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1 Step 3 of Pseudo-IV GLS Estimation, the Exchange Rate
Model of British Voting Intentions in Chapter 3

Figure 1 displays the act and the pacf for the residuals from step three of the procedure for the
bivariate workhorse model with exchange rates.
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Figure 1: ACF and PACF of Residuals from Step 3, Exchange Rate Model of Voting Intentions,
Britain, 1997:5-2006:9

1.1 Step 3 of Pseudo-IV GLS Esitmation, the Short Term Interest Rate
Model of British Voting Intentions

Figure 1.1 displays the acf and pacf for the residuals from step three of the procedure for the
bivariate model with short-term interest rates.



ACF PACF

W |
e
E g
% T
Lag Lag
Bartlett's formula for MA(q) 95% confidence bands 95% Confidence bands [se = 1/sqrt(n)]

Figure 2: ACF of Residuals from Step 3, Short Term Interest Rate Model of Voting Intentions,
Britain, 1997:5-2006:9



2 A Brief Review of Regression Simultaneous Equation Esti-
mation

2.1 Terminology

We present this primer because analysts should know that simply estimating some specifications
of a simultaneous equation model with OLS can result in biased coefficients and badly mistaken
inferences, as we will demonstrate below.

Simultaneity is synonymous with interdependence or feedback between two variables. Put
another way, it means some variables are a cause and a consequence of other variables. These
variables are called endogenous. Since each such variable has its own equation—an equation in
which it alone is the left hand side variable, the number of equations in the system is equal to the
number of endogenous variables.!

The other variables in the system are call predetermined. They are independent of all current
and subsequent disturbances in the system (Greene 2003: 382). There are two types of such
variables:

1. Exogenous Variables: variables that are completely determined outside of the system of
equations.

2. Lagged Endogenous Variables: variables that represent past values of the endogenous vari-
ables in the system.”

Once more, the key feature of simultaneous equation models is that the dependent variable
in one equation may be an explanatory variable in another. So, in our British political economy
example in equation (4.2),consumer prices,(C'PI;), and interest rates, (I R;), are interdependent
and hence endogenous. The exchange rate (X R;_;)and prime ministerial approval (PM;_;) are
predetermined and exogenous. In political science, the focus is on the coefficient on the latter
variable. As we explain below, there are debates about whether central banks are forced to bolster
public support for elected officials like Prime Ministers. Tests of the competing hypotheses in these
debates would emphasize the statistical significance of the /3, coefficient in the model.?

2.2 The pitfalls of using OLS; simultaneous equation bias

Simply put, OLS estimation of the coefficients in a simultaneous equation system yields results
that are biased and inconsistent. This is because the endogenous variables on the right side of the
equations are correlated with the respective error terms. To illustrate this problems, consider a very

I'The system of equations also is said to be “complete” insofar as there are as many equations in the system as there
are endogenous variables. See Greene 2003: Section 15.2.1.

2For a deeper classification of variables especially exogenous variables see Hendry and Richards (1983). An
application of Hendry and Richards typology is Granato and Smith 1994.

3There also are different forms of the basic model, such as block diagonal, recursive, and block triangular. See
Kmenta 1986: 655-7, for more details.



simple (structural) Keynesian model of consumption*

ce = Py + €&
Y=+ 1+ g

where;
c; = aggregate consumption at time t
y; = national income
1; = investment
g: = government spending
u = Stochastic Disturbance
f = marginal propensity to consume (MPC; 0 < 3 < 1).

Recall that the ordinary least squares estimate of 3 is simply:

B = > ey _ >y By + ) > yer

= = [+ . (1)
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Moreover, as regards consistency, we know, for OLS,
plimB = 8 + plimz Yict 2)

>y

Now, note that we can write both endogenous variables, ¢; and y;, in terms of the exogenous
variables alone. To obtain the expression for ¢; we substitute the identity for y; into the right hand
side of (4.4), move the ¢; terms to the left hand side and then multiply by the reciprocal of 1 — /.
This yields the desired expression for aggregate consumption:

_5. B €t
I O )

Similarly we substitute for ¢; on the right side of (4.5), move the y; terms to the left side and
multiple again by the reciprocal of 1 — /3 to obtain the desired expression for national income:
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But return to our equation for the probability limit of the OLS estimate of 3. Consider the second
term on the right side of equation (4.7). Note that we now have

Yi “4)

plim

Y yer  Covu(iy, ) + Cov(ge, €) + Var(e) 5)
- =

> Y (1—=B8)Var(y:)

where C'ov and Var denote the covariance and variance, respectively. We assumed that i; and g,
are exogenous. So by assumption, their covariances with ¢; will be zero. However, the third term
in the numerator on the right side of (4.10) will not be zero; it is always a positive number. The

4This passage follows Pindyck and Rubinfeld 1998: 341-342. Note that the variables are in deviation form, for
instance, ¢; = @Q; — Q.



denominator in this quotient always will be positive as well, Var(y;). From these facts and our
assumption that the MPC is always between zero and unity, we know that

> i€t _ Var(e)
>y (1=B)Var(y)

Therefore, the OLS estimate of 5 will be biased and consistent. In this example, the bias will
be positive. This is called “simultaneous equation bias.” The risk of simultaneous equation bias
necessitates that analysts choose a method other than OLS to estimate structural models like the
one discussed above. We now turn one of these alternatives to OLS: Indirect Least Squares.

> 0. (6)

plim

2.3 The Indirect Least Squares Method of Estimation

From a system of structural equations we can derive another, related set of equations that can be
estimated with OLS. This derived set of equations is called the reduced form of the system. In the
reduced form the endogenous variables appear only on the left side of the equal sign; the right side
is composed only of predetermined variables and stochastic disturbances. These predetermined
variables are, by construction (theory), not correlated with the disturbance terms. Hence, OLS
will yield consistent estimates of the coefficients in the reduced form. Equations (4.8) and (4.9)
from the example in the previous subsection constitute the reduced form of our simple, structural
Keynesian model. Note that in both these equations, the endogenous variables appear alone on the
left hand sides and the exogenous variables, ¢; and g;, appear alone on the right hand side.

Let us work through another example. Consider another structural economic model in devia-
tions form:®
S
G = Qap + €& (7

th = Bopi + B3ys + 1t (8)

where ¢ is the quantity supplied, ¢” is the quantity demanded, p; is the price, y; is national
income, and €;, mu; are error terms. The reduced form of this systems of equations can be obtained
by assuming that the market clears, ¢” = ¢°. With this assumption we set the two equations equal
and solve for p;:

Dt = T2yt + Vgt )

where mog = and vy = ubstituting this value for p; back into and solving tor
h 552 d “;QSb g this value for p; back into (4.13) and solving f

¢: we obtain the other equation in the reduced form:

qr = T12Y¢ + V1e- (10)

01253 Qo fit—Pa€r ,6’2 €t

where 19 = o and vy; = =

Once again, equatlons (4 14) and (4 15) are called the reduced form because price and quantity
are both expressed only in terms of the exogenous variable, y,. OLS therefore can be used to esti-
mate both reduced form equations because ¥, is (assumed to be) uncorrelated with the disturbance

5The direction of the bias in the OLS esimtates is clear here. But, as Pindyck and Rubinfeld (1998) explain, this is

not always the case.
5This example also is taken from Pindyck and Rubinfeld, 1998: 340, 346-7



terms, vy, Uoy.

To recover the structural coefficient in the original system in the supply equation, (4.12), we can
simply manipulate the reduced form coefficients. For example, 72 = . In terms of our notation,
using OLS, we can estimate each of the reduced form coefficients and then solve for the struc-

tural coefficient in the supply equation: &y = == This procedure is called indirect least squares
estimation. It can yield consistent estimates of the structural coefficients.

But will this method always work? Can the structural coefficients always be retrieved from
the reduced form coefficients? Unfortunately, the answer is no. For example, there is no way to
use indirect least squares to obtain estimates of the structural coefficients in our demand equation,
(4.13). Whether or not we can use indirect least squares depends upon the structure of our system
of equations. There are three possibilities, and whether or not indirect least squares can be used

depends on which of the following three cases a particular system of equations falls into.

2.4 The Identification Problem

There are three cases. We may have a system that is unidentified. In this case, it is impossible
to derive the structural coefficients from the (indirect least squares) estimates of the reduced form
coefficients (as with our demand equation, (4.13) above). Second, we might have a system that is
exactly identified. OLS estimation of the reduced form, by the method of indirect least squares,
then yields consistent, unique estimates of the structural coefficients. Finally, our system could
be over-identified. We then have a problem of “observational equivalence” (Greene 2004: Section
15.3); more than one numerical value is produced for some of the structural coefficients. This
occurs because a particular reduced form equation may represent more than one set of structural
equations.’

Above we illustrated an exactly identified system, showing how a structural coefficient in one
equation can be recovered from a reduced form. To illustrate the other two cases, consider some
other simple economic models in which price is determined simultaneously by supply and demand.

o Unidentified

Demand Equation: Qf =a+o P +uy, a <0
Supply Equation: Qf = Po+ b1 P +ua, >0
Equilibrium Condition: 4= Qs

Equating supply and demand we have:
g + By + uy = Bo + PP + ug (11)
Collecting terms we have:

(a1 = B1) P = Bo — o + puas (12)

"It is important to stress that these three cases are the result of the structure of our equation system and not the data
sample. In this sense, identification is not an estimation problem per se. It is an issue of whether the coefficients are
estimable. On this important point see Manksi 1995; see also Greene 2003: Section 15.1
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Multiplying on both sides of (4.17) by the reciprocal of the coefficient on F; yields an equa-
tion of the form:

P, =7+ 1y (13)
where, 5
_ Po— X
o a1 — 51
_ Ugt — Uiy
e — )

Now, substitute (4.18) into either the demand equation or the supply equation and solve
for the equilibrium quantity. We obtain another equation of the form:

Qi =m +wy (14)
where,
Ty = a1 — s
! ap — B
_ qUgt — ﬁlult
e — )

Equations (4.18) and (4.19) are the reduced form equations for this model. Each equa-
tion has only one coefficient. There are, however, four structural coefficients, o, a1, So,
[1. Therefore, the structural coefficients cannot be uniquely determined (i.e. there are more
unknowns than equations).

Over-Identified
Demand Function: Qf =g+ a1 P+ axly + as R, + uyy
Supply Equation: Q) = Bo+ BiPy + B2 Pt + B3Pz + ua
Equilibrium Condition: Q! = Q3

where all the variables are as previously defined, and:

I = Income

R = Wealth.
We assume that in this economy production depends on two lags of the previous price. Equat-
ing the supply and demand yields the equilibrium price and quantities:

Py =mo+muly + moly + misBoimaPi—o + 1y (15)
Q1 = moo + Torly + TRy + mos Py + mou Pio + wy (16)
where,
_ Po— &g _ T
7o ap — B i ar — B
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Unique estimation of the structural coefficients is not possible. For instance, note that there
are two ways to obtain an estimate of oy
2

__ 123 _
o] = T3 and a1 =

724
14

In other words, there now are two estimates of the price coefficient in the demand equa-
tion. Since «; cannot be uniquely determined, neither can any of the other coefficients. The
reason is simply that «; appears in the denominator of all the other reduced form coefficients.

It should be obvious at this point that both unidentified and over-identified systems of equations
present significant challenges to analysts who might wish to estimate a structural model of those
systems. How can an analyst know without whether a system is exactly identified or not without
going through an analysis like that presented above? There are more straightforward procedures
for determining whether or not a structural equation is identified. One is to apply the Order Con-
dition:

“A necessary condition for a structural equation to be identified is that the number of predeter-
mined variables excluded from a given equation is at least as large as the number of endogenous
variables included, minus one.”®

Notice that this is a necessary, but not sufficient condition. It is not sufficient because the prede-
termined variables excluded from an equation, but not the model, may not be independent. There
is not a one-to-one correspondence between reduced from and structural coefficients. A necessary
and sufficient condition for identification is the Rank Order Condition:

For a model with M equations in M endogenous variables, a structural equation is identified if

8This is the version of the Order Condition presented by Pindyck and Rubinfeld (1998: 340). Greene (2003: 392)
gives an alternative version: The number of exogenous variables excluded from equation j must be at least as large as
the number of endogenous variables included in j.



and only if at least one non-zero determinant of order (M — 1)(M — 1) can be constructed from
the coefficients of the variables (endogenous and predetermined) excluded from that particular
equation, but included in the other equations of the model. °

2.5 More on Estimating Systems of Equations

Much has been written about how to estimate systems of equations. Space does not allow a full
review of this literature here. Simply put there are two approaches: single equation methods and
systems methods. These sometimes are called limited and full information methods (Greene 2003:
Section 15.4-5).

Single equation methods include Indirect Least Squares and Two Stage Least Squares. When
equations are exactly identified, the former can be used. We derive the reduced form coefficients
and work backwards to the structural coefficients. Two-Stage Least Squares (2SLS) estimation is
used for equations that are over-identified. It is called two stage because it involves two steps. First
one regresses the endogenous variable on all the predetermined variables and saves the fitted values
of the respective endogenous variable. This step replaces the stochastic endogenous variables by
a linear combination of non-stochastic predetermined variables. The structural equation then is
estimated with the fitted values from first regression inserted in place of the original endogenous
variable. The results will be consistent but not efficient, because they does not take into account
the correlations between the disturbances across the equations.!”

System (full information) methods take these cross-equation correlations into account. A com-
mon method is Three-Stage Least Squares (3SLS). The general estimation approach is as follows:

e Estimate the reduced form equations.

e Use the fitted values of the endogenous variables to obtain 2SLS estimates.
e Use residuals to estimate the cross-equations variance & covariance.
eThen produce GLS estimates.

The 3SLS parameter estimates will be more efficient because they take into account the cross-
equation variance and covariance.'! Regardless of which method chosen, readers should remember
that a simple application of OLS to a structural model with endogenous variables (e.g., equations
4.4 and 4.5) is prone to simultaneous equation bias, rendering parameter estimates unusable. Thus,
a method like those listed above must be employed for this type of data.

Recall that the rank of a matrix is given by the largest number of linearly independent rows or columns. See the
Appendix to Pindyck and Rubinfeld’s (1998) Chapter 12 for an explanation of the identification conditions in terms of
matrix algebra.

102SLS uses a weighted average of the predetermined variables to create an instrument for the endogenous variable.
Pindyck and Rubenfeld 1998: 299. Also, if an equation system satisfies the order but not the rank condition, 2SLS is
possible but not efficient. Greene 2003: 15.5.3

A good exposition of 3SLS can be found in Greene 2004: 405ff. STATA references Greene’s passage in its

exposition of 3SLS.



3 Seemingly Unrelated Regression & Simultaneous Equations

Seemingly Unrelated Regression (SURE) is a natural analytical step from the single equation setup
to a set of equations that are directly related to simultaneous equations. Seemingly Unrelated Re-
gression is a set of equations that may be related not because they interact, but because their error
terms are related.

Examples include demand functions for a commodity — exogenous shocks affect the demand
for both X and Y (i.e. there is a spill-over effect of demand of X on Y'). The equations are esti-
mated as a “set” to increase efficiency or the behavior of two political parties, which is determined
by certain exogenous variables. The connection between the parties lies only in the shocks that
both parties experience.

In simultaneous equations, the dependent variables are determined by the simultaneous inter-
action of several relationships. So typically there is an endogenous variable as an independent
variable, so the classical regression model cannot be used, re: it is not fixed in repeated samples.

SURE is based on the idea of a set of equations of the form:

y=X3+¢€

where the disturbances are correlated across equations (e.g. countries, parties).

Various methods have been employed to estimate such a set of equations. All attempt to exploit
the information in the correlated errors, either contemporaneously or autoregressively, in order to
achieve greater efficiency in the estimates.

OLS will yield unbiased & consistent estimates for each separate equation. However, because
the approach ignores the correlation of the disturbances the estimates will not be efficient (i.e.
because this approach ignores information about the mutual correlation of disturbances).

3.1 Estimation via Generalized Least Squares

This approach takes into account the variability across equations and will yield BLU (best, linear,
unbiased) estimates.
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The system has the following general form (see Kmenta 1986: 636):

yir = Puxig + Piatiee + A B Tiek + €

17
Ymt = Bmlxmt,l + Bm2-rmt,2 + -+ Bmkmxmt,km + €Eme
fort =1,2,3,....T
The system can be expressed more parsimoniously using matrix notation:
yi = Xibit+e
: (18)

Ym = Xmﬂm + €m
Each equation is expected to satisfy the assumptions of the Classical Linear Regression model

(CLRM). However, if the regression disturbances in the different equations are mutually corre-
lated then we have that:

Elen, €] = omplr
form,p=1,2,3,....m
Therefore, 0,,, is the covariance of the disturbances of the m' and p'" equations, which is as-
sumed to be constant over all observations, and is the only link between the m*" and p** equations.

This is a subtle link and thus referred to as seemingly unrelated regression.

Equation (2) can be re-written as:

Y1 X, 0 -~ 0 ot €1
Y2 0 X 0 5o €9
S I - : I
Ym 0 o 0 Xm ﬁm €m

Each equation is expected to satisfy the assumptions of classic linear regression. Where each,
y;isa’l" x 1 vector of sample values on the dependent variable(s)

X;isaT x k; matrix of sample values on the k; independent variables

B; is a k; x 1 vector of coefficients

Assume that €; is normally distributed with:

E[Eiég] = giiIT

11



Then, the variance-covariance matrix ({2 = E/[e€’]) can be defined as:

Elei€)] Eleiey] -+ Elee,] onlr oplyr o oy
Q _ E[EQE’l] E[EQEIQ} E[EQEIm] O'21|T O'QQIT UQmIT
Elenm€)] Elemey] -+ Elemel,] || omilr omelr -+ ommlr

Where the relevant information is contained in:

E [emeg] = OpplT

Omp is the covariance of disturbances between the m'™

(which is assumed to be constant across all equations).

and p'* equations, contemporaneously

Estimating via GLS yields:

B = (xx) " (xQly)

VeV=(F-B)(F -5t = (xax)

The inclusion of Q=1 (which is smaller) improves the efficiency of the estimates, especially when
the disturbances are highly correlated, but the independent variables are not.

The GLS estimator will equal the OLS estimator when:
I. 0pp =10

2. The equations have exactly the same values on all the independent variables (i.e. x,,, = x, V
m.p)

In these instances the regressions are not “seemingly,” but actually, unrelated.

Calculation proceeds in 2-stages:
1. Estimate via OLS, obtain residuals.

2. Estimate ) (must estimate because the variance-covariance of regression disturbances will
generally be unknown).

sulr swple -+ siplr
A So1lp  Saalr SomlT
0 =

SmllT Sm2|T T SmmIT

The most likely case will be that the variance-covariance matrix is unknown. Kmenta (1986:
645) tells us that “there appears to be some - though by no means a great - gain in efficiency by

12



going from ordinary least squares to two-stage Aitken or maximum likelihood estimation. The
reason for this relatively low gain in efficiency is, at least in part, the high degree of correlation
between the explanatory variables in the two equations”.

3.2 AR Disturbances

Returning to the basic model:

(1 X 0 -0 b1 €
Yo 0 Xy 0 B €2
: - : .. : : + :

Where we now have added AR disturbances:

€1¢ P11 P12 - Pim €1,t—1 V1t
€2t P21 P22 P2m €2t—1 Vot

= . ) . . +| . (19)
Emt Pm1 Pm2 " Pmm €m,t—1 Vmi

Which may be re-written as:
€t = Re_1 + 14 (20)

where, v, are IID random vectors with mean zero (i.e. E[v;] = 0)

And, the covariance matrix is given by:

011 012 - O1im
021 022 02m
/
Eluy|=Y=] . . : 2D
Om1i Om2 = *° Omm

That is,

E[Vit] = 0
Elvyv;s| = 05 for t = s and 0 otherwise.

The AR(1) process is represented in Equations (4.21) and (4.22) and extends the single equa-
tion case by allowing the current disturbance for a given equation to depend on previous periods’
disturbances in all equations. This is known as Vector Autoregressive Errors.

In the common case where R is diagonal, Equation (22) may e re-written as:

€it = Pii€it—1 + Vit

13



So, the value of the the disturbance ¢;; does not depend on the lagged disturbance in the other
equations.

The goal remains the same — estimation using GLS.

B _ (X/Q—lx)—l(X/Q—ly)

where,
1 Pj pg_l
Elae)] = Q) = _ Ty | P ‘ Pj.
L — pipj
pit o 1

There are certain computational costs associated with this approach. You need to transform each
variable using standard procedures. Basically performing first differences on all but the first ob-
servation. The transformation of the first observation is slightly more complex requiring a 5-step
procedure (see Judge et al., pp.488-9). Higher order AR processes can also be modelled, again,
see Judge et al., Section 12.3.2)

General Observations About SURE

1. Finite Sample Properties

(a) There is some evidence that asymptotics hold in finite samples.

(b) The omission of the first observation does not appear to matter a great deal.
2. There exists a test of R = 0

(a) Assuming a diagonal R appears to be the best approach even if you know that it is not.
3. General Recommendations

(a) If there are a sufficient number of observations it is always best to allow for contempo-
raneous correlation of the disturbances.

(b) Some form of autocorrelation process may also be included. However, if the sample
has less than 20 observations it will be difficult to get accurate parameter estimates
(even if you are sure an AR process exists).

Franklin (1991) provides a clear example of Maximum Likelihood Heteroscedastic SURE. He
emphasizes the substantive interpretation of the correlations and covariances in the model. He
looks at individuals in a survey who are judging two candidates and the disturbance terms are
correlated in those two separate evaluations. That is, exogenous shocks seem to impact candidate
evaluations in a way that is correlated. So a substantive interpretation is put on rho (as opposed
to the gain in efficiency), the correlation between the two equations as being the unaccounted for
commonality between judgements. The heteroscedasticity term further introduces some variation
in how the errors terms are treated and some substance to that. Asymptotically, it is the same as a
2-step GLS, but the interpretation is different — efficiency vs. capturing more substance.

14



4 The Critical Values for Cointegration Tests

N Variant Size(%) | Observations | Bin finity (SE) b1 Ba
1 | No constant 1 600 -2.5658 | (.0023) | -1.960 | -10.04
5 600 -1.9393 | (.0008) | -0.398 0.0
10 560 -1.6156 | (.0007) | -0.181 0.0
1 No trend 1 600 -3.4335 | (.0024) | -5.999 | -29.25
5 600 -2.8621 | (.0011) | -2.738 -8.36
10 600 -2.5671 | (.0009) | -1.438 -4.48
1 | With trend 1 600 -3.9638 | (.0019) | -8.353 | -47.44
5 600 -3.4126 | (.0012) | -4.039 | -17.83
10 600 -3.1279 | (.0009) | -2.418 -7.58
2 No trend 1 600 -3.9001 | (.0022) | -10.534 | -30.03
5 600 -3.3377 | (0012) | -5.967 -9.98
10 600 -3.0462 | (-0009) | -4.069 | -5.73
2 | With trend 1 600 -4.3266 | (-0022) | -15.531 | -34.03
5 560 -3.7809 | (.0013) | -9421 | -15.06
10 600 -3.4959 | (.0009) | -7.203 -4.01
3 No trend 1 560 4.2981 (.0023) | -13.790 | -46.37
5 560 3.7429 (.0012) | -8.352 | -13.41
10 600 -3.4518 | (.0010) | -6.241 -2.79
3 | With trend 1 600 -4.6676 | (.0022) | -18.492 | -49.35
5 600 -4.1193 | (.0011) | -12.024 | -13.13
10 600 -3.8344 | (.0009) | -9.188 -4.85
4 No trend 1 560 -4.6493 | (.0023) | -17.188 | -59.20
5 560 -4.1000 | (.0012) | -10.745 | -21.57
10 600 -3.8110 | (.0009) | 8.317 -5.19
4 | With trend 1 600 -4.9695 | (.0021) | -22.504 | -50.22
5 560 -4.4294 | (.0012) | -14.501 | -19.54
10 560 -4.1474 | (.0010) | -11.165 | -9.88
5 No trend 1 520 -4.9587 | (.0026) | -22.140 | -37.29
5 560 -4.4185 | (.0013) | -13.641 | -21.16
10 600 -4.1327 | (.0009) | -10.638 | -5.48
5 | With trend 1 600 -5.2497 | (.0024) | -26.606 | -49.56
5 600 -5.2497 | (.0024) | -26.606 | -4956
10 600 -4.4345 | (.0010) | -13.654 | -5.77
6 No trend 1 408 -5.2400 | (.0029) | -26.278 | -41.65
5 480 -4.7048 | (.0018) | -17.120 | -11.17
10 480 -4.4242 | (.0010) | -13.347 0.0
6 | With trend 1 480 -5.5127 | (.0033) | -30.735 | -52.50
5 480 -4.9767 | (.0017) | -20.883 | -9.05
10 480 -4.6999 | (.0011) | -16.445 0.0

The Critical Values for Cointegration Tests. Source: MacKinnon 1991.
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