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Abstract

This article compares a variety of models of presidential approval in terms
of their dynamic properties and their theoretical underpinnings. Exponential
distributed lags, partial adjustment, error correction, and transfer function
models are considered. The major difference between the models lies in
interpretation rather than statistical properties. The error correction model
seems most satisfactory. Approval models based on individual level theories
are examined, and found to give no additional purchase.

Introduction

It is possible to view political time-series as “merely” presenting a series of
interesting technical problems, ranging from serially correlated errors and
autoregressive conditional heteroskedasticity to unit roots and cointegration.
The technical details of time-series become formidable, indeed, when we
move to Kalman filters and the state-space form, nonlinear models, or the
frequency domain. Over the last decade, political science as a discipline has
started to deal with these technical issues. Much of the credit for this must go
to Douglas Hibbs (1974), who carefully showed us the pitfalls, both substan-
tive and technical, of ignoring the structure of the error process. We now
seldom see papers that fail to test for, and correct, serially correlated errors.
Recent applications of cointegration (Ostrom and Smith 1990), vector auto-

This project was started while I was visiting the Government Department at Harvard
University. Jim Alt, Gary King, Michael MacKuen, and Doug Rivers provided helpful com-
ments. I owe a special debt to Rob Engle, who pointed out to me that what I thought was an
obscure empirical article about the UK consumption function might really be quite interesting.
The first version of this paper was given at the annual meeting of the Political Methodology
Society, Duke University, 1987.
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regression (Freeman, Williams, and Lin 1989) and Kalman filters (Beck
1989) show that complicated technical questions have entered the discourse of
political science.

In addition to being highly technical, time-series analysis offers an aston-
ishing variety of possible specifications. Both cross-sectional and time-series
analysts must choose a set of independent variables and a functional form
relating those variables to the dependent variable. But the time-series analyst
also must choose from a wide variety of dynamic specifications for each
variable as well as the “error” process.! Choice of a dynamic specification can
be guided by statistical theory. There are a variety of tests of misspecification
to ensure that model residuals are appropriate (uncorrelated and homoskedas-
tic), that the model coefficients are stable over time, and that the functional
form is appropriate; all specifications should always be subjected to a battery
of misspecification tests. Choice among alternative specifications can be
guided by the standard F-test if one specification is nested inside another, or
by a variant of the Cox test for evaluating nonnested models.2 But statistics
alone is often not sufficient to lead us to a single, “best” specification. We then
must choose a specification on other grounds, and one way of choosing is by
comparing the dynamic properties of a specification with the dynamics im-
plied by theories. It is this task that is the subject of this article.3

The purpose of this article is to elucidate questions of choice of dynamic
structure by looking at the substantive properties of various structures in the
context of one substantive arena, the modeling of presidential approval. Ap-
proval was the context of Hibbs’s pioneering effort, and has probably received
more analysis than any other single political time-series. While I hope that the
lessons learned from the present analysis generalize to other areas of interest,
those interested in generalization will obviously have to proceed cautiously.

1. The Judge et al. treatise (1985), for example, devotes about a sixth of its thousand pages
to issues of dynamic specification.

2. A specification is nested inside another if the first is a specialization of the second, tha
is, the first specification is the second with some parameters constrained. The Cox procedure
deals with nonnested models by constructing a likelihood function that is a linear combination of
the likelihood functions for each model; the test is of which likelihood contributes more to this
combined likelihood. Unfortunately, the Cox test is often inconclusive; this is the case for
comparing the better exemplars of the models estimated in this article. Some easily computable
Cox tests are reported in Davidson and MacKinnon 1981. An alternative to the Cox test is to use
one of a number of criteria, such as the Akaike Information Criterion (AIC) or the Schwartz
Criterion (Judge et al. 1985, 869-73). These are based on minimizing the standard error of
estimate plus some penalty for lack of parsimony (measured by degrees of freedom). Since the
models estimated in this article are quite similar in parsimony, these criteria are not helpful for
distinguishing between them. Thus, only the standard error of estimate, o. is reported in the
tables.

3. There are many other nonstatistical methods for choosing between specifications. An
enlightening discussion of this whole area may be found in Leamer 1978.
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There are myriad studies of presidential approval (sometimes mislead-
ingly called popularity), but only a limited number of dynamic specifications
have been used. In this article 1 compare and estimate, using a common set of
variables and a linear, functional relationship, several of the most important of
these specifications. While different scholars have used different variables to
explain approval, the variables used here are the ones most frequently used. In
discussing the various specifications I also simplify matters by referring to
only a very small number of substantive applications. While these were
chosen for my methodological purposes and discussion of the applications
focuses on issues of dynamics specification, the applications examined are
among the more important contributions to the study of presidential approval.
But this article should not be read as a bibliographic essay on presidential
approval.

The generic (linear) approval function relates measured approval at time
t, denoted A,, to previous values of approval, a vector of current exogenous
variables, denoted X,, and its lags, and ¢,, the “error” term.4 Harvey (1990)
calls this type of model an autoregressive distributed lag (AD) model.

The AD model can be written

M
A= M X, .iBi M bA_; t e, 0))

i=0 i=1

where values corresponding to time periods 0 and before are not observed,
and either summation may be infinite. The error process is a sequence of
random variables; the distribution of these random variables may be specified
in a number of ways. Differing assumptions about the 8’s, ¢’s and the error
process lead to different models of approval, which has both substantive and
statistical consequences. If only current X’s are in equation 1, that is, if L is
zero and the second summation is excluded, we have a static model of ap-
proval; if only a finite number of lagged X’s are in the equation, that is, if L is
finite and the second summation is excluded, we have a finite distributed lag
model; if L is infinite or lagged approvals are in the equation, we have an
infinite distributed lag model. In general, these models contain too many
parameters to be estimated straightforwardly; thus, some relationship among

4. I use the word error in quotes since the term is only an error from the standpoint of the
analyst, who has either ignored or mismeasured some variables or otherwise failed to completely
model the approval process. It might be better to call the error term an unmeasured shock, to
remind us that there is little theoretical distinction between X and €, but 1 follow convention and
use the word error. There is some truly random error in the approval function, because it is
measured by survey and hence contains sampling error.
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the parameters is usually assumed, leading to various specific forms of the AD
model. Any of these may be combined with any model of the error process.

In this article, the dynamic properties of several of the most important
and commonly used specifications of the approval function are compared.
Since the data are common across all the models, the next section treats data
and some other preliminary issues with the following section dealing with
common issues about the error process. The next four sections examine spe-
cific AD models: the static model, the exponentially distributed lag (EDL)
model, the partial adjustment (PA) model and the error correction (EC)
model. The following section examines an alternative to the AD model, the
Box and Jenkins transfer function (1976). While these alternatives are not
inherently different, their underlying philosophies do differ. The penultimate
section treats the somewhat different question of specifying the dynamics of
aggregate approval based on theories of individual approval. The conclusion
sums up the strengths and weaknesses of the various models and approaches.

Preliminaries

This article uses monthly data. Most approval studies use quarterly data in the
belief that quarterly averaging simplifies the model and reduces the effect of
measurement error. But as various studies of temporal aggregation have
shown, aggregation makes the dynamic model more complicated and pro-
duced incorrect estimates of dynamic parameters (Beck 1988; Freeman 1989).
The complete sample period begins in April, 1953, and ends in October,
1988, yielding a maximum of 426 observations (fewer if more lags are re-
quired) for analysis.

The dependent variable in most analyses is the level of presidential
approval, as measured by the Gallup Poll; a few analyses use the monthly
change in approval, taken as a simple first difference.> The most important
exogenous variables are two economic measures, the rate of change in unem-
ployment (AU) and the rate of (consumer price) inflation, (/).6 Both inflation
and unemployment are assumed to affect approval with a lag of at least one
month; this assumed lag is taken into account in the notation, so, for example,
AU, refers to the change in unemployment in time period ¢ — 1. Many studies
use the level of unemployment (U) instead of its first difference, but Kemell

5. The data are from King and Ragsdale 1988, table 6.2, supplemented with various issues
of the Gallup Reports. Approval is the proportion of the sample approving of the president’s
performance, so those with no opinion are lumped with those who disapprove of presidential
performance. A few missing months were interpolated; in Beck 1989 I show that such interpola-
tion is benign. For months with more than one survey, the last survey of the month was used.

6. Inflation is measured by the monthly percentage change, annualized, in the Consumer
Price Index. Both unemployment and the CPI are from Citibase (LHUR and PUNEW).
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(1978) has made a cogent argument for using the first difference of unemploy-
ment. The error correcting model, as we shall see, makes sense of the ques-
tion of using levels versus differences as explanatory variables.”

Specifications also include a constant term (C) and three “events” vari-
ables, marking the long-term effect of the Vietnam War on President
Johnson’s approval rating (V), the long-term effects of the Watergate affair
(W), and a variable designed to account for the short-term effects of a number
of dramatic events (E).3

All models are estimated so that events in one administration do not
affect approval in a subsequent administration. This was done, in general, by
treating the first month of each administration as missing data.? Some models
require other procedures to eliminate leakage; this is discussed in conjunction
with those models.

All models were estimated with RATS 386 Version 3.11, using either
ordinary least squares (OLS), nonlinear least squares (NLLS) or the Hildreth-
Lu (HL) grid search technique for models with an autoregressive error struc-
ture. None of the estimations were time consuming, and so issues of computa-
tional convenience are of little importance here.

The notation used in this article tries to be standard, though there is no
real standard. X, will always refer to a vector of exogenous variables (includ-
ing a one for the constant term) and B is vector of parameters conformable

7. Another reason for using AU instead of U is that unemployment has a unit root. (A series
has a unit root if, loosely speaking, it is not stationary but its first difference is stationary. A series
of stationary if its stochastic properties are time invariant. Harvey [1990, 23-30] presents a good
introduction to these issues.) Regressors with unit roots can cause statistical problems (Stock and
Watson 1988). Neither inflation nor approval have unit roots. See eq. 11 for this test.

8. The three events variables are conventionally used in approval studies. W is a dummy
variable used from March, 1973, through August, 1974; V is the number of U.S. soldiers killed
(in thousands) in Vietnam during the Johnson administrations. Variable E consists of ones, zeros,
and minus ones to control for a series of short “dramatic” events, based primarily on MacKuen,
Erickson, and Stimson 1989. The series is always coded so that a positive number increases
approval. The series codes for Eisenhower’s heart attack (one in July, 1954; minus one in August,
_o%, Khruschev's visit to the United States (one in December, 1959; minus one in January,
1960), the Cuban missile crisis (one in November, 1962), the Johnson era urban riots (minus one
in July and August, 1967), the major Vietnam antiwar march (one in November, 1969; minus one
in December, 1969), the mining of Haiphong harbor (one in May, 1972; minus one in June,
1972), the Mayaguez incident (one in May, 1975; minus one in July, 1975), the Iran hostage affair
(one in December, 1979 and January, 1980; minus one in February and March, 1980), the Reagan
assassination attempt {one in April, 1981; minus one in June, 1981) and the Iran-Contra affair
(minus one in December, 1986). The series is empirically, not theoretically, derived. My defense
for using all three series is conventional; failure to use event data leaves a lot of the action in the
error process.

9. The Johnson administration begins in December, 1963, and the Ford administration
begins in September, 1974. The Eisenhower, Johnson, Nixon, and Reagan administrations were
treated as a single administration, with no special demarcation of the second term.
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with X,. To avoid transpositions, the approval function will be i::g XB. L
will refer to the lag (or backshift) operator,'© that is, N.».CC = X, ;. Finally, A
will always refer to the first difference operator, that is, A=1-L.

Modeling the Error Process

In cross-sectional analysis, we model the error term for each individual obser-
vation; in time-series, the errors are in general interdependent, hence .En
stochastic properties of the entire error process must c.n mvo,ommoa. .,_,rw sim-
plest assumption is that the errors are independent and ag:om__.% a_m:..&_:oa
(iid). In this case, we can proceed as in cross-sectional analysis. It is well
known that using OLS causes severe estimation problems if the €rTor process
is not iid (Harvey 1990, 195-98); tests for whether the €ITOr Process is iid are
easy to construct and now almost universally used by time-series analysts.!!

We sometimes think of non-iid errors as a nuisance that makes OLS
inappropriate (Beck 1985). But, if we take dynamics seriously, and if we think
of the error process as being made up of unmeasured m:om_a that are not
fundamentally different from the measured independent «m:m_u_nm,. then we
would expect the error process to, in general, take a form :_8. equation 1. fn
usually simplify a bit and assume either that the error process is autoregressive
(AR) with

p
€= 2 P&t Vi, @)
j=1
or a moving average (MA) with
14
€ = M @._SI.. + Ve s Auv

=1

where, in either case, the v’s are iid and p determines the order of the process.

10. While the algebra of lag operators and polynomials appears mo:am.wc_n. in .v:_o:nn _=
simplifies the analysis of time-series; Harvey (1990, 26-27) provides a good introduction to this
algebra. . .

11. The critical i in iid, from a time-series perspective, is for independent, and so I here
refer to the tests for serially correlated errors, the most well known of which is the UEE:.EE,JO:
test. The easiest and most general tests for independent errors for Lagrange B:Ev:.n_. tests, which
regress OLS residuals on lags of those residuals and any lagged dependent ‘.E:mc_nw .:._Eénw
1990, 278). The advantage of the Lagrange multiplier tests is that they can easily be a..&..m:an to
pick up error processes that show complicated forms of interdependence. war. Durbin’s fnm“
(for first-order serial correlation with a lagged dependent variable) and the Box-Ljung Q-test, a x2
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The AR error process almost completely dominates applied work for a
very simple reason: it is easy to estimate models under this assumption. There
is, in general, no theoretical reason to assume that error processes are AR,
and, indeed, some theoretical reasons to believe they are MA. Measured
approval contains iid sampling error; Granger’s lemma (Granger and Morris
1976) shows that the error process for measured popularity must contain an
MA term (Beck 1989). The MA form is probably also easier to fit into a
general theoretical framework (King 1988, chap. 7).

The dynamics of AR and MA errors differ. Shocks in the AR error model
persist forever, dying out exponentially (assuming that |[p| < 1, that is, the
error process is stationary). In the MA(1) model, shocks persist exactly one
period. While, in principal, we ought to be able to use this information to
guide our choice of error process, in practice this is difficult. An AR(1) error
with, say, p = .4 looks very much like an MA(2) process because only about
5 percent of the AR shock persists more than two periods. (AR[1] processes
with larger values of p mimic higher order MA processes.) In general, any
stationary AR process may be represented by a higher order MA process and
vice versa.

It is also empirically difficult to discriminate between AR and MA errors.
The standard Lagrange multiplier test for an MA error process of order p is
identical to the test for an AR process of that order (Harvey 1990, 278). We
are thus fairly free to specify an AR or MA error, and our choice can be
guided by convenience or the desire for a model with a small number of
parameters.!2 In this article I usually use an AR error process because it is
easier to ensure that shocks from one administration do not leak into the
subsequent administration if errors are AR; this is done by treating the first
period of each administration as missing.!? It is much harder, as we shall see,
to prevent leakage if errors are MA. Models with AR errors can also be
estimated more easily. It is not very time consuming to use NLLS to estimate
models with MA errors, but in some of the computationally intensive estima-
tions, particularly the exponentially distributed lag models, it would be incon-

test for whether the residuals are serially correlated up to some given order) are Lagrange
multiplier tests. There are also tests for whether the error process is identically distributed over
time, the White test for general heteroskedasticity or Engle's test for autoregressive conditional
heteroskedasticity (Harvey 1990, 172, 221-23). All specifications used in this article use these
tests to make sure that the error process has the appropriate properties; given the purpose of this
article, these tests are not stressed, and the heteroskedasticity tests are not reported.

12. The only approval issue that I know of where it is important to use the theoretically
specified MA error is in testing hypotheses derived from the rational expectations hypothesis
(Beck 1989).

13. This assumption about missing data is why I use the Hildreth-Lu (HL) grid search
method of estimation instead of the more common Cochrane-Orcutt iterative procedure. The two
procedures are asymptotically equivalent.
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venient if the errors were MA. Let us now turn to the dynamics of the
variables that are measured by the analyst.

Static Models

The simplest, and earliest, specification is that of no dynamics. Suchamodel was
used in Mueller’s path-breaking study of presidential popularity (1970). In the
static model, only current economic terms enter the approval function; nothing
this month has an effect on anything next month. Changes in X’s immediately
show up in approval, but have an effect for only one month. This seems
unreasonable. Should one good month after two years of economic disaster lead
to the same high level of approval as twenty-five months of economic boom? In
the static model, approval fluctuates as freely as the business cycle.

The static specification also has severe econometric problems. In particu-
lar, as Hibbs demonstrated for the Mueller model (1974), the residuals from
the static model will, in general, not be independent; thus, the coefficient
estimates will not be fully efficient and the estimated standard errors will not
even be consistent.

OLS estimates of the static equation in table 1 seem to show that both
unemployment and inflation have a significant immediate impact on approval
(with the one month lag built into the measures). While the coefficients are not
overwhelming in absolute size, the unemployment coefficient is more than

TABLE 1. Static Model of Approval

OLS HL

Variable B SE B SE
Constant 62.64 .67 55.53 3.19
14 -13.69 1.82 -2.59 330
w -17.44 2.39 -17.66 3.46
E 5.10 2.14 4.94 .65
AU —4.43 2.15 12 .78
I -1.26 Al .05 .05
p — — .94 02

os 9.57 4.20

df 415 413

Qv 1734.74 60.21

DWe .56 —

=Standard error of estimate.
bLjung-Box statistic with df = 60.
¢Durbin-Watson statistic
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twice its estimated standard error, and the inflation coefficient exceeds its
standard error by a factor of ten. The Durbin-Watson statistic clearly shows
that the model is misspecified, and that the error process is not independent.
When corrected for serial correlation through the HL grid search technique,
the seemingly significant economic effects disappear, and most of the *action”
in the model appears to be in the correlated errors (with the error correlation
exceeding .9). But the problems with the static model are more than econo-
metric; the underlying logic of the model is flawed.

The static model claims that approval instantaneously adjusts to new
information, and that prior information is of no consequence. The first claim
is an argument for no “stickiness” while the second is for no “memory.”
Rejecting the no stickiness assumption argues for putting lagged approval on
the right-hand side; rejecting the no memory assumption argues for putting
lagged economic variables there. Rejecting either (or both) assumption(s)
leads to the estimation of a distributed lag model. Almost all modern work on
approval uses a distributed lag model. Such models are broken into two
subtypes: infinite distributed lag models, where effects persist forever, and
finite distributed lag models where lagged effects disappear in a finite number
of periods. 1 start with the latter.

Exponentially Distributed Lags

A finite distributed lag model of approval has the form

L
>~ = M vbl..m.. + €, AA.V
i=0

where L is finite (L is the time it takes for all lag effects to disappear). Any of
the various error processes may be adjoined to this model. Equation 4 requires
the estimation of many parameters, too many if L is at all large; multi-
collinearity between the different lags of X also makes estimation of the model
difficult. The typical solution is to constrain the B’s in some manner, which
both decreases the number of parameters to be estimated and makes the
parameter estimates more stable.

There are a variety of parameterizations of the 8’s that are commonly
used. These range from ad hoc constraints, such as the Almon polynomial
method, which assumes the B’s lie on a low-order polynomial, to constraints
that are theoretically based. The most common method used in the approval
literature is the exponentially distributed lag (EDL), where the effects of past
economic events become less and less important (either because of forgiving
or forgetting), dying off at a constant rate each month.
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The EDL model can be written

L
>~ = M AX..;.V..vm + m~ ._A Amv
i=0

The value of A must be strictly between zero and one.!5 The EDL model has
been used by Chappell and Keech (1985) and, in modified form, by Hibbs
(1987). In specifying equation 5, it is important to make sure that the summa-
tion extends back only to the beginning of an administration and to omit the
first observation of any administration.!6

The EDL model (with appropriate finite summation) can be estimated
most easily by using a grid search to estimate A. Since A must be between zero
and one, we can impose a grid of appropriate fineness over the unit interval
and then do OLS on the approval function for each value of A. The value of A
that minimizes the sum of squared errors (SSE) is the estimate for A, with the
OLS estimates for the other parameters coming from the regression using this
A. The procedure yields maximum likelihood estimates. If the error structure
is ARI the procedure is similar, substituting the Hildreth-Lu algorithm for
OLS. In table 2, column 1, the errors are assumed to be independent and so
the grid search is combined with OLS. The Durbin-Watson and Q-statistics
show that this assumption is untenable, and so, in column 2, the results of
reestimating assuming an ARI error process are shown. Diagnostic checks
show that this model is consistent with the data.

Column 2 shows that both unemployment and inflation have significant
impacts on approval. A tenth of a point increase in unemployment decreases
approval the next month by about 0.15 percentage points; the estimate for A
(.94) shows that this effect dies out slowly, at a rate of 6 percent per month. A
half-point increase in the inflation rate (inflation is much more volatile than
unemployment) decreases approval by almost a point the next month. The

14. In the approval literature, event variables such as V, W, and E, have the lag structure
built in and hence are assumed to affect approval only contemporaneously. The estimations
reported here use that convention. Thus, X contains only the economic variables for unemploy-
ment and inflation. The event variables are omitted from the general equations.

I5. If A is negative, then lagged X’s alternatively increase and decrease approval, which
makes no sense. If A is greater than one, then lagged effects dominate contemporaneous effects,
with the effects of older and older X’s becoming larger and larger. Such a model makes no sense
(and also violates stationarity).

16. In the standard EDL setup, the summation is infinite. Since there is only a finite amount
of data used, the summation is broken up into a finite sum and the so-called truncation remainder,
which consists of all the unobserved data (multiplied by A’ if data before time period 1 are
unobserved). In the approval model, the truncation remainder is simply set to zero, and truncalion
is assumed to occur at the beginning of each administration. This is easy to set up in RATS: it may
be more difficult in other statistics packages.
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TABLE 2. Estimations of Exponentially Distributed Lag Model of Approval

OLS HL HL HL
(" 2 €)) o)
Variable B SE B SE B SE B SE
Constant 68.94 .52 6506 1.65 6501 167 6506  1.68
v -1490 125  -400 264 -372 274 367 273
w -1298 160 —-1072 308 -10.49 3.09 -10.38 3.08
E 490 1.42 498 .61 497 .6l 498 .60
AU 223 36 -144 77 -168 .84  -219 107
1 -26 .01 -18 .02 -6 02 -28 .03
AU, s s . — 2z - 126 .94
I, — — - — — — 18 05
A 93 — 94 a i .90 —~
Ay - - - - 87 sone - -
N — — s = 95 = = s
p e . 86 .03 86 .03 87 .03
oo 6.34 3.76 3.75 3.72
df 415 413 413 411
or 974.35 51.92 51.64 51.10
DWe 42 =] — —

aStandard error of estimate.
bLjung-Box statistic with df = 60.
<Durbin-Watson statistic.

EDL model builds in the assumption that the effects of unemployment and
inflation die out at exactly the same rate, 1 — A.

This is a very strong assumption. It is possible to estimate equation 5
with different A’s for unemployment and inflation. This model is estimated
with a two-dimensional grid search over both A, and A, combined with a grid
search over the AR1 parameter (results are shown in col. 3). The immediate
impacts of both economic variables are similar to those from the single A case;
the values for A,; and A, are also quite close, suggesting that the effects of both
employment and inflation die out at about the same rate.!”

Another possibility is that while, in general, the lagged effects decline
exponentially, the process for the first (or first few) month(s) differs from the
overall process. It is hard to specify a theoretical reason why this should be
so, but it clearly may happen in practice. To check for this, X, (and possibly its
first few lags) can be added to equation 5 with free parameters on those
variables. The null hypothesis that those free parameters are zero then can be

17. With the grid search, the standard F-test to test the equality of A;, and A, is not strictly
applicable. If we compute the statistic ignoring the issue of grid search, we cannot reject the null
hypothesis of parameter equality.
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tested to see if the early lag structure follows the overall exponentially declin-
ing lag structure.

Column 4 of table 2 reports the results of such a procedure to see if the
initial effect of unemployment and inflation on approval is different than the
subsequent lagged effects. (The two free parameters are in the rows labeled
AU, and I to remind us that each variable has its initial effect with a lag of
one month.) We cannot reject the hypothesis that the coefficient of AU, is
zero, that is, the lag structure on the unemployment terms is a declining
exponential lag for all lags including the first. The story for inflation is
different. The estimated coefficient is positive and significant. The effect of a
one-point increase in inflation is a tenth of a point decline in next month’s
approval (the sum of .28 and —.18), with the subsequent effect being a quarter
point decline (the produce of .28 and .90), with further effects declining at the
rate of 10 percent per month. Thus, the initial effect of inflation on approval is
less than that specified by the simple EDL model, but lagged effects are about
half again as large as in the EDL model.

To see the dynamics of the EDL model, we need to look at the effect of
both transitory and permanent changes in the economic variables. Using the
estimates from column 2, a one-time, one-point decrease in the inflation rate
(with a subsequent increase the next month) leads to about a fifth of a point
increase in approval the following month. Of this increase, 94 percent persists
the following month, and so forth. Thus the effect of a one-month decrease in
inflation persists for over four years, with half the effect persisting for over a
year (see the solid line in fig. 1).

If the first lagged effect is left free, using the estimates from column 4,
the initial impact of inflation on approval is less, but the effect after two
months is greater, with a more rapid subsequent decline. The combination of
the greater early effect and the faster rate of decline means that the impact of
inflation on approval is lower in the EDL model in the first year, but greater in
subsequent years; with the first lag free, about two-thirds of the initial transi-
tory impact of inflation dissipates within a year (see the long dashed line in
fig. 1, labelled EDLFREE).

The effect of a sustained decrease in the inflation rate of one point is
shown in figure 2. The first month’s effect is identical to the transitory effect,
but the permanent effect continues to build. In the EDL model (solid line) the
effect increases to about a third of a point after two months, half a point after
three months and about a point after six months. The long-run effect of this
increase in inflation is a gain of about four points in approval. It takes a long
time (over four years) for this effect to be fully realized. With the first lag free
(long dashed line labeled EDLFREE), as in the transitory analysis, the initial
impact of the permanent change is less than in the EDL model, but the two-
month impact is greater. The long-run effect of inflation on approval with the
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Fig. 1. Dynamic effects of a transitory unit decrease in inflation

first lag free is about two-thirds that of the EDL model; equilibrium, however,
is reached much faster (essentially within two years). The effect of inflation on
approval is not huge (one point is a large change to be sustained) but it is not
insubstantial either.

It is interesting to note that the estimates of A and p are similar. This
means that the effect on approval of both the economic variables and un-
measured shocks die out at about the same rate. The similarity of all the
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dynamics in the EDL model allows for radical simplification of the EDL
model. This simplification is essentially the partial adjustment model.

Partial Adjustment

Both sides of the equation 5 can be multiplied by the so-called Koyck (1954)
transformation, (1 — AL). After simplification, this yields

>~Hx‘m+\(b~ _+m~1>m~ 1 6

which looks very much like what is known as the partial adjustment (PA)
model,

\». = vﬁh + \(b\ 1 + € Av\v

except for the MA error process (with parameter A).!8 Note that the MA
parameters is A, which is also the “speed of adjustment” parameter, so estima-
ting equation 6 is a problem in constrained optimization.

The discussion so far has assumed that the errors in the original EDL
model are iid. But this means that shocks to the system (unmeasured effects
on approval) last only one period. Why should unmeasured effects die out any
differently than measured effects? Given the time-series nature of the data,
one would not expect the errors to be independent. Perhaps the most likely
assumption is that the errors are generated by an AR1 process with parameter
A, that is, shocks die out at the same rate as lagged values of the measured
variables. This is the message of table 2. But in that case, the Koyck trans-
formed model is exactly equation 7 with iid errors and can be estimated easily
via OLS.

A slight generalization of this is to assume correlated errors in equation 5
with p # A. This leads to a model like equation 7 with an AR error process
that can be estimated using the HL technique. The advantage of the PA over
the EDL setup is that the PA model is easier to estimate with standard soft-
ware (there is no grid search and no computing of the summations; leakage
between administrations can be prevented by treating the first observation of
each administration as missing). OLS and HL estimations of equation 7 are
shown in table 3, columns 1 and 2. There is a slight amount of autocorrelation
in the OLS errors, indicating that the autocorrelation in the EDL errors is not
quite A. Using OLS would be a lot better than estimating equation 6, but the
HL estimates in column 2 appear best.

The coefficient on lagged approval in table 3 should be very close to the

18. If the error process in eq. 5 is ARMA(p,q), the process in eq. 6 is, by Granger’s
lemma, ARMA(p. g + 1).
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TABLE 3. Partial Adjustment Model of Approval

OLS HL HL
4y (2) 3)

Variable Lag B SE B SE 8 SE
Constant 5.20 1.08 4.77 98 6.11 1.07
v - .98 69 - 87 .61 -1.17 62
w -3.55 .88 -3.25 77 -3.29 78
E 9.43 76 9.44 75 9.40 75
AU ~1.59 75 -1.71 72 ~.94 7
AU, 1 — — = = ~1.34 76
1 ~.104 045 -.118 .043 ~.056 048
1, 1 — - - — -.136 048
A 1 91 017 92 .02 .90 02
p — - ~.14 .05 ~.11 05

oo 3.35 3.33 3.30

df 414 412 409

or 68.31 63.21 66.39

ARI¢ 6.81

=Standard error of estimate.
bLjung-Box statistic with df = 60.
cLagrange multiplier test for AR1 error, x2 with df = 1.

estimate of A in table 2, and it is (.92 versus .94). The coefficients on inflation
and unemployment are also reasonably close in the two tables, with the effect
of inflation being estimated less precisely in the PA model. This is as it should
be, and shows that the partial adjustment model can be used to more easily
estimate the EDL model (so long as the unrealistic assumption of iid errors is
not made for the EDL model).

The PA and EDL models are not identical. In the EDL model, only
lagged economic variables have an effect on current approval; in the PA
model, anything that affects prior approval affects current approval ancm.r
the lagged approval term. Thus, for example, shocks have a different effect in
the two models, having an effect only through the autocorrelated errors in the
EDL model but also having an effect through lagged approval in the PA
model. This accounts for the different estimates in the tables 2 and 3. Since
the two models are not nested, it is hard to say which is superior, though the
smaller standard error of estimate does give the nod to the PA model. But no
substantive conclusion hangs on this choice.!? In some cases the EDL model

19. Column 3 of table 3 is the analog of Column 4 in table 2. Both columns show that the
effects of unemployment and inflation on approval vary nonsystematically over the first few
periods.




66 Political Analysis

would have an advantage in that separate speeds of adjustment for inflation
and unemployment (table 2, col. 3) can be set up more easily in that model.20

Thus far I have used the PA model to simplify estimation of the EDL
model. Can the PA model be considered as a model on its own? (This is an
issue in interpretation because, obviously, the Koyck transformation ties the
estimates of the two models.) The standard story behind the PA model is that
it is costly (to some optimizing agent) to adjust the dependent variable. The
X’s indicate the optimal A, but the realized A is an average of its optimal value
and its realized lagged value. This model makes sense for inventory control or
reaction functions, where it is costly to move the dependent variable. The
alternative story is one of inertia. The X’s again indicate how much A should
move, but, because of inertia or sluggishness, the realized A is an average of
the optimal A and its past value. Kernell (1978 and 1986) uses a similar
argument to justify his PA approval function. He claims that

[tlhe president’s current popularity reflects the level of approval during
the preceding month. This proposition suggests that the president’s popu-
larity will respond sluggishly to environmental forces. During the brief
interval between observations, many citizens will maintain their assess-
ments of the president’s performance regardless of intervening events.
The built-in inertia of popularity is revealed by the fact that the best
information available for predicting an individual’s future evaluation of
the president is his or her current evaluation. (1978, 515)

This is a justification for writing a model in terms of change in approval
(i.e., putting lagged approval on the right-hand side with a coefficient of one)
but it is not a justification for the partial adjustment model. Why should there
be inertia in public opinion? What are the costs of rapid swings in one’s
evaluation of the president? Why should (individual) approval not adjust fully
each month? Just because the PA story has proven useful in economics does
not make it a natural story for political science.

If we take Kernell’s information argument seriously, we end up not with
a PA model but a Bayesian updating model, where voters update their opin-
ions of the president as new information becomes available.2! Consider a
single individual and let A} be that individual’s approval rating (on a con-
tinuous scale) of the president. Suppose now that individuals are not sure of

20. The model in table 2, column 3 can be transformed into a model that looks like the
partial adjustment model through two applications of the Koyck transformation, one with each A.
In practice, the PA model leads us to ignore the issue of different speeds of adjustment.

21. I only sketch the model here. Details and tests of the model are in Beck 1991.
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their approval rating, but have instead a probability density over approval,
8(A).

Suppose there is some relationship between the state of the economy, X,,
and approval. Suppose also that presidents who are more highly approved
will, in general, provide better economic outcomes. Bayes’s theorem says that
the presidential approval density at time ¢ + 1, g, (A}, ,), will be updated
proportionally to fiX,|A)g(Ai) where f is the conditional density of economic
outcomes given approval. (The assumption here is that one supports compe-
tent presidents and competent presidents do a better job of managing the
economy.)

Observed approval in the survey, A,, is just the average Ai. Thus, Bayes-
ian updating, with aggregate data, yields

>~+_ = m\ﬂv@_‘}. \f + €, Amv

where € represents unmeasured factors that affect approval. (This assumes
that approval is the mean of the approval density, g.) The difference between
this form and the partial adjustment form is that the economy enters multi-
plicatively, and its effect depends on whether economic outcomes are conso-
nant with prevailing presidential approval (representing prevailing beliefs
about presidential competence). Only “surprising” economic outcomes should
modify current beliefs.

It is hard to give empirical content to this notion of surprise. The point
here is that the PA model cannot be justified by an inertial argument without
some indication about why approval should move sluggishly and some model
of information processing. It seems hard to justify the partial adjustment
model of approval except as a Koyck transformation of an EDL model.22
Thus, I think it best to conceive of the PA model as a simplified way of
estimating the EDL model; at that point, the small differences between the
two models should be borne in mind.

The First Difference Model

What about using Kernell’s story to justify a model with change in approval as
dependent variable and changes in the economy as independent variables?
The first difference model has

AA, = AX, + €, &)

22. Tt must be stressed that this is a statement about approval, not partial adjustment. The
partial adjustment model has a good theoretical basis in many other areas of interest.
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Results based on such a model are shown in tabie 4. Empirically, the model
does not perform very well. Both economic coefficients have the wrong sign
and are small as compared to their standard errors. (If we think that U belongs
in the model for approval, so that AU belongs in equation 9, the coefficient of
AU at least has the right sign, but is not statistically significant.)

While we often choose specifications because they give us the coeffi-
cients we (or our referees or editors) want, the lack of positive findings for the
first difference model can hardly be decisive against it. There are, however,
important theoretical arguments against the simple model in first differences.
A technical argument is that if the error process in the equation for the level of
approval is iid, the error in the first difference model will be MA1. It is hard to
design a plausible error process for the level of approval that leads to iid errors
for equation 9.

A more serious problem is that equation 9 says that short-term changes in
the economy lead to short-term changes in popularity, but that there are no
effects of the economy on approval that last longer than one month. Accord-
ing to this model, voters respond to a small improvement in the economy at
the bottom of a depression in the same way as they do at the top of a boom.
Note also that if the first difference model gets “off track” in that high ap-
proval coexists with a weak economy or vice versa, there is no way of it ever
getting back on track. In the former case, as the economy improves approval
only increases. One good-sized shock can throw the first difference model off
track forever. This problem was noticed by Davidson et al. in their model of

TABLE 4. First Difference Model of Approval

OLS OLS
Variable B SE B SE
Constant -.29 .18 -.27 18
AV 1.76 3.18 1.61 3.18
AW -9.89 3.7 -9.71 3.74
AE 4.92 57 4.90 .56
AU 14 .67 — —
AU —_ - -1.13 .84
Al .04 .04 .04 .04
L& 3.75 3.74
df 414 414
(ol 58.12 57.11
DWe 2.06 2.07

aStandard error of estimate.
tLjung-Box statistic with df = 60.
<Durbin-Watson statistic
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the consumption function (1978). To deal with the problem they devised a
model that has come to be known at the “error correction” (EC) model.

Error Correction

The EC models starts with equation 9, but adds another term to make sure that
approval and the state of the economy stay “on track.” The EC model is thus
based on an long-run equilibrium notion, in this case that the economy and
approval are in equilibrium, and so approval cannot remain high for long in
the face of a poor economy. The EC model thus adds an “error correction
mechanism” (ECM) to equation 9. The ECM measures how far the economy
is out of equilibrium with approval; the coefficient on the ECM measures the
speed at which the approval returns to its equilibrium value (in terms of the
economy). The model is thus

D\f = Dvbm + .VA\? 1 ~-_Ev t €. (10)

The term in parentheses is the ECM, which keeps approval “on track.”?3

The EC model allows for a much more sensible treatment of levels and
changes. We have already seen that, in previous models, it is not clear
whether levels or changes belong in the approval function, and it is perhaps
bothersome to have an approval function based on the level of inflation but the
change in unemployment. The EC model allows both levels and changes of
the economy to affect approval in what seems like a reasonably satisfying
manner: changes in the economy have a short-run effect on approval, but in
the long run the level of the economy should effect the level of approval.
Sensible treatment of levels and changes is one of the major advantages of the
EC model.

The EC model is now very popular because any set of variables that are
cointegrated can be represented in the EC form (Engle and Granger 1987).
Two variables are cointegrated, loosely speaking, if, even though neither is
stationary, the two are in an equilibrium relationship, so neither wanders far
from the other for very long. Cointegration is only of interest if the dependent
variable is nonstationary. Approval, in my long sample, is stationary.?¢ The

23. The error process may be iid, AR, or MA. It is usually written as an MA process for
notational convenience (Granger and Newbold 1986, 224—26), but for consistency with the other
models in this article 1 assume that the errors are AR if they are not iid. In estimation, I assume
that the event variables belong in the short-run portion of the model, and that all error correction
is based on the economic variables only.

24. Ostrom and Smith (1990) have used cointegration to study approval. They work with
only the Reagan administration and, in such a short sample, cannot reject the null hypothesis that
approval is a random walk.
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appropriate test for stationarity (against the null that approval is a random
walk) is the Dickey-Fuller test (1979). This test is done by estimating

E:_ HUSNI_ +a.+m: A:v

and then examining the ratio of the estimate of B to its standard error, the
Dickey-Fuller statistic.2> For the entire sample period (omitting the first month
of each administration), the Dickey-Fuller statistic is 3.21. Using MacKin-
non’s (1991) correct tables, this statistic is significant with a P-value of about
.03, so we can reject the null hypothesis that approval is a random walk in
favor of the hypothesis that approval is a stationary process. But error correc-
tion is still of interest. The ECM enforces a tighter relationship between the
economy and approval than does the simpler first difference model. Thus,
error correction is relevant even if cointegration is not.

Thinking about error correction rather than cointegration also improves
modeling. The EC model is asymmetric between variables, with a clear
distinction between left- and right-hand side variables; the relationship be-
tween cointegrated variables is more symmetric. Thus, in the EC model for
approval, approval adjusts if it is out of equilibrium with the economy, but the
economy does not adjust to move into equilibrium with approval. This seems
sensible. If we think in cointegration terms, it is too easy to allow equilibrium
by adjustment of all variables simultaneously.26 This may be the right assump-
tion for some situations, but seems incorrect for modeling approval.

The results of estimating the EC model are shown in table 5. The OLS
estimation shows a bit of autocorrelation. The second column (HL) shows
reestimates of the model using an AR1 error process. The two columns give
similar estimates; I work with those in the HL column, which, correcting for
autocorrelation, are slightly superior. The estimations in table 5 drop the first
two observations for each administration to cut the linkage between
administrations.

All of the economic variables are estimated with the correct sign and all
economic coefficients are (at least marginally) statistically significant. The
estimated coefficient for AU is similar to that in the EDL model (table 2, col.
2); a monthly increase in unemployment of, say, one tenth of a point decreases
approval the next month by about two tenths of a point. Again, the economy
has some, but not a huge, effect on approval.

The coefficients on the level of inflation are also similar in both EDL and
EC models. But note that the interpretation of these coefficients is different. In

25. This test assumes that approval does not show a linear trend and the €’s are iid. Tests
show that both assumptions are consistent with the data.
26. Ostrom and Smith, for example, allow the economy to adjust to approval
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TABLE 5. Estimations of Error Correcting Model
(dependent variable = first difference of approval)

OLS HL
Variable Lag B SE B SE
Constant 9.78 1.78 8.52 1.62
14 —-2.16 .81 -1.85 73
w -3.95 .92 -3.64 .83
E 9.20 .74 9.26 74
AU -1.62 .76 -1.72 74
Al —.084 .047 —.081 .048
ECM

A | -.13 .02 —-.11 02
U 1 -.25 12 -.21 1
1 1 -.25 .06 -.23 05
p - = -.12 05

o2 3.29 3.28

dft 406 404

ol 60.73 58.13

ARl¢ 3.87 -

Note: Equation estimated is
AA, = C + BV + BoW + BE + BAU,, +
BsAl, g + BeA,y + ByUi2 + Balr 2 t+ €&
aStandard error of estimate.
bl jung-Box statistic with df = 60.
<Lagrange multiplier test for AR1 error, x2 with df = 1.

the EDL model, the level of inflation is a direct stimulus to popularity, while
the EC model it works through the equilibrium mechanism. Note also that
inflation enters with a one-month lag in the EDL model but with a two-month
lag in the EC model. .

A few examples can help give a feeling for the workings of the EC
model, as well as a comparison of the EC and EDL models. To interpret the
ECM we need to transform the results of table 5. The ECM can be written as

AlA,_, — 1.9U,_, = 2.1, _, + O), (12)

where C is an undetermined constant. This constant means that we cannot
rey e . A
estimate the equilibrium level of approval for a given economic situation.

27. Davidson et al. (1978) get around this problem by assuming that their economic
variables show long-run proportionality. Thus, they need not estimate C. Having no natural zero,
we in political science are not so fortunate
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Suppose that at some time, say December, approval is consistent with the
overall state of the economy, so there is no error correction in January. Now
suppose there is a one-time decrease in inflation of one point in January. The
effects on subsequent approval are shown in figure | (long dashed line,
labeled EC). February would show a 0.08 point increase in approval. The
equilibrium level of approval in February will have increased two points and,
hence, approval will be about 1.90 points below equilibrium. In March there
will be two effects. Since by assumption the decrease in inflation was tempo-
rary, it must increase in February by a point. This increase leads directly to a
0.08 point decrease in approval in March. But this is offset because 11 percent
of the February error is corrected in March, leading to a 0.20 point net
increase in approval. Since the economy has now returned to its December
state, equilibrium approval in March is about a quarter of a point too high.
This error is corrected at the rate of 11 percent per month after March, so
approval decreases by about 0.025 points in April, another tenth of a point
through September and another 0.05 points through the next March, with 75
percent of the error having been corrected by then. It takes about two years for
the temporary decrease in inflation to no longer have any noticeable effect on
approval.

Note the pattern here is more complicated than the pattern shown for the
EDL model. That model showed an initial increase in approval of a fifth of a
point in February compared to the 0.08 point increase in the EC model. This
increase disappears exponentially at a rate of 6 percent per month in the EDL
model. In the EC model, on the other hand, approval continues to increase in
March. Only then does the effect of the transient change exponentially de-
cline. The EC model has a slower initial increase in approval than the EDL
model, with a more rapid subsequent erosion of that effect in the EC model.
The transitory impact of inflation disappears from the system about a year
more quickly in the EC model.

Figure 2 (long dashed line labeled EC) shows the effect of a sustained
one point decrease in inflation. Again, assume the change occurs in January
and that initially approval was in equilibrium. February shows the short-run
effect of a 0.08 point increase in approval. Since the decrease in inflation is
sustained, there are no subsequent short-run effects, but there are continued
error corrections as approval slowly moves to a new equilibrium. In February,
equilibrium approval will be about two points above actual approval. Error
correction eats away at this difference at the rate of 11 percent per month, so
March shows an increase in approval of about a fifth of a point. After six
months, approval will have increased one point, and, after a year, a point and
a half. The new equilibrium level of approval is two points higher than before.
It takes about a year and a half to reach this new equilibrium. This compares
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to a long-run gain in approval in the EDL model of three points, two of which
are gained in the first two years. The new equilibrium is reached considerably
more quickly in the EC model.

The error correction model and the exponentially distributed lag model
provide similar results about the effect of the economy on approval. This
should not be very surprising because both the EDL model and the EC model
can be transformed into something that looks quite similar to the partial
adjustment model. If we take the EC model and write out the change variables
explicitly, we get

A=+ y4 ,+XB—X_(yv+B) +e¢. (13)

This looks like the partial adjustment variable with the addition of eco-
nomic variables lagged an extra period. That addition is unlikely to make a
major difference empirically. Thus, both the EDL and EC models may fit the
data about equally well. But the interpretation of the results is quite different
depending upon which model we think actually generated that data. The
advantage of error correction lies not in obtaining very different estimates, but
in providing a meaningful framework for thinking about both short- and long-
run movements in approval, or, alternatively, the role of levels and differences
in the approval function.

Transfer Function Models

A somewhat different approach to the study of approval uses the Box-Jenkins
transfer function methodology (1976). This methodology comes from indus-
trial engineering, where the task is to derive the relationship between the
inputs and output of some industrial process. The transfer function approach
has been heavily used in the study of approval, with its foremost exponents
being Norpoth (1986 and 1991) and MacKuen (1983; MacKuen, Erickson,
and Stimson 1989).

It is easiest to present the transfer function model in terms of lag poly-
nomials. If L is the lag operator, the lag polynomial A(L) is just

T
AL)= D alLi. (14)

i=0
The transfer function model (for two independent variables, W and Z) is

D(L)
Eﬂl r + ﬁ Nulih +

O(L)
D)

_ BW)
IR

A, € . (15)
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By convention, the denominator polynomial is 1 — ¢,L — . . . —¢4L7; r and
s are delay parameters, giving the time it takes for a change in an input to
show up in approval.

While this model appears different from the AD models previously con-
sidered, this difference is superficial. At first glance it appears as though
transfer functions are similar to finite distributed lag models, with only current
and lagged explanatory variables, but not lagged approval, explaining current
approval. This is true if the denominator polynomials (C, E, and ®) are all
one. Then equation 15 reduces to

A, = B{L)W, + D(L)Z, + O(L)e,, (16)

which is just the finite distributed lag model with a moving average error
process.

But if there are denominator lag polynomials (that are not one) in either
the transfer function for the explanatory variables or the error process, then
the transfer function becomes an infinite distributed lag model. For example,
assume that D is zero, ® and & are both one, and C is a first-order poly-
nomial. Then equation 15 reduces to

(1 — dL)A, = B(L)W, + (1 — dL)e,. a7n

This is exactly the Koyck transformation of the EDL model (with a slightly
more complicated lag structure on W). We can also transform equation 15 by
multiplying all sides by the denominator fractions (first eliminating common
factors, if any). This gives

C(L)E(LYP(L)A, = B(L)E(L)Y®(L)W, + D(L)(CL)Y®(L)Z, +
OL)C(LEL)e,, (18)

which is known as an ARMAX (AutoRegressive Moving Average with eX-
ogenous variables) model. In this model, approval is a function of several of
its own lags, a complicated finite distributed lag of W and Z and a compli-
cated moving average error. Thus, all standard dynamic models can be seen
as imposing some constraints on equation 15, which makes the transfer
function model the most general of all dynamic models (Harvey 1990, 264
66).

Equation 15 can be estimated by standard methods, usually NLLS. There
is some ambiguity about what assumptions to make about data points in the
model that are not observed (because they occur prior to the sample period),
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but the particular assumption is not critical in large samples.2® All standard
statistical tests and methods may be used to evaluate transfer function models;
there is no fundamental dichotomy between transfer function models and the
other models considered previously.

There does appear to be a difference in the practice of transfer function
methodology and more traditional autoregressive distributed lag methodol-
ogy. The latter uses standard econometric methods, starting with a general
model and then testing restrictions, moving to a more parsimonious model if
the data so indicate. This is easy to do in the AD setup. The initial model can
have long dynamics (in X,, lagged approval and the error process). Constraints
can then be imposed on this general model, with simplification accepted
unless the data indicate such simplification is too costly (in terms of an
increase in the estimated standard error of estimate). All this can be done
through the usual sequence of nested F-tests.

Transfer function modelers usually do not follow this sequence, but
instead try to let the data indicate a single model. This model is suggested by
first transforming each input (explanatory variable) to an iid process (*pre-
whitening”), transforming approval (using the same transformation applied to
the input), and then examining the cross-correlations at all lags between the
whitened input and transformed approval. These cross-correlations suggest a
form for the transfer function (Norpoth 1986). This sequence is repeated for
each explanatory variable in the model. The model is estimated (by NLLS)
and checked for adequacy; at a minimum, the model residuals must be iid.
Given their tools, the Box-Jenkins modelers seem to be more careful about
the fit of the model to the data than do AD modelers, who often seems
happy to assume that only relatively short lags should be examined. Transfer
function modelers, on the other hand, check for long lags in their dynamics,
letting the data indicate whether such lags should be included in the
mode].?°

28. Programs from the Box-Jenkins tradition engage in “backcasting,” that is, using the
model to estimate unobserved data and then reestimating with the new data; those with an
econometric orientation find it easiest to treat the first several observations as fixed, estimating
conditional on those first fixed observations (Harvey 1990, 241-42). The latter assumption makes
maximum likelihood estimation fairly straightforward, with NLLS providing the maximum likeli-
hood estimates.

29. A perhaps extreme example of this is the work of Whitely (1984). His approval
function for the United States has the first difference of approval being affected by the first
difference in unemployment lagged 14, 24, and 30 months, the first difference in inflation lagged
2 months, and an MA error process with lags of 1 and 15 months. These lags are indicated by the
data and are appropriately chosen with the Box-Jenkins methodology. An AD modeler would
almost certainly choose a simpler model, with a gain in parsimony but a loss of in-sample fit. It
would seem that Whitely's resuit is very sample specific.
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Transfer function modelers usually do not start with a general model and
then test restrictions on that model. They certainly could, since AD models
are a subset of transfer function models. But complicated transfer function
analysis does not lead the modeler in this direction. Part of the problem is that
transfer functions do not present the obvious nesting of models as in the AD
framework; another part of the problem is that tests for common factors in the
lag polynomials are harder to construct in the transfer function framework
(see note 31); a third part of the problem is that concerns for picking up all
the dynamics featured in a sample set of data cuts against a concern for
parsimony.

The transfer function methodology looks very arcane. It is best suited
to tease out the complicated relationship between a single input and a single
output (Norpoth 1986). With more than a single input, the prewhitening and
cross-correlation methodology becomes much more difficult, being similar
to trying to specify a multiple regression model by looking only at bivariate
correlations. While transfer function modelers often make inferences from
their model selection diagnostics, in the end they have a statistical model
and can draw all relevant inferences from the estimated coefficients. Thus,
there is no reason to worry about the whole debate about prewhitening and
the examination of bivariate cross-correlations (Harvey 1990, 248). The
Box-Jenkins took kit is a useful, but not the only, way to specify a transfer
function model.

Transfer function analysis is ideal for estimating the exact relationship
between a single input and approval. This is because the transfer function,
B(L)/C(L), gives the precise relationship between input and approval; if all
other inputs (including the error) are set at zero, then this transfer function
completely specifies the relationship between input and approval, making
interpretation straightforward. This is particularly useful when the input is a
“pulse,” that is, a dummy variable that marks some specified event, such as a
war. It is often of interest to know how quickly approval responds to such an
event, the shape of the response (that is the pattern of lagged effects), and the
length of time it takes before the effect dies out. Norpoth (1991) has probably
made the best use of transfer functions in this manner.

His interest was the effect of the Falklands War on Prime Minister
Thatcher’s reelection. This was studied by estimating a transfer function of a
pulse that marked the month of the war. Norpoth showed that the war had a
great affect on Mrs. Thatcher’s approval, but that most of that affect dissipated
before the election. Specifically, he showed that the war increased Mrs.
Thatcher’s approval by 5 points in April, 1982, and 15 points in May, 1982, to
be eroded at a rate of about 7 percent per month thereafter, leaving a small
residual impact on her approval for the election of 1983. Norpoth is here
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working like an historian. He was not attempting a general theory of the effect
of war on approval, but a specific study of how the Falklands War affected
Mrs. Thatcher’s approval. For this he wanted an estimate of the transfer
function that fit the data as well as possible (while retaining some parsimony).
There was no interest in extrapolating these results to other samples.

An alternative is to use transfer functions in a more theoretical manner,
as in the various works of MacKuen. MacKuen takes advantage of the fact
that each separate transfer function can be used to theoretically understand the
relationship between a single input variable and approval. His general ap-
proach is that a temporary, one-time change in an input should have an effect
that died out slowly. Thus, there is an equilibrium relationship between each
input and approval. The transfer function for any input can then be modeled as
B/1 — 6L, where different parameters B and & are estimated for each input
variable. If || < 1, then the transfer function can be rewritten as

B 2 8, (19)
=0

so the effect of the input dies out an exponential rate, 8. (Note the similarity to
the EDL story. If all transfer functions have the same denominator, this
transfer function model is exactly the EDL model.)

The advantage of such a model is that it is possible to examine the
relationship between any input and approval by simply looking at the esti-
mated transfer function.30 Unlike, say, the PA model, no dynamics are con-
tained in lagged approval terms. This makes interpretation straightforward.
Thus, for example, MacKuen (1983) used transfer functions to study the
immediate and long-term impacts of various types of events (including eco-
nomic events) on approval. The economy is seen to have a substantial effect
on approval, but it has a smaller, albeit more long-lived effect than do some
more dramatic events.

The difficulty of this type of model is that it is much less parsimonious
than, say, the EDL model, since the relationship between each input and
approval has a separate parameterization. (Of course, this may be a strength if
the EDL model imposes an incorrect constraint.) The transfer function model
is also more costly to compute, though this is not a major factor. More
seriously, if the transfer functions for the different inputs contain approximate
common factors, then it is very hard to get precise estimates of the parameters

30. This approach depends heavily on the inputs being independent, so it is possible to
examine the effect of a single input setting all other inputs to zero.
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in those factors.3! It is also very difficult (if not impossible) to ensure that
events in one administration do not affect approval in a subsequent admin-
istration; effects persist forever if there are nay denominator polynomials in
the transfer functions. But perhaps most important, there is no well-defined
methodology for choosing a parsimonious but empirically valid transfer func-
tion in the multivariate case.

1 estimate a series of transfer function models using the common data set.
Each contains a dummy variable to mark the start of a new administration;
these cannot prevent the leakage of information from the previous administra-
tion, but they lessen its impact.32 Results of the estimation are shown in table
6. Models A through C deal with the effect of the economy on approval, while
models D through F show the impact of the Cuban Missile Crisis on President
Kennedy’s approval. (To save space, extraneous coefficients are omitted in
models D through F; estimates are similar to model A.)

The best-fitting transfer function for the error process is ARMA(L, 1) as
in models A and C; the AR model B is distinctly inferior, with a very high
O-statistic. The resulting errors in models A and C appear to be independent
and the models appear adequately specified (with a standard error of estimate
slightly higher than in the EDL model, with most of this increase being caused
by the inability to discard the first observation of each administration). We can
get a feeling for the meaning of the ARMA error by ignoring all the other
inputs. This gives (from model A)

_ 1+ .12
AT T=gL 20)

which can be written
A = 85A,_, + €+ .12¢,_,. Qn

This is a simple ARMA representation of approval.

31. Each lag polynomial can be factored into a series of linear terms. If all polynomials
contain the same factor, this term should be factored out. But since the coefficients of the
polynomial are estimated, the estimates will never coincide exactly. This is what causes the
problem. Ignoring common factors causes large standard errors. But Box and Jenkins note “[i]n
practice we shall be dealing with estimated coefficients which may be subject to rather large
errors, so that only approximate factorization can be expected, and considerable imagination may
be needed to spot a possible factorization” (1976, 387). Sargan (1980) has developed a methodol-
ogy to test for common factors, but this methodology seems to be used primarily by AD
modelers.

32. This inability to prevent leakage from administration to administration is a major
weakness of the transfer function model.
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The transfer function for inflation is —.16/(1 — .94L) with a delay for
two months. Thus, inflation affects approval after two months (shades of error
correction, but without the underlying story). One strength of the transfer
function methodology is that it forces us to confront the issue of delay from
input to output, though no theoretical reason is offered for that delay. A one-

TABLE 6. Transfer Function Model of Approval

Model A Model B Model C

Variable
(Delay) Ba SE Be SE g SE
Constant 66.81 2.47 68.81 .78 127.15 2011.33
JFK1® 6.62 2.81 3.05 3.28 6.48 2.80
LBJb 9.74 2.79 8.96 3.25 10.02 2.81
RMN1®b 5.26 2.94 3.63 3.27 5.25 2.97
GKF1®r 1.82 3.19 0.99 3.37 1.96 3.21
JEC1® 4.51 2.78 8.74 3.23 4.50 2.80
RWR1®b 6.87 2.78 9.73 3.23 6.60 2.90
1 -5.41 2.92 -16.79 1.74 -5.45 2.95
w -17.00 3.12 -19.20 2.1 —16.78 3.14
E 5.07 .61 5.40 73 5.04 .61
AUQ2) -1.37 .70 -2.09 .90 0.12 .28

3 — — 0.956 .007 1.000 .010
1(2) -.16 .05 -.12 .02 -.16 .06

) .937 .023 956 .007 916 .038
&, .85 .03 — — .84 .03
0, 120 .057 770 .030 130 .060

o* 3.87 5.04 3.89

df 411 410 410

Q9 58.68 717.41 61.79

AR1e - 63.97 —

Model Df Model Ef Model Ff

Variable
(Lag) B SE Ba SE B= SE
CUBA: 4.57 2.78 11.22 3.86 7.63 3.35

3 - - 913 122 — -
CUBA(I) — - — — 5.500 3.353

a* 3.88 3.86 3.87

df 410 409 409

Q4 58.27 62.64 60.59

aUnless otherwise noted in the variable label.

bDummy variable, set to 1 in first month of administration.
cStandard error of estimate.

dLjung-Box statistic with df = 60.
cLagrange multiplier test for AR1 error, x? with df = 1.
fAll other variables as in model A.
8Cuban missle crisis dummy (November, 1962).
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point, one-time decrease in inflation leads to a .16 point increase in approval
two months later; this impact dies away at a rate of about 6 percent per month.
This estimate is very close to that obtained in the EDL or PA analyses.

The effect of unemployment is a bit harder to determine. The assertion of
model A is that unemployment affects approval with a delay of two months; a
one-time, one-point decrease in unemployment leads to a 1.37 point increase
in approval two months later. This immediate effect is similar to that seen the
EDL or PA models. But the dynamics here are different. The transfer function
for unemployment lacks a denominator polynomial. This means that the effect
of unemployment on approval only lasts for one period, disappearing com-
pletely after that.33 The transfer function analysis shows that the dynamic
effect of inflation on approval is different than the dynamic effect of unem-
ployment. This is a strength of transfer function analysis.

Models D through F study the impact of the Cuban missile crisis on
President Kennedy’s approval. The input here is a pulse that is one in Novem-
ber, 1962, and zero otherwise. (The missile crisis is obviously omitted from
the general event variable.) In model D, the assumption is that the crisis
simply increase approval in November (that is, the transfer function is simply
B). Two alternatives appear superior. In model E, the transfer function is 8/(1
— OL), that is, the crisis had an immediate impact on approval that died out
exponentially. In model F, the transfer function is simply 8, + B,L, that is,
the crisis had an effect distributed over exactly two months. (Combining the
two transfer functions made the estimated standard errors huge, indicating an
overparametarized model.) The exponential model E is slightly superior to the
finite distributed lag model F. Thus, the effect of the Cuban missile crisis was
an immediate increase in President Kennedy’s approval of over 11 points.
This increase died out slowly, at a rate of about 10 percent per month. One
defect of this transfer function model is that the effect of the Cuban missile
crisis lingered (a bit) into President Johnson’s approval rating.

Students of approval seem firmly divided into two camps: transfer func-
tion modelers and AD modelers. There is no mathematical justification for
this; transfer function models can easily be transformed into AD models. The
transfer function approach comes complete with its own took kit. But there is
nothing different about transfer functions that make the AD tool kit useless,
and the transfer function tools (prewhitening and cross-correlation analysis)
are hard to use for multivariate analysis. The two approaches seem to lead
researchers in somewhat different directions, with transfer function modelers

33. Model C estimates a transfer function for unemployment that shows the same dynamics
as that for inflation. In that model, unemployment has no statistically significant impact on
inflation (the estimate of the numerator B is well under its standard error). With an insignificant
aumerator, the dynamics implied by the denominator polynomial are irrelevant.

Comparing Dynamic Specifications 81

being more data driven. The transfer function seems ideal for studying the
impact of specific events on approval, but, as MacKuen has shown, it can
work well for theoretical studies of approval. Transfer function models are
generally less parsimonious than their AD counterparts, but the other side of
that coin is that transfer function models are more flexible.

How should we choose whether to use a transfer function or AD model?
The AD model leads to a more well-defined sequence of tests for model
specification, from general to specific (Hendry, Pagan, and Sargan 1984),
whereas the transfer function model is at its best in estimating a complicated
transfer function for a single input. Neither approach is generally superior, but
the transfer function approach comes into its own where interest focuses on a
single determinant of approval, as in Norpoth’s work. Where interest is in the
full multivariate analysis of approval, the econometric tool kit that comes with
the AD approach makes it, for me, superior. Some models (such as error
correction) also arise more naturally in the AD context. But, in the end, the
two approaches are mathematically equivalent and so must yield statistically
equivalent results. Choice between the two approaches must then be driven by
differences in modeling philosophy, not the data.

Modeling Individuals or Aggregates

Thus far I have looked at the dynamics of aggregate models of approval. Can
anything be gained by starting with a dynamic model of individual approval?
Such a modeling strategy, which appears to be based in the theory of rational
choice, is today very popular. Such a strategy also appears promising for
dealing with some important controversies; the arguments over, for example,
“sociotropic” voting (Feldman 1985) are framed at the individual level and so
models based on individuals should be better suited to deal with this con-
troversy. The important recent work by Hibbs (1987, chap. 5) is based on a
model of individual approval; his grouped logit analysis appears to give some
remarkable results. But are models that start with individual approval superior
to those that start directly with aggregate approval? If we had individual-level
data, the answer would be obvious; with only aggregate data the answer is
much less clear.34

Let A represent the approval level of a representative individual at time .
Assume this is measured on a continuum and is converted into an approve-
disapprove dichotomy depending on whether it exceeds some threshold. Let
Xt be out individual’s perception of economic (and other conditions) and let €

34. I exclude here analyses based on large subsets of individuals, say all Democrats or all
Republicans. Such analyses are highly instructive, but, methodologically, they are no different
than fully aggregated analyses.
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reflect all other, unmeasured variables. Then the individual approval function
has

Al = XiB; + €. (22)

If we average this equation over the whole population or sample, we get the
basic approval function,

A, =XpB+¢€, (23)

where A, and X, are averages of the individual-level variables. So far starting
with an individual level model has not gotten us very far.

Suppose we break up the independent variables in equation 22 into those
that are measures of the overall economy (perceived identically by all) and
those that are idiosyncratic to individuals (say unemployment status or in-
come). Let these be denoted Xi and Z, (since Z is perceived identically by
everyone). The relative impact of X and Z is of great interest, since X corre-
sponds to self-interested voting (or approval) and Z seems to have sociotropic
connotations (people approve of the president because they are doing well
versus people approve of the president because the economy is doing well).
Suppose we then estimate an aggregate approval function, which can only
contain Z (since the X’s vary from individual to individual, and can best be
thought of as independent deviations around Z). If the coefficient on Z is large,
does that not tell us something about sociotropic voting?

Unfortunately the answer is no. Granger (1990) has shown that Z may
have essentially no impact on individual approval but a huge impact on
aggregate approval. This is because Z is what he calls a “common factor,” so
even if Z has a very small impact on each individual’s approval, when we add
these effects over thousands of people we find Z to have a large effect in the
aggregate model. Granger has shown that it is very difficult to make in-
ferences from individual to aggregate models, and vice versa, when there are
common factors in the individual model. So starting with an individual-level
model tells us little about sociotropic approval.

Now suppose that each individual perceives the same economic situation
and converts it into approval in the same manner. This is the approach of
Hibbs (1987, chap. 5). In this case, we have a grouped logit (or probit)
analysis. Each month presents a grouping of over a thousand people, all
manifesting the same values for X, and only differing in whether they approve
of the president. Under this assumption, we have not a time-series of 400
points, but individual data on over 400,000 individuals. This increase in
information is not quite a factor of one thousand, since the individual-level
data have a binary dependent variable and, thus, less information than would
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be contained if we actually observed individual approval ratings. The only
source of error in the grouped logit analysis, that is, the only reason that
Hibbs’s estimated standard errors are not zero, is that approval is measured by
survey, and so we have an estimate of approval in any period that differs from
true approval by sampling error. But with the size of the Gallup Poll’s
samples, this sampling error is trivial.

It is this fantastic assumption that gives Hibbs’s analyses such small
standard errors and high r-ratios. In the general literature, and the results
reported here, r-ratios on the economic variables in the approval function
range from two to four (and are often much less than two). Hibbs’s t-ratios are
28, 11, and 15 on inflation, real income, and unemployment. If we really
believe that individuals perceive exactly the same economy in any month, and
hence the X, in the approval function also belongs in each individual’s ap-
proval function, then these results are correct. If, as I do, we believe that the
X, in the approval function represents an average of the (varying) X!, then
Hibbs’s statistical results are wrong, dramatically wrong.

The individual approach also leads to another problem. Hibbs uses an
EDL model, so only X’s and lagged X’s are in his analysis. This is fortunate,
since we do not really know how to do logit analysis with lagged dichotomous
approval as an explanatory variable. Thus, the grouped logit analysis limits us
to the EDL model, excluding partial adjustment or error correction. Hibbs’s
analysis also assumes that the error term in the approval function is uncorre-
lated over time. This assumption is implicit because, in aggregating from
individual to monthly approval, the individual error term is integrated out. We
have seen that the EDL mode! with uncorrelated errors is untenable. Thus,
starting with a specification of individual-level approval may well lead to an
inferior aggregate specification. In short, there seems little to be gained in
practice from modeling individual approval and then aggregating. At best we
end up with the same aggregate model we would have written directly, and, at
worst, we fool ourselves. Among the mistakes that can be induced are believ-
ing that there is some direct correspondence between the estimated aggregate
parameters and individual-level parameters, that we have considerably more
information than, in fact, we do, and that there are no error dynamics.

Conclusions

What is the appropriate dynamic form for an approval function? Does the
answer to this question tell us anything about the more general question of
specification of time-series models in political science? Obviously, specifica-
tion in any substantive area will depend on substantive knowledge in that
area, but some of the lessons learned about the approval function do
generalize.
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Starting with the more specific question, it seems clear that static models
cannot explain approval; it is a dynamic process. The partial adjustment
model also seems an inadequate description of the approval process, unless a
better case is made for why approval should move sluggishly. The exponen-
tially distributed lag model (corrected for correlated errors) does seem like a
plausible model of approval; the partial adjustment model performs well in
practice because it is a transform of this model. The error correction model
seems to do the best job of providing an approval function that corresponds
with the approval process; at least it makes sense of short- and long-run issues
and the importance of levels and differences in explaining approval. In analy-
ses of approval over shorter time periods than used in this article, approval
may not be stationary; at that point, error correction would be even more
useful.

The transfer function approach can contain all the other approaches, so it
is impossible to say that approach is inferior. On the other hand, the transfer
function is just another statistical model, and so all standard statistical tools
and tests are relevant in assessing these models. Transfer function modelers
often seem to limit themselves to the Box-Jenkins methodology; this is unfor-
tunate, especially since this methodology is less useful for multivariate analy-
sis. The transfer function approach does have its advantages; it is ideal for
assessing the impact of a specific historical event on approval.

The various models often resemble each other in terms of fit to the data,
so we cannot choose a specification on purely empirical grounds. The advan-
tage of the error correction model over the partial adjustment model is that it
gets us to think about updating approval in a meaningful way and aids our
thinking about the relationship between levels and changes, a distinction that
other models blur. The advantage of the exponential distributed lag model is
that it brings memory (or forgiving) into the system in a reasonable way. But
these advantages are theoretical, not empirical.

The partial adjustment model works, in practice, because the exponen-
tially distributed lag model often shows substantial autocorrelation. This indi-
cates that we cannot simply choose a specification because it fits the data well.
It also shows that we cannot simply treat matters such as autocorrelation as
technical questions affecting the quality of estimates but not the substance of
models.

Going beyond presidential approval, the partial adjustment model may
often be preferred over the exponentially distributed lag model. Sometimes
there are costs of adjustment. This is most likely to be the case for reaction
functions, where the EDL story makes little sense but the partial adjustment
story is quite plausible. (It is costly for the Federal Reserve to change interest
rates, and even more costly for it to undo mistaken changes.)

In other areas, both the partial adjustment story and the exponentially
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distributed lag story may both be plausible. 1 think that this is the case for
models assessing the impact of parties or elections on economic outcomes.
Political changes work their way slowly through the system (EDL), but it
makes just as much sense to think of outcomes adjusting sluggishly (partial
adjustment).

Error correction may be a very general process that commends itself in
many situations. While it comes into its own in dealing with nonstationary
processes, it is relevant wherever a series of variables are in an equilibrium
relationship. It is surely worth considering as a candidate model in any situa-
tion involving dynamics.

Finally, the transfer function modelers and the autoregressive distributed
lag modelers should again start talking to each other. While the models arise
in different traditions and come with different tool kits, statistically the two
models are not very different. Transfer function modelers could benefit by
going beyond the standard Box-Jenkins set of tools, particularly in terms of
model specification; autoregressive distributed lag modelers could gain by
adding transfer function methods and tools, especially those dealing with lag
structure determination, to their already impressive set of methods. Both sides
could benefit by considering a wide variety of possible dynamic specifications
for any process, rather than sticking to one favored type of specification.
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