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PREFACE 
 
 

This Students’ Manual is designed to accompany the fourth edition of Walter Enders’ 
Applied Econometric Time Series (AETS). As in the first edition, the text instructs by induction. The 
method is to take a simple example and build towards more general models and econometric 
procedures. A large number of examples are included in the body of each chapter. Many of the 
mathematical proofs are performed in the text and detailed examples of each estimation procedure 
are provided. The approach is one of learning-by-doing. As such, the mathematical questions and the 
suggested estimations at the end of each chapter are important.  

 
The aim of this manual is NOT to provide the answers to each of the mathematical problems. 

The questions are answered in great detail in the Instructors’ version of the manual. If your intstuctor 
desire, he/she may provide you with the answers. Instead, the goal of the manual is to get you “up 
and running” on RATS or EVIEWS. The manual does contain the code or workfiles that you can use 
to read the data sets. Nevertheless, you will have all of the data to obtain the results reported in the 
‘Questions and Exercises’ sections of AETS. Even if your instructor does not assign the exercises, I 
encourage you to work through as many of these exercises as possible. RATS users should also 
download the powerpoint slides for RATS users on time-series.net. 

 
There were several factors leading me to provide the partial programs for RATS and EViews 

users. First, two versions of the RATS Programming Manual can be downloaded (at no charge) from 
www.estima.com/enders or from www.time-series.net. The two Programming Manuals provide a 
complete discussion of many of the programming tasks used in time-series econometrics. EViews 
was included since it is a popular package that allows users to produce almost all of the results 
obtained in the text. Adobe Acrobat allows you to copy a program from the *.pdf version of this 
manual and paste it directly into RATS. EViews is a bit different. As such, I have created EViews 
workfiles for almost all of the exercises in the text. This manual describes the contents of each 
workfile and how each file was created.  
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CHAPTER 1 

DIFFERENCE EQUATIONS  
 
Introduction 1 
1 Time-Series Models 1 
2 Difference Equations and Their Solutions 7 
3 Solution by Iteration 10 
4 An Alternative Solution Methodology 14 
5 The Cobweb Model 18 
6 Solving Homogeneous Difference Equations 22 
7 Particular Solutions for Deterministic Processes 31 
8 The Method of Undetermined Coefficients 34 
9 Lag Operators 40 
10 Summary 43 
Questions and Exercises 44         
 
         
 Online in the Supplementary Manual 
 APPENDIX 1.1 Imaginary Roots and de Moivre’s Theorem    
 APPENDIX 1.2 Characteristic Roots in Higher-Order Equations   
 
 
 
LEARNING OBJECTIVES 
1. Explain how stochastic difference equations can be used for forecasting and illustrate 
how such equations can arise from familiar economic models.  
2. Explain what it means to solve a difference equation.  
3. Demonstrate how to find the solution to a stochastic difference equation using the 
iterative method. 
3. Demonstrate how to find the homogeneous solution to a difference equation. 
4. Illustrate the process of finding the homogeneous solution. 
5. Show how to find homogeneous solutions in higher order difference equations. 
7. Show how to find the particular solution to a deterministic difference equation.  
8. Explain how to use the Method of Undetermined Coefficients to find the particular 
solution to a stochastic difference equation.  
9. Explain how to use lag operators to find the particular solution to a stochastic 
difference equation. 
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Key Concepts 
 
 It is essential to understand that difference equations are capable of capturing the types of 
dynamic models used in economics and political science. Towards this end, in my own classes, I simulate 
a number of series and discuss how their dynamic properties depend on the parameters of the data-
generating process. Next, I show the students a number of macroeconomic variables--such as real GDP, 
real exchange rates, interest rates, and rates of return on stock prices--and ask them to think about the 
underlying dynamic processes that might be driving each variable. I also ask them think about the 
economic theory that bears on the each of the variables. For example, the figure below shows the three 
real exchange rate series used in Figure 3.5. You might see a tendency for the series to revert to a long-
run mean value. Nevertheless, the statistical evidence that real exchange rates are actually mean reverting 
is debatable. Moreover, there is no compelling theoretical reason to believe that purchasing power parity 
holds as a long-run phenomenon. The classroom discussion might center on the appropriate way to model 
the tendency for the levels to meander. At this stage, the precise models are not important. The objective 
is for you to conceptualize economic data in terms of difference equations. 
 It is also important to understand the distinction between convergent and divergent solutions. Be 
sure to emphasize the relationship between characteristic roots and the convergence or divergence of a 
sequence. Much of the current time-series literature focuses on the issue of unit roots. Question 5 at the 
end of this chapter is designed to preview this important issue. The tools to emphasize are the method of 
undetermined coefficients and lag operators.    
  

Figure 3.5: Daily Exchange Rates (Jan 3, 2000 - April 4, 2013)
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CHAPTER 2 

STATIONARY TIME-SERIES MODELS  

 
1 Stochastic Difference Equation Models 47 
2 ARMA Models 50 
3 Stationarity 51 
4 Stationarity Restrictions for an ARMA (p, q) Model 55 
5 The Autocorrelation Function 60 
6 The Partial Autocorrelation Function 64 
7 Sample Autocorrelations of Stationary Series 67 
8 Box–Jenkins Model Selection 76 
9 Properties of Forecasts 79 
10 A Model of the Interest Rate Spread 88 
11 Seasonality 96 
12 Parameter Instability and Structural Change 102 
13 Combining Forecasts 109 
14 Summary and Conclusions 112 
Questions and Exercises 113          

 
Online in the Supplementary Manual 
Appendix 2.1:Estimation of an MA(1)Process        
Appendix 2.2:Model Selection Criteria   
 

LEARNING OBJECTIVES  
1. Describe the theory of stochastic linear difference equations 
2. Develop the tools used in estimating ARMA models.  
3. Consider the time-series properties of stationary and nonstationary models. 
4. Consider various test statistics to check for model adequacy. Several examples of 
estimated ARMA models are analyzed in detail. It is shown how a properly estimated 
model can be used for forecasting. 
5. Derive the theoretical autocorrelation function for various ARMA processes 
6. Derive the theoretical partial autocorrelation function for various ARMA processes 
7. Show how the Box–Jenkins methodology relies on the autocorrelations and partial 
autocorrelations in model selection.  
8. Develop the complete set of tools for Box–Jenkins model selection. 
9. Examine the properties of time-series forecasts.  
10. Illustrate the Box–Jenkins methodology using a model of the term structure of 
interest rates.  
11. Show how to model series containing seasonal factors.  
12. Develop diagnostic testing for model adequacy.  
13. Show that combined forecasts typically outperform forecasts from a single model. 
      
 
 

Improving Your Forecasts 
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At several points in the text, I indicate that forecasting is a blend of the scientific method and art. I try to stress that 
there are several guidelines that can be very helpful in selecting the most appropriate forecasting model: 
 
1. Looking at the time path of a series is the single most important step in forecasting the series. Examining the 
series allows you to see if it has a clear trend and to get a reasonable idea if the trend is linear or nonlinear. Similarly, 
a series may or may not have periods of ‘excess’ volatility. Outliers and other potential problems with the data can 
often be revealed by simply looking at the data. If the series does not seem to be stationary, there are several 
transformations (see below) that can be used to produce a series that is likely to be covariance stationary. 
2. In most circumstances, there will be several plausible models that fit the data. The in-sample and out-of sample 
properties of such models should be thoroughly compared.  
3. It is standard to plot the forecasts in the same graph as the series being forecasted. Sometimes it is desirable to 
place confidence intervals around the forecasted values. If you chose a transformation of the series [e.g., log(x) ] you 
should forecast the values of the series, not the transformed values. 
4. The Box-Jenkins method will help you select a reasonable model. The steps in the Box-Jenkins methodology 
entail: 
• Indentifcation 

Graph the data–see (1) above–in order to determine if any transformations are necessary 
(logarithms, differencing, ... ). Examine the ACF and the PACF of the transformed data in order to determine the 
plausible models. 
 

• Estimation 

Estimate the plausible models and select the best. You should entertain the possibility 
of several models and estimate each. The ‘best’ will have coefficients that are 
statistically significant and a good “fit”’ (use the AIC or SBC to determine the fit). 

• Diagnostic Checking 

Examine the ACF and PACF of the residuals to check for signi…cant autocorrelations. Use the Q-statistics to 
determine if groups of autocorrelations are statistically signi…cant. 
Other diagnostic checks include (i) out-of-sample forecasting of known data values (ii) 
splitting the sample, and (iii) over…tting (adding a lagged value that should be 
insigni…cant). You can also check for parameter instability and structural change using the methods discussed 
in Section 12.  

• Forecasting 

Use the methods discusses in Section 9 to compare the out-of-sample forecasts of the alternative models.  
  
5. My own view is that too many econometricians (students and professionals) overfit the data by including 
marginally significant intermediate lags. For example, with quarterly data, someone might fit an ARMA model with 
AR coefficients at lags 1, 4 and 9 and MA an coefficient at lag 7. Personally, I do not think that such models make 
any sense. As suggested by the examples of the interest rate spread and the data in the file SIM_2.XLS, fitting 
isolated lag coefficients is highly problematic. 
  
Transforming the Variables: I use Figure M2 to illustrate the effects of differencing and over-differencing. The 
first graph depicts 100 realizations of the unit root process yt = 1.5yt1  0.5yt2 + t. If you examine the graph, it is 
clear there is no tendency for mean reversion. This non-stationary series has a unit root that can be eliminated by 
differencing. The second graph in the figure shows the first-difference of the {yt} sequence: yt = 0.5yt1 + t. The 
positive autocorrelation (1 = 0.5) is reflected in the tendency for large (small) values of yt to be followed by other 
large (small) values. It is simple to make the point that the {yt} sequence can be estimated using the Box-Jenkins 
methodology. It is obvious to students that the ACF will reflect the positive autocorrelation. The third graph shows 
the second difference: 2yt = 0.52yt1 + t  t1. Students are quick to understand the difficulties of estimating this 
overdifferenced series. Due to the extreme volatility of the {2yt} series, the current value of 2yt is not helpful in 
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predicting 2yt+1.  
 The effects of logarithmic data transformations are often taken for granted. I use Figure M2 to illustrate 
the effects of the Box-Cox transformation. The first graph shows 100 realizations of the simulated AR(1) process: yt 
= 5 + 0.5yt + t. The {t} series is precisely the same as that used in constructing the graphs in Figure M2. In 
fact, the only difference between the middle graph of Figure M2 and the first graph of Figure M2 involves the 
presence of the intercept term. The effects of a logarithmic transformation can be seen by comparing the two left-
hand-side graphs of Figure M2. It should be clear that the logarithmic transformation smooths" the series. The 
natural tendency is for students to think smoothing is desirable. However, I point out that actual data (such as asset 
prices) can be quite volatile and that individuals may respond to the volatility of the data and not the logarithm of the 
data. Thus, there may be instances in which we do not want to reduce the variance actually present in the data. At 
this time, I mention that the material in Chapter 3 shows how to estimate the conditional variance of a series. Two 
Box-Cox transformations are shown in the right-hand-side graphs of Figure M2. Notice that decreasing  reduces 
variability and that a small change in  can have a pronounced effect on the variance. 
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Figure M2: The Effects of Differencing 
 

 
 
The {yt} sequence was constructed as: 

               yt = 1.5yt1  0.5yt2 + t  

The unit root means that the sequence does not 
exhibit any tendency for mean  reversion. 
 
 
 
 
 
 
 
 
 
The first-difference of the {yt} sequence is: 

                    yt = 0.5yt1 + t 

The first-difference of {yt} is a stationary AR(1) 

process such that a1 = 0.5. 

 
 
 
 
 
 
 
The second-difference of the sequence is: 
     yt = 0.5yt + t  t   

The over-differenced {yt} sequence has an 

invertible error term.  
 
 
 
 
 

Figure M2: Box-Cox Transformations 
 

                     yt = 5 + 0.5yt + t  
                             = 0.5 
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                Standard Deviation = 0.609       Standard Deviation = 0.193 
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The first graph shows 100 realizations of a simulated AR(1) process; by construction, the standard deviation of the 
{yt} sequence is 0.609. The next three graphs show the results of Box-Cox transformations using values of  = 0.5, 

0.0, and –0.5, respectively. You can see that decreasing  acts to smooth the sequence.  
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Selected Answers to Questions  

 
8.  The file entitled SIM_2.XLS contains the simulated data sets used in this chapter. The first column contains the 
100 values of the simulated AR(1) process used in Section 7.  This first series is entitled Y1.  The following 
programs will perform the tasks indicated in the text.  Due to differences in data handling and rounding, your 
answers need only approximate those presented in the text. 

 
Initial Program for RATS Users   

 
all 100      ;* The first 3 lines read in the data set 
open data a:\sim_2.xls    ;*  Modify this if your data is not on drive a: 
data(format=xls,org=obs)  
 
cor(partial=pacf,qstats,number=24,span=8) y1 ;* calculates the ACF, PACF, and Q-statistics  
graph 1      ;* plots the simulated series 
# y1 
 
boxjenk(ar=1) y1 / resids   ;* estimates an AR(1) model and saves the  
;* residuals in the series called resids 
 
 
            Notes for EVIEWS Users 
 
 The file aets4_ch2_question8910.wf1 contains the data 8, 9, and 10. Note that the file contains the series y1, 
y2, and y3. The descriptions of the variables and tables should be self evident. The EVIEWS versions of Figures 2.3 
and 2.4 are contained in the file as well.  
 
 There are several important points to note: 
 

1. In the Appendix, it is shown how an MA model can be estimated using maximul likelihood techniques by 
assumine the initial value 0 is equal to zero. This immediately generalizes to higher order processes. 
However, given the initial estimates of the AR and MA coefficients it is also possible to “backcast” the 
initial value(s). By default, EVIEWS “backcasts” these initial values. As such, when estimating models 
with MA terms, the estimated coefficients and their standard errors (and t-statistics) will be slightly 
different from those reported in the text.  
2. Backcasting can be turned off. This is particularly useful if you are having problems obtaining solutions. 
  
3. As described in the USER’S GUIDE, there are two ways to estimate I(1) models. Suppose that you want 
to the variable x as an ARIMA(1,1,1) process. The first method zis to GENERATE a differenced series 
using the difference operator as in:  
 series dx = d(x).  
 ls dx c ar(1) ma(1) 
          
The second is to use the difference operator directly in the command as in 
 ls d(x) c ar(1) ma(1)  
 
4. In EVIEWS, the reported values of the AIC and SBC are calculated as: 
 
    −2(log likelihood/T) + 2n/T and −2(log likelihood/T) + nlog(T)/T.  
 
   In Chapter 2, these values are reported as 
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    −2RSS + 2n and −2RSS + nlog(T) 
 
As such, the values of the AIC and SBC reported in the text will differ from those reported in EVIEWS. 
Nevertheless, as shown in Question 7 above, either reporting method will select the same model. Note that 
the method used by EViews assumes normality whereas the method used in the text is distribution free 
(which can be desirable when nonlinear least squares estimation methods are used).  
 

 
9.  The second column in file entitled SIM_2. XLS contains the 100 values of the simulated ARMA(1, 1) process 
used in Section 7.  This series is entitled Y2.  The following programs will perform the tasks indicated in the text.  
Due to differences in data handling and rounding, your answers need only approximate those reported in the text.  

 
EViers Users should see the notes to Question 8 above. 
 
Sample Program for RATS Users   

 
all 100      ;* The first 3 lines read in the data set 
open data a:\sim_2.xls    ;*  Modify this if your data is not on drive a: 
data(format=xls,org=obs)  
  
cor(partial=pacf,qstats,number=24,span=8) y2    ;* calculates the ACF, PACF, and Q-statistics  
graph 1           ;* plots the simulated series 
# y2 
 
*RATS contains a procedure to plot autocorrelation and partial autocorrelations.  To use the 
*procedure use the following two program lines: 
 
source(noecho) c:\winrats\bjident.src ;* assuming RATS is in a directory called C:\WINRATS 
@bjident y2 
 
boxjenk(ar=1) y2 / resids  ;* estimates an AR(1) model and saves the residuals  
cor(number=24,partial=partial,qstats,span=8) resids / cors 
compute aic = %nobs*log(%rss) + 2*%nreg 
compute sbc = %nobs*log(%rss) + %nreg*log(%nobs) 
display 'aic = ' AIC 'sbc = ' sbc 
 
*To compare the MA(2) to the ARMA(1, 1) you need to be a bit careful. For a head-to-head *comparison, you need 
to estimate the models over the same sample period. The ARMA(1, 1) *uses 99 observations while the MA(2) uses 
all 100 observations.  
 
10.  The third column in SIM_2.XLS contains the 100 values of a AR(2) process; this series is entitled Y3.  The 
following programs will perform the tasks indicated in the text. Due to differences in data handling and rounding, 
your answers need only approximate those reported in the text.  
 

EViers Users should see the notes to Question 8 above. 
 

Sample Program for RATS Users   
 
Use the first three lines from Question 7 or 8 to read in the data set. To graph the series use: 
 
graph 1 ; # y3           ;* plots the simulated series 
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boxjenk(ar=1) y3 / resids  ;* estimates an AR(1) model and saves the residuals  
 
 
*To estimate the AR(2) model with the single MA coefficient at lag 16 use: 
boxjenk(ar=2,ma=||16||) y3 / resids 
 
11. If you have not already done so, download the Programming Manual that accompanies this text and the data set 

QUARTERLY.XLS.  
a. Section 2.7 examines the price of finished goods as measured by the PPI. Form the logarithmic change in the PPI 

as: dlyt = log(ppit) – log(ppit−1). Verify that an AR(||1,3||) model of the dlyt series has a better in-sample fit than an 
AR(3) or an ARMA(1,1) specification. 

 
EViers Users: 
The file aets4_ch2_question11.wf1 contains the variables ppp and dly. 
 
Programs for RATS USERS 
*Read in the data set using: 
 
cal(q) 1960 1 
all 2012:4 
open data c:\aets4\quarterly.xls 
data(org=obs,format=xls) 
tab(picture='*.##') 
* Create dlyt = log(ppit) – log(ppit−1). 
log ppi / ly 
dif ly / dly 
 
* Estimate the AR(3) model using 
box(constant,ar=3) dly / resids 
 
* For each, compare the fit using: (Be sure to estimate each over the same sample period) 
com aic = %nobs*log(%rss) + 2*(%nreg) 
com sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
display "aic = "  aic "bic  = "  sbc 
 
 
b. How does the out-of-sample fit of the AR(||1,3||) compare to that of the ARMA(1,1)?  
 
Notes for EViews Users 
The file aets4_ch2_question11.wf1 for instructors contains the  one-step-ahead forecasts and a ± 2 standard error 
band for the ARMA(1,1) model. The the graph is entitled graph_q11 and the forecasts are in the series dlyf. note that 
in creating the forecasts, use the option STATIC. The dynamic forecasts are the multi-step ahead forecasts 
conditional on the initial observation. For example, click on the equation names eq_arma11 and then click on 
Forecast. The Method options allows you to chose either method. If you chose the entire sample period (the 
default) you should obtain: 
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Forecast: DLYF
Actual: DLY
Forecast sample: 1960Q1 2012Q4
Adjusted sample: 1960Q3 2012Q4
Included observations: 210
Root Mean Squared Error 0.009333
Mean Absolute Error      0.006253
Mean Abs. Percent Error 109.0738
Theil Inequality Coefficient  0.373616
     Bias Proportion         0.000003
     Variance Proportion  0.266415
     Covariance Proportion  0.733582

 
 
 Repeat for the other series.  
 
Programs for RATS USERS 
* For the ARMA(1,1) create the one-step ahead forecasts beginning from 2000:2: 
              set error2 2000:3 2012:4  = 0.0 
 do t = 2000:2,2012:3 
  box(constant,ar=1,ma=1,define=arma,nopri) dly * t 
  ufor(equation=arma) f2 t+1 t+1 
  com error2(t+1) = dly(t+1) - f2(t+1) 
 end do t 
table / error2 
 
c. What is the problem in comparing the out-of-sample fit of the AR(||1,3||) to that of the AR(3)? 
 
 The models are nested so that the usual DM test is not appropriate.  
 
d. Experiment with an AR(5) and an ARMA(2,1) model (see Exercise 2.1 on page 32 of the programming manual) 

to see how they compare to the AR(||1,3||). 
 
* Estimate the ARMA(2,1) using: 
      box(ar=2,ma=1,constant) dly / resids 
 
Be sure to compute the residual autocorrelations, the AIC and the ABC to that of the AR(||1,3||). 
 
 
         
12. Section 2.9 of the Programming Manual that accompanies considers several seasonal models of the variable 

Currency (Curr) on the data set QUARTERLY.XLS. 
 
a. First-difference log(currt) and obtain the ACF and PACF of the resultant series. Does the seasonal pattern best 

reflect an AR, MA or a mixed pattern? Why is there a problem in estimating the first-difference using the Box-
Jenkins methodology?  b. Now, obtain the ACF and PACF of the seasonal difference of the first-difference. What 
is likely the pattern present in the ACF and PACF?  
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Notes for EViews Users 
The file aets4_ch2_question 12.wf1 contains the series curr, dlcurr and dlcurr4. Note thar dlcurr4 is the differenced 
and seasonally differenced series generated using  
 
 dlcurr4 = dlog(curr,1,4) 
 

curr_acf is the correlogram of the series dlcurr and dlcurr4 is the correlogram of the series dlcurr4. 
 
Programs for RATS USERS 
* Read in the data sets using 
cal(q) 1960 1 
all 2012:4 
open data c:\RatsManual\quarterly.xls 
data(org=obs,format=xls) 
 
* Create the appropriate differences 
log curr / ly 
dif ly / dly 
dif(sdiffs=1,dif=1) ly / m  ; * Create the first-difference and seasonal difference 
 
13. The file QUARTERLY.XLS contains a number of series including the U.S. index of industrial production 
(indprod), unemployment rate (urate), and producer price index for finished goods (finished). All of the series run 
from 1960Q1to 2008Q1.  
a. Exercises with indprod. 

i. Construct the growth rate of the series as yt = log(indprodt)  log(indprodt1). Since the first few 
autocorrelations suggest an AR(1), estimate yt = 0.0028 + 0.600yt1 + t (the t-statistics are 2.96 and 10.95, 
respectively).  
ii. Show that adding an AR term at lag 8 improves the fit and removes some of the serial correlation. What 
concerns do you have about simply adding an AR(||8||) term to the industrial production series? 
 
Notes for EViews Users 
1. The file aets4_ch2_question 13.wf1 in the instructors manual contains the answers to parts a and b of the 
question. Note that the series y was generated as the logarithmic change in industrial production using 
 
y = dlog(indprod) 
The correlogram is in y_acf.  
 

SAMPLE PROGRAM FOR RATS USERS 
*READ IN THE DATA SET AS ABOVE. Create the growth rate:  
 
set ly =  log(indprod) 
dif ly / dly 
 
*Estimate the AR(1) and examine th residuals 
lin dly / resids ; # constant dly{1} 
@regcorrs 
 
b. Exercises with urate. 

i. Graph the time path and the ACF of the series. Do you have any concerns that the series may not be covariance 
stationary with normally distributed errors?  
ii. Temporarily ignore the issue of differencing the series. Estimate urate as an AR(2) process including an 
intercept. You should find yt = 0.226 + 1.65yt1 – 0.683yt−2 + t 
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SAMPLE PROGRAM FOR RATS USERS 
set y =  unemp 
gra 1 ; # y 
 
c. Exercises with cpicore. 

i. It is not very often that we need to second-difference a series. However, construct the inflation rate as measured 
by the core CPI as dlyt = log(cpicoret)  log(cpicoret1). Form the ACF and PACF of the series any indicate why 
a Box-Jenkins modeler might want to work with the second difference of the logarithm of the core CPI.  
ii. Let d2lyt denote the second difference of the dlyt series. Find the best model of the d2lyt series. In particular, 
show that an MA(1) model fits the data better than an AR(1).  
iii. Does the MA(1) or the AR(1) have better forecasting properties? 

 
Notes for EViews Users 
The file aets4_ch2_question13c.wf1 contains the series and series dly and dly2 generated using 
 
dly = dlog(cpicore) 
dly2 = d(dly) 
 
The first few autocorrelations of dly (contained in acf) are 0,92, 0.88, and 0.84. The AR(1) model is using the entire 

data set (see dly2_ar1) and the sample period for the MA(1) is restricted to begin in 1960q4 (since 2 observations 
are lost due to differencing and 1 is lost by estimating an AR(1) model). The STATIC forecasts (i.e., the one step 
ahead forecasts) from the MA(1) are called f_ma1 and those from the AR(1) are called f_ar1. 

 
 
SAMPLE PROGRAM FOR RATS USERS 
* Create the growth rate using:  
set ly =  log(cpicore) 
dif ly / dly 
* Now difference the first-difference: 
dif dly / d2ly 
 
 
14. The file QUARTERLY.XLS contains U.S. interest rate data from 1960Q1to 2012Q4. As indicated in Section 10, 
form the spread by subtracting the T-bill rate from the 5-year rate. 
a. Use the full sample period to obtain estimates of the AR(7) and the ARMA(1, 1) model reported in Section 10.  
 
Notes for EViews Users 

The file aets4_ch2_section10.wf1 in the Instructors’ Manual contains the results reported in Section 10 of 
Chapter 2. The file aets4_ch2_question 14.wf1 contains the answers to both parts of the question. In 
aets4_ch2_question 14.wf1: 
 
 f1 and f2 contain the forecasts from the AR(7) and ARMA(1,1) models 
       a1 and a2 are the respective absolute values of forecast errors  
       e1 and e2 are the respective values of the squared forecast errors  
       d_absloss is a1 – a2  
      The DM test of the absolute and squared losses are in dm_absloss and dm_squaredloss.  

 
Sample Program for RATS Users 
*Read in the data set as above and form the spread using:  
set y =  r5 - tbill 
 
* Estimate the AR(7) using 
box(ar=7,constant) y 1961:4 * resids 
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b. Estimate the AR(7) and ARMA(1, 1) models over the period 1960Q1 to 2000Q3. Obtain the one-step-ahead 

forecasts and the one-step-ahead forecast errors from each.  
* Obtain the out-of-sample forecasts for the AR7 using: 
 

com h = 50, start = 2012:4-h+1 
set f_ar7 start * = 0. do i = 1,h ; 
 boxjenk(define=ar7,constant,ar=7,noprint) y * 2012:4-(h+1)+i 
 forecast 1 1 
 # ar7 f_ar7 
end do 

 
* Create the regression equations to test for the bias using: 
lin y ; # constant f_ar7 
TEST(NOZEROS) 
# 1 2 
# 0 1 
 
c. Construct the Diebold-Mariano test using the mean absolute error. How do the results compare to those 

reported in Section 10.  
set err_ar7 start * = y - f_ar7 
set d start * = abs(err_ar7) - abs(err_arma) 
sta(noprint) d ; com dbar = %mean , v = %variance ; dis dbar 
com dm1 = dbar/( (v/(h-1))**.5 ) 
dis 'DM(no lags) = ' dm1 
 
* Now use robust standard errors 
lin(robust,lags=5) d ; # constant 
 
e. Construct the ACF and PACF of the first-difference of the spread. What type of model is suggested? 
 
15. The file QUARTERLY.XLS contains the U.S. money supply as measured by M1 (M1NSA) and as measured by 

M2 (M2NSA). The series are quarterly averages over the period 1960:1 to 2012Q:4. 
 
Notes for EViews Users 
The file aets4_ch2_question15.wf1 for the Instructors’ Manual contains Figure 2.8 and 2.8. Note that 
 
growth_m = 100*dlog(m1nsa)  
growth_m2 = dlog(m2nsa) 
m = dlog(m1nsa,1,4)   
 
Also, model1, model2, and model3 yield the results in Table 2.5 of the text. The tables names part_b, part_c and 

part_d are self-explanatory.  
 
a. Reproduce the results for M1 that are reported in Section 11 of the text.  
 
SAMPLE PROGRAM FOR RATS USERS 
 
*READ IN THE DATA SET 
cal(q) 1960 1 
all 2012:4 
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open data c:\aets4\chapter_2\quarterly.xls  
data(format=xls,org=obs) 
 
* Create the appropriately differenced variable as: 
log m1nsa / lx 
dif(sdiffs=1,dif=1) lx / sdlx 
 
b. How do the three models of M1 reported in the text compare to a model with a seasonal AR(1) term with an 

additive MA(1) term? 
* Estimate the model 
 
box(ma=1,sar=1) lx 1962:3 * resids 
 
d. Denote the seasonally differenced growth rate of M2NSA by m2t. Estimate an AR(1) model with a seasonal MA 

term over the 1962:3 to 2014:4 period. You should obtain: m2t = 0.5412m2t1 + t – 0.8682t4. Show that this 
model is preferable to (i) an AR(1) with a seasonal AR term, (ii) MA(1) with a seasonal AR term, and (iii) an 
MA(1) with a seasonal MA term.  

* Now redefine lx so that 
 
log m2nsa / lx 
dif(sdiffs=1,dif=1) lx / sdlx 
 
* Estimate the model using 
box(ar=1,sma=1) sdlx 1962:3 * resids 
 
16. The file labeled Y_BREAK.XLS contained the 150 observations of the series constructed as yt = 1 + 0.5yt + (1 
+ 0.1yt)Dt + t where Dt is a dummy variable equal to 0 for t < 101 and equal to 1.5 for t  101.   
 
Notes for EViews Users 
Unfortunately it is not straightforward to create dummy variables in EViews. One way to create the dummy variable 
is to use the two instructions below. The first instruction creates the variable time using the @trend function.  
Adding 1 to @trend(1) creates the series 1, 2, 3, … . Otherwise the first entry for time would be zero. The second 
instruction creates the series dummy using the @recode instruction. In essence, @recode is equivalent to an IF 
instruction in most programming languages. The code below, dummy is 0 for all values of time <= 100 and is 1 
otherwise.  
 
series time = @trend(1)+1 
series dummy = @recode(time>100,1,0) 
 
The file aets4_ch2_question16.wf1 contains the variable y_break and the variable dummy generated using the code 
above. The variable dummy_y interacts dummy and y_break. In the Instructors’ Manual EQ01 is the equation 
containing the model estimated as: 
 

Variable Coefficient Std. Error t-Statistic Prob.   

C 1.601506 0.221870 7.218226 0.0000 
Y_BREAK(-1) 0.254493 0.092321 2.756616 0.0066 

DUMMY -0.224420 0.573773 -0.391130 0.6963 
DUMMY_Y 0.543273 0.121476 4.472253 0.0000 

 
In contrast, nobreak is the model estimated without any of the dumy variables. The file also contains the recursive 
estimates, the recursive residuals and the cusums. To obtain these estimates, open EQ01 and select the tab VIEW. 
Select Stability Diagnostics to produce the recursive estimates, recursive residuals and the cusums.   
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Programs for RATS USERS 
OPEN DATA "a:\y_break.xls" 
ALL 150 
DATA(FORMAT=XLS,ORG=COLUMNS) 1 150 ENTRY y_break 
set y = y_break 
 
* DOWNLOAD REGRECUR.SRC from ESTIMA.COM 
source c:\rats\regrecur.src 
lin y ; # constant y{1} 
@regrecursive(cusums,cohist=coeffs,sighist=stddev,sehist=c_sds) resids 
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Appendix 3.1 Multivariate GARCH Models is in the Supplementary Manual. 
 

Learning Objectives 
1. Examine the so-called stylized facts concerning the properties of economic time-
series data. 
2. Introduce the basic ARCH and GARCH models.  
3. Show how ARCH and GARCH models have been used to estimate inflation rate 
volatility.  
4. Illustrate how GARCH models can capture the volatility of oil prices, real U.S. GDP, 
and the interest rate spread.  
5. Show how a GARCH model can be used to estimate risk in a particular sector of the 
economy.  
6. Explain how to estimate a time-varying risk premium using the ARCH-M model.  
7. Explore the properties of the GARCH(1,1) model and forecasts from GARCH models.  
8. Derive the maximum likelihood function for a GARCH process.  
9. Explain several other important forms of GARCH models including IGARCH, 
asymmetric TARCH, and EGARCH models.   
10. Illustrate the process of estimating a GARCH model using the NYSE 100 Index.  
11. Show how multivariate GARCH models can be used to capture volatility spillovers.  
12. Develop volatility impulse response functions and illustrate the estimation technique 
using exchange rate data. 

 

Some Key Concepts 

1. I use Figure 3-7 (reproduced below) to illustrate ARCH processes. As described in the text, the 
upper-left-hand graph shows 100 serially uncorrelated and normally distributed disturbances 
representing the {vt} sequence. These disturbances were used to construct the {t} sequence shown 
in the upper-right-hand graph. Each value of t was constructed using the formula t = vt[1 + 0.8(t-
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1)
2]. The lower two graphs show the interaction of the ARCH error term and the magnitude of the 

AR(1) coefficients. Increasing the magnitude of the AR(1) coefficient from 0.0, to 0.2, to 0.9, 
increased the volatility of the simulated {yt} sequence. For your convenience, a copy of the figure is 
reproduced below. 
 
2.  Instead of assigning Question 4 as a homework assignment, I use the three models to illustrate the properties of an 
ARCH-M process. Consider the following three models: 

Model 1: yt = 0.5yt-1 + t 
Model 2: yt = t - (t-1)

2 
Model 3: yt = 0.5yt-1 + t - (t-1)

2 
 Model 1 is a pure AR(1) process that is familiar to the students. Model 2 is a pure ARCH-M process. When 
the realized value of t-1 is large in absolute value, the conditional expectation of yt is negative: Et-1yt = (t-1)

2.  Thus, 
Model 2 illustrates a simple process in which the conditional mean is 
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Figure 3.7: Simulated ARCH Processes         
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negatively related to the absolute value of the previous period's error term. Suppose that all values of i for i  0 are zero. 
Now, if the next 5 values of the t sequence are (1, -1, -2, 1, 1), yt has the time path shown in Figure 3M-1 (see the 
answer to Question 4 below).  I use a projection of Figure 3M-1 to compare the path of the AR(1) and ARCH-M models. 
 Model 3 combines the AR(1) model with the ARCH-M effect exhibited by Model 2.  The dotted line shown in Figure 
3M-1 shows how the AR(1) and ARCH-M effects interact.  

 

   Selected Answers to Questions 

 
5.  The file labeled ARCH.XLS contains the 100 realizations of the simulated {yt} sequence used to create the lower 
right-hand panel of Figure 3.7.  The following program will reproduce the reported results. 
 
Notes to EViews Users 

1. In the Instructors’ Manual answers are contained in the file aets4_ch2_q5.wf1. The workfile contains the series y 
and y_m. part_a contains the estimated AR(1) model and the correlogram of the residuals is in part_b. The 
correlogram of the squared residuals is in part_c. The LM tests for ARCH effects is in part_d and the ARCH(1) 
estimate is in part_e.  
2. To estimate an ARCH-type model in EViews, select Estimate Equation from the Quick tab.  Enter the 
model of the mean in the box labeled Equation Specification. Enter the model of the mean just as you 
would do for an OLS model. In the lower portion of the Estimate Equation box select ARCH – 
Autoregressive Conditional Heteroskedasticity. This will open a second dialogue box in which 
you can select the order of the GARCH model, and other features of the variance model such as the distribution to 
use for maximum likelihood estimation and whether to include ACHH-M effects,  
  

Sample Program for RATS Users: 
all 100     ;* allocates space for 100 observations 
open data a:\arch.xls   ;* opens the data set assumed to be on drive a:\ 
data(format=xls,org=obs)  
  
* Next, estimate an AR(1) model without an intercept and produce the ACF and PACF. 
boxjenk(ar=1) y / resids 
cor(partial=pacf,qstats,number=24,span=4,dfc=1) resids 
 
*  Now, define sqresid as the squared residuals from the AR(1) model and construct the ACF 
* and PACF of these squared residuals.  
set sqresid = resids*resids 
cor(partial=pacf,qstats,number=24,span=4,dfc=1) sqresid 
 
Instead of the GARCH Instruction users of older versions of RATS can use 
nonlin b1 a0 a1    ;*  prepares for a non-linear estimation b1 a0 and a1 
frml regresid = y - b1*y{1}    ;*  defines the residual 
frml archvar = a0 + a1*regresid(t-1)**2 ;* defines the variance 
frml archlogl = (v=archvar(t)), -0.5*(log(v)+regresid(t)**2/v)  ;* defines the likelihood 
boxjenk(ar=1) y   ;* estimate an AR(1) in order to obtain an initial 
compute b1=%beta(1)   ;*      guess for the value of b1 and a0 
compute a0=%seesq, a1=.3  ;* the initial guesses of a0 and a1 
*  Given the initial guesses and the definition of archlogl, the next line performs the non-  
*  linear estimation of b1, a0, and a1. 
maximize(method=bhhh,recursive,iterations=75) archlogl 3 * 
 
  
6. The second series on the file ARCH.XLS contains 100 observations of a simulated ARCH-M 
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process. The following programs will produce the indicated results. 
 
Notes to EViews Users 
In the Instructors’ Manual, the answers are contained in the file aets4_ch2_q6.wf1. The workfile contains the series y and 
y_m. part_a contains the estimated MA||3,6||) model and the correlogram of the residuals is in part_b. The estimate of the 
ARCH-M model is in part_c.  
 
SAMPLE PROGRAM FOR RATS USERS 
all 100 
open data a:/arch.xls 
data(format=xls,org=obs) 
 
table / y_m   ;* The second series on the file is called y_m. TABLE produces the desired  
   ;* summary statistics.  
 
* The following instruction produces the graph of the ARCH-M process 
graph(header='Simulated ARCH-M Process') 1 ; # y_m 
 
* To estimate the MA(||3,6||) process and save the residuals as resids, use: 
boxjenk(constant,ma=||3,6||) y_m / resids 
 
8. The file RGDP.XLS contains the data used to construct Figures 3.1 and 3.2.  
 
Notes for EViews Users 
1. In the Instructors’ Manual, the file aets4_ch3_q8.wf1 contains the answers to the question. The file contains all of 
the series from the file REAL.XLS. As shown in the file, the series dly was generated as dly = log(rgdp) – 
log(rgdp(-1) although the equivalent dly = dlog(rdgp) would have been a bit shorter.  
2. As discussed in the Answers to Question 2, EViews does not readily create dummy variables. In this program 
dummy was created using  
 
dummy = @recode(@date>@dateval("1984Q4"), 1, 0) 
 
Note that @recode interacts with @date and @dateval to form the equivalent of an IF statement such that 
variable dummy is 0 until 1983Q4 and is 1 thereafter. The variable d2 was created using the alternative method of 
creating dummy variables. First the variable time was generated such that  
 
time = @trend+1 
 
so that time = 1, 2, 3, 4, …  Then the following @recode instruction was used 
 
d2=@recode(time<243,0,1) 
 
Since observation 243 of time corresponds to 2007Q3, the desired dummy is created. Although the first method 
seems easier here, in other examples using undated variables, it is necessary to use this second method.  
3. The file contains the graph or real GDP, reproduces the results on pages 136, and contains the answers to parts a, 
b, and c. The labeling of each answer should be clear after opening the file.  
 
Sample Program for RATS Users 
a. You can read in the data and construct the graphs using: 
 
cal(q) 1947 1 
all 2012:4 
open data c:\aets4\real.xls 
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data(format=xls,org=obs) 
 
*Next create the annualized growth rate using: 
log rgdp / ly ; dif ly / dly; set dlya = 400*dly 
 
9. This program produces the results for the NYSE data used in Section 10. In some weeks, there 
were not five trading days due to holidays and events such as 9/11. The data in the file sets the 
rate of return equal to zero for such dates. Any capital gain or loss is attributed to the first day 
after trading resumes. 
 
Notes for EViews Users 
1. In the Instructors’ Manual the file nyse(returns).wf1 contains the  answers to the questions for 
this section. The GROUP spreadsheet  contains the variables return and rate.  The construction 
of rate was discussed above.  
2. The table labeled p160 contains the estimate of rate as an AR(2) and acf_squaredresid is the 
ACF of the squared residuals from the AR(2) model.  
3. The estimates on pages 160 – 163 are clearly labeled in the file.  
 
Sample Program for RATS Users 
* Read in the data using: 
 
CAL(daily) 2000 1 3 
all 2012:7:16 
open data c:\aets4\chapter_3\nyse(returns).xlsx 
data(org=obs,format=xlsx) 
 
* Create Figure 3.3 
gra(footer='Figure 3.3: Percentage Change in the NYSE US 100: (Jan 4, 2000 - $ 
  July 16, 2012)',vla='percentage change',patterns) 1 
# rate  
 
* Create the histogram using: 
stat(noprint) rate ; set standard = (rate-%mean)/%variance**.5 
@histogram(distri=normal,maxgrid=50) standard 
 
10. Use the data of the file EXRATES(DAILY).XLS to estimate a bivariate model of the pound 
and euro exchange rates.  
 
Notes for EViews Users 
1. In the Instructors’ Manual, the workfile aets4_ch3_q10.wf1 contains the answers to this question. The three 
exchange rates (euro, pound, and sw) and their logarithmic changes (dleu, dluk, and dlsw) are contained in the file. 
Include dlsw to reproduce the results in the text.  
2. In order to estimate the CCC model it is necessary to combine the model of the mean and the format of the 
variance into a SYSTEM. For the diagonal vech the following code was used: 
 
system sys01 
sys01.append dleu = c(1) 
sys01.append dluk = c(2) 
sys01.arch @diagvech c(indef) arch(1) garch(1) 
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Hence, the models of the mean are simply constants; c(1) and c(2) are the intercepts for the euro and pound 
equations, respectively.  The last instruction specifies a GARCH(1, 1) process for the conditional variances 
Similarly, the SYSTEM instructions for the CCC model are:  
 
system sys02 
sys02.append dleu = c(1) 
sys02.append dluk = c(2) 
sys02.arch @ccc c(indef) arch(1) garch(1) 
 
These sets of instructions are in the SYSTEM tabs sys01 and sys02. The tabs diagvech and ccc contain the output.  
 
Sample Program for RATS Users 
* The following program will reproduce the results reported in the text. Simply eliminate the Swiss franc from the 
models below to answer Question 10. 
 
OPEN DATA "C:\AETS4\Chapter_3\exrates(daily).xls" 
CALENDAR(D) 2000:1:3 
ALL 2013:04:26 
DATA(FORMAT=XLS,ORG=COLUMNS) 
* Fill in the missing values using 
set euro = %if(%valid(euro),euro,euro{1}) 
set pound = %if(%valid(pound),pound,pound{1}) 
set sw1 = %if(%valid(sw),sw,sw{1}) 
set sw = 1/sw1 ; Convert to same base currency 
 
*Create the logarithmic changes of the three rates 
log euro / leu   ; dif leu / dleu 
log pound / luk  ; dif luk / dluk 
log sw / lsw     ; dif lsw / dlsw 
 
* Create Figure 3.5 using: 
labels pound sw euro;# 'Pound' 'Swiss Fr' 'Euro' 
SPGRAPH 
   gra(footer='Figure 3.5: Daily Exchange Rates (Jan 3, 2000 - April 4, 2013)', $ 
   vla='currency per dollar',patterns) 3 
   # euro / 1 ; # pound / 2; # sw / 12 
   GRTEXT(ENTRY=2000:6:1,Y=1.75,size=18) 'Pound' 
   GRTEXT(ENTRY=2000:6:1,Y=1.05,size=18) 'Euro' 
   GRTEXT(ENTRY=2000:6:1,Y=0.70,size=18) 'Sw. Franc' 
SPGRAPH(DONE) 
 
 
12. In Section 4, it was established that a reasonable model for the price of oil is an MA(1) with 
the GARCH conditional variance: ht = 0.402 + 0.097 2

1t  + 0.881ht−1. 
Notes for EViews Users 
1. In the Instructors’ Manual, the workfile aets4_ch3_q12.wf1 contains the spot price of oil and 
the variable p = 100*dlog(spot). The time plot of spot is contained on graphspot.  
2. The variable dummy was created using the second method discussed in Question 8 above. The 
variable time was generated using  
time = @trend+1  
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Next, @recode was used to create the variable dummy using 
dummy=@recode(time<1105,0,1) 
 
3. The rest of the workfile is self-explanatory, The tabs are p134, p135, p135b, part_a, part_b, 
part_c, part_d and part_f. The EGARCH model is in eq01.  
 
Sample Program for RATS Users 
* Read in the data using 
CAL(w) 1987 5 15 
all 2013:11:1 
open data c:\aets4\chapter_3\oil.xls 
data(org=obs,format=xls) 
set rate = 100.0*(log(spot)-log(spot{1})) 
 
* Create Figure 3,6 with 
gra(footer='Figure 3.6: Weekly Values of the Spot Price of Oil: (May 15, 1987 - Nov 1, $            
     2013)',vla='dollars per barrel',patterns) 1 
 # spot 2000:1:2 * 
 
* To create Figure 3.13, standardize the sample data to mean zero, variance one. 
diff(standardize) rate / stdreturn 
density(smooth=1.5) stdreturn / xdensity fdensity 
set normalf = %density(xdensity) 
 * Next is a t(3) standardized to a variance of 1.0. (The variance of 
 * non-standardized t(nu) is nu/(nu-2), which is 3 for nu=3). 
set tf      = %tdensity(xdensity*sqrt(3.0),3.0)*sqrt(3.0) 
scatter(patterns,nokbox,footer="Figure 3.13 Distribution of Oil Price Changes",style=line, $ 
key=below,klabels=||"Actual change","Normal density","t density"||) 3 
# xdensity fdensity 
# xdensity normalf 
# xdensity tf 
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 Learning Objectives 
1. Formalize simple models of variables with a time-dependent mean. 
2. Compare models with deterministic versus stochastic trends.  
3. Show that the so-called unit root problem arises in standard regression and in times-
series models.  
4. Explain how Monte Carlo and simulation techniques can be used to derive critical 
values for hypothesis testing.  
5. Develop and illustrate the Dickey–Fuller and augmented Dickey–Fuller tests for the 
presence of a unit root. 
6. Apply the Dickey–Fuller tests to U.S. GDP and to real exchange rates 
7. Show how to apply the Dickey–Fuller test to series with serial correlation, moving 
average terms, multiple unit roots, and seasonal unit roots.   
8. Consider tests for unit roots in the presence of structural change. 
9. Illustrate the lack of power of the standard Dickey–Fuller test. 
10. Show that generalized least squares (GLS) detrending methods can enhance the 
power of the Dickey–Fuller tests  
11. Explain how to use panel unit root tests in order to enhance the power of the 
Dickey–Fuller test.  
12. Decompose a series with a trend into its stationary and trend components. 
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Lecture Suggestions 

 
1.  A common misconception is that it is possible to determine whether or not a series is stationary 
by visually inspecting the time path of the data.  I try to dispel this notion using overhead 
transparencies of the four graphs in Figure 4.2. I cover-up the headings in figures and ask the 
students if they believe that the series are stationary. All agree that the two series in graph (b) and (c) 
of the figure 4.3 are non-stationary.  However, there is no simple way to determine whether the 
series are trend stationary or difference stationary.  I use these same overheads to explain why unit 
root tests have very low power.  Figure 4.2 (with captions the captions removed) is reproduced on 
the next page for your convenience.  
 
2.  Much of the material in Chapter 4 relies on the material in Chapter 1. I remind students of the 
relationship between characteristic roots, stability, and stationarity.  At this point, I solve some of the 
mathematical questions involving unit root process.  You can select from Question 5, 6, 9 and 10 of 
Chapter 1 and Question 1 of Chapter 4.   
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Selected Answers to Questions 

 
 
4. Use the data sets that come with this text to perform the following: 
a. The file PANEL.XLS contains the real exchange rates used to generate the results reported in Table 4.8.Verify the lag 

lengths, the values of  and the t-statistics reported in the left-hand-side of the table.  
b. Does the ERS test confirm the results you found in part a? 
      

Notes for EViews Users 
1. In the Instructors’ Manual, the workfile aets4_ch4_q4ab.wf1 contains the answers to parts a and b of this question. 
The file includes all of the exchange rate variables in PANEL.XLS and their logarithms. The log transformations are 
each preceded with an l and are followed by the country’s initial. The raw data are in the file panel.wf1.  
2. The table df_a contains the results of the Dickey-Fuller test for the log of the Australian exchange rate (la). 
Consider: 

 
Null Hypothesis: LA has a unit root   
Exogenous: Constant    
Lag Length: 5 (Automatic - based on t-statistic, lagpval=0.1, maxlag=8) 

   t-Statistic   Prob.*  

Augmented Dickey-Fuller test statistic -1.678217  0.4399  
Test critical values: 1% level  -3.482453   

 5% level  -2.884291   
 10% level  -2.578981   

 
Since the sample t-statistic is −1.678 and the 5% critical value is −2.88, it is not possible to reject the null 
hypothesis of a unit root. Open the la series and select Unit Root Test from the View tab. For Test 
Type select Augmented Dickey-Fuller and in Test for a unit root in select the Level 

Figure 4.3: Four Series With Trends
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button. Include an Intercept (not a Trend and Intercept). As can be seen from the output above, the 
Lag length was Automatic selection based on the t-statistic option using Maximum lags of 
8.  
 
3. In the Instructors’ Manual, the results for the ERS test for the Australian and Canadian rates are in the Tables ers_a 
and ers_c. Again, open the la series and select Unit Root Test from the View tab. For Test Type select now 
select Dickey-Fuller GLS (ERS) and in Test for a unit root in select the Level button. Include 
an Intercept (not a Trend and Intercept).  
4. In the Instructors’ Manual, the workfile aets4_ch4_q4c.wf1 contains the answers to part c of this question. The 
series y, y_tilde, yd, z1 and z2 are in the GROUP labeled data. You can examine data or the spreadsheet 
ERSTEXT.XLS to see how the data were generated. The results of the ERS test are in the Table ers_test. 
 
Sample Program for RATS Users 

*Read in the data set 
cal 1980 1 4 
open data c:\aets4\chapter_4\panel.xls 
data(format=xls,org=obs) 
 
dofor i = australia canada france germany japan netherlands uk us 
 log i / lx 
 @dfunit(method=gtos,maxlags=8,signif=0.05) lx 
end dofor 
 
     
c. The file ERSTEST.XLS contains the data used in Section 10. Reproduce the results reported in the text. Instead of 

reading in the data, the following indicates how I generated the series: 
 
Sample Program for RATS Users 

all 200 
seed 2009 
set eps = %ran(1) 
set(first=20.+eps(1)) y = 1 + 0.95*y{1} + eps 
   
sou erstest.src   ;* compile the procedure 
@erstest y 

 
 
d. The file QUARTERLY.XLS contains the M1NSA series used to illustrate the test for seasonal unit roots. Make 

the appropriate data transformations and verify the results concerning seasonal unit roots presented in Section 7. 
The seasonal unit root procedures can be downloaded from the Estima website www.estima.com. HEGY.SRC 
performs the Hylleberg, Engle, Granger, and Yoo (HEGY) unit root test on quarterly data. MHEGY.SRC 
performs the test using monthly data.  

     ANSWER: 
 * Read in the data using: 
 cal(q) 1960 1 
 all 2012:4 
 open data c:\aets4\chapter_2\quarterly.xls 
 data(format=xls,org=obs) 

 
set x = m1nsa 
log x / lx 
dif lx / dlx 
source c:\winrats\hegyqnew.src 
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@hegyqnew(signif=0.05,criterion=nocrit,nlag=10) lx 

5. The second column in the file BREAK.XLS contains the simulated data used in Section 8.  
a. Plot the data to see if you can recognize the effects of the structural break. 
b. Verify the results reported in Section 8.  
 
Notes for EViews Users 
1. The file aets4_ch4_section 8.wf1 reproduces the results from Section 8. The graph of y1 is in the GRAPH 
graph01. In addition to the series y1 and y2, there are level shift and pulse dummy variables labeled dl and dp, 
respectively.  To create dummy variables, you should see the discussion in Chapter 2, Question 16. For now, note 
the dummy variables can be generated using: 
 
   time = @trend(1)+1 
   dl = @recode(time>50,1,0) 
 dp = @recode(time=50,1,0) 
 
In the Instructors’ Manual, the ACF is in Table acf_y1; you can see that the series is quite persistent.  A simple 
Dickey-Fuller test (ignoring the break) is in df_y1 and the estimated model y1t = c + a1y1t−1 + a2time + a3dl + a4dp 
is in the Table estimatedmodel_y1.  
2. The results for the series y2 are in similarly named Tabs.  
 
RATS PROGRAM FOR PARTS A and B  

The data set contains 100 simulated observations with a break occurring at t = 51. To replicate the results in 
section 8, perform the following: 
 
all 100    ;* These three lines read in the data set 
open data a:\break.xls 
data(format=xls,org=obs)  
 
set trend = t   ;* Creates a time trend 
 
* The graph of the series shown in Figure 4.10 was created using 
graph 1 ; # y1 
 
* The ACF is obtained using 
cor(method=yule) y1 
 

 
  
6. The file RGDP.XLS contains the real GDP data that was used to estimate (4.29).  

 
Notes for EViews Users 
1. In the Instructors’ Manual, the workfile aets4_ch4_q6.wf1 contains the answers to this question. In addition to the 
series in REAL.WF1, the file contains the log of real GDP (lrgdp), the growth rate of real GDP (dlrgdp). Note that level 
is a level  shift dummy and dtrend is a dummy equal to zero until 1973Q1 and is equal to the series 105, 106, 107, … 
thereafter.  The dummies were created using a combination of the @recode, @data, @dateval, and @trend 
functions: 

 
 
level =  @recode(@date<@dateval("1973/02"), 1, 0) 
dtrend = @recode(@date<@dateval("1973/02"),0, @trend) 
 
2. The Table eq_429 reports the results of the Dickey-Fuller text reported on page 429 of the text and perrontest reports 
the results of the Perron test for lrgdp.   
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3. The obtain the results in hpfiler open the lrgdp series and select the PROC tab. In the OUTPUT series boxes, 
enter hptrend and hpcycle and do not change the default value of Lambda = 1600. The plot of lrgdp, hptrend and 
hpcycle are in the GRAPG hpseries.  
4. The estimate for part d is in part_d and the residual plot are in residuals_partd.  
 
Sample Program for RATS USERS 
a. The following program will replicate the results in Section 6. 

 
READ IN THE DATA WITH 
cal(q) 1947 1 
all 2012:4 
open data c:\aets4\real.xls 
data(format=xls,org=obs) 
 
* Transform the variables 
set time = t 
log rgdp / ly 
dif ly /  dly 
 
lin dly ; # constant time ly{1} dly{1} 
exclude ; # time ly{1} 
exc ; # constant time ly{1} 
 

You can  create Figure 4.12 with 
set trgdp = rgdp/1000. ; set trcons = rcons/1000. ; set trinv = rinv/1000. 
@hpfilter trgdp / hp_rgdp 
@hpfilter trcons / hp_rcons 
@hpfilter trinv / hp_rinv 
 
spg(hfi=1,vfi=1) 
 gra(footer='Figure 4.12',pat,vla='trllions of 2005 dollars') 6 
 # trgdp / 2 ; # hp_rgdp / 1 ; # trcons / 2 ; # hp_rcons / 1 ; # trinv / 2 ; # hp_rinv 
 Grt(entry = 2003:1,y = 13,size=18) 'RGDP' 
 Grt(entry = 2004:1,y = 6.5,size=18) 'Consumption' 
 Grt(entry = 2004:1,y = 2.8,size=18) 'Investment' 
spg(done) 
 

7. The file PANEL.XLS contains the real exchange rate series used to perform the panel unit root tests reported in 
Section 11.  
a. Replicate the results of Section 11.  

 
Notes for EViews Users 
1. In the Instructors’ Manual, the answers are contained in the workfile aets4_ch4_q7.wf1. The first step is to group 
the log of the exchange rates as in the GROUP groupedrates. Go to the View tab and selects Unit Root Test. In 
the dialogue box, for Test type select Individual root-Im, Pesaran, Shin. Select the Level button and 
include an Individual intercept.  
 
 

SAMPLE RATS PROGRAM 
Use the code in Question 4a to read in the data.  
 

8. The file QUARTERLY.XLS contains the U.S. interest rate data used in Section 10 of Chapter 2.  Form the spread, st, 
by subtracting the t-bill rate from the 5-year rate. Recall that the spread appeared to be quite persistent in that 1 = 
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0.86 and 2 = 0.68.  
a. One difficulty in performing a unit-root test is to select the proper lag length. Using a maximum of 12 lags, estimate 

models of the form st = a0 + st−1 + isti. Use the AIC, BIC and general-to-specific (GTS) methods to select the 
appropriate lag length. You should find that the AIC, SBC and GTS methods select lag lengths of 9, l, and 8, 
respectively. In this case, does the lag length matter for the Dickey-Fuller test? 

       
Notes for EViews Users 
1.  In the Instructors’ Manual, the workfile aets4_ch4_q8.wf1 contains the answers to this question. Open the series 
s (= r5 – tbill)  and from the View tab select Unit Root Test. In the next dialogue box, for Test type, 
choose Augmented Dickey-Fuller and for Test for Unit Root in choose the Level button. Be sure 
to include only and intercept. In the Lag length section alternatively choose the AIC, SBC and t-statistic 
options.   
2. If you enter 8 in the User specified box you will get the results for part b. The output is in the Table 
labeled df_s.  
3. The Tables df_r5 and df_tbill contain the results of the unit root test for r5 and tbill.   
   
Sample Program for RATS Users  

      READ IN THE QUARTERLY.XLS DATA SET AS ABOVE.  
 
      set s =  r5 – tbill  ; * form the spread 
      USE @DFUNIT to find the lag lengths using the three methods.  
      @dfunit(method=aic,signif=0.05,maxlags=12) s 
      @dfunit(method=bic,signif=0.05,maxlags=12) s 
      @dfunit(method=gtos,signif=0.05,maxlags=12) s 
 
9. The file QUARTERLY.XLS contains the index of industrial production, the money supply as measured by M1, and 

the unemployment rate over the 1960Q1 to 2012Q4 period.  
 

Notes for EViews Users 
1. In the Instructors’ Manual, the workfile aets4_ch4_q9.wf1 contains the answers to all parts of this question.  The 

file contains the variables indprod, unemp and m1nsa. The series lindprod  = log(indprod) is used for part a. 
The results of the Dickey-Fuller test for lindprod are contained in the Table labeled part_a .  

Null Hypothesis: LINDPROD has a unit root  
Exogenous: Constant, Linear Trend  
Lag Length: 12 (Automatic - based on t-statistic, lagpval=0.1, maxlag=14) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -2.293050 0.435 
 

In order to reproduce these results, open the series lindprod and on the View menu select Unit Root 
Test. In the dialogue box Test type select Augmented Dickey-Fuller. Select the Level and 
Trend and intercept buttons. In the Lag length box, select t-statistic and use the default 
value of 14.  

2. To use eight lagged changes for the unemp series, open the series  and on the View menu select Unit Root 
Test. In the dialogue box Test type select Augmented Dickey-Fuller. Select the Level and 
intercept buttons. There is no reason to incorporate a trend for the unemployment rate series. In the Lag 
length box, select User specified and enter 8 in the dialogue box. You will obtain the results reported 
in the Table part_b.  

3. To use only one lagged change in the test, repeat the steps in part b but enter 1 in the dialogue box for Lag 
length. The result should be identical to that in the Table labeled part_c.  

4. The Table part_d  reports the effects of regressing indprod on m1nsa. Note that the t-statistics are very high and 
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the R2 is 0.86. he ACF of the residuals is reported in Table part_d2.  
 

a.   Show that the results using this data set verify Dickey and Fuller’s (1981) finding that industrial production 
(INDPROD) is I(1). Use the log of INDPROD and select the lag length using the general-to-specific method.  
 
Sample Program for RATS Users: 
READ IN THE QUARTERLY.XLS DATA SET AS ABOVE. 
 
log indprod / lx 
@dfunit(method=gtos,signif=0.05,maxlags=12,det=trend) lx 
 

b.   Perform an augmented Dickey-Fuller test on the unemployment rate (UNEMP). If you use eight lagged changes you 
will find:  unempt = 0.181  0.029unempt1 + iunempti 

                                         (2.30)    (2.25) 
@dfunit(method=gtos,signif=0.05,maxlags=12) unemp 
 
 

10. Use the data in the file QUARTERLY.XLS to perform the following: 
a.   Perform the DFGLS test using 1 lagged change of the log of INDPROD. You should find that the coefficient on  is 

−2.04. (Be sure to include a time trend.) 
 
      EViews Users 
    Open the workfile aets4_ch4_q10.wf1 and click on the Table part_a. In order to reproduce these results, open the 

series lindprod and on the View menu select Unit Root Test. In the dialogue box Test type select 
Dickey-Fuller GLS (ERS). Select the Level and Trend and intercept buttons. In the Lag 
length box, select User specified and enter 1 in the dialogue box.  

 
       RATS Users  
       log indprod / lx 
      @ERSTEST(DET=TREND,LAGS=1) LX 
 
b. Perform the DFGLS test using 8 lags of the change in UNEMP. You should find that the coefficient on  is −1.83. 
 
    EViews Users  
  To obtain the results in part_b open the series unemp and on the View menu select Unit Root Test. In 

the dialogue box Test type select Dickey-Fuller SLS (ERS). Select the Level and Intercept 
buttons. In the Lag length box, select User specified and enter 8 in the dialogue box.  

 
      RATS Users  
      @ERSTEST(LAGS=8) unemp 
 
c. The SBC indicates that only one lagged change of UNEMP is appropriate. Now perform the DFGLS test using 1 

lagged change of UNEMP. In what important sense is your answer quite different from that found in part b?  
  
 EViews Users  
  To obtain the results in part_c repeat the steps indicated in part_b above. However, in the User 

specified dialogue box enter 1.  
  
 RATS Users  
      @ERSTEST(LAGS=1) unemp 
       
The series appears to be stationary with 1 lag but not with 8 lags.  
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11. Chapter 6 of the Programming Manual analyzes the real GDP data in the file QUARTERLY(2012).XLS. Unlike 

the real GDP data used in the text, the date in this file begins in 1960Q1. Perform parts a through e below using 
this shorter data set.   

  
Notes for EViews Users 
1. In the Instructors’ Manual, the workfile aets4_ch4_q11.wf1 contains the answers to all parts of this question. 
From the Quick tab, estimate the equation: lrgdp c @trend. This equation is labeled eq_parta. From the 
Proc menu, select Make residual series and name them resid01. In the workfile, we obtained the ACF of 
resid01 and named them part_a. The correlations show only a mild tendency to decay.  
2. Perform a Dickey-Fuller test on lrgdp. If you use the AIC to select the lag length, you should obtain the results in 
part_b: 

 
Null Hypothesis: LRGDP has a unit root  

Exogenous: Constant, Linear Trend  
Lag Length: 2 (Automatic - based on AIC, maxlag=14) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -2.163125982 0.50718420 
 
3. Generate the series cycle as log(potent) − lrgdp. Perform a unit root test (without a trend). The results are in df_cycle 
and the results are in gls_cycle.  Note that the DF-GLS test is more supportive of stationarity than the DF test.  
 
 Selected Program for RATS Users 
a.  Form the log of real GDP as lyt = log(RGDP). Detrend the data with a linear time trend and form the 

autocorrelations.  
    ANSWER: 

*READ IN THE DATA USING: 
cal(q) 1960 1  
all 2012:4 
open data c:\RatsManual\quarterly(2012).xls 
data(org=obs,format=xls) 
 
log rgdp / ly 
set trend = t 
lin ly / resids1 ; # constant trend 
cor(number=8,picture='##.##') resids1 
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CHAPTER 5 

MULTIEQUATION TIME-SERIES MODELS  

  1 Intervention Analysis        261 
2 ADLs and Transfer Functions       267 
3 An ADL of Terrorism in Italy       277 
4 Limits to Structural Multivariate Estimation     281 
5 Introduction to VAR Analysis       285 
6 Estimation and Identification       290 
7 The Impulse Response Function       294 
8 Testing Hypotheses         303 
9 Example of a Simple VAR: Domestic and Transnational Terrorism  309 
10 Structural VARs         313 
11 Examples of Structural Decompositions      317 
12 Overidentified Systems        321 
13 The Blanchard–Quah Decomposition      325 
14 Decomposing Real and Nominal Exchange Rates: An Example   331 
15 Summary and Conclusions       335 
Questions and Exercises        337   
     
Learning Objectives 
1. Introduce intervention analysis and transfer function analysis. 
2. Show that transfer function analysis can be a very effective tool for forecasting and 
hypothesis testing when it is known that there is no feedback from the dependent to the 
so-called independent variable.  
3. Use data involving terrorism and tourism in Italy to explain the appropriate way to 
estimate an autoregressive distributed lag (ADL).   
4. Explain why the major limitation of transfer function and ADL models is that many 
economic systems do exhibit feedback. 
5. Introduce the concept of a vector autoregression (VAR).  
6. Show how to estimate a VAR. Explain why a structural VAR is not identified from a 
VAR in standard form.  
7. Show how to obtain impulse response and variance decompositions.  
8. Explain how to test for lag lengths, Granger causality, and exogeneity in a VAR. 
9. Illustrate the process of estimating a VAR and for obtaining the impulse responses 
using transnational and domestic terrorism data.  
10. Develop two new techniques, structural VARs and multivariate decompositions, 
which blend economic theory and multiple time-series analysis. 
11. Illustrate several types of restrictions that can be used to identify a structural VAR. 
12. Show how to test overidentifying restrictions. The method is illustrated using both 
macroeconomic and agricultural data.  
13. Explain how the Blanchard–Quah restriction of long-run neutrality can be used to 
identify a VAR.  
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14. The Blanchard–Quah decomposition is illustrated using real and nominal exchange 
rates.  

 
 

Key Concepts 

1.  Although it is possible to skip the estimation of transfer functions, Sections 1 through 3 act as an 
introduction to VAR analysis. In a sense, VAR analysis can be viewed as a progression.  
Intervention analysis treats {yt} as stochastic and {zt} as a deterministic process. Transfer function 
allows {zt} to be stochastic, but assumes that there is no feedback from the {yt} sequence to the {zt} 
sequence. The notion of an autoregressive distributed lag (ADL) is also introduced here. Finally, 
VAR analysis treats all variables symmetrically.  In my classes I use Section 4 to explain the 
limitations of intervention and transfer function analysis and to justify Sims' methodology. 
 
2.  I emphasize the distinction between the VAR residuals and the structural innovations. Questions 
4, 5, and 6 at the end of the chapter are especially important.  I work through one of these questions 
in the classroom and assign the other two for homework. You might project Figure 5.7 in order to 
illustrate the effects of alternative orderings in a Choleski decomposition.  A large-sized version of 
the figure is included here for your convenience.  
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Legend:  Solid line = {yt} sequence      Cross-hatch = {zt} sequence 

Note:   In all cases ut = 0.8vt + yt  and vt = zt 

Figure 5.7: Two Impulse Response Functions
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   Selected Answers to Questions 

 
2. The data set TERRORISM.XLS contains the quarterly values of various types of domestic and terrorist incidents 
over the 1970Q1–2010Q4 period. 
 
Notes for Eviews Users 
1. In the Instructors’ Manual, the workfile aets4_ch5_q2.wf1 contains the domestic and transnational terrorism 

series. The Table acf_trans_to1997q4 contains the ACF of the transnational terrorism series through 
1997Q4. Notice that the ACF decays after lag 2 (2 > 1) ans the PACF cuts to zero beyond lag 2.  

2. The dummy variable soviet was created using  
 dummy = @recode(@date>@dateval("1997/04"),1,0) 
 The two models Jennifer estimated are reported in the Tables partb_eq1 and partb_eq2.  
3.  The ACF and PAF for the entire period are in the Table partc. Note the slow decay of the ACF. This cound 

induce Justin the conclude that the series is very persistent. Justin’s model is reported in the Table partd.   
4.  The second dummy (d2) was created using  
 d2 = @recode(@date>@dateval("1991/04"),1,0) 
 Justin’s model using both dummy variables are in parte.  
 
Sample Program for RATS Users 
* Read in the data using 
cal(q) 1970:1 
OPEN DATA "C:\TERRORISM.XLS" 
DATA(FORMAT=XLS,ORG=COLUMNS) 
 
* Figure 5.1 was created using 
spg(hfi=1,vfi=2,footer='Figure 5.1 Domestic and Transnational Terrorism') 
 gra(Hea='Panel (a): Domestic Incidents',vla='incidents per quarter') 1 ; # Domestic 
 gra(Hea='Panel (b): Transnational Incidents',vla='incidents per quarter') 1 ; # transnational 
spg(done) 
 
b. To obtain Jennifer’s two results create the dummy variable soviet and estimate the following two regressions. 
 
set soviet = %if(t>1997:4,1,0)   
lin y / resids ; # constant soviet ; * ( soviet = z) 
lin y / resids ; # constant y{1 2} soviet 
 
c. As indicated in Chapter 4, an ignored structural break can make a series appear to be a unit root process.  
 
d. Obtain Justin’s results using  
BOXJENK(REGRESSORS,CONST,AR=1,MA=1) Y 
# SOVIET 
 
e. To use both a pulse and a level shift dummy, use:  
set d2= %if(t.eq.1991:4,1,0) 
lin y / resids ; # constant y{1 2} soviet d2 
 
5. Use the data on the file ITALY.XLS to estimate a model in the form of (5.9) using p = n = 6.  
 
Notes for EViews Users 
1. The workfile italy.wf1 contains the variables slitlay and attkit.  
2. In addition to the estimates pertaining to the question, in the Instructors’ Manual the workfile contains the results 



AETS	4	 Page	41	
 

reported in Section 3. Specifically:  
The Table basicadl contains the estimated model using six lags of each variable.  
The F-test results for the sixth lag of each variable are in the Table table01f_test.  
The cross correlaogram, the estimate of equation 5.15, model 3, the pared down model, and the residual 
autocorrelation are in the appropriately labeled files.  

 
For RATS users, the key results in the text can be obtained using the program 
 
* Read in the data set 
open data italy.xls 
calendar(q) 1971:1 
data(format=xls,org=columns) 1971:01 1988:04 entry slitaly attkit 
 
* Obtain the cross correlations 
CROSS(FROM=0,TO=12,pict='##.##') SLITALY ATTKIT 
 
* Estimate the ADL with 6 lags of each variable 
lin slitaly ; # constant slitaly{1 to 6} attkit{0 to 6} 
 
 
9. This set of exercises uses data from the file entitled QUARTERLY.XLS in order to estimate the dynamic 
interrelationships among the level of industrial production, the unemployment rate, and interest rates. In Chapter 2, 
you created the interest rate spread (st) as the difference between the 10-year rate and the T-bill rate. Now, create the 
logarithmic change in the index of industrial production (indprod) as lipt = ln(indprod t) – ln(indprod t) and the 
difference in the unemployment rate as urt = unempt – unempt−1.  
Notes for Eviews Users 
1. The workfile aets4_ch5_q910.wf1 contains the variables tbill, r5, unemp and indprod. The spread was generated 

using s = r5 – tbill,  the  growth rate of industrial production is dlip = log(indprod) - log(indprod(-1)),  and the 
change in the unemployment rate is dur = unemp - unemp(-1).  

2. The three variable VAR with 9 lags is in the Table var_9lags and the 3-lag model is in the Table var_3lags 
.  

3. The SYSTEM varmodel allows you to perform the various lag length tests. The Estimate tab allows you to 
change the lag lengths. Form the estimated model select the View tab and them select the Lag Structure 
option. The Lag Exclusion Tests option will perform Wald tests for the alternative lag lengths and the 
Lag Length Criteria option will produce the various lag length selection criteria. For example, for the 9-
lag model, this selection yields the Table lagcriteria: 

 
VAR Lag Order Selection Criteria     
Endogenous variables: DLIP DUR S      
Exogenous variables: C      
Date: 08/06/14   Time: 14:38     
Sample: 1960Q1 2012Q4     
Included observations: 202     

 Lag LogL LR FPE AIC SC HQ 

0  324.9193 NA   8.29e-06 -3.187320 -3.138187 -3.167441 
1  544.0122  429.5088  1.04e-06 -5.267448  -5.070917*  -5.187931* 
2  552.4162  16.22544  1.04e-06 -5.261546 -4.917617 -5.122392 
3  565.7126  25.27636  9.98e-07 -5.304085 -4.812758 -5.105293 
4  572.8451  13.34702  1.02e-06 -5.285595 -4.646870 -5.027166 
5  579.6017  12.44282  1.04e-06 -5.263383 -4.477260 -4.945316 
6  591.1367  20.89999  1.02e-06 -5.288482 -4.354961 -4.910778 
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7  604.1574  23.20527   9.76e-07* -5.328291 -4.247372 -4.890949 
8  611.7356  13.28055  9.92e-07 -5.314214 -4.085896 -4.817234 
9  622.3190   18.23280*  9.78e-07  -5.329891* -3.954176 -4.773274 

    
 

 
Program for RATS Users 
* Read in the data using: 
 
cal(q) 1960 1 
all 2012:4 
open data c:\aets4\chapter_2\quarterly.xls 
data(format=xls,org=obs) 
 
* Create the three variables 
set s =  r5 - tbill 
set dur = unemp - unemp{1} 
set dlip = log(indprod)-log(indprod{1}) 
 
* Estimate the VAR with 9 lags 
system(model=chap5) 
var dlip dur s 
lags 1 to 9 
det constant 
end(system) 
estimate(residuals=resids9) 
 
10.  Question 9 indicates that a 3-lag VAR seems reasonable for the variables lipt, urt, and st. Estimate the three-
VAR beginning in 1961Q1 and use the ordering such that lipt is causally prior to urt and that urt is causally prior 
to st.  
 
Notes for EViews Users 
1. In the Instructors’ Manual, the workfile aets4_ch5_q910.wf1 continues with the answers to question 10. The 

SYSTEM var3lags contains the estimates of the 3-lag VAR. To obtain this result select Estimate VAR 
from the Quick menu. Be sure to enter the variables in the order dlip, dur and s.  

2.  Click the SYSTEM var3lags , choose the View tab on the Lag Structure tab and then select Granger 
Causality/Block Exogeneity .  You should obtain the Table q10_parta: 

 
VAR Granger Causality/Block Exogeneity Wald Tests 
Date: 08/06/14   Time: 14:51  
Sample: 1960Q1 2012Q4  
Included observations: 208  
Dependent variable: DLIP  

Excluded Chi-sq df Prob. 
DUR  4.727485 3  0.1929 

S  7.326044 3  0.0622 
All  13.08164 6  0.0418 

Dependent variable: DUR  
Excluded Chi-sq df Prob. 

DLIP  16.23776 3  0.0010 
S  17.80474 3  0.0005 
All  32.68401 6  0.0000 
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Dependent variable: S  
Excluded Chi-sq df Prob. 

DLIP  1.188741 3  0.7557 
DUR  4.423043 3  0.2193 
All  17.33896 6  0.0081 

 
3. The selection Impulse will yield the impulse response function (see the Table impulseresponses) . The 
variance decompositions are in theTable variancedecompositions. 
 
Sample Program for RATS Users 
a. If you perform a test to determine whether st Granger causes lipt you should find that the F-statistic is 2.44 with a 

prob-value of 0.065. How do you interpret this result?  
 
* Continue with the program above. Note that the Granger-causality tests are produced with: system(model=chap5) 
var dlip dur s 
lags 1 to 3 
det constant 
end(system) 
estimate(residuals=resids3,out=sigma) 
 
11. This set of exercises uses data from the file entitled QUARTERLY.XLS in order to estimate the dynamic effects 
of aggregate demand and supply shocks on industrial production and the inflation rate. Create the logarithmic change 
in the index of industrial production (indprod) as lipt = ln(indprodt) – ln(indprodt) and the inflation rate (as 
measured by the CPI) as inft = log(cpit) – log(cpit−1). 
 
Notes for EVIEWS Users 
1. The workfilefile aets4_ch5_q11.wf1 contains the variables cpi and indprod.  The variables inf and dlip were 

generated as:  
inf = log(cpi) - log(cpi(-1)) and dlip = log(indprod) - log(indprod(-1)). 

2. The unit root tests are in the Tables parta_a and partb_b. To reproduce the results for dlip, open the series 
dlip and select Unit Root Test from the View tab. It should be clear that the variable is stationary. 
However, the results for inf are not as straightforward. If you select the AIC or SBC from the Lag length 
dialogue box, it is just possible to reject the null at the 5% level. However, is you use the general-to-specific 
method (i.e., the t-statistic option) , it is not possible to reject the null of a unit root at conventional 
significance levels.  

3. The Table var_3lags contains the results for the 3-lag model. The residuals are in the series resid01 and 
resid02. To perform the Granger causality tests, click the SYSTEM bq_var , choose the View tab on the Lag 
Structure tab and then select Pairwise Granger Causality, you should obtain the results in the 
Table grangercausality.    

4. The impulse responses are in the  
5. As described in the EViews manual, in order to perform the BQ decomposition it is necessary to construct the 

pattern matrix  
 

NA NA
0.000000 NA

 
This is patc in the workfile. You can create this matrix with the following commands: 

 matrix(2,2) patc = na  
 patc(2,1) = 0 

Now select Proc/Estimate Structural Factorization from the VAR tab. Next, click Matrix and 
in the SVAR dialogue box choose Long-Run Pattern and and enter patc. You should obtain the results in 
the bq_martix and bq_impulseresponses tables.  
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Sample Programfor RATS USERS 
a. Determine whether lipt and inft are stationary. 
 
*Perform the unit root tests with 
set dlip = log(indprod)-log(indprod{1}) 
set inf = log(cpi) - log(cpi{1}) 
@dfunit(method=gtos,signif=0.05,maxlags=12) inf 
@dfunit(method=gtos,signif=0.05,maxlags=12) dlip 
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CHAPTER 6: COINTEGRATION AND ERROR-
CORRECTION MODELS 

 
1 Linear Combinations of Integrated Variables 344 
2 Cointegration and Common Trends 351 
3 Cointegration and Error Correction 353 
4 Testing for Cointegration: The Engle–Granger Methodology 360 
5 Illustrating the Engle–Granger Methodology 364 
6 Cointegration and Purchasing Power Parity 370 
7 Characteristic Roots, Rank, and Cointegration 373 
8 Hypothesis Testing 380 
9 Illustrating the Johansen Methodology 389 
10 Error-Correction and ADL Tests 393 
11 Comparing the Three Methods 397 
12 Summary and Conclusions 400 
Questions and Exercises 401         
 
Online material in Supplementary Manual  
Appendix 6.1: Characteristic Roots, Stability, and Rank  
 Appendix 6.2: Inference on a Cointegrating Vector   
 
Learning Objectives 
1. Introduce the basic concept of cointegration and show that it applies in a variety of economic models 
2. Show that cointegration necessitates that the stochastic trends of nonstationary variables be linked.  
3. Consider the dynamic paths of cointegrated variables. Since the trends of the variables are linked, the 
dynamic paths of such variables must respond to the current deviation from the equilibrium relationship.  
4. Develop the Engle–Granger cointegration test. The econometric methods underlying the test 
procedures stem from the theory of simultaneous difference equations.  
5. The Engle–Granger method is illustrated using simulated data.  
6. Illustrate the Engle–Granger method using real exchange rate data.  
7. Develop the Johansen full-information maximum likelihood cointegration test. 
8. Show how to test restrictions on cointegrating vectors. Discuss inference in models with I(1) and I(2) 
variables.  
9. Illustrate the Johansen test using simulated data.  
10. Show how to estimate ADL models using nonstationary variables and develop the ADL cointegration 
test.  
11. Compare the Engle–Granger, Johansen, and ADL cointegration tests using interest rate data. 
   
 

   Key Concepts 

 
 Figure 6.1 and Worksheet 6.1 illustrate the concept of cointegration. Worksheet 6.2 illustrates spurious 
regressions. You can use Figures M6-1 and M6-2 below for further emphasis.  The first two panels in Figure M6-1 show 
100 realizations of two independent unit root processes.  The {yt} and {zt} sequences were constructed as: 
 
 yt = 0.1 + yt-1 + yt 
and: 
 zt = 0.2 + zt-1 + zt 
 
where: yt and zt are independent white-noise disturbances. 
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 Two sets of one hundred random numbers were drawn to represent the {yt} and {zt} sequences.  Using the 
initial values y0 = 0 and z0 = -5, the next 100 realizations of each were constructed using the formulas above.  The drift 
terms impart a positive trend to each.  Since each sequence tends to increase over time, the two appear to move together.  
The scatter plot in the third panel and the time plots in the fourth panel reflect this tendency.  The spurious regression of 
yt on zt appears to have a "good" fit.  However, regression coefficients are meaningless. The problem is that the error-
term is a unit-root process; all deviations from the regression line are permanent. 
 
In contrast, the simulated {yt} and {zt} sequences shown in Figure M6-2 are cointegrated.  The two random-walk plus 
noise processes were simulated as: 
 
 yt = yt-1 + t + yt - yt-1 
 zt = zt-1 + t + zt - zt-1 
 
where: t, yt, and zt are computer generated random numbers.  
 
 The series have the same stochastic trend.  The scatter plot in the third panel and the time plots in the fourth 
panel reflect the tendency of both to rise and fall together in response to the common {t} shocks.  The regression of yt on 
zt yields a stationary error process.  Hence, all deviations from the regression line are temporary.  
 
Notes for EViews Users 
1. In the Instructors’ Manual, the workfiles aets4_ch6_figure62.wf1 and aets4_ch6_figure63.wf1 were used to construct 

Figures 6.2 and 6.3. Notice that you can open the files to examine how the various series were constructed. You can 
also examine the files used to create the two worksheets. These two files  are named aets4_ch6_worksheet61.wf1 and 
aets4_ch6_worksheet62.wf1.  

2. EViews reports the results of error correction models differently than other software packages. In RATS, for 
example, error correction models are estimated using the two-step Engle-Granger procedure. As such, the error 
correction term is the residual from the long-run relationship. In EVIEWS, the estimated model uses a one-step 
method maximum likelihood estimator. Thus the results can differ from those reported in the text.  

 
 As illustrated below, in EVIEWS you can select an error correction model from the Quick tab. Select 

Estimate VAR from the Quick menu. In VAR Specification, select Vector Error Correction. 
If, for example, you estimate an error correction model for yt and zt without any deterministic regressors and 1 lag 
of each variable, the output will be in the form: 
 

y(-1) 1.000000  
z(-1) 1  

Error Correction: DY DZ 
CointEq1 1 2

D(Y(-1)) 11 21

D(Z(-1)) 12 22

 
 
The estimated model is: 
 
 yt = 1(yt−1 + 1zt−1) + 11yt−1 + 12zt−1 + 1t  
 
 zt = 2(yt−1 + 1zt−1) + 21yt−1 + 22zt−1 + 2t  
 
The error correction term yt−1 + 1zt−1 and the speed of adjustment coefficients are estimated using full 
information maximum likelihood methods (as in the Johansen Procedure).  
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Figure M6-1: A Spurious Regression
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Both  sequences were simulated as independent unit root processes.  
Each has a positive drift so that the two sequences tend to increase over time. The relationship is spurious.
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     The scatter plot captures the tendency of both 
series to increase over time. The regression 
of y on  z   yields: y  =  0.68z + 1.63. 

Transform the z sequence as: w = 0.68z + 1.63.   The time 
paths of y and w seem to move together. However, the 
regression coefficients are meaningless. 
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The non-stationary error

         The regression error-term y - 0.68z - 1.63   is non-stationary.  Hence, all 
deviations from the estimated relationship are permanent; the regression is spurious.
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The scatter plot of zt and yt captures the tendency 

of both series to move together. The regression of 
yt on zt yields: yt = 0.889zt + 0.007.  

Figure M6-2: An Equilibrium Relationship 
  yt = yt-1 + yt          zt = zt-1 + zt  

 
The simulated {yt} and {zt} sequences are both random-walk plus noise processes.  Each meanders without any 

tendency to return to a long-run mean value.  The error terms are: yt = t + yt - yt-1 and zt = t + zt - zt-1. 

Since each has the same stochastic trend, the {yt} and {zt} series are cointegrated.   
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The Transformed Sequence

Transform the zt sequence as: wt = 0.889zt + 

0.007.  The time paths of yt and wt move together 

as a result of the common stochastic trend.  
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The Stationary Error Process

The regression error-term yt - 0.889zt - 0.007 is 

stationary.  Hence, all deviations from the estimated 
relationship are temporary.  The variables are 
cointegrated 
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   Selected Answers to Questions 

 
 
2.  The data file COINT6.XLS contains the three simulated series used in sections 5 and 9.  The following programs will 
reproduce the results.  
Notes for EViews Users 
1. In th eInstructors’ Manual, the workfile aets4_ch6_q2a.wf1 contains the results for part a. The series w, y, and z 

contain the three variables of interest. The GRAPH figure_62 reproduces Figure 6.2 of the text. The TABLES df_w, 
df_y, and df_z report the unit root tests in Table 6.2. To reproduce the results, open a series and from the View tab 
select Unit Root Test. In the dialogue box, choose the Augmented Dickey-Fuller and for Lag 
length enter 4 in the User specified box.  

2. To reproduce the results in TABLE p379_y, use Quick and Estimate Equation. Let y be the “dependent 
variable” and include an intercept, z and w in the regression. Next, select Proc and Make Residual Series  to 
obtain the residuals from this regression. In the workfile, this series in called resid_y. Now, perform a unit root test on 
resid_y. Be sure that you do not include any deterministic regressors in the equation. You should find your results are 
consistent with those in table63_y. Repeat the exercise for the z and w series. The TABLE p379_w contains the 
results using w as the dependent variable and the residuals are in resid_w. The results if the Engle-Granger test are in 
table63_w. 

3. The series dy, dz, and dw are the first-differences of y, z and w. To obtain the results in equation (6.37) eq637, use 
Quick Estimate Equation and enter 

 dy c resid_w(-1) dy(-1) dz(-1) dw(-1) 
4. To reproduce the results in Section 9, select Estimate VAR from the Quick menu. In VAR Specification, 

select Vector Error Correction and use 1 lag (Note that this means that there is one lagged change). On the 
Cointegration tab use option 2 (constant in the cointegrating vector only). The results are in the TABLE vec. 

5. Next, select the View tab an choose Cointegration test.  The results are in table6_6. 
6. The workfiles aets4_ch6_figure62.wf1 and aets4_ch6_figure63.wf1 contain the series used to construct Figures 6.2 

and 6.3. Notice that you can open the files to examine how the various series were constructed.  
 
Sample Program for RATS Users 
all 100     
open data c:\aets4\coint6.xls   
data(format=xls,org=obs) / y z w 
table     ;* Produce summary statistics for y, z and w 
 
dif y /dy   ;* Take first-differences  
dif z / dz 
dif w / dw  
 
linreg dy    ;* Perform Dickey-Fuller test 
# constant y{1}  
linreg dy    ;* Perform Augmented Dickey-Fuller test 
# constant y{1} dy{1 to 4} 
  
You can obtain the lag length for the VAR using one of the three selection criterion: 
 
@varlagselect(lags=4,crit=gtos) ; # y z w 
@varlagselect(lags=4,crit=aic) ; # y z w 
@varlagselect(lags=4,crit=bic) ; # y z w 
 
* To reproduce the results in Section 9, use the CATS procedure or use the file entitled johmle.src. Estimate the model 
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with a restricted constant: 
  
@johmle(lags=2,det=rc) 
# y z w  
 
3. In Question 9 of Chapter 4 you were asked to use the data on QUARTERLY.XLS to estimate the regression equation  

 
INDPRODt = 30.48 + 0.04M1NSAt   

 

                (29.90)    (36.58) 
 
a. Use the Engle–Granger test to show that the regression is spurious.  
 
Notes for EViews Users 
1. In t5he Instructors’ Manual, the workfile aets4_ch6_q3ab.wf1 contains the answers to parts a and b. The file 

contains the series indprod and m1nsa. Use Quick and Estimate Regression to estimate the desired 
regression; enter  

 indprod c m1nsa  
 to obtain the results reported in the TABLE regression_parta.  
 From the Proc tab select Make Residual Series and call the residuals resids_parta. Open this 

residual series and select Unit Root Test from the View tab. The TABLE engle_grangerparta contains the 
results.  

2. The scatter plot of the two series in contained in the GRAPH partb.  
3. The workfile aets4_ch6_q3c.wf1 contains the answers to part c. The logs of rgdp and rcons are called ly and lc, 

respectively. Use Quick and Estimate Regression to estimate the desired regression 
 lc c ly 
 The results are in the TABLE regression_3c. Use the instructions above to make the residual series (called 

resid01 ) that are reported in the TABLE residuals. The TABLE engle_granger contains the desired test 
statistics. To reproduce the results, open resid01,  and from the View tab select Unit Root Test. Do not 
include any deterministic regressors.  

 
Sample Program for RATS Users 
*Read in the data set using: 

cal(q) 1960 1 
all 2012:4 
open data c:\aets4\quarterly.xls 
data(format=xls,org=obs) 

 
* You can obtain the regression result using 

 
lin indprod / resids ; # constant m1nsa 

 
* Perform the Engle-Granger test using 

dif resids / dresids 
lin dresids ; # resids{1} dresids{1 to 3} 
 

4. The file labeled QUARTERLY.XLS contains the interest rates paid on U.S. 3-month, 5-year, and 10-year U.S. 
government securities. The data run from 1960Q1 to 2012Q4. The variables are labeled TBILL, R5, and R10, 
respectively. 
Notes for EViews Users 
1. In the Instructors’ Manual, the workfile aets4_ch6_q4.wf1 contains the variables tbill, r5 and r10. The TABLE 

parta_tbill contains the results of the Dickey-Fuller test for tbill. To reproduce the results, open tbill and from the 
View tab select Unit Root Test. In the dialogue box, choose the Augmented Dickey-Fuller and for 
Lag length select t-statistic with a Maximum Lags of 8. Repeat for the other rates.  
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2. Use Quick and Estimate Regression to estimate the desired regression; enter  
 tbill c r5 r10   
 to obtain the results reported in the TABLE partb.  
 From the Proc tab select Make Residual Series and call the residuals residuals. Open this residual 

series and select Unit Root Test from the View tab. The TABLE partb_englegranger contains the results. 
For part c of the question, repeat using the other interest rates as the dependent variables. For example the 
TABLE partc uses r10 as the dependent variable, the residuals are called residuals_partc and the results of the 
test are in the TABLE partc_englegranger. 

3. The TABLE vec contains the estimated error correction model. Open the GROUP var to see how the results were 
obtained. Select the View tab, select Cointegration test and select button 2 (Intercept (no 
trend) in CE – no intercept in VAR). The lag interval should be 1 7. You should obtain the 
results reported in the TABLE partd.  

 
 
Sample  Program for RATS Users 
* Read in the data set using the first 4 lines from Question 3. Next perform the unit root tests using dfunit.src 
@dfunit(maxlags=8,method=gtos,signif=0.05) tbill 
 
* Estimate the long run relationship using: 
linreg(define=rshort) tbill / resids1 
# constant r5 r10 
 
* Compile johmle.src and then enter the commands: 
@johmle(lags=8,determ=rc) 
# tbill r5 r10 
 
5. In Question 4, the Engle–Granger methodology found that the long-run equilibrium relationship for the three interest 
rates was 

TBILLt = 0.367 − 1.91R5t  + 2.74 R10t 
 
Notes for EViews Users 
1. Tin the Instructors’ Manual, the workfile aets4_ch6_q5.wf1 continues with the results of Question 4. Recall that the 

TABLE vec contains the error-correction model. To proceed with the question, open var01 and from the Estimate 
tab select button 2 in VAR Type, enter the Endogenous Variables in the order tbill r5 r10 and use only 
2 lagged changes—the results are in var01. Be sure to select button 2 (Vector Error Correction) in the VAR 
Type dialogue box. Now select the Cointegration tab and select button 2. The estimated model is in the 
TABLE parta.  

2. From var01, select the Impulse tab. If you use the defaults you will obtain the graph in partb: 
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3. To obtain the variance decompositions, from var01, select Variance Decompositions from the View tab. The 

results are in partc.  
  
Sample Program for RATS Users 
 
* Find the appropriate lag length for the VAR with: 
@varlagselect(crit=aic,signif=0.05,lags=8) ; # tbill r5 r10 
 
* Estimate the error correcting model using: 
system(model=q4) 
variables tbill r5 r10 
lags 1 to 3 
*det constant 
ect rshort  ; * rshort was defined in the linreg instruction above 
end(system) 
estimate(outsigma=v) 
 
8. Chapter 6 of the Programming Manual  uses the variables Tbill and Tb1yr on the file QUARTERLY.XLS to 

illustrate both the Johansen and Engle–Granger cointegration tests.  
Notes for EViews Users 
1. In the Instructors’ Manual, the workfile aets4_ch6_q8.wf1 contains the variables tbill and tb1yr. The tbill rate is the 

same one as used in Question 4. The TABLE parta_tbill contains the results of the Dickey-Fuller test for tbill. To 
reproduce the results, open tbill and from the View tab select Unit Root Test. In the dialogue box, choose the 
Augmented Dickey-Fuller and for Lag length select t-statistic with a Maximum Lags of 8. 
Repeat for tb1yr.  

2. Use Quick and Estimate Regression to estimate the desired regression; enter  
 tbill c tb1yr   
 to obtain the results reported in the TABLE partb. The equation is named eq_partb.  
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 From the Proc tab select Make Residual Series and call the residuals residuals. Open this residual 
series and select Unit Root Test from the View tab. The TABLE partc contains the results using 7 lags.  

3. The TABLE partd contains the estimated error correction model. Open the GROUP var to see how the results 
were obtained. Select Estimate VAR from the Quick menu. In VAR Specification, select Vector 
Error Correction and use 7 lags and on the Cointegration tab use option 2 (constant in the 
cointegrating vector only).  

4. Open vec and select Cointegration Test from the View tab. Use 7 lags and select button 2 for the choice 
of deterministic trends. The results are in parte. 

 
 

The question is answered in the Programming Manual using RATS.  
 
9. The file COINT_PPP.XLS contains monthly values of the Japanese, Canadian, and Swiss consumer price levels 
and the bilateral exchange rates with the United States. The file also contains the U.S. consumer price level. The 
names on the individual series should be self-evident. For example, JAPANCPI is the Japanese price level and 
JAPANEX is the bilateral Japanese/U.S. exchange rate. The starting date for all variables is January 1974 while the 
availability of the variables is such that most end near the end of 2013. The price indices have been normalized to 
equal 100 in January 1973 and only the U.S. price index is seasonally adjusted. 
Notes for EViews Users 
1. In the Instructors’ Manual, the workfile aets4_ch6_q9.wf1 contains the variables japancpi, japanex, swcpi, swex 

and uscpi. The logarithms are preceeded by letter l and dex, djp and dusp are the growth rates of japanex, 
japancpi, and uscpi. The unit root tests are reported in the TABLES parta_japancpi, parta_japanex and 
parta_uscpi.  

2. The estimated long-run relationship is in the TABLE partb. From the Quick tab select Estimate 
Regression and enter ljapanex c ljapancpi luscpi. Now, from the Proc tab select Make 
Residual Series and call the residuals resid01. Open resid01 and select Unit Root Test from the 
View tab. Do not include an intercept or a trend.  

3. To obtain the results in parte, from the Quick tab select Estimate Regression and enter ljapanex c 
ljapancpi luscpi.  

4. To estimate the error-correction model, select Estimate VAR from the Quick menu. In VAR Specification, 
select Vector Error Correction and use 11 lags. On the Cointegration tab use option 2 (constant in 
the cointegrating vector only). The results are in the TABLE vec_parte. 

5. Select Impulse and use the defaults to obtain the impulse responses. To obtain the variance decompositions, from 
vec_parte, select Variance Decompositions from the View tab. 

 
Sample Program for RATS Users 
Read in the data set using 
 
cal(m) 1974:1 
all 2013:11 
open data c:\aets4\chapter_6\coint_ppp.xlsx 
data(org=obs,format=xlsx) 
 
a. Form the log of each variable and pretest each for a unit root.  
 
*One way to form the logs is to use 
dofor i = uscpi to swcpi 
  set %s("l"+%l(i)) = log(i{0}) 
end dofor i 
 
e. To obtain the error-correction model use: 
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@varlagselect(lags=12,crit=gtos,signif=0.05) ; # ljapancpi luscpi ljapanex 
system(model=ppp) 
var luscpi ljapancpi  ljapanex 
lags 1 to 12 
det constant 
ect japan 
end(system) 
estimate(outsigma=s,residuals=residsjapan) 
 
10. In Question 9, you were asked to use the Engle–Granger procedure test for PPP among the variables log(canex), 

log(cancpi), and log(uscpi). Now use the Johansen methodology and constrain the constant to the cointegrating 
vector.  

Notes for EViews Users 
1. In the Instructors’ Manual, the workfile aets4_ch6_q10.wf1 uses the results from Question 9.  The var vec_parte 

is reproduced from the workfile aets4_ch6_q9.wf1.  
2. To perform the Johansen test, open vec_parte and from the View tab select Cointegration Test. The 

results are in the TABLE named parta.  
 
Sample Program for RATS Users 
To perform the results using the Johansen method use; 
 
@johmle(lags=12,determ=rc) 
# lcanex lcancpi luscpi 
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CHAPTER 7 

 NONLINEAR MODELS AND BREAKS 
 

1 Linear Versus Nonlinear Adjustment       408 
2 Simple Extensions of the ARMA Model      410 
3 Testing for Nonlinearity        413 
4 Threshold Autoregressive Models       420 
5 Extensions of the TAR Model        427 
6 Three Threshold Models        433 
7 Smooth Transition Models        439 
8 Other Regime Switching Models      445 
9 Estimates of STAR Models        449 
10 Generalized Impulse Responses and Forecasting     453 
11 Unit Roots and Nonlinearity        461 
12 More on Endogenous Structural Breaks      466 
13 Summary and Conclusions        474 
 
Questions and Exercises   
 
       475    
 

Key Concepts 

1. Once you abandon the linear framework, it is necessary to select a specific nonlinear alternative. Unfortunately, the 
literature does not provide a solid framework for this task. It is possible to estimate a series as a GAR, Bilinear, TAR, 
LSTAR, ESTAR, Markov switching, or ANN process. General tests for nonlinearity do not have a specific alternative 
hypothesis. Lagrange Multiplier tests generally accept a number of nonlinear alternatives. The issue can be illustrated by 
the estimate industrial production series beginning on page 419. Although a nonlinear model may be appropriate, the 
final TAR specification is a bit doubtful. My own view is that an underlying theoretical model should guide the model 
selection process. For example, in Section 7, a TAR model was used since theory suggests that low-terrorism states 
should be more persistent than high-terrorism states. To make the point, I rely heavily on Questions 1 and 2. Question 1 
is designed to give the student practice in formulating a nonlinear model that is consistent with an underlying economic 
model. Question 2 asks the student to think about the nature of the nonlinearity that is suggested by any particular 
nonlinear estimation. In guiding the class discussion, you might want to make an overhead transparency of Figure M7.1 
below.  
2. The estimation of many nonlinear models requires the use of a software package with a programming language. 
Although the syntax explained in RATS Programming Manual may not be directly compatible with your software 
package, the logic will be nearly identical. As such, you can have your students read the following sections of the 
Programming Manual: Nonlinear Least Squares in Chapter 1.4, Do Loops in Chapter 3.1; If-Then-Else Blocks in Chapter 
4.1, and Estimating a Threshold Autoregression (beginning on page 130).  
3. For RATS users, the answers to Questions 8, 9 amd 10 are in the Programming Manual. As such, they are not 
reproduced here. 
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Selected Answers to Questions 

 
4. The file labeled LSTAR.XLS contains the 250 realizations of the series used in Section 9.  
 
Notes for EViews Users 
1. In the Instructors’ Manual, the workfile aets4_ch7_q4.wf1 contains 250 observations of the variable y. o generate 

equation (7.24), open the Quick tab, select Estimate Equation and enter y c y(-1). The results are in 
TABLE eq_725 and in EQUATION eq724. Open eq724, and experiment with other linear speficications.   

2. To perform the RESET, Open eq724 and from the View tab select Stability Diagnostics and 
Ramsey’s RESET Test.  Even though “RESET test” is redundant, you often see it appear this way in the 
literature. If you enter 3 for Number of Fitted Terms, you should obtain the same output as in the 
TABLE reset.  

3. To preform the BDS test, open the series y and from the View tab select BDS Independence Test. If you 
use the defaulsts, you should obtain the restlts in the TABLE bds.  

4. Generate the series y2, y3 and y4 as as y^2, y^3,  and y^4. From Quick and Estimate Equation  enter 
y c y(-1) y2(-1) y3(-1) y4(-1). The results are in lmtest.   

Dependent Variable: Y   
Method: Least Squares   
Date: 08/10/14   Time: 14:03   
Sample (adjusted): 2 250   
Included observations: 249 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.   

C 1.211127 0.214742 5.639923 0.0000 
Y(-1) 1.258764 0.076699 16.41179 0.0000 

Y2(-1) -0.026978 0.027325 -0.987323 0.3245 
Y3(-1) -0.032880 0.002854 -11.52066 0.0000 
Y4(-1) -0.003187 0.000658 -4.843551 0.0000 

 
You can perform the LM test by selecting Coefficient Diagnostics from the View tab. Then select 
Wald Test and enter c(3) = c(4) = c(5) = 0.  

 
5. To estimate the GAR model, from the Quick tab, estimate the regression: 
  y c y(-1) y(-2) y2(-1). The results are reported in the TABLE gar.  
 
Sample Program for RATS Users 
all 250    ;* The first three lines read in the data set 
open data c:\aets3\lstar.xls 
data(format=xls,org=obs) 
 
d. Perform the LM test for LSTAR versus ESTAR adjustment. Let yt-1 be the delay parameter 
 
set delay = y{1}  
* To determine if yt-2 should be the delay parameter, use:  set delay = y{2} 
* Now, multiply yt-1 by the powers of delay parameter.  
set y1d = y{1}*delay 
set y1d2 = y{1}*delay**2 
set y1d3 = y{1}*delay**3 
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5. The file GRANGER.XLS contains the interest rate series used to estimate the TAR and M-TAR models in Section 
11.  
 
Notes for Eviews Users 
1. In the Instructors’ Manual, the workfile endersgranger.wf1 contains the results reported in Section 11. The file 

contains the variable s generated as: s = r_10 – s_short. The variables ds, drl and drs were grnerated 
using: ds = d(s), drl = d(r_10) and drs = d(r_short). The unit root test for s is reported in the 
TABLE df_spread. From the View tab select Unit Root Test, include only an intercept (no trend)  and 
User Specificed lag of 1.  

2.  In order to estimate the TAR model, it is first necessary to generate the threshold variables s_plus and s_minus. 
Given that the threshold is 0.27, you can use the @recode function as follows:  

 
 s_plus = @recode(s(-1)+0.27>0,s(-1)+0.27,0) 
 s_minus = @recode(s(-1)+0.27<=0,s(-1)+0.27,0) 
 
 To obtain the results in the TABLE p464_tar, select Estimate Equation  from the View tab and 

enter: s s_plus s_minus s(-1). Do not include separate intercept terms as these are already embedded in 
the continuous form of the TAR model.  

3. In order to estimate the M-TAR model, it is necessary to create the threshold variables mtar_plus and mar_minus. 
Given that the threshold is zero for the M-TAR model, this is accomplished using  

 mtar_plus = @recode(ds(-1)>0,s(-1)-1.64,0) 
 mtar_minus = @recode(ds(-1)<=0,s(-1)-1.64,0) 
  
 
 To obtain the results in the TABLE p264_mtar, select Estimate Equation  from the View tab and 

enter: ds mtar_plus mtar_minus ds(-1).  
4. Equation 465 contains the estimates of the M-TAR error-correction model. Select Estimate Equation  from 

the View tab and enter: 
  
 drl mtar_plus mtar_minus drs(-1 to -2) drl(-1 to -2) 
 drs mtar_plus mtar_minus drs(-1 to -2) drl(-1 to -2) 
  
 The results are in the TABLES drl_mtar and drs_mtar.  You can open the EQUATION drlmtar to 

experiment with the estimates.  
 

RATS programmers can estimate the TAR and M-TAR models using 
 
cal 1958 1 4  ;* These four lines read in the data set. The data begin in 
all 8 1994:1   ;* 1958Q1 and end in 1994Q1 
open data c:\aets3\granger.xls 
data(format=xls,org=obs)  
 
set spread = r_10 - r_short  ;* Create spread as the difference between the 10-year rate  
dif spread / ds   ;* and the short rate. Take the first difference of spread 
 
* Perform the Dickey-Fuller test on the spread. Save the residuals as resids 
lin ds / resids; # constant spread{1} ds{1} 
 

7. The file labeled SIM_TAR.XLS contains the 200 observations used to construct Figure 7.3. You can answer the 
questions in the test using the following: 
Notes for Eviews Users 
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1. The workfile aets4_ch7_q7.wf1 contains the variables y and ordered. Ordered are the ordered values of the y 
series arranged from low to high. You can reproduce Figure 7.4 by plotting the ordered series. The TABLE parta 
contains the desired regression equation. Select Estimate Equation  from the View tab and enter:  

  y c y(-1).  
 To perform the RESET, Open eq01 and from the View tab select Stability Diagnostics and 

Ramsey’s RESET Test.  If you enter 3 for Number of Fitted Terms, you should obtain the same 
output as in the TABLE reset. The point to note is that the RESET does not indicate any nonlinearity.  

2. EViews cannot readily perform a repetitive set of estimations within a DO loop. It is possible to estimate a TAR 
models using various threshold values and select the best fitting value. Hence, if you know  = 0 you could use 
the following two instructions to generate the indicator functions 

 plus = @recode(y(-1)>0,1,0) 
 minus = @recode(y(-1)<=0,1,0) 
  
 Next, use Quick Estimate Equation  and enter: 
 
 y plus minus plus*y(-1) minus*y(-1) 
 
 The results are in the TABLE tar and in EQUATION eq02 Note that this is different from the result 

reported in the text since the estimation uses  = −0.4012.  
3. If you want to use  = −0.4012 generate plus and minus using: 
 
 plus = @recode(y(-1)>−0.4012,1,0) 
 minus = @recode(y(-1)<=−0.4012,1,0) 
 
 
Sample Program for RATS Users 

* Read in the data  
all 200 
open data c:\aets3\sim_tar.xls 
data(format=xls,org=obs) 
 

a. You can estimate the series as yt = –0.162 + 0.529yt-1 + et using 
set y = tar 
lin y / resids; # constant  y{1} 

 
c. To plot the residuals sum of squares for each potential threshold value you can use 
* THRESHTEST.SRC. The procedure will also perform Hansen’s test for a threshold process. 

 
source c:\aets3\threshtest.src 
set thresh = y{1}  ; * use a delay value of 1 
@threshtest(thresh=thresh,graph,nreps=1000,trim=.1) y ; # constant y{1} 
 
8. Chapter 3 of the Programming Manual contains a discussion of the appropriate way to program smooth transition 

regressions, ESTAR models, and LSTAR models. If you have not already done so, download the manual from 
the Estima (Estima.com) or the Wiley Web site.  

 
Notes for EViews Users 
1. In the Instructors’ Manual, the workfile aets4_ch7_q8.wf1 contains the variables ppi and pi = 

400*log(ppi/ppi(−1)). The TABLE parta contains the pi series estimated as an AR(4). s indicated in the 
Programming Manual, be sure that the estimation starts in 1983Q1 not at the beginning of the data set. 

2. As was the case shown in the Programming Manual the LSTAR model does not perform especially well. As 
reported in the TABLE lstar, it is very difficult to achieve convergence. Notice that the estimation stopped after 
only one iteration—the results are meaningless. The EQUATION eq_lstar allows you to experiment with the 
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model.  
 

 
11. The file OIL.XLS contains the variable SPOT measuring the weekly values of the spot price of oil 
over the May 15, 1987  Nov 1, 2013 period. In Section 4 of Chapter 3, we formed the variable pt = 
100[log(spott)  log(spott1)] and found that it is reasonable to model pt as an MA(||1,3||) process. 
However, another reasonable model is the autoregressive representation: pt = 0.095 + 0.172pt1 + 
0.084pt3. The issue is to determine whether the {pt } series contains breaks or nonlinearities. 
 
Notes for Eviews Users 
1. The file aets4_ch_7_q11.wf1 contains the price of oil (spot) and and the series p = 100*dlog(spot).  TABLE parta 

and EQUATION eq_parta contain the results from estimating the p series as an AR(||1,3||) process. To obtain the 
result in the TABLE cusum select View Stability Diagnostics  and Recursive Estimates. 
From the Output box, select CUSUM test.  

2. To test for a single breakpoint, select View Stability Diagnostics and choose Quandt-Andrews 
Breakpoint Test. If you use the default 15% trimming, you should obtain the results reported in Table 
partb. 

3. To perform the Bai-Perron test select View Stability Diagnostics and choose Multiple 
Breakpoints Tests. Select Global L breaks vs. none , use a maximum of 5 breaks and the 
default trimming and significance level. The results in TABLE partc indicate that there are no breaks.  

4. To estimate the model given that  = 1.7, use GENERATE to form the following variables 
 
     plus = @recode(p(-1)>1.7,1,0) 
 minus = @recode(p(-1)<=1.7,1,0) 
 p1_plus = p(-1)*plus 
 p3_plus = p(-3)*plus 
 p1_minus = p(-1)*minus 
 p3_minus = p(-3)*minus 
 
 From Quick Estimate Equation enter 
 p plus p1_plus p3_plus minus p1_minus p3_minus 
 The results are in eq_partd. 
5. From Quick Estimate Equation enter 
 p p1_minus p3_minus 
 
 
Sample Program for RATS Users 
end(reset) 
CAL(w) 1987 5 15 
all 2013:11:1 
open data c:\aets4\chapter_3\oil.xls 
data(org=obs,format=xls) 
tab 
 
set rate = 100.0*(log(spot)-log(spot{1})) 
set y = rate 
lin y ; # constant y{1  3} 
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SEMESTER PROJECT 
 
The best way to learn econometrics is to estimate a model using actual data. At the beginning 

of the semester (quarter), students should identify a simple economic model that implies a long-run 
equilibrium relationship between a set of economic variables. Data collection should begin as early 
as possible so that the econometric tests can be performed as they are covered in class. Some 
students may be working on projects for which they have data. Others should be able to construct a 
satisfactory data set using the internet. Some of the web sites that were used in writing the test are 

 

1. www.fedstats.gov/  The gateway to statistics from over 100 U.S. Federal agencies such as the 
Bureau of Labor Statistics, the Bureau of Economic Analysis, and the Bureau of the 
Census.  

 
2. www.research.stlouisfed.org/fred2/   The St. Louis Fed Database. With over 1000 

downloadable economic variables, this is probably the best site for economic time-series 
data.  

 
3. www.nyse.com/marketinfo/marketinfo  The New York Stock Exchange: The Data Library 

contains daily volumes and closing prices for the major indices  
 
4. www.oecd.org/statistics/  The statistics portal for the Organization for Economic Cooperation 

and Development. Economic indicators, leading indicators, and labor force statistics. 
 
 
For those who spend too much time searching for a project, students can update 

MONEY_DEM.XLS. This data set is used in the Programming Manual. The file contains quarterly 
values of seasonally adjusted U.S. nominal GDP, real GDP in 1996 dollars (RGDP), the money 
supply as measured by M2 and M3, and the 3-month and 1-year treasury bill rates for the period 
1959:1 – 2001:1. Both interest rates are expressed as annual rates and the other variables are in 
billions of dollars. The data were obtained from the website of the Federal Reserve Bank of St. Louis 
and saved in Excel format.  

The semester project is designed to employ all of the material covered in the text. Each 
student is required to submit a paper demonstrating competence in using the procedures. I require 
my students to use the format below. The various sections are collected throughout the semester so 
that student progress can be monitored. At the end of the semester, the individual sections are 
compiled into the final course paper. Of course, you might want to adapt the outline to your specific 
emphasis and to the statistical software package available to you. In Example 1, the student wants to 
estimate a demand for money function. In Example 2, the student wants to estimate the term 
structure of interest rates.  
 
1. Introduction 

  Of course, it is important that students learn to generate their own research ideas. However, 
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in the short space of a semester (or quarter), it is necessary for students to quickly select a semester 
project. After two weeks, I ask my students for a page or two containing: 

 
1. A statement of the objective of the paper 

 
2. A brief description of the relevant literature including the equation(s) to be estimated 

 
3. The definition and source of each series to be used in the project. Some mention should be 
made concerning the relationship between the variables in the theoretical model and the 
actual data available.  

 
Example 1: The student discusses why the demand for money can be represented by: 

 
mt = β0 + β1yt + β2rt + pt + et 

 
where: mt = money supply ( =money demand), yt = measure of income or output; rt = vector 
of interest rates; pt = price index; t is a time-subscript; et is an error-term; and all variables 
are measured in logarithms. Note that these variables are included on the data set 
MONEY_DEM.XLS.  

 
Example 2: The student discusses why the term structure of interest rates implies a 
relationship among short-term and long-term interest rates of the form: 

  
TBILLt = β0 + β1R3t + β2R10t + et 

 
where: TBILLt is the treasury bill rate, R3t is a three-year rate and R10t is a ten year rate.  
Note that these three variables are on the file INT_RATES.XLS.  
 

2. Difference equation models  
This portion of the project is designed to familiarize students with the application of 

difference equations to economic time-series data. Moreover, the initial data manipulation and 
creation of simple time-series plots introduces the student to the software at an early stage in the 
project.  In this second portion of the paper, students should: 
 

1. Plot the time path of each variable and describe its general characteristics. There should be 
some mention of the tendencies for the variables to move together. 

 
2. For each series, develop a simple difference equation model that mimics its essential 
features.  

 
Example 1:  This portion of the paper contains time-series plots of the money supply, 
output, interest rate(s), and price index. The marked tendency for money, output and prices 
to steadily increase is noted. Periods of tranquility and volatility are indicated and the student 
mentions that the periods are similar for all of the variables. The student indicates that a 
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difference equation with one or more characteristic root lying outside the unit circle might 
capture the time path of the money supply, price index, and level of output. 
 
Example 2:  This portion of the paper contains time-series plots of the various interest rate 
series. The tendency for the rates to meander is noted. The student shows how difference 
equations with a characteristic root that is unity can mimic the essential features of the 
interest rate series. It is also shown that characteristic roots near unity will impart similar 
time-paths to the series. The tendency for the rates to move together and any periods of 
tranquility and volatility are mentioned. 

 
3. Univariate properties of the variables 

This portion of the project introduces the student to the tools used in estimating the 
univariate properties of stationary time-series. Chapter 2 provides the necessary background 
material. The student should select two or three of the key variables and for each: 
 

1. Estimate an ARIMA model using the Box-Jenkins technique. 
 

2. Provide out-of-sample forecasts. There should be some mention of the forecasting 
performance of the models.  

 
Example 1:  The Box-Jenkins method suggests several plausible models for the money 
supply. Each is examined and compared in detail since the project focuses on money 
demand.  

 
Example 2:  The three interest rate series are estimated using the Box-Jenkins methodology. 
The focus is not on any single interest rate series. Instead, several reasonable models for 
each series are found. Tests for the presence of GARCH and ARCH-M effects are presented. 

 
4. Conditional Volatility 

 
I allow students some flexibility in proceeding at this point. Some students will have a keen 

interest in financial econometrics. These students should select two financial variables and test each 
for the presence of GARCH effects. They should be able to present a well-reasoned GARCH model 
for each series. I put particular importance on the justification of the most appropriate specification. 
I also ask them to estimate the two series as a multivariate GARCH process. They should be able to 
compare several different multivariate specifications. Students selecting this option need not spend 
much time on Section 5 below. For most financial variables, simple differencing or constructing the 
growth rate will result in a process that is stationary and not very persistent.  

 
Students who select non-financial variables should be each for the presence of GARCH 

and/or ARCH-M effects. I expect these students to place more emphasis on the topic in Section 5 
below.  
 
5. Estimates of the trend 
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Most students will select one or more variables that exhibit evidence of non-stationary 
behavior. In this portion of the project, students should: 
 

1. Use the material in the Chapter 4 to discuss plausible models for the trends. The goal is to 
refine the difference equation model suggested in Step 2 of the project.  

 
2. Decompose the variables into their temporary and permanent components.  

 
3. Use the material in Chapter 4 to conduct formal tests for unit roots and/or deterministic 
time trends. There can be a comparison of the effects of "detrending" versus differencing a 
series showing evidence of a trend.  
 
4. Potentially important seasonal effects and/or evidence of structural change should be 
noted. If warranted, seasonal unit root tests and/or Perron tests for unit roots in the presence 
of structural breaks should be conducted.  

 
Example 1:  The money supply is decomposed into its temporary and permanent 
components using a Beveridge-Nelson decomposition. Dickey-Fuller tests for unit roots in 
the money supply series are conducted. The various tests for the presence of drift and/or time 
trends are also conducted. Given that the Federal Reserve has changed its operating 
procedures, the money supply is tested for unit roots in the presence of a structural break.  

 
Example 2:  The long-term rate is decomposed into its temporary and permanent 
components using a Beveridge-Nelson decomposition. Dickey-Fuller tests for unit roots in 
all of the interest rate series are conducted. The presence of unit roots in the interest rate 
series is mixed. It may be that the interest rates are near unit root processes. The student 
compares the ARMA estimates of the long-term rate using levels, "detrended" values, and 
first-differences of the data.  

 
6. Vector Autoregression Methods 

This portion of the project introduces multiple time-series methods. Chapter 5 of the text 
provides the background material necessary for the student to estimate a VAR. The student should 
complete the following tasks: 
 

1. Estimate the variables as a VAR. The relationship among the variables should be analyzed 
using innovation accounting (impulse response functions and variance decomposition) 
methods.  

 
2. Compare the VAR forecasts to the univariate forecasts obtained in Step 3 of the project.  

 
3. A structural VAR using the Sims-Bernanke or Blanchard and Quah techniques should be 
attempted.  

 
Example 1:  The money supply, income level, interest rate and price level are estimated as 
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an autoregressive system. It is reported that the univariate forecasts from Step 3 are nearly 
the same as those from the VAR. Granger causality tests are performed in order to pare down 
the model. A Choleski decomposition with various orderings is used to decompose the 
forecast error variances of the variables. Impulse response functions are used to examine the 
effects of the various shocks on the demand for money.  The student estimates a structural 
VAR such that contemporaneous real income and interest rate shocks are unaffected by the 
other variables in the system. 
 
Example 2: The student estimates the three interest rates as a VAR. Since the issue of 
stationarity is unclear, the student estimates the VAR in levels and in first-differences. A 
Choleski decomposition with various orderings is used to decompose the forecast error 
variances of the variables. Impulse response functions are used to show the effects of shocks 
to 10-year and 3-year rates on short-term rates. The student uses a bivariate VAR to 
decompose the 10-year interest rate into its temporary and permanent components.  

 
7. Cointegration 

This portion of the project introduces the concept of cointegration. Chapter 6 of the text 
provides the appropriate background. The student should: 
 

1. Conduct Engle-Granger and Johansen tests for cointegration 
 

2. Estimate the error-correction model. The error-correction model should be used to analyze 
the variables using innovation accounting techniques.  

 
Example 1:  For some specifications, the Engle-Granger and Johansen tests for cointegration 
will reveal a long-run equilibrium relationship among the variables. For other specifications 
and other sample periods, there is no credible money demand function. If the variables are 
not cointegrated, the error-correction model is not estimated since the variables are not 
cointegrated. Instead, the student discusses some of the credible reasons underlying the 
rejection of the theory as presented. 

 
Example 2: The Engle-Granger and Johansen tests for cointegration reveal a long-run 
equilibrium relationship among the interest rates. The error-correction model is estimated. 
Innovation accounting is conducted; the results are compared to those reported in Step 5.  

 
8. Nonlinearity 
 The last portion of the project uses nonlinear time-series models presented in Chapter 7. The 
student should: 
 

1. Discuss a possible reason why a nonlinear specification might be plausible.  
 
2. Conduct a number of tests that are capable of detecting nonlinearity.  
 
3. Compare the linear estimates to the estimates from a nonlinear model. 
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Example 1: One reason why Engle-Granger and Johansen tests may fail is that they 
implicitly assume a linear adjustment mechanism. The student tests the variables for linear 
versus nonlinear behavior.  
 
Example 2: The text suggests that interest rate spreads are nonlinear. An inverted yield 
curve is far less persistent than a situation when short-term rates are below long-term rates. 
A nonlinear model of the spread in estimated and compared to the linear model.  
 

 
 

 
 


