CORR

1 .a10
2 -.833
3 .159
4 -.226
5 .837
6 -.194
7 -.241
8 .047
9 -.083
18 -.194
11 -.872
12 .829
13 .042
14 .081
15 ~.038
16 -.244
17 -.e@2
18 -.054
19 .824
20 .816
21 -.89s
22 .046
23 -.929
24 -.037
25 .813

41.871 516 = 7Ll
SE -1 -.5 -.6 ~.4 ~-.2 8 2 4 .6 6+l
R e T e e it T e
.898 ( I )
.298 { X1 }
098 ( IXXXX)
.100 *XKKKI )
.164 ( 1 )
.14 ( XXX1 )
.106 X (XXXX1 )
.1l4 ( 1XX )
L1115 ( XXI )
L1116 (XXXXXL )
L1119 ( 12X )
.119 ( 1% )
L1119 ( IXXX )
.120 ( IXXXXX)
2123 { X1 )
.123 ( XXI )
.124 { IXx )
.124 { XXX1 )
125 { I )
L1285 ( 1X )
L1285 { XXX )
.127 ( IXXX )
.128 { I }
.128 { XXX )
.129 ( IXXXX )
-2SE +2SE
PARTIAL AUTOCORRELATIONS CF LAGS 1 - 25.
SE -1 -.6 -.6 -.4 -.2 B Lz .4 6 L8+l
B el e e e B e B et St &
.098 { 1 )
.98 { X1 )
098 ( IXXXX)
.898 X (XXXXI )
.898 ( IX )
.898 *RXXKL )
.898 X (XXXXI )
.98 { IX }
.0898 ( XXI )
.898 *AAXKI )
.898 ( XXI )
.898 { IX )
.e898 { Ix )
.898 ( IXX )
.998 ( X1 )
.298 X (XXXXI )
.898 { 1 )
.098 { XI )
.098 ( Ix )
.898 ( 1 )
.098 ( XXI )
.298 ( IX )
.098 { XT )
.0998 { X1 }
.298 { 1 }
-28E +25H

FIGURE 2.12.2(d)

Diagnosis: ACF and PACF for the Model Residuals
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Identification. The ACFs and PACF:s for this series are shown in Figures
2.12.2(b), 2.12.2(c), and 2.12.2(d). Deutsch and Alt picked an ARIMA
(0,1,1) (0,1,1)12 model for this series. This is the same model we identified
for the Sutter County Workforce time series, so the reader can compare those
ACFs and PACFs with these.

The ACF for the raw armed robbery time series indicates nonstationarity,
so the series must be differenced. The ACF and PACF of the differenced
series do not indicate seasonal nonstationarity, however. The ACF and
PACF of the regularly and seasonally differenced series do not unambi-
guously suggest the ARIMA (0,1,1) (0,1,1);> model used by Deutsch and
Alt. To be perfectly frank, these ACFs and PACFs baffle us. We see no clear
patterns of spiking and/or decay which would lead us to accept any tentative
model.
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FIGURE 2.12.2(e) Boston Armed Robberies (Logged)
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Estimation. For the ARIMA (0,1,1) (0,1,1);; model proposed by
Deutsch and Alt, we obtain parameter estimates of

O = .31 with tstatistic = .47
6, = .52 witht statistic = 6.08
61, = .73 with t statistic = 8.29.

As ®o is not statistically significant, we drop it from the tentative model. 5] 1
and O 1, are both statistically significant and both lie within the bounds of
invertibility for moving average parameters. The tentative model is, then,

v (= .52B)(1 = .73B12)
T a-Ba-B3 M

Diagnosis. The ACF and PACF for the residuals of this model do not
inspire confidence. There are statistically significant spikes at lags-4, -7,
and -10 of the ACF and - 16 of the PACF as well as a handful of “marginally
significant” spikes at other lags. The Q statistic for this ACF is also quite
large. With 23 degrees of freedom, Q = 41.87, a value of Q associated with
a .009 significance level. As the Q statistic is significant, we must conclude
that these residuals are not white noise. The tentative model fails our
diagnostic criteria and we thus reject it.

Identification. Because we have rejected the tentative model, we return to
the identification stage. The ACFs and PACFs of the raw and differenced
series are not much help here. As noted, we see no evidence for a parsimoni-
ous ARIMA model in these statistics. One alternative at this point would be
to include extra moving average parameters in the model, that is, to increase
the values of q and/or Q. We see no evidence of higher order moving
averages in these ACFs and PACFs, however; and, moreover, the model is
already rather complicated and cumbersome.

Another alternative is to explore a transformation of the time series. In
Section 2.4, we discussed variance stationarity, noting that a time series
process must be made stationary in variance as well as in level. Examining
the plotted armed robbery time series in Figure 2.12.2(a), we can see that the
series variance is roughly proportional to the the series level. In the first half
of the series, when the process is at its lowest level, month-to-month fluctua-
tions are small. In the second half of the series, when the process is at its
highest level, month-to-month fluctuations are relatively large. In Figure

(text continued on p. 120)
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SERIES.. VAR3 (NOBS= 118) VAR} = LOG (BAK )
NO. OF VALID OBSERVATIONS = 1ls.
AUTOCORRELATIONS UF LAGS 1 - 25,
c( 25, 118) = 1249.4 S1G = 6.000
LAG CORR SE -1 -.8 -6 -.4 -.2 14 .2 -4 .6 .8+l
B e e B e S ity IO U GEPY
1 -946 .092 { IXXXX)XXXXXXXXKXXKXKXXXXKX
2 .986 .154 { IXXXXXXX) XXXXXXXXXXXXXXX
3 .883  .194 ( IXXXXXXXXX}XXXXXXXXXXXX
4 .855 .225 { IXAXXXXXXXX) XXXXXXXXXX
5 .836  .251 ( IXXXXXXXXXXXX)XXXXXXXX
6 .888 .274 ( IXXXXXXXXKXXXX) XXXXXX
7 .782  .293 ( IXXXAXXXXXXXXXX) XXXXX
8 .761 L3111 { IXXXXXXXXXXXXXXX) XXX
9 .726 .32 { IXXXXXXXXXXXXXXX) XX
1@ .695 .339 { IXXXXXXXXXXXXXXXX*
11 672 .351 ( IXXXXXXXXXXXXXXXXX)
12 .650 .362 { IXXXXXXXXXXXXXXXX )
13 616 372 { IXAXXXXXXXXXXXXX )
14 .591 .380 { IXXXXXXXXXXXXXXX )
15 .568 .388 { IXXXXXXXXXXXXXX )
16 .528  .395 { IXXXXXXXXXXXXX )
17 .501 .401 ( IXXXXXXXXXXXXX )

18 479  .486 { IXXXXXXXXXXXX )

19 .463 .41l ( IXXXXXXXXXXXX )
28 .442 415 ( IXXXXXXXXXXX )
21 .417  .419 ( IXXXXXXXXXX )
22 .397  .423 ( IXXXXXXXXXX )
23,377 .426 ( IXXXXXXXXX )
24 .363  .429 ( IXXXXXXXXX )
25 .341 431 ( IXXXXXXXXX )
-28E +2SE
PARTIAL AUTOCORRELATIONS UF LAGS 1 - 25.
LAG  CORR SE -1  -.8 =-.6 -.4 -.2 @ L2 L4 .6 .8 41
e e e T G G S
1 .946 .@92 ( IXXXX)XXXKKXXXXXXKXXXXXKK
2 .187 .092 ( IKXX )
3 .153  .992 ( IXXXX)
4 -.011 .092 ( I )
5 .899 .09z ( IXX )
6 -.079 .092 (XX }
7 .el4  .092 ( 1 )
8 .e04 .092 { I )
9 -.111 .892 ( XXXI )
18 -.821 .892 (  XI )
11 .833  .892 ( X )
12 .823 .92 ( X )
13 -.124 .892 { XXXI )
14 .865 .g92 ( IXX )
15 -.894 .92 (XX )
16 -~.014 .992 ( 1 )
17 -.811 .@892 ( 1 )
18 .874 .092 ( IXX )
19 232 992 ( X )
20 -.912 .92 ( I )
21 -.p28 .892 (%1 )
22 .889  .992 { I )
23 -.ges  .@92 ( 1 )
24 .@50 .@92 ( X )
25 -.864 .92 ( xx1 )
-2sE +25E ©

FIGURE 2.12.2(f) ACF and PACF for the Raw (Logged) Series
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2.12.2(e), we show the log-transformed series. In the natural log metric,
month-to-month fluctuations are more or less the same size throughout the
length of the series. We can now try to identify a simple ARIMA model for
the log series.

The ACF and PACF for the raw log-transformed series—Figure
2.12.2(f)—indicate nonstationarity. The ACF and PACF for the first-
differenced log series—(Figure 2.12.2(g)—indicate that one regular differ-
ence is sufficient. The absence of spikes at the seasonal lags indicates that
seasonal differencing is not required. There is a rough pattern of decay
beginning at lag-1 of the PACF and a single spike at lag-1 of the ACF which
suggesta ARIMA (0,1,1) model for this series. Spiking and decay at lag-12
of the ACF and PACF lie within the confidence bands and, thus, are not
statistically significant. Nevertheless, we see seasonal variation in the plot-
ted series. To account for this seasonality, we propose an ARIMA ©,1,D)
(0,0,1);2 model. If 012 proves not to be statistically significant, we can drop
it from our model at the estimation stage.

Estimation. Our tentative model is ARIMA (0,1,1) (0,0,1);, for the log-
transformed series. We write this as

O+ (1 -6B)(1 - ®_qumv a

HL,R%L - 1—-B t-

The parameters of this model are estimated as

O0 = .0195 with tstatistic = 1.57
O, = .4321 witht statistic = 4.99

Il

O 12 = .1884 with t statistic = —1.97.

As the estimate of Oy is not statistically significant, this parameter is
dropped from the tentative model. The estimates of O, and O,; are both
statistically significant (though © 5, just barely) and both lie within the
bounds of invertibility for moving average parameters.

Diagnosis. The ACF and PACF for the model residuals—Figure
2.12.2(h)—have no spikes at lag-1 or at the seasonal lags. With 23 degrees
of freedom, Q = 16.315, a value of the Q statistic associated with a .84
significance level. As the residuals from our tentative model appear to be
white noise, we can accept the model.

Our decision to include a O, parameter in the tentative model despite the
lack of evidence for seasonality in the ACFs and PACFs might be criticized.

Univariate ARIMA Models 121

Our decision was based primarily on the seasonal appearance of the time
series. In this case, however, had we started with a ARIMA (0,1,1) model,
metadiagnosis would have lead to the ARIMA (0,1,1) (0,0,1);, model.
Metadiagnosis, particularly overfitting the tentative model, is crucial when
a seasonal effect is possible. While including a seasonal component in the
ARIMA model when no seasonality is present is an error, failing to include a
seasonal component when one is present is a more dangerous error.

The value of inspecting model residuals as a metadiagnostic step is appar-
ent in this example analysis. It would be desirable to have a simple statistical
test for variance nonstationarity. Unfortunately, as Granger and Newbold
note, “No completely satisfactory techniques are available for testing
whether or not a series contains a trend in mean and/or variance. A number
of sensible procedures can be suggested, but a decision based on the plot of
the data is likely to be a reasonable one.” (1977: 37).

To test for a variance nonstationary process in this time series, Hay and
McCleary (1979) devided the series into equal interval segments and noted
that the mean and standard deviation of each segment showed a nearly
monotonic increase over time. Two tests for variance homogeneity,
Cochran’s C and the Bartlett-Box F tests, also were applied to the segments.
Yet none of these statistical tests is as compelling as the visual evidence. In
Figure 2.12.2(i), we show a plot of the estimated residuals of the ARIMA
0,1,1) (0,1,1)12 model for this series. The variance of the residuals in-
creases as a function of time, clearly indicating variance nonstationarity.

Our point is this example is that, unless an ARIMA model is built through
the iterative identification/estimation/diagnosis strategy that we recom-
mend, an arbitrary ARIMA model may result. In the next chapter, we will
return to this time series to demonstrate how serious this error can be. In
April 1975, the Massachusetts legislature passed a strict gun control law
which (presumably) would have an impact on the level of this time series.
On the basis of an arbitrary and statistically inadequate ARIMA model,
Deutsch and Alt concluded that the law had an abrupt and profound impact
on this series. We will demonstrate in the next chapter that the evidence does
not support this conclusion.

2.12.3 Swedish Harvest Index

When is a time series not a time series? In Figure 2.12.3(a), we show the
annual Swedish Harvest Index for the period 1749—1850 as reported by
,_.JroBmm (1940). These data come close to being a “time series that is not a
time series.” In each year, the Swedish grain harvest was rated on a nine-

(text continued on p. 124)
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point scale with a total crop failure scored as zero and a superabundant crop

1 i is ti ies is it vel of measurement. SERIES.. HARVEST (NObS= 182) SwhhLISH HARVEST IHLEX 1749-1568
scored as nine. The problem with this time series is mwo e M : poen o Noms= 1021 S
. . . . eve
While we require a time series process to be measured at the interva , AUTOCOKKELATIONS OF LAGS 1 - 25
this one is measured at the ordinal level. In only 13 of the 102 years does the Q( 25, 182) = 36.946 16 - 671
index take on a noninteger value. Because this series does not :méM a.ww_ LAG  CORK  SE -1 -8 me —d -2 8 2 a6 s el
. - : M 1ot ild- e R e i et Tl S S U U
interval level variance (and covariance), we are not optimistic about bu L sen oss T e
ing a good ARIMA model for it. . §oomne Gl
Identification. The ACF of the raw time series indicates that the process is L ¢ :
stationary. A single spike at lag-1 of the ACF and rough decay beginning at § ool b (xxxnd )
: 1 1 8 . .
lag-1 of the PACF suggest an ARIMA (0,0,1) model. We write this tentative 5 ce2s .16 o
19 .818 116 ( I )
model as 11 -.862 .116 ( XX1 )
12 -.17e .11 ( XXXXI )
13 -.85¢2 L1119 { X1 )
Y, =0+ (1 — 6;B)a, 14 .e42 .19 ( X )
15 .815 .119 ( I )
. . 16 -.862 119 ( XXI }
where the parameter Oy is interpreted as the level of the stationary series. 17 e Ll M R
Estimation. Parameter estimates for the tentative model are: Y i e e
21 -.167 125 { XXXXI )
A . . . 22 -.155% 127 ( XXXXI i
@o” 5.21 with t statistic = 15.19 23 -.047 .129 ( X1 )
R 24 .808 .129 { I }
011 = — .39 with t statistic = —4.20. 023 .1 I
10.900 PARTIAL AUTOCORRELATIONS UF LAGS 1 - 25.
LAG CORR SE -1 -.8 -.6 -.4 -.2 '] .2 -4 .6 - +1
4 Rt e et et i T TP U Y
1 . 340 .899 { IXXXX ) XXX
2 -.181 .899 *XXXXT )
8.000 1 3 -.070 .099 ( XXI )
4 -.930 L9099 { X1 }
5 -.858 .899 ( X1 )
1 6 -.169 .899 (XXXX1 ) .
7 L0806 899 I )
& .038 999 IX )
> 9 -.8%97 L0899 X1 )
aJ 60001 10 .063 .89 1 )
-.Nl 11 -.p89 .899 XXI }
12 -.175 .999 XXXX1 )
N 1 13 .8406 .999 IX J
%] 14 (911 .099 1 }
W 1s -.875 899 XX1 }
o 4.000 16 -.883 .@99 XXI )
I 17 .893  .099 IXX )
18 1@z .099 XXX )
+ 19 g4l .eyy Ix )
29 -.837 899 XI )
21 ~.133 .099 XXX1 }
P 22 -.067 .B99 XX1 )
2.000 23 el .e9s 1 )
24 .02 .99 I )
25 .814 L899 1 )
+2S9E
7o N 160 180 1800 ) 1820 ) 1840 ' 1660
YEARS

FIGURE 2.12.3(b) ACF and PACF for the Raw Series
FIGURE 2.12.3(a) Swedish Harvest index
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Both parameter estimates are statistically significant. The estimate of O is
well within the bounds of invertibility for moving average parameters, so the

SERIES.. RESIDUAL (NUBS= 102} SWEDISH HARVEST INDEX RESIDUALS ﬂmbﬁmﬁ<® model poses no _UHOU_QBm at this mﬂmmm.
NO. OF VALID OBSEKVATIONS = 1ez2. . . . .
Diagnosis. The residual ACF has no spikes at early lags. Moreover, the Q
AUTOCORRELATIONS OF LAGS 1 - 25. P . . . e . .
O 23, 102) = 15.858 516 = 893 statistic for this ACF is not significant. As these residuals satisfy our
e come L e e e e s e diagnostic criteria, we infer that they are white noise and accept the model.
s CORR SE - -8 - -. -2 . . . . . . ..
D The model for the Swedish Harvest Index time series is:
1 .0le  .099 { I )
2 -.089 .899 { I )
-.117  .999 { XXXT ) =
M Tass .H&m . ‘1 ) <~ 5.21 +m-+ .wwmﬁf—.
5 .80l 191 { 1 ]
6 -. 141 L1901 {XXXX1 ) . .
7 -.865 .103 XAl Due to the form of these data, however, we should notimmediately conclude
L0508 183 ( 104 ) . . . . . .
s oo 163 I that this model is of the highest quality. While the model is clearly adequate
10 .0208 193 { 1 ) . . . . .
11 -ls13 103 A in the sense that its residuals are white noise, the model may not necessarily
12 ~-.164 .103 {XXXXI ) e
13 -.085 .106 L be of much use to us. In general, the utility of a model depends upon its
14 .833  .l@s { Ix ) . e o . . . A
15 .030 106 (X ) predictive ability. How well does it fit the data? To answer this question, we
16 -.876 186 { XXI } 2 < e
17 lely lle7 ¢ note that the R- statistic is:
18 .154  .1@7 { IXXXX)
19 L1230 0189 { IXXX ) :
19 .lzodes L R2 = | _ Tesidual sum of squares _ |- 604.47
21 -.131 118 ( XXXI )
22 -.187 .112 ( XxX1 ) total sum of squares 3489.25
23 -.015 .113 { 1 )
24 817  .113 ( I )
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. 2 .. . . .
We interpret the R“ statistic to mean that 83% of the variance in the time
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series is explained by the model. This is a respectable figure. However, the
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B e e e e s e i fhl b i - .. .
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-. . ) 3
6 o-asy .2y R sum of squares due to 6 2758.89
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19 -.817 .099 ( 1 )
11 -.ple .99 C1 total sum of squares 3489 .25
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1t el oo Lo his partition of the total sum of squares is analogous to an analysis of
o -l pe9 Lot ) variance partition. We see that the moving average accounts for less than 4%
ls s oo o of the variance in the time series. Though this percentage is statistically
2w ols oo Cond significant and not at all trivial, it is small compared to the variance ex-
22 -.113  .899 ( XXXKI ) lai
23 -.812  .099 ( 1 ) plained Gv\. mrw BO.QO_ mean. L.
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-25% 1258 be atime series do not really constitute a time series. This is nearly true of the
Harvest Index time series. When data do not constitute a time series, of
course, an ARIMA model fit to the data might lead to incorrect conclusions.
FIGURE 2.12.3(c) Diagnosis: ACF and PACF for the Model Residuals We will return to this time series in Chapter 5.
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FIGURE 2.12.4(a) Hyde Park Purse Snatchings

2.12.4 Hyde Park Purse Snatchings: Outliers

In Figure 2.12.4(a), we show a time series of purse snatchings reported
13 times per year (every 28 days) in the Hyde Park neighborhood of Chicago
from January 1969 to September 1973. These data were collected by Reed
(1978) for an evaluation of Operation Whistlestop, a community crime
prevention program. Our attention is immediately drawn to the 65th obser-
vation of the series which is approximately five times larger than adjacent
observations. This is an outlier. In an analysis of these data, Reed arrived at
an ambiguous conclusion and suspected that the problem was due to this
outlier. Since there was no apparent explanation for this single extreme
observation, Reed concluded that it was due to an error inrecording the data.
Returning to the primary data collection sheets, Reed was able to arrive at a
more reasonable, correct number for the 65th observation.

Outliers are a somewhat obscure topic in the literature of time series
statistical analysis. While it appears that extreme values may have a distort-
ing effect on the identification and estimation of ARIMA models (we will
demonstrate the size of this distortion shortly), there is little consensus on

TP
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FIGURE 2.12.4(b) ACF and PACF for the Raw Series {Outlier Included)

just what characteristics define an outlier. How (relatively) large must an
observation be before it is called an outlier?

It is important to note here that outliers are sample phenomena, not
Population phenomena. In cross-sectional analyses, for example, it would
be unusual to find a seven-foot-tall person in a sample of five people. This
person would be considered an outlier. If the sample size was increased,
however, there would come a point at which a seven-foot-tall person would
no longer be considered an outlier. This principle holds for longitudinal
analyses as well. The deviant 65th observation of the Hyde Park time series




‘1

130 APPLIED TIME SERIES ANALYSIS

SERIES.. HPPS2 (NOBS= 71 HYDE PARK PUKSL SNATCHINGS (WO/OUTLIER)
NO. OF VALID OBSERVATIONS = 71
AUTOCORRELATIONS OF LAGS 1 - ...
Q( 15, 71) = 8l.082 SL. 800
LAG  CORR SE -1 -.8 -.6 -.4 -.2 #® 2 .4 .6 .8+l
e e e B e i e e
1 .493 119 ( IXXXXX)XXXXXX
2 .534  .145 ( IXXXXXX)XXXXXX
3 .363 .17@ ( IXXXXXXXX*
4 .294 .181 { IXXXXXXX )
5 .261 .167 ( IXXXXXXX )
6 .163 .192 ( IXXXX )
7 .243 .194 ( IXXXXXX
8 .183 .199 ( IXXXXX )
9 .179 .281 ( IXXXX )
19 .243 .203 { IXXXXXX )
11 .204 .287 ( IXXXXX )
12 .227 .21@ ( IXXXXXX )
13 .147 .214 ( IXXXX
14 -.022 .215 ( X1
15 -.823 .215 ( X1 )
-25k +2SE
PARTIAL AUTOCORRELATIONS OF LAGS 1 ~ 15.
LAG  CORR SE -1 -.8 -.6 -.4 -.2 @ 20 .4 .6 .8+l
B it Tl e e e
1 .493 .119 ( IXXXXX) XXXXXX
2 .385 .119 ( IXXXXX)XXXX
3 .e18 .119 ( 1 )
4 -.938 .119 { XI )
5 .853 .119 ( X )
6 -.248 .119 ( X1
7 .141 .119 ( IXXXX )
8  .044 .119 ( X )
9 -.026 .119 ( XI )
19 .136 .119 ( IXXX
11 .836 .119 ( X
12 .88l .119 ( 1 )
13 -.856 .119 ( XI )
14 -.296 .119 X (XXXXXI
15 -.867 .119 ( XXI
-28E +2SE

FIGURE 2.12.4(c) ACF and PACF for the Raw Series (Outlier Excluded)

is considered an outlier in a time series of 71 observations. If the length of
this series was increased, however, there would come a point at which the
65th observation would no longer be considered an outlier. The question, of
course, is how long must the series be before an outlier can be accommoda-
ted by an ARIMA model?

We will answer this question indirectly. Although detection of the outlier
is obvious in this example, it will be of some value to analyze this series both
with and without the deviant 65th observation. By comparing the two anal-
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yses, we can make a statement about the effect that this outlier has on the
identification and estimation of an ARIMA model.

Identification. Figure 2.12.4(b) shows the ACF and PACF for the series
including the deviant 65th observation. There is no identifiable pattern in
either the ACF or PACF, so we must conclude that this series is white noise.
This judgment is confirmed by the Q statistic (Q = 12.36 with 15 degrees of
freedom) which is significant only at the .65 level. In Figure 2.12.4(c),
however, we show the ACF and the PACF for the series excluding the
deviant 65th observation. An ARIMA (2,0,0) process is now indicated. The
ACF decays and the PACF has spikes at the first two lags. The presence of
only one outlier in a series of 71 observations has severely distorted the
ACEF, leading to an incorrect identification of an ARIMA (0,0,0) model for
this series.

A single outlier can have such a profound effect because of the nature of
the estimated ACF. In estimating an ACF (k), deviated time series observa-
tions are weighted by their absolute distance to the series mean. Outlying
observations thus exert a profound effect on the estimated ACF (k). We can

see this effect more clearly by comparing the components of the lag-1 ACF
estimated with and without the outlier:

Covariance Variance ACF (1)
Estimated with the correct 27.47 55.71 .49
observation
Estimated with the outlier 15.49 93.29 17

included

Examining these figures, we note that removing the outlier results in a 44%
increase in covariancc and a 67% decrease in variance. Since the estimated
value of ACF (1) is the ratio of covariance to variance, it is not surprising that
adecrease in numerator and an increase in denominator seriously underesti-
mates ACF (1). This will generally be true: A single outlier in a short time
series will result in a biased underestimation of low lags of the ACF. Because
mEm biased estimate of ACF (1) is not statistically significant, we incorrectly
ldentified an ARIMA (0,0,0) model rather than the more appropriate
ARIMA (2,0,0) model.

Estimation. For the ARIMA (2,0,0) model, our parameter estimates are:

Py

¢,= .31 with t statistic = 2.67

~

¢,= .40 with t statistic = 3.45.

Both estimates are statistically significant and otherwise acceptable.
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It is difficult in practice to untangle the distortions in model estimation
introduced by outliers. In this time series, for example, the inappropriate
ARIMA (0,0,0) model (with the outlier included) has RMS = 94.62. Fitting
the more appropriate ARIMA (2,0,0) model to the series (with the outlier
included) results in RMS = 92.82; and both autoregressive parameter esti-
mates are statistically insignificant ata .05 level. The ARIMA (2,0,0) model
fit to the series with the outlier excluded results in RMS = 37.75. Much of
this difference in the RMS statistics is due only to the outlier.

Diagnosis. The residuals from the ARIMA (2,0,0) model without the
outlier appear to be white noise. There are no statistically significant spikes
at low lags of the ACF, and Q = 17.8 with 22 degrees of freedom is
statistically significant only at the .71 level. We accept this tentative model,
then, for the time series with the corrected value for the 65th observation.

We will have more to say about this time series and about outliers gener-
ally in the next chapter. Since univariate ARIMA models are always built
with some purpose in mind (such as impact assessment, forecasting, or
multivariate analyses), outliers can confound an analysis in more compli-
cated ways than those we have discussed. In impact assessment, for exam-
ple, the location of outliers relative to the point of intervention may directly
bias the estimate of impact. This issue will be discussed in detail in the next
chapter.

2.13 Conclusion

We conclude this chapter with an overview of ARIMA models and mod-
eling. It is often instructive to see an ARIMA model as a series of linear
filters as shown in Figure 2.13(a). In general, a linear filter expresses an
output time series as a function of an input white noise process. For any
ARIMA model, we start with a random shock input drawn from a Normal
(Gaussian) distribution with a zero mean and constant variance. As indicated
in this figure (and as explained in Sections 2.2, 2.5, and 2.6), a moving
average filter, an autoregressive filter, and/or a nonstationary summation
filter is applied to the input to produce an output. Autocorrelation and
stochastic behavior in the output time series is determined by the ¢ and O
parameter values of the filter.

ARIMA model-building procedures, of course, can be represented as
inverse filtering. We start with an observed time series and, through the
empirical model-building strategy, determine the likely filters and parame-
ter values which will produce an output series of white noise. This process is
illustrated in Figure 2. 13(b). Note that in both of these diagrams, the input to
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FIGURE 2.13(a) An Input-Output Representation of the ARIMA Model
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FIGURE 2.13(b) An input-Output Representation of the ARIMA Model-
Building Strategy

both the autoregressive and moving average filters is a stationary series.
Application of the model to nonstationary time series is achieved through
use of the summation and differencing filters. As we explained in Section
2.2, each of these filters is the inverse of the other. In Figure 2.13(a), the
summation filter sums (or integrates) a stationary input series to produce a
nonstationary output series. In Figure 2.13(b), the differencing filter differ-
ences a nonstationary input to produce a stationary output (which is then
passed through autoregressive and/or moving average filters).

An attractive statistical property of ARIMA models is that they can be
“run” in both directions. Given an observed time series, we “run the model
forward” as in Figure 2.13(b) and reduce the Y, input to white noise. This
requires that statistically adequate parameters be estimated for an appropri-
ate and parsimonious filter structure. Having determined these parameters,
we then “run the model backward” as in Figure 2.13(a) to produce predicted
values of the Y| series.

At this point, we suggest that the reader pause to review the material
developed in this chapter. We first discussed the statistical properties of
ARIMA models: trend, drift, integrated processes, stationarity, variance,
autoregressive processes, moving average processes, the expected ACF and
PACEF, and seasonality. Algebraic operators and formulae were presented to
facilitate expression and manipulation of the models. We then developed an
iterative model-building strategy wherein the analyst applies these concepts
to the problem of constructing a model for an observed time series. Finally,
the model-building strategy was applied to the analysis of four time series
typical of those encountered in social science research.

A i e O A T S S .Y
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We suspect that the reader may feel somewhat frustrated at this point. So
far, we have expended a great deal of effort explaining how to build a time
series model without explaining how to use the model. A univariate ARIMA
model in and of itself is admittedly of little interest or utility. This necessary
but unfortunate state of affairs will now be remedied. In Chapter 3, we will
combine univariate ARIMA models with intervention components to build a
variety of models for social impact assessment. In Chapter 4, we will em-
ploy univariate ARIMA models to forecast future values of a time series.
And in Chapter 5, we will use several univariate ARIMA models to create
multivariate time series models of social phenomena.

For Further Reading

There are several treatments of univariate ARIMA modeling which de-
velop this same material at various levels of sophistication. McCain and
McCleary (1979), for example, require only an introductory course in statis-
tics while Box and Jenkins (1976: Chapters 6—8) require a solid mathemati-
cal background. Intermediate level treatments are given by Granger and
Newbold (1977: Chapter 3), Pindyck and Rubinfeld (1976: Chapters 14—
15), and Nelson (1973: Chapter 5).

NOTES TO CHAPTER 2

1. The symbol “~” means “is distributed as.” The meanings of other symbols and conven-
tions are given in a glossary appendix.

2. See Feller (1968: Chapter III) for an illuminating discussion of drift in the random walk.
The reader who wishes to study stochastic processes generally is directed to this work and to
Feller (1971). While Feller’s development lacks nothing in mathematical rigor, he is clearly the
most understandable and readable authority on stochastic processes.

3. We use this example only to illustrate the random walk process. In Chapter 5, we build a
population growth model, but of course that model is much more complicated than this one. The
reader who plans to do a time series analysis of population statistics would do well to first read
Keyfitz (1977: Chapter 1).

4. The two equations

Y=Yy + Ot
and
Y- Y- =6

are related in a rather straightforward manner. The first equation is the unique solution of the
second. We require no background in difference equations for this volume. However, the
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interested reader is directed to Goldberg (1958) for an introduction to difference equations
written especially for social scientists.

5. Our discussion of stationarity is necessarily a conceptual discussion. A process that is
stationary in the widest sense is one in which both the process variance, <,>_~Oi, and the
process covariance, COV (yy +), are independent of t. Such a process is fully described by its
variance and covariance. For a more precise definition of widest sense stationarity, see Dhry-
mes (1974: 385) or Malinvaud (1970: 418-419). Our discussion of transformations is similarly
conceptual. See Box and Cox (1964) for a general discussion of transformations.

6. The bounds of stationarity for an ARIMA (p,0,0) process are determined by the roots of
the characteristic equation

I+ ¢B+¢B +. .. +¢BP =0.

If the process is nonstationary, then all roots must be greater than unity in absolute value. Thus,
for an ARIMA (1,0,0) model
1+ 9_w =0

$1B=~1
B = —(l/$)).

This root will be greater than unity in absolute value only when ¢ is less than unity in absolute
value. Similarly, for an ARIMA (2,0,0) model
I+ éB + ¢yB° = 0.

The roots of this characteristic equation are given by the formula
_ —~b* Vb2 —dac
2a

_ =1 = Vi —4dy

- 24
These roots will be greater than unity in absolute value only when the bounds of stationarity are
satisfied.

7. In the general case, an ARIMA (p,0,0) process is:
Vo= b1y—1 Fday—2+ .+ dpyr—p t+ar.
Multiplying the process by y;—| gives us
Y-k = O1Yi—1Yt—k T PaYi— Y-k T - -+ DpYe—pYi—k T AYi—k-

B

wHiaes

Then taking the expectation of this process and dividing by QW. we obtain the expected value of
ACF (k):
ACF (k) = &1 ACF (k—1) + ¢ACF (k—=2) + . . . + &, ACF (k—p).
The reader may use this general expression to derive the expected ACF of higher order ARIMA
(p,0,0) processes.
m.lx_,:m YuleWalker equation system is:

A S S e L e T s S

ACF(0) ACF(1) ... ACFk-1)] [pPACF(D) IACF (1)
ACE(l) ACF(2)  ...ACFk-2)| [|PACF(2) ACF (2)

X =
ACF (k—2) ACF(k=3) ... ACF() PACF (k—1)| |ACF (k—=1)
| ACF(k—1) ACF(k-2) ...ACF(© | [PACF®) ACF (k) |
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Cramer’s Rule can be applied to this k-equation system to obtain solutions for the k unknown
values of the PACF. Of course, this assumes that the true values of ACF (1), ACF (2), ...,
ACEF (k) are available. Box and Jenkins (1976: 82-84) present a recursive method for calculat-
ing PACF (k) which is attributed to Durbin (1960). In practice, a time series computer program
routinely estimates the PACF. Our concern here is largely with the interpretation of an empiri-
cal PACF in the context of model building.

9. Cf. Note 6 above. If

(1—¢B)(1 — $gBS) =0,
then either (1 — ¢ B) =0
or (1 - ¢gBS) = 0.

This implies that the two factors will have identical bounds of stationarity-invertibility.

10. Nonlinear estimation is covered as a separate topic in Chapter 6. We have two motives
for relegating this topic to the last chapter of the volume. First, many readers will have no
interest in the topic. Indeed, the analyst can perform and competently interpret the results of an
ARIMA analysis without ever knowing the mechanical details of parameter estimation. Sec-
ond, nonlinear estimation requires a slightly higher degree of mathematical sophistication of the
reader. A superficial knowledge of calculus is assumed, for example. The topic of nonlinear
estimation (and Chapter 6) in this sense is not consistent with the more general topics of time
series analysis (and the other chapters). In any event, the details of estimation will be better
understood after the reader has absorbed the basics of ARIMA modeling.

11. Ljung and Box (1976) have proposed a modification of the Q statistic which increases
its value slightly and thus makes it a slightly more conservative test of the hypothesis that the
ACEF is not different from white noise. We have used the original formula for the Q statistic
(Box and Jenkins, 1976: Chapter 8.2) throughout this volume.

12. Model parameter estimates presented in this volume were obtained without backcasting
initialization. See Chapter 4, Note 2 and Chapter 6, Notes | and 2 for a description of this
method and the underlying issues.

Appendix to Chapter 2: Expected Values

The reader who has a working knowledge of calculus is directed to Feller
(1966: Chapter 9) for a rigorous but readable discussion of expected values.
The reader who lacks this background is directed instead to any introductory
statistics text (e.g., Hays, 1973: 871) for an introduction to these concepts.
This appendix will deal only with the algebra of expectations required for an
understanding of Chapters 2, 3, 4, and 5.

If a random variable, x, is discrete, it takes on only a finite set of values.
This is ordinarily written as

xﬂﬁx_u...,x:%

If each element of this set has an associated probability, p(x;), then the
expected value of x is defined as

Ex)= 2 x-p(x).

i=1
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For example, if x is the number obseived on the roll of a die, then x takes on
only six values:

x=1{1,2,3,4,5,6}.
Each of these six values is equiprobable, so the expected value of x is:

6
Ex)= 3 x (1/6) =3.5.

i=1

On the other hand, if the random variable is continuous, it may take on any
value in the real line. This is ordinarily written as

—00 < X < +o0o,

If a probability density function, f(x), is defined for the real line, then the
expected value of x is:

+o
mOCHM x- f(x)-dx.

A random shock, may take on any real value, so the expected value of a
random shock is:

+x
E(@)= [ a.f(a)-da, =0,

where f(a;) is the Normal probability density function.

The proof of any expected value theorem is done by summing (in the case
of a discrete random variable) or integrating (in the case of a continuous
random variable) the product of a random variable and its probability func-
tion. A random variable of particular interest to the time series analyst is
white noise: the random shock. Each shock is distributed Normally and
independently with zero-mean and constant variance, that is:

a¢ ~ NID(0,02).
The implication of this distribution is that

E(a) =0

E () = o}

E (a@a+y) = 0.

Each of these expected values can be derived by integrating the product of
the term and its density function as indicated. We will take these expected
values as givens.
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The expectation operator, E, is applied to a random variable, or to a
combination of random variables, to derive the expected value. The expecta-
tion operator is a linear operator, so the procedure of applying the operator
follows the common rules of linear algebra. These rules consist of the five
listed below.

First, the operator is applied to a function only after all other operations
have been performed. For example, to take the expected value of the term

(a = Ora-1)%,
the expectation operator is applied
E [(a — O1a-1’1.

However, all operations indicated inside the brackets ([ ]) must be per-
formed before the expected value is taken, that is,

E{(a — 012 )?] = E[a} — 207a@,| + aj_1].

Taking the expected value before the bracketed operations have been per-
formed will ordinarily not give the expected value of the function.
Second, the expected value of a constant is the constant, for example,

E (6y) = Oy.

Third, the expected value of the product of a constant and a random
variable is the product of the constant and the expected value of the random
variable, for example,

E(©ja-1) = 0,E(a).

Fourth, the expected value of the sum of two random variables is the sum
of the expected values, for example,

E (a;— ©1a—) =E(a) — 6,E (a,— ).

This rule generalizes to any linear combination of random variables.
Fifth, the expected value of the product of two independent random
variables is the product of their expected values, for example,

E (a@a;—) = E(ap E(ai—)
The key word here is independence. Random shocks are independent by

definition, so the expected value of random shock products is equal to the
product of their expected values. If two random variables are nor indepen-

“
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dent, however, the expected value of their product is not generally the
product of their expected values. For example, successive realizations of an
ARIMA (0,0,1) process

Yo =a — 0Oja,_
and yev) = ags) — O

have the same zero expected values:
E(y)=E(y+1) =0

but because these two random variables are not independent, the expected
value of their product is not the product of their expected values:

E (yty1+1) # E (YOE(ye41)-
Instead, the expected value of their product is:
E(yiyir ) = El(a; — O1a-1) (a4 1 ~ O1a)]
= E[a@a+ ~ O1at — Ojaja 1 + Ofa_ja
E (@a+1) — OB &) — O}E (a- a4 1)
+ OFE (a—1a))
0-002-0+0=— 0,02

Our use of the expectation operator in Chapters 2, 3, 4, and 5 employs
these five rules. Although a particular demonstration may appear formida-
ble, the algebraic manipulations are all straightforward. The reader is urged
to learn the rules for applying expectation operators, as developed in this
appendix, and to replicate each derivation.




