5 Multivariate ARIMA
Models

For many readers, this may be the most interesting chapter of the volume.
Whereas we were concerned only with univariate time series analysis in
_preceding chapters, in this chapter, we will generalize the Box-Jenkins
philosophy to multivariate time series analysis, that is, to the modeling of
relationships between two or more time series.! There are Em:w ways to
view multivariate time series analysis. In Design and Analysis of Time
Series Experiments, for example, Glass et al. (1975; Chapter 8) develop
muitivariate ARIMA modeling under the rubric of “concomitant variation.”
From this perspective, independent variable time series are introduced only
for the purpose of reducing background noise (or unexplained variance) in
the dependent-variable time series.

Noise reduction is not an unimportant consideration. Many of the prob-
lems addressed (or sidéstepped) in preceding chapters can be seen as prob-
lems of background noise. Trend, for example, is a bothersome topic which
raises philosophical dilemmas of the most complex nature. In time series
analysis, trend must be equated with change. If a social process changes
systematically throughout a finite realization, however, can it be assumed
that the process will coritinue to change in the same systematic manner? The
exogenous forces which underlie trend may be relatively constant during a
finite period of time, so during that period, the constant term of an ARIMA
model may adequately represent these forces. As the time frame grows
larger, however, these forces may change subtly and gradually; their repre-
sentation by a constant term may weaken.
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Seasonality presents a similar dilemma. A seasonal ARIMA model
mimics the effects of excluded (and often unknown) periodic exogenous
forces. While the model performs remarkably well in this role, the analyst
must always remember that the essence of seasonality has not really been
captured in the model. In relatively short time frames, seasonality may be
adequately explained as structured, periodic noise. Over longer time fra-
mes, however, exogenous seasonal forces may change gradually and the
imitative power of the model may wane.

Finally, viewing outliers as background noise, the same dilemma arises.
The input to a univariate ARIMA model is white noise and, in theory, a
white noise process can generate an infinitely large random shock. A one-in-
a-million random shock nevertheless complicates the analysis unless the
time series being modeled is a million observations long.

These three specific problems of background noise can be mitigated by
incorporating an independent-variable time series into the ARIMA model. If
the same set of exogenous forces (which are responsible for trend, seasonal-
ity, and outliers) underlie two time series, then a bivariate model of the
relationship may incorporate these forces indirectly. As multivariate
ARIMA models “solve” all of these dilemmas, we will state unequivocally
that a “fair” multivariate model is always preferred to a “good” univariate
model. The analyst must remember nonetheless that a “good” or even “ex-
cellent” multivariate model gives only an approximate representation of the
excluded exogenous forces.

From a concomitant variation perspective (as outlined by Glass et al.),
trend, seasonality, and outliers are seen as background noise which can be
reduced by incorporating an independent-variable time series into.the
model. The concomitant variation perspective misses the most important
facet of multivariate ARIMA models, however. Multivariate ARIMA
models are inherently causal. Although we acknowledge the importance of
noise reduction, we will develop multivariate ARIMA modeling from a
causal modeling perspective in this chapter.

The jump from univariate to multivariate time series analysis will not be
difficult. The impact assessment models developed in Chapter 3, in fact, are
multivariate models with the step function I; as an independent variable. For
a set of n independent variables, Xy, . . ., Xpt, the general multivariate
ARIMA model may be written as

*n = %.Axm? ey ND_”V + Z.n.

The functions of the several independent variables in this model are transfer
functions such as those described in Chapter 3. The difference here is that

HEE
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these transfer functions will be identified empirically.

Our discussion begins with the cross-correlation function which may be
used to identify a transfer function relationship between two time series. We
will then illustrate the multivariate model-building strategy with one fore-
casting and one causal modeling example. Needless to say, our development
of this material leans heavily on the principles developed in Chapters 2 and
3. The reader who is unsure of this material is thus advised to review those
chapters before proceeding.

5.1 The Cross-Correlation Function

It is sometimes useful to think of autocorrelation as within-series correla-
tion. In the same way that the ACF is used to identify within-series correla-
tion, the cross-correlation function (CCF) is used to identify between-series
correlation. Patterns of between-series correlation are used to identify a
transfer function relationship berween two time series in much the same way
that the ACF is used to identify an ARIMA relationship within the time
series.

As a first principle, we note that two nonstationary time series will always
be correlated due to common patterns of drift or trend. This correlation must
always be regarded as spurious. To eliminate between-series correlations
due only to drift or trend, the time series are made stationary prior to
estimation of the CCF. After an appropriate differencing,

x = (1 - B - BYPX,
z = (1 - B(1 - BHPY,,
the CCF may be estimated. By convention, Xx; is referred to as the input

series, or causor, and z is referred to as the output series, or effector. This
terminology reflects the input-output relationship

which is explicitly causal. Given two stationary time series, the CCF for lags
+k is given by the formulae

N—k
2 (X=X @4k — 7)

=1
CCF (+k) = ‘

N N
S (=% 3 (z4x — 2P
t=1 t=1
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N+k

ﬂm_ K-k = X) (% —7)

CCF (—k) = S <
S Rk — 02 Y (z— 7P
t=1 t=1

These formulae give the familiar Pearson product-moment correlation coef-
ficient (approximately) between two time series separated by +k observa-
tions. Whenk = 0, the formulae are identical. Whenk # 0, the first formula
gives the positive half of the CCF by lagging the z, series forward in time.
The second formula gives the negative half of the CCF by lagging the x,
series forward in time.

A major difference between the CCF and the ACF (as noted in Section
2.8) is that the CCF need not be symmetrical about lag-zero. In other words,
CCF (+k) # CCF(—k) generally. When the ACF is used to identify an
ARIMA model, only one half of the ACF need be examined. ACF(—k) is a
mirror image of ACF(+k) but this is not true of the CCF.

We are always reluctant to introduce tedious arithmetic into our argu-
ment. The relationship between CCF(+k) and CCF(—k) is one that cannot
ordinarily be grasped without a basic demonstration, however. Apologies
given, we present 10 pairs of numbers: .

X¢ t Zt
.665 1 —.160
—1.630 2 —.058
— .298 3 333
225 4 —.815
1.222 5 —.149
- .531 6 113
- .957 7 611
.676 8 .266
— .723 9 —.479
.289 10 .338

These numbers were generated so that X = Z = 0; the first nine values of x;
are random Normal numbers and the 10th was selected to ensure that X = 0.
The values of z were generated as

\
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For 8 of these 10 pairs of numbers, then, there is a perfect causal relation-
ship:

x—— T TT T~ = L2

Applying the formulae for CCF(xk) to these 10 pairs of numbers, starting
withk = -3,

(—.160) (.225) + ... +(.611) (.289)

CCF (=3) =
=3 V(=160 + . .. + (.338)2] [(.665) + . . . + (.289)]
- 25
(—.160) (—.298) + . . . + (.266) (.289)
CCF (=2) =
2 V(= 16002 + . . . + (338)2] [(.665)2 + . . . + (.289)?]
= —04
(=.160) (—1.630) + . . . + (—.479) (.289)
CCE (1) =
=D V(=160 + . . . + (33821 [(.665)2 + . . . + (.289)?]
- -»
(—.160) (.665) + . . . + (.338) (.289)
CCF(0) =
© V(=160 + . . . + (338)2] [(.665) + . . . + (.289)]
- - -1
(= .058) (.665) + . . . + (.338) (—.723)
CCF (+1) =
D VI(=.1602 + . . . + (.338)2] [(.665)2 + . . . + (.289)]
- -2
(.333) (.665) + . . . + (.338) (.676)
CCF (+2) =
) = 1607+ ... + (3382 (665 ... + (289)7]
= 95
~ 815) (. 4 (338)(—.957
COF (43) — (= 815) (.665) + . .. + (.338) (—.957)

V(=160 + . . . + (.338)2] [(.665)2 + . . . + (.289)?]
~ 1.
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CCF(+2) is the largest of these seven numbers. The value of CCF(+2) = 1
indicates the perfect causal relationship built into these numbers. There are
many other “large” correlations among the seven, however. The statistical
significance of any CCF(#k) estimate can be assessed by comparing it with
its standard error. One unit of standard error for CCF(xKk) is given by

1

SE[CCF (k)] = | o

For these seven estimates, then, the standard errors are:

SE [CCF(+3)] =V177 = 378
SE [CCF (+2)] =V1/8 = .354
SE [CCF (+1)] =V1/9 =.333
SE [CCF (0)] =V1/10 = .316.

Dividing each of these estimated CCF(xk) by its standard error, the
standardized estimates are: ,

CCF (-3) = .25/.378 = .66 SE
CCF (—2) = —.04/.354 = —.11SE
CCF(-1) = —.22/.333 = —.66 SE
CCF (0) = —.11/.316 = —.35SE
CCF (+1) = —.22/.333 = .66 SE
CCF (+2) = .95/.354 = 2.68 SE
CCF (+3) = —.13/.378 = —.34 SE.

As a convention, the analyst may assume that any estimate of CCF(%k)
smaller in absolute value than 2 SE is zero. By this rule, only the estimate of
CCF(+2) is statistically different than zero.

Among other things, this exercise illustrates the interpretation of asym-
metry in the CCF. The CCF measures not only the strength of a relationship
but also the direction. When “x; causes z 1p,,” evidence of the relationship is
found at CCF(+b), in the positive half of the CCF, that is. When “z; causes
X¢+b, on the other hand, evidence of the relationship is found at CCF(—b),
in the negative half of the CCF. Asymmetry in the estimated ACF is thus
interpreted on the basis the causal relationship specified a priori. When one

\
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Zy = WpXt—b

wy >0

zy = (wg + w1 B)xc—p wy w1 >0

ze=(01 -8B lwgx—, 81 wp>0

I

..

z=(1-8B) "(wy+ wB)x—p 1wy w;>0

B i

FIGURE 5.1

Expected CCFs for Several Bivariate Relationships
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of the two time series has been specified as the causor, evidence of the
relationship is expected in the positive CCF. But more important, the
CCF(+Db) estimated under the assumption that x; is the causor will be identi-
cal to the CCF(—b) estimated under the assumption that x, is the effector.

What has been demonstrated in the specific case for 10 pairs of numbers
must now be demonstrated in the general case. Figure 5.1 shows the
expected CCFs for several common transfer function relationships. First, the
zero-order relationship

z = woXe—p + Ny

is expected to have a nonzero value of CCF (+b). All other lags of the CCF
are expected to be zero. To demonstrate this, we define the expected CCF
(+k) as

COV (x¢—xz¢)
V'VAR (x,) VAR (z,)

CCF (+k) =
Then,
COV (x¢—kzt) = E [(x¢-1) (woX¢—p + Np)]
= E (0oX¢—kXt—b T X¢—kNp)-
Now in all cases, Ex;—N; = 0, so
COV(x¢—xzp) = wEX{—kXt—b.

Then assuming that x; is a white noise process (we will cover the case in
which x, is not white noise in Section 5.3),

COV (x¢—xzy) = woo2 whenever b = k

0 otherwise.

Dividing this term by o0, the expected CCF is

CCF (k) = so.wlw whenever b = k

= () otherwise.

Following this same procedure, the reader may demonstrate that the con-
verse relationship

Xt = WQZi—p + Zﬁ

\
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is expected to have a nonzero value of CCF (—b). All other lags of the CCF
are expected to be zero. .
The first-order transfer function relationship

o
= —X-p+ N
Zt Hlmﬂwxﬁ b t

describes a dynamic causal relationship between the two time series. Re-
writing the relationship as the infinite series,
o

Zi = Wy M @wxﬁl_ulm + Z.m.
i=0

The covariance between x;_y and zis:

COV (x¢—2z0) = E [(X—g) (wp ‘Mo Sxt—b—i + NI
z

=E (wp .Momwawach
=

= woEx{—kX¢-b + 0od1EX¢—1X¢—p-1
+ wy mwmvnﬂlwxﬂlclm +. .+ 08 EX —k Xi—pon F . - .-

When b <k, all terms of this expression are zero. When b = k, however, the
first term of the infinite series is nonzero, so

COV(xe—b2) = w0,
Whenk = b + 1, the second term of the infinite series is nonzero:
COV(X¢—p—12¢) = SomHQm.
And when k = b + n, the n + 1st term of the infinite series is nonzero:
COV(X(—b-nZo) = wodlos.
Dividing these covariances by o0, the expected CCF is:

CCF (k) =0fork <b
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Ox
CCF (b) = wg =,

CCF (b+n) = wod} g °
So the CCF for a dynamic first-order transfer function relationship is ex-
pected to be zero until CCF (b). Successive positive lags, CCF (b+ 1), CCF
(b+2), ..., CCF (b+n), decay exponentially back to zero. The expected
CCF is thus identical with the ACF expected of an ARIMA (1,0,0) process.

The CCFs shown in Figure 5.1 all suggest a causal relationship be-
tween x; and 7,2 A single spike in the positive CCF is interpreted as an o
parameter. Decay from a spike is interpreted as a 8 parameter. These are
expected CCFs, of course, and, in practice, identification of a transfer
function relationship may be complicated by ambiguous identification sta-
tistics. Nevertheless, this first step in multivariate model building must
produce some evidence of relationship before the next step in the procedure
can begin. We will now demonstrate the multivariate model-building proce-
dure with an example.

5.2 A Forecasting Example

1450
1400 1
[72]
<
Z 04
i
o
=z
z
W 0]
=
i’
o
(4]
=z
z
B tes0t
-
o
1000 4
, , — . N — , .
sy _ o 4o I 80 100 120

DAYS FRAOM APRIL 31 T0 OCT. 28, 1976

FIGURE 5.2(a) Paris and New York IBM Common Stock Prices
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In Chapter 4, we noted that univariate forecasts often tend to be trivial.
This is not true of multivariate forecasts. The two time series shown in,
Figure 5.2(a) are daily closing prices (in francs) of IBM common stock on
the New York and Paris exchanges (see, Makridakis and Wheelwright,
1978: 487-488). Both series drift upward during the 130 days presented
here. While one might conclude from this common pattern of drift that there
is a causal relationship between these two series, it would be unwise to leap
to this conclusion. Many stock price time series (perhaps even the majority)
follow similar patterns of drift during this same period. Common patterns of
drift or trend by themselves say nothing about the causal relationship among
time series.

As a first step in building a bivariate ARIMA model, univariate models
are built for both series. Univariate analysis shows that both time series are
well represented by ARIMA (0,1,0) models. For the New York series,

(1 —B)X;=a
CROSS-CORRELATIONS OF LAGS -15 TO 15.
NO. OF VALID OBSERVATIONS = 129.
INPUT SERIES.. NYIBM NEw YORK IBM STOCK PRICE {DIFFERENCED)

OUTPUT SERIES.. FARISIBM PARIS [BM STOCK PRICE (DIFFERENCED)

LAG  CORR SE -1  =.8 -.6 -.4 -.2 @ .2 4 .6 8 +1
e e L iR Y SUEN HUNS SO SO U

-15 -.p13 .994 ( 1 )
-14  .082 .093 ( I )
-13 -.066 .093 ( XX1I )
12 .138 .0892 ( IXXX )
-11 -.834 .892 ( x1 )
-1 .987 .892 ( I )
-9 -.867 .09l ( XXI )
-8 -.114 .091 ( XXXI )
-7 .87¢ .091 [ IXX )
-6 =-.153 .099 (XXXXI )
-5 .836 .89¢ ( 1x )
-4 -.004 .889 (1
-3 .853 .089 ( 1x )
-2 -.017 .e89 ( 1 )
-1 -.94¢ .088 ( X1 )

2 .151 .e8s ( IXxXx*

1 .664 .088 ( 1XX )

2 .659 .89 ( IXXX)XXXXXXXXXXXX

3 -.0084 .089 [

4 .g41 .@89 ( 1x )

5 -.841 .099 ( X1 )

6  .043 .090 ( X )

7 .897 .091 ( IXX )
8 -.887 .91 ( XXI )
9 -.925 .@91 (X )
16 .268 .92 ( IXX )
11 -.118 .92 ( XXXI )
12 -.856 .092 (X1 )
13 -.129 .693 ( XXXI )
14 .151 .@93 ( IXXXX)
15 -.855 .094 (%1 )

-2SE +25E

FIGURE 5.2(b) Identification: CCF Estimated from the Differenced Series
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SERIES.. RESIDUAL (NOBS= 127) ESTIMATED MODEL RESIDUALS

NO. OF VALID OBSERVATIONS =  127.
AUTOCORRELATIONS OF LAGS ! - 30.
C( 38, 127) = 41.847 SIG = .874
LAG  CORR SE -1 -.8 =-.6 -.4 -.2 @ 2 .4 .6 .8 41
T et STl L e S Tl it o
1 -.318 .098 XXX (XXXXI )
2 -.140 .108 (XXXX1 )
3 -.080 .1@9 ( XxI )
4 .160 .100 ( IXXXX)
5 -.128 .1@0 { XXXI )
6 .080 .l00 ( 1 )
7 .0408  .100 ( IX )
8  .098 .1d0 ( IXX )
9 -.180 .100 ( XXXI )
18 -.060 .100 ( XXI )
11 .86 .l@@ ( IXX )
12 .008 .10 ( 1 }
13 -.876 .100 ( XxI )
14 .870 .109 ( IXX )
15 .18 .l@9 VM IXXX )

16 -.230 .118 * )
17 .648 .110 ( )
18 .048 .118 ( )
19 .87 .110 { )
20 -.168 .110 ( )
21,138 .118 ( )
22 .830 .110 { )
23 -.068 .110 { )
24 -.020 .110 ( XI )
25 -.928 .11 ( )
26 -.830 .110 ( )
27 .840 .110 { )
28 .816 .119 ( )
29 .87 .110 ( )
36 .e40 .110 ( )

s s

FIGURE 5.2(c) Identification: ACF for the Residuals of the Model
Y= 767Xz + 1245

and for the Paris series,
1+ B)Y;= a;.

The major purpose of a preliminary univariate analysis is to make sure that
both time series are stationary. As noted, a CCF estimated when one or both
series are nonstationary will be overwhelmed by spurious correlations.
Bivariate identification will thus require that both of these time series be
differenced.

In this case, we have no a priori theory about the relationship between
these series. The possibilities include the case in which a change in the New
York series causes a change in the Paris series,

A
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SERIES.. RESIDUAL (NOB5S= 127) ESTIMATED MODEL RESIDUALS

NO. OF VALID OBSERVATIONS = 127,

AUTOCORRELATIONS OF LAGS 1 - 38.

Q( 29, 127) = 25.997 SI1G = 675

LAG  CORR SE -1 -.8 -.6 -.4 ~-.2 @ L2 .4 .6 .8 41

Fommm et b — g + + + Rt e it St
1 .120 .B9%® ( IXXX )
2 ~.87¢ .09 { xxI )
3 -.11¢ .p9e ( XXXI )
4 .40 .090 ( X )
5 -.068 .09 ( XXI )
6 .0le .090 ( I )
7 .958 .098 { X )
8 .678 .090 ( IXX )
9 -.090 .090 ( xxI )
19 -.108 .690 { XXXI )
11 .38 .09¢ ( Ix )
12 -.8408 .090 {(  xI )
13 -.820 .09 (X1 )
14 .e78 .099 ( IXX )
15 .020 .P9@ ( X )
16 -.170 .899 (XXXXI )
17 .616 .180 ( I )
18 '.040 .100 ( x )
19 .138 .10¢ ( IXXX )
20 -.038 .160 (X1 )
21,208 .109 ( IXXXX*
22 .896 .l@9 ( IXX )
23 -.838 .10 (  xI )
24 -.090 .100 ( xx1 )
25 -.698 .188 ( XXI )
26 -.080 .180 ( XXI )
27 .958 .108 ( x )
28 .060 .16 ( IXX )
29 .@90 .100 ( IXX )
3¢ -.gle .11¢ ( I )
~2SE +2SE

FIGURE 5.2(d) Diagnosis: ACF for the Residuals of the Model

<» = @@V xﬁlm -+ Hﬂ%lmwcmm~
the case in which a change in the Paris series causes a change in the New
York series,

and the noncausal case in which, perhaps as a result of some underlying
common variable, the two series appear to be causing each other. We will
operate under the assumption that the New York series is the causor but
this assumption is arbitrary.

Figure 5.2(b) shows the CCF estimated from the differenced time series.
The lone spike at CCF (+2) suggests that the New York series leads the Paris
series by exactly two days. Had the spike instead appeared at CCF (—2), the
opposite inference would have been supported. Although the assumption
that the New York series was the causor was arbitrary, it is supported
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CROSS-CORRELATIONS OF LAGS -15 TO 15.
NO. OF VALID OBSERVATIONS = 129.

INPUT SERIES.. NYIBM PREWHITENED NEW YORK IBM STOCK PRICE
OUTPUT SERIES.. RESIDUAL ESTIMATED MODEL RESIDUALS

-6 =-.835 .098
-5 =-.012 .6980
-4 -.012 .089
-3 -.638 .889
-2 =.822 .089
-1 -.814 .088

LAG  CORR SE -1 -.8 -.6 -.4 =-.2 @ .2 .4 .6 .8+l

B T T e e e e e et e
-15 -.0786 .09%4 ( XXI )
-14 -.067 .093 ( XXI )
-13 -.p62 .893 ( XXI )
-12 -.853 .092 (  XI )
-11 -.041 .992 ( %I )
-1 -.032 .092 (  XI )
-9 -.924 .0891 (  XI )
-8 -.817 .@91 ( 1 )
-7 -.813 .891 ( 1 )
( )

-

13 -.833 .093
14 -.@632 .093
15 -.648 .094

8 -.012 .088
1 .@@3 .688 1
2 -.046° .089 X1
3 -.p21 .089 X1
4 -.036 .089 X1
5 ~.085 .090 I
6 -.021 .090 ( xI )
7 -.027 .891 (X1 )
8 -.031 .89l (  xI )
9 -.p30 .891 (X1 )
19 -.825 .092 (  XI )
11 -.824 .092 (X1 )
12 -.028 .692 (  x1 )
( )
( )
( )
s S

U
[

E

+
N

E

FIGURE 5.2(e) Diagnosis: CCF for the Differenced X; Series and the
Model Residuals

empirically by this CCF. In general, the analyst need not specify which
series is the causor, but instead may make the specification empirically. If
the positive CCF is statistically significant, then the X; series is the causor;
and if the negative CCF is statistically significant, then the Y, series is the
causor.

To be sure, there are many nonzero values in both the positive and
negative halves of the CCF. The only statistically significant value is at CCF
(+2), however, and this suggests the model

(1 =B)Y,= (1 — B)wpX;—2 + N;.

A change in the price of IBM common stock on the New York exchange is
followed by an analogous change in price on the Paris exchange two days

\
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later. Finally, the CCF suggests that the effect is not distributed over succes-
sive days, that is, there is no dynamic transfer of effect which would be
indicated by a pattern of decay from CCF (+42) to CCF (+3) to CCF (+4)
and so forth.

The next step in the bivariate model-building procedure is to identify an
ARIMA noise model for the N; component. There are a number of ways in
which this identification can be made. In our experience, however, the most
satisfactory way is the straightforward one: Identify the N component from
the transfer function residuals. To do this, the analyst first assumes that N, is
white noise. The tentative bivariate model is thus

1 =B)Y;=(1 - B)wX; > + 2
- A
<ﬁ - Souhnlwn_u 1—B
This tentative model has only one parameter, whose value is estimated as

@o = .7674 with t statistic = 13.16.

The residual ACF for this model, shown in Figure 5.2(c), suggests that an
ARIMA (0,0,1) model will adequately reflect the. structure of autocorrela-
tion in these residuals. This leads to the tentative model

(1-B)Y;=(1-B)wX;—2+ (1 — O;B) 2
1-©6,B

Y: = woXi—2 + B

at.

Parameter estimates for this model are:

.987 with t statistic = 32.12
.88 with t statistic = 20.17.

@o

6,

Both estimates are statistically significant and otherwise acceptable.
Bivariate ARIMA models of the sort we have tentatively selected for
these two time series may be diagramed as

Xeop ===~

m———
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The sense of this diagram is that two distinct input processes (the time series
observation, X;_p, and the random shock, a;) pass through two distinct
filters (a transfer function and an ARIMA structure) and are then combined
additively into an output process (the time series observation, Y;). The
difference between this diagram and the input-output diagrams we drew for
univariate processes in Chapter 2 is that there are two inputs here and this
hints at the special problems of diagnosing a bivariate ARIMA model. In
effect, the statistical adequacy of both the transfer function component and
the noise component must be diagnosed.

First, as one might suspect, the model residuals must not be different than
white noise. The residual ACF, shown in Figure 5.2(d), indicates that the
noise component of this tentative model is adequate. If model residuals are
different than white noise, a new noise component must be identified.

Second, the model residuals must be independent of the causor time
series. To test the hypothesis of independence, a CCF is estimated from the
model residuals and the input time series (the differenced New York IBM
series in this case). This CCF, shown in Figure 5.2(e), has no significant
values, indicating that the causor series and the model residuals are
uncorrelated. As the hypothesis of independence stands, the tentative model
is acceptable. Had this CCF indicated that the input series and the model
residuals were not independent, a new transfer function component would
have to be identified.

Because this model satisfies both diagnostic criteria, it is accepted. There
nevertheless may be other acceptable bivariate models which through meta-
diagnosis, could be compared with this one. The reader is invited to explore
this possibility as an exercise.

Before commenting on the relative utility of this analysis, we must point
out that our only purpose was to illustrate the procedures of bivariate model-
ing. In particular, we do not intend to endorse international stock specula-
tions. While we have no experience here, we have been advised (by an
investment analyst who wishes to remain anonymous) that it is not an easy
matter to turn a profit on foreign stock exchanges, especially on blue chip
shares. The hidden costs of buying and selling stock (not to mention buying
francs with dollars) make speculation a generally risky enterprise.

Still, a foreign investor will realize the incremental utility of a bivariate
forecasting model over a univariate forecasting model. The Paris IBM series
is well represented by an ARIMA (0,1,0) model, so forecasts of the series
are:

%%H—v = <n .

3
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Because this series follows a random walk, the best univariate forecast of a
future price is the current price. Using the New York series as a lead indica-
tor, however, a bivariate forecast is possible. To compare the two models,
we use the first 125 observations to forecast the 126th, the first 126 observa-
tions to forecast the 127th, and so forth. The results of this exercise are:

Univariate Bivariate

E Observation Forecast Forecast
126 1270.000 1302.000 1277.735
127 1262.000 1270.000 1273.791
128 1300.000 1262.000 1288.419
129 1315.000 1300.000 1313.757
130 1337.000 1315.000 1326.185

Bivariate forecasts are clearly superior to the univariate forecasts. The
MSFE:s for these two models based on only these five forecasts are 648.20
and 87.65. This should not be surprising. One would also expect a bivariate
model to have alower residual variance than a univariate model. In this case,
the univariate model has an RMS = 212.89 while the bivariate model has an
RMS = 81.30.

In closing, a comment on the interpretation of the bivariate model is
called for. The interpretation is explicitly causal. A rise or drop in the New
York series is followed by an analogous rise or drop in the Paris series two
days later. While a time-lagged correlation does not imply causation, causa-
tion does imply a time-lagged correlation. The null hypothesis is thus

Hop: X; ———##——=— Y42, 6 = 0.

Due to the relatively large t statistic for the estimate of wy, the null hypothe-
sis must be rejected.

5.3 Prewhitening

The Paris-New York IBM model was identified with relatively little
trouble because both series were well represented by ARIMA (0,1,0)
models. After differencing, both series were white noise. Our concern now
is with the problem of modeling bivariate relationships when the series are
not white noise. When we derived the expected CCFs for zero- and first-
order transfer functions in Section 5.1, we assumed that the x; series was
white noise. When this assumption is unsatisfied, as is usually the case with
social science time series, the estimated CCF is uninterpretable. If the x; and
z, series are prewhitened, however, an interpretable CCF can be estimated.
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Figure 5.3(a) shows a time series of annual Swedish population increases
(increase per thousand population) for the 17501849 century as reported
by Thomas (1940). The rate increase in a given year is defined as

p¢ = birth rate — death rate in the t year.

The relationship between this time series and a time series of total population
is a straightforward one. The total population of Sweden in 1749 was
1,760,000. Starting with this value, the total population (in thousands) at the
end of 1750 is given by the expression

P1750 = P1749 + P1749 (P1750)
= 1,760 + 1,760 (p1750)

= 1,760 (1 + p1750)-

10 4+

INCRERSE PER THOUSAND POPULATION
[=]

204

-30 + + +
1750 1770

1790 1810 1830 1850

YEARS

FIGURE 5.3(a) Swedish Population Rates, 1750—1849
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The total population at the end of 1750, then, is given by the product of the
total population at the end of 1749 and the 1750 rate increase. In the general
case, total population at the end of the th year is:

Pi=P1(1+py
Py

——=1+p,
P, Pt

Taking the natural logarithm of this expression,

Lo (P) — Ln (P—;) = Ln (1 + py).

The log-transformed total population series is thus the integration (though
not necessarily a random walk) of the log-transformed rate increase series.

In Section 2.12.3, we analyzed the Swedish Harvest Index time series for
the years 1749—1850. The Harvest Index is a crude measure of food produc-
tion wherein a value of zero indicated a total crop failure and a value of nine
indicated a superabundant crop. Our analysis demonstrated that the series
could be well represented by an ARIMA (0,0,1) model:

h, = (1 + .39B)a,.

According to Gustav Sundbirg, an early demographer quoted by Honmwu
the growth of Swedish population during the 1750—1849 century could be
explained almost entirely as a function of agricultural production:

Irrespective of which party had gained control, or whether the King himself
was on the throne, if the harvest was good, marriage and birth rates were high
and death rates comparatively low, that is, the bulk of the population
flourished. On the contrary, when the harvest failed, marriage and birth rates
declined and death devastated the land, bearing witness toneed and privation
and at times even to starvation. Whether the factories fared well or badly or
whether the bank-rate rose or fell—all these things at this time, were scarcely
more than ripples on the surface [1940: 82].

This hypothesis (which we will now call Sundbarg’s hypothesis) has not
been adequately tested. When Dorothy S. Thomas, Gunnar Myrdal, and
others investigated the relationships claimed by Sundbirg, the methods we
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have described here were unavailable; social scientists did not yet have
access to computers. Early analyses of these data consisted largely of visual
analyses which tend to mislead. The only satisfactory method for testing a
causal hypothesis is to identify, estimate, and diagnose a bivariate time
series model as we will do now.

As afirst step in the analysis, we make sure that both series are stationary.
The Harvest Index series, well represented by an ARIMA (0,0,1) model, is
already stationary. An analysis of the population rate increase series leads
also to an ARIMA (0,0,1) model:

pt = (1 + .44B)a;.

As both series are stationary, the CCF can be estimated from the undif-
ferenced series.

The estimated CCF, shown in Figure 5.3(b), is not as clear as the CCF
estimated in the previous example. There is no evidence of a strong, unam-
biguous causal relationship. Some analysts might see a two-way relationship
here while others might see no relationship whatsoever. The argument is
moot because, as we have noted, the CCF can be interpreted only when the
causor variable is a white noise process. Even if this CCF did indicate a
strong, unambiguous causal relationship, the evidence could not be accepted
because the Harvest Index series is not white noise.

The problem here is that the CCF estimate is contaminated by within-
series correlations, or autocorrelation. The hypothetical relationship be-
tween these two series is:

Any change in the harvest causes a change in the birth and death rates b years
later. There are other causal factors, however, namely,

When the causor series is not white noise, the CCF will reflect both between-
series dependencies and within-series dependencies.

To illustrate the confounding of within- and between-series correlation,
we represent the relationship between two time series as

Zy = VoX¢ + viXe—1 + ...+ viixe—x + N;.

3
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CROSS~CORKELATIONS OF LAGS -15 TO 15.
NO., OF VALID OBSERVATIONS = 109.

INPUT SERIES.. HARVEST SWEDISH HARVEST INDEX 1758-1849
OQUTPUT SERIES.. POP SWED1SH POPULATION CHANGE 1750-1849

LAG CORR SE -1 -.8 -.6 -.4 -.2 4] .2 .4 .6 .8+l
B e e B e Al SN G S
-15 -.876 .l@8 ( XXI )

-14 -.873 .108 ( XXI }
-13 .877  .1@7 ( IXX )
-12 .064 187 { IXX )
-11 -.,875 .l@6 { XXI )
A
A
ﬁ
A

-1 .128 .165 IXXX )
-9 .165 .185 IXXXX)
-8 .116 .104 IXXX )
-7 .838 .184 X
-6 -.212 .183 *XXXXI )
-5 -.120 .193 ( XXXI )
-4 -.044 102 (X1 )
-3 ,114 .182 ( IXXX )
-2 .e84 .10l ( IXX )
-1 -.119 .18l ( XXXI )
o .857 .l0@ ( x )
1. .391 .101 ( IXXXX) XXXXX
2 .265 .16l ( IXXXX) XX
3 .086 .192 ( 1 )
4 -.134 .102 ( XXX1 )
5 -.144 .103 (XXXXI )
6 -.022 183 (X1 )
7 .026 .194 ( X )
8  .108 .104 ( IXXX )
9 .245 .185 ( IXXXX) X
10 .215 .185 ( IXXXX*
11 .143 .106 ( IXXXX)
12 .ele .1@7 ( I )
13 -.887 .1087 ( XXI )
14 -.165 .108 ( XxXx1 )
15 .885 .les ( I )
-2SE +2SE

FIGURE 5.3(b) [dentification: CCF for the h, and p; Series

Now in the general case, only a finite number of the v-weights will be
nonzero. To derive the expected CCF, the v-weight model is multiplied by

Xt, Xt—1, - - - » X(—k. The result is a set of k equations:
XtZy = VXXt +...+ VXXt —k +NHZ~

Xt—1Zt = VoXt—1X¢ + ...+ ViXe—1Xt—k +N~|~Z~

Xt—kZt = VoXt—kXt + ...+ <W.Nm.IWN~|W + xﬂ|W2~.
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Taking the expectation of this equation system,

COV (xzp) = Vo2 + ... 4 i COV (Xeke—i)
COV (X-121) = VgCOV (x¢—1xp) + . . . + yCOV (X;—1X¢—k)

COV (x¢—kzt) = voCOV (Xp—xxp) +. .. + <wo\w¢

Finally, dividing the system by ox0,

g
CCE(0) = émw + ..+ Vigr ACF ()
Ox Oy
CCF (+1) = vg2 ACF (1) + . . . + vig* ACF (k1)

. Ox Ox
OOWA+5H ,\oqN >O~uﬁmv+...+ <wmm. .

The positive CCF thus is determined by the v-weight relationship between
the two time series, by the variance of the two time series, and by the ACF of
the causor time series.

Now in the New York-Paris IBM example of the previous section, both
series were well represented by ARIMA (0,1,0) models. After differencing,
both series were white noise. As the ACF of a white process is uniformly
zero, the CCF is expected to be:

CCF() = ém

CCF (+1) = Vg™

CCF (+k) = sﬂm

that is, the CCF will be uncontaminated by within-series correlation. In the
Swedish population example, however, the Harvest Index series is notr white

\
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noise and, as a result, no bivariate transfer function relationship can be
identified from the CCF shown in Figure 5.3(b).

In theory, within-series correlation can be removed from the CCF by
solving the k-equation system directly. In practice, however, this is nearly
impossible. The components of the k equations, especially the ACF of the x;
series, must be estimated for the direct solution. Rounding error alone would
make a direct solution inefficient and inaccurate. A more efficient and
practical method of removing within-series correlation from the CCF is to
prewhiten both series. Noting that the causor time series is well represented
by an ARIMA model,

x=(1—-¢B—...—¢,BH 1 (1-0;B—...-6BYa,

the x series can be prewhitened, turned into white noise, that is, by inverting
the model.

a=1—¢B—...~¢B)(1-OB—...—OBY 'x.
Starting again with the v-weight relationship between the two time series,
Z = VoX¢ + ViXe—1 + . . . + VWXe—g + Ni.

Applying the inverted ARIMA (p,d,q) (P,D,Q)s model to both sides of the
equation,

*
Zy =Voar +via—) + ...+ Vg + Z”,

where
zZi=(1—-¢B—...—$,B)(1-OB—... — 94BY) ~lz
Ni=(1-¢B—...—¢B)(1~-OB~... — 6,897 IN,.

To derive the expected CCF between zf and a;, the v-weight model is
multiplied through by a¢, a1, . . . a;—k. The k- equation system obtained by
this procedure is:

* *

azy =veEag +...+vaa—x +alNy
* *
a-1Z¢ = Voa—1a¢ . . . + Vi@dr—ja—k + 3 1N¢

*
A—kZt = VoA + - . . + Vidi—iar—k + 2Ny,
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whose expectation is:

I
3
St

COV (az})
COV (a—17y)

COV (a-x2z1) = vya2.

Finally, dividing these equations by 0,0+

I
=
N

Oa
CCF0) =vy o
Ta
CCF(+1)=v; P
z
: s
CCF (+k) = Koo
z

which may be a surprising result. The CCF between the a; and z; series is
proportional to the v-weights which define the bivariate relationship be-
rween x; and z,. By prewhitening the time series prior to analysis, the effects
of within series correlation (autocorrelation in the causor series) can be
removed from the CCF.

In Figure 5.3(c), we show a bivariate model-building strategy. Like the
univariate modeling strategy outlined in Section 2.11, the bivariate strategy
is an iterative procedure whereby a parsimonious but statistically adequate
ARIMA model is constructed. Because the strategy deals with two time
series, of course, it has many more steps than its univariate analogue. The
logic nonetheless is identical with the logic of the univariate model-building
strategy.

As a first step, univariate models are constructed for both series. The
results of these analyses will indicate whether either series must be dif-
ferenced or transformed.

The univariate ARIMA model for x, is inverted and applied to both series:
prewhitening. A CCF is then estimated from the a; and Nv” series and used to
identify a transfer function model for the relationship between the x, and z,
time series.

The parameters of the transfer function are estimated. The residuals of

4
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(1) PRELIMINARY UNIVARIATE ANALYSIS: Univariate models
must be built for the two time series. If modeling indicates that either
series is nonstationary, the series must be differenced appropriately.

v

(2) TRANSFER FUNCTION IDENTIFICATION: The ARIMA model
v for the causal series is inverted and applied to both series. The CCF

between these prewhitened series is used to identify a transfer func-
tion component for the model.

v

(3) NOISE COMPONENT IDENTIFICATION: Parameters for the
transfer function component are estimated. Residuals from this esti-
V mation are used to identify an ARIMA model for the noise compo-

nent.

(4) ESTIMATION: Parameters for the tentative model are estimated. If
the parameters of either component are not statistically significant
and otherwise acceptable, a new component must be identified.

v

(5) NOISE COMPONENT DIAGNOSIS: If residuals of the tentative
model are not white noise, a new noise component must be identi-

fied.

(6) TRANSFER FUNCTION DIAGNOSIS: If residuals of the tenta-
tive model are correlated with the prewhitened causal variable, a
new transfer function component must be identified.

v

_ INTERPRET THE MODEL _

FIGURE 5.3(c) The Bivariate ARIMA Model-Building Strategy

this estimation are used to identify an ARIMA model for the N, component.

Parameters of the fully identified model are estimated. All estimates must
be statistically significant and otherwise acceptable. By “otherwise accept-
able,” we mean that noise component parameters must lie within the bounds
of stationarity-invertibility; transfer function parameters must lie within the
bounds of system stability. If the parameter estimates of either component
are unacceptable, a new component must be identified.
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The tentative model has two components,
Zy = mcnmlvv + Z?

and both components must pass diagnostic checks. The statistical adequacy
of the noise component is diagnosed in the same way that a univariate
ARIMA model is diagnosed: The model residuals must not be different than
white noise.

The transfer function component has been specified so as to account for
all process variance common to the x; and z series. If the transfer function
component is statistically inadequate, a portion of this common variance
will show up as model residuals. A statistically adequate transfer function
component will be independent of the noise component. To test the null
hypothesis of independence, a CCF is estimated from the prewhitened x;
series and the model residuals. If the transfer function and noise components
are not independent, there will be spikes at the low-order lags of the CCF. If
the transfer function proves statistically inadequate by this criterion, a new
transfer function must be identified, estimated, and diagnosed.

We can now apply this model-building strategy to theSwedish population
growth example. Stated simply, Sundbirg’s hypothesis is:

harvestin yeart —————— — population growth in year t+b.

The analysis begins with prewhitening. As the Harvest Index series is well
represented by the ARIMA (0,0,1) model

h; = (1 +.39B)a;.
It is prewhitened as
a, = (1 + .39B)" !h;.

The same inverse operator is used to prewhiten the population rate increase
series

zi = (1 + .39B)" Ip,.
The az CCF, shown in Figure 5.3(d), gives a clear picture of the rela-

tionship between the Harvest Index and population rate increase time series.
The large spike at CCF (+ 1) suggests the transfer function model

pt = wohy—; + Ny,

\
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CROSS~-CORRELATIONS OF LAGS -15 TG 15.

NO. OF VALID OBSERVATIONS = 100.
INPUT SERIES.. HARVEST  PrxiwHITENED SWEDISH HARVEST INDEX
OUTPUT SERIES.. PCP PREWHITENED SWEDISH POPULATION CHANGE
LAG  CORR SE -1 -.8 -.6 -.4 -.2 B .2 4 6 .8 +1
B s L B B s et T LIS SRR e e

-15 -.253 .l@s ( XI )
-14 -.282 108 ( XXI )
-13  .e78 .l@7 ( IXX )
-12  .895 .l@7 ( IXX )
-11 -.162 .186 (XXXXI )
-19  .152 .105 ( IXXXX)

-9 ,185 .105 ( IXXX )

-8 .650 .104 ( X )

-7 .111  .104 ( IXXX )

-6 -.254 .103 X (XXXXI )

-5 -.911 .193 ( I )

-4 -.076 .102 ( XXI )

-3 .111 .1@2 ( IXXX )

-2 .183 .l@l ( IXXX )

-1 -.156 .lp1 (XXXXI )

9 -.086 .100 ( I )

1 .355 .1@1 ( IXXXX) XXXX

2 . .165 .101 ( IXXXX)

3 -.018 .l02 ( I )

4 -.09¢ .102 ( XXI )

5 -.139 .13 ( XXXI )

6 .219 .103 ( 1 )

7 .804 .104 ( I )

8 .044 .104 ( X )

9  .195 .185 ( IKKXX*

18 .123 .les ( IXXX )

11 .111 .1e6 ( IXXX )

12 -.0885 .187 ( I )

13 -.856 .167 (I )

14 -.185 .18 ( XXXI )

15 .43 .188 ( X )

-2SE +2SE

FIGURE 5.3(d) [Identification: CCF for the Prewhitened p; and h; Series

which implies that the current year’s harvest determines the next year’s
population growth. Our estimate of w for this relationship is:

do = .87.

The residual ACF for this estimate, shown in Figure 5.3(e), suggests an
ARIMA (1,0,0) model for the N; component. This leads to the full model

4

= wghye + ——
Pt = wollg—1 1- B
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SERIES.. RESIDUAL (NUBS= 108) ESTIMATED MODEL RESIDUALS

NO. OF VALID OBSERVATIONS = 1@g.
AUTOCORRELATIONS OF LAGS 1 - 3.
Q( 29, 189) = 43.73p SIG = .039
LAG  CORR SE -1 -.8 -.6 -.4 -.2 @ 2 4 L6 .8 41
o +=—— I+I|.II+||I|+Il||+lll|+IIII+IIII+IIII+IIII+
1 450 .180 { IXXXX)XXXXXX
2 .208 .12¢ ( IXXXXX)
3 .e50 .120 ( X )
4 .88 .120 ( IXX )
5 .138 .120 ( IXXX )
6 .699 .120 ( IXX )
7 -.85¢ .120 ( X1 )
8 -.170 .13

¢
o
>
>
=

9 -.130 .130 M
1o -.020 .130 (
11 -.818 .139 (
12 .020  .130 ( IX
13 -.870 .130 (
14 -.p98 .13@ (
15 ~.858 .138 (
16 648 .130 (
17 .098 .138 (
18 .118 .139 (
19 .168  .139 (
20 .180  .130 (
21 .088 .130 (
22 -688 .130 {
23 .880 .140 (
24 .860 .148 (
25 858 149 ( IX
26 .020  .140 (
27 -.870 .140 (
28 -.098 .148 (
29 -.680 .149 (
38 -.018 .l4e {

S

-
ol
el
=
) o e e e e e e e e e e

2]
+
N
<]

FIGURE 5.3(e) /dentification: ACF for the Residuals of the Model
Pt = .866 37.,_ + ag

Parameter estimates for this full mode] are:

.826 with t statistic = 4.18
.460 with t statistic = 4.94,

@9

®1
Both parameter estimates are statistically significant and otherwise accept-
able.

I

To diagnose the tentative model, we first require that the model residuals
are not different than white noise. The residual ACF, shown in Figure
5.3(f), has no statistically significant spikes and the Q-statistic is not signifi-

.

Multivariate ARIMA Forecasts 255

SERIES.. RESIDUAL (NOBS= 99) ESTIMATED MODEL RESIDUALS

NO. OF VALID OBSERVATIONS =  99.

AUTOCORRELATIONS OF LAGS 1 - 38.

Q( 28, 99) = 12.888 SIG = .996

LAG  CORR SE -1 -.8 ~-.6 -.4 =-.2 @ 2 .4 .6 .8 41
1 .ee¢ .1e8 ( 1 )
2 .ple  .100 ( 1 )
3 -.106 .1860 ( XXXI )
4 .e20 .l1o8 ( X )
5 .160 .160 ( IXXX
6 .998 .180 ( IXX )
7 ~-.838 .108 ( XI )
8 -.14p .100 (XXXXI )
9 -.896 .110 ( XxI )
18 .86 .11¢ ( IXX )
11 -.818 .119 ( 1 )
12 .670 .110 ( IXX )
13 -.876 .116 ( XxXI )
14 -.@80 .11¢0 ( XxI )
15 -.048 .118 ( X1 )
16 .048 .110 ( X )
17 .868 .110 ( IXKX )
18 .@30 .118 ( X )
19 .12 .118 ( IXXX )
20 .83¢ .110 ( X )
21 .19 .116 ( I )
22 .g90 .119 ( IXX )
23 -.920 .118 ( XX )
24  .@28 .118 ( IX )
25  .048 .110 ( X )
26  .930 .118 ( IX )
27 -.060 .118 ( xx1 )
28 -.040 .110 ( X1 )
29 -.870 .11 ( XXI )
38 .828 .119 ( X )
~2SE +2SE

FIGURE 5.3(f) Diagnosis: ACF for the Residuals of the Model
a
pt=.828h_y + 7= .M%

cant. Second, the model residuals and the prewhitened Harvest Index series
must be uncorrelated. The CCF for the residuals and the prewhitened h;
series, shown in Figure 5.3(g), has one statistically significant spike. As this
tentative model satisfies both diagnostic criteria, we accept it.

The analysis leads to a conclusion that population growth and harvests are
related by the equation

= . S
H: |..WNQ~::»~.+ # l..hmﬂw

In years following a crop failure ( a value of Harvest Index = O indicates crop
failure), Swedish population was expected to increase by only .661% (the
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CROSS-CORRELATIONS OF LAGS -15 TO 15.
NO. OF VALID OBSERVATIONS = 99.

INPUT SERIES.. HARVEST PREWHITENED SWEDISH HARVEST INDEX
OUTPUT SERIES.. RESIDUAL ESTIMATED MODEL RESIDUALS

LAG CORR SE

-15 -~.884 (
-14 .692 .108 (
-13 136 .le8 (
-12 -.119 .1@7 (
-11 .13 .1e7 { IXXXX)
-10 .184 .106 (
-9 .06 .1@5 {
-8 .998 .l1@5 {
(

)
-7 -.251 .1@4 X (XXXXI )
-6 .045 .104 ( X )
-5 -.943 .103 ( xI )
-4 .132  .183 ( IXXX )
-3 .165 .182 ( IXXXX)
-2 -.201 .l@2 *XXXXI )
-1 -.849 .101 ( XI )
g .088 .18l ( I )
1 .185 .l@l ( IXXXX*
2 -.822 .1@2 ( XI )
3 -.867 .l@2 ( XXI )
4 -.117 .183 ( XXXI )
5  .p42 .103 ( x )
6 .p84 .l84 ( IXX )
7 .p63 .104 ( IXK )
s .178 .185 ( IXXXX)
9  .188 .1@5 ( IXXX )
16 .873 .l66 ( IXX )
11 -.628 .107 (X1 )
12 -.889 .107 ( i )
13 -.121 .168 ( XXXI )
14 .651 .1l@8 ( X )
15 .816 .1@9 ( I )
-2SE +25E

FIGURE 5.3(g) Diagnosis: CCF for Prewhitened hy Series and the Model
Residuals

mean of the p; series). In years following a superabundant crop (Harvest
Index = 9), population was expected to increase by more than 1.4%.
Overall, the construction and interpretation of this model are simplified
because it is a bivariate model. In all cases, bivariate ARIMA models (such
as the Paris-New York IBM model of the previous section and population-
harvest model of this section) are constructed by the routine outlined in
Figure 5.3(c). In our experiences, students will have little trouble with
bivariate analysis if this strategy is followed mechanically. The interpreta-
tion of a bivariate model is also straightforward: “x causes y.” In both of the
bivariate example analyses of this chapter, changes in one variable are
followed by changes in the other. While this finding does not “prove” causa-
tion, the causal null hypothesis is rejected and the causal hypothesis is
consequently more plausible than it was prior to the analysis. Model con-

‘
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struction and interpretation are not so simple in the mulfivariate case, how-
ever. When a model has more than one input (or independent-variable) time
series, the model-building strategy becomes less mechanical and interpreta-
tions of the model become more complicated. Nevertheless, it is only in the
multivariate case that ARIMA models and methods achieve their full poten-
tial as tools of social research.

5.4 Multivariate Population Growth Model®

The bivariate ARIMA analysis supports Sundbarg’s hypothesis. No mat-
ter how crucial agricultural production may have been during that century,
however, we cannot conclude that the harvest was the sole determinant of
population growth. A crop failure no doubt effected an increase in the death
rate but the affect on the birth rate must have been less substantial. To better
explain Swedish population growth, then, we can add other independent
variables to the model.

A likely predictor of birth rates is shown in Figure 5.4(a). These are
annual fertility rates (per thousand) for the 1750—1849 century. The fertility

rate in the t% year is defined as
f; = births per 1000 female population.
364
340
=z
Y 316
()
=
Q
o
<
- e
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@
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I
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x 268
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24y 4
220 + + + + + + + -+
1750 1770 1790 1810 1830 1850
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FIGURE 5.4(a) Swedish Fertility Rates, 1750-1849
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CROSS-CORRELATIONS OF LAGS ~-15 TO 15.
NO. OF VALID OBSERVATIONS = 98,

PREWAITENED SWEDISH FERTILITY RATE
PREwnITRNED SWEDISH POPULATION CHANGE

INPUT SERIES..
OUTPUT SERIES..

FERTILE
pop

LAG  CORR SE -1  -.8 -.6 -.4 -.2 8 2 .4 .6 .8 +1
Fommet et ——— R e ke S e Tl Tt
-15 -.0670 .110 ( XXI j
-14  ,129 .1@9 ( IXXX )
-13 -.123 .168 { XXXI )
-12  .859 .l@8 ( X )
=11 .ge2 .le7 ( 1 )
-10  .187 .167 ( IXXX )
-9 -.853 .106 (X1 )
-8 .39 .185 ( X )
-7 -.875 .165 ( XXI )
-6 ~-.132 .le4 ( xxx1 )
-5 .160 .104 ( IXXXX)
-4 .898 .183 ( IXX )
-3 .027 .163 ( x )
-2 -.092 .162 ( XXI )
-1 .893 .1@2 ( IXX )
4] .712 .18l ( IXXXX) XXXXXXXXXXXKX
1 .28 .le2 ( x )
2 .095 .182 ( IXX )
3 -.009 .183 ( 1 )
4,885 .183 ( IXX )
5  .837 .104 ( X )
6 .141 .104 { IXXXX)
7 .816 .105 ( I )
8 .882 .105 ( IXX )
9 .085 .106 ( I )
16 .48 107 ( X )
11 .e11 .187 ( 1 )
12 .g87 .18 ( XX )
13 -.g18 .les ( 1 )
14 .897 .189 ( IXX )
15 -.p11 .118 ( I )
-2sE +25E

FIGURE 5.4(b) Identification: CCF for the Prewhitened p; and h, Series

The fertility rate is thus a type of birth rate. Assuming no effective birth
control methods, fertility rate is a measure of the number of females of child-
bearing age (15 to 45 years old) in the population. An analysis of the f; series
shows that it is well represented by the ARIMA (2,0,0) model

(1 — .62B + .23BYf, = a,.
To prewhiten this series, the ARIMA (2,0,0) model is applied:

a, = (1 — .62B + .23B?)f,
? l..QNmI; +|.Nwﬁllm.

Il

L}
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SERIES.. RESIDUAL (NOBS= 1$8) ESTIMATED MODEL RESIDUALS

NO. OF VALID OBSERVATIONS = 1¢@.

AUTOCORRELATIONS OF LAGS 1 - 30.

G( 29, 180) = 26.748 SI1G = .586

LAG  CORR SE -1  -.8 -.6 -.4 -.2 @ 20 .4 .6 .8 41

B i s SRR + -+ + +-———t
1 .250 .1g@ ( IXXXX) X
2 .83 .110 ( X )
3 .es5¢ .1l1@ ( X )
4 858 .1lle ( IX )
5 .05 .118 ( X )
6 .150 .118 ( IXXXX )
7 .828 .116 ( X )
8 ~-.090 .110 ( XXI )
9 -.080 .118 ( XXI )
186 .8s56 .11@ ( X )
11 .656 .11@ ( X )
12 -.148 .11@ ( XXXXI )
13 -.040 119 ( X1 )
14 -.118 .118 ( XXXI )
15 -.106 .118 ( XXXI )
16 .8l9 .118 ( I )
17 .876 .118 ( IXX )
18 .030 .128 ( X )
19  .878 .128 ( IXX )
28 -.030 .129 ( XI )
21 -.830 .128 ( XI )
22 .918 .120 ( 1 )
23 -.830 .120 ( X1 )
2% -.116 .120 ( XXXI )
25 -.118 .128 ( XXXI )
26 -.840 .120 ( XI )
27 -.180 .120 ( XXXI )
28 -.1868 .120 (XXXXX1 )
29 -.130 .120 ( XXXI )
30 -.11¢ .120 ( XXXI )
-2SE +2SE

FIGURE 5.4(c) Identification: ACF for the Residuals of the Model
pt = .239f; + a;

The same operator is then applied to the population rate increase time series

zi = (1 — .62B + .23B?)p,
pt— .62pi—1 + .23p; 2.

The CCF for a;and z§, shown in Figure 5.4(b), suggests a zero-order transfer
function for fiand p; with no time lag.

pr = wof; + N;.
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SERIES.. RESIDUAL (NOBS= 100) ESTIMATED MODEL RESIDUALS

NO. OF VALID OBSERVATIONS = 1060.

AUTOCORRELATIONS OF LAuws 1 - 30.

C( 29, 180) = 27.84¢ SI1G = .57@

LAG  CORR SL -1 -.8 =-.6 -.4 -.2 @ 2 .4 .6 .8 41

Bt et B e B ot Deatatat et B ST
1 .25 .100 ( IXXXX) X
2 .30 .llo ( Ix )
3 .50 .llp ( Ix )
4 .@50 .1llp ( IX )
5  .@56 .11p { IX )
6 .150 .11p ( IXXXX )
7 .820 .1l@ ( X )
8 -.090 .l19 ( xxI )
9 -.g80 .llg ( xxI )
19 .856 .11¢ ( Ix )
11 .856 .11¢ ( X )
12 -.148 .11@ ( XXXXI )
13 -.48 .119 ( XTI )
14 -.118 .11p ( XXXI )
15 -.118 .11¢ ( XXXI )
16 .616 .11¢ { 1 )
17 .70 .llo ( IXX )
18 .g36 .12¢ ( X )
19 .68 .12p ( IXX )
20 -.838 .120 ( X1 )
21 -.038 .120 ( X1 )
22 .88 .129 ( I )
23 -.030 .120 ( X1 )
24 -.120 .120 ( XXXI )
25 -.1l0 .120 ( XXXI )
26 -.048 .120 ( XI )
27 -.186 .129 ( XXXI )
28 -.189 128 (XXXXXTI )
29 -.130 .120 ( XXXI )
3¢ -.110 .12 ( XXXI )
-2SE +25E

FIGURE 5.4(d) Identification: ACF for the Residuals of the Model
pt = .239 ? —0lhy_q+ ay

Population growth is determined by fertility rates in the same year. As the
fertility rate is a type of birth rate, the zero time lag, indicated by a spike at
CCF (0), makes good sense. The estimate of wy is:

éo = .239.

The residual ACF for this estimate, shown in Figure 5.4(c), suggests an
ARIMA (1,0,0) model for Ny. The fully specified bivariate model is thus

At

= %‘ —
Pt So~+HI§w

\
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Parameter estimates for this model are:

11.44
2.55.

wo = .234 with t statistic
$;= .26 with t statistic

Il

Both parameter estimates are statistically significant and otherwise accept-
able. Diagnosis of the model residuals indicates that the noise and transfer
function components are independent and that the model residuals are white
noise. We thus accept this tentative model.

So far, the analysis of population rate increases leads us to conclude that
the growth of Swedish population during the 1750—1849 century was due to
(or caused by) the effects of rwo exogenous variables: agricultural produc-
tion and fertility. The bivariate models for these two relationships are:

&
— 826h_j +—2
Pr =171 46B
and
g
— 234f, 4.
Pt tT1_ .26B

A logical next step would be to incorporate both exogenous variables into a
single multivariate ARIMA model. On the basis of the bivariate models, the
multivariate model is specified as

Pt = of, + @gh,_; + N,.
Parameter estimates for the transfer function component are:

c\vo = .239
&§ = —.010.

Note that the w-parameter for the effect of the Harvest Index series has
dropped substantially in absolute value. This estimate could change dramati-
cally when noise parameters are estimated, however. The residual ACF for
these estimates, shown in Figure 5.4(d), suggests an ARIMA (1,0,0) model
for the N, component. The full model is thus

Ll

= wofy + wohy—1 + ————
Pt = wolt T wolly—1 1 - B

Parameter estimates for this tentative model are:
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@o = .231 with t statistic = 2.64

@o = .046 with t statistic = .28
$1 = .26 witht statistic = 2.64.

There is no need to diagnose this tentative model. The estimate of w( is not
statistically significant and must be dropped from the model.

This analysis would seem to disconfirm Sundbirg’s hypothesis. When
fertility rates are considered, the Harvest Index time series accounts for only
a statistically insignificant proportion of the variance in the population
change time series.

There is a simpler explanation for the finding of this analysis, however. A
multivariate ARIMA model of the sort

Yi — %Aun:v + ...+ Wﬁxﬂﬁv + ZH

is generally nonlinear but is linear in terms of its components. To estimate
parameters for the full model, all components must be independent.

As it turns out (and as a diagnosis of this model would have indicated),
the fertility rate and harvest time series are highly correlated. The harvest in
effect determines the values of future fertility rates.

Thomas (1940) cites a number of plausible mechanisms for this relationship.
First, in years following a crop failure, marriage rates (and hence, fertility
rates) drop. Second, and more important, in years following a crop failure,
young women who might otherwise bear children in Sweden are likely to
emigrate (primarily to Finland and the United States during this period). Asa
result of emigration, the average age of the female population rises dramati-
cally in years following a crop failure and fertility drops accordingly

If there is indeed a causal relationship between harvests and fertility rates,
the two transfer function components of the multivariate ARIMA model are
not independent. The model we built implies that

he—y

/
f, ——

Pt-

.
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If there is a causal. relationship between the harvest and fertility rates,
however, the true model is:

Our finding of no effect for the Harvest Index time series could thus be due
only to a misspecification of the model.

As a first step in building a multivariate population growth model, the
hypothesized causal relationship between harvests and fertility rates must be
tested. The time series are prewhitened as

ac= (1 + .39B) " !h,
zi = (1 + .39B)"If,.

CROSS-CORRELATIONS OF LAGS -15 TO 15.
NO. OF VALID OBSERVATIONS = 190.

INPUT SERIES.. HARVEST
CUTPUT SERIES.. FERTILE

PREWHITENED SWEDISH HARVEST INDEX
PREWHITENED SWEDISH FERTILITY RATE

LAG  CORR SE -1 -.8 -.6 -.4 -.2 8 .2 4 .6 8 +1
T S i Antatt Al St
~15 ~-.086 .188 ( 1 )
-14 -.024 .108 (  x1 )
-13  .121 .1@7 ( IXXX )
-12 .93 .107 ( IXX )
-11 -.118 .106 ( XXXI )
-1 .039 .185 ( X )
-9 .146 .1@5 ( IXXXX)
-8 -.045 .l@4 ( X1 )
-7 .853 .1@4 ( X )
-6 =-.220 .193 X (XXXXI )
-5  .B29 .103 ( X )
-4 .005 .102 ( 1 )
-3 .824 .102 ( X )
-2 ° .896 .10l ( IXX )
-1 -.269 .l@l XX (XXXXI )
g .617 .189 ( I )
1 .417 .181 ( IXXXX) XXXXX
2 .347 .10l ( IXXXX) XXXX
3 -.679 .1@2 ( XXI )
4 -.0886 .102 ( XXI )
5 .013 .1@3 ( I )
6 .024 .13 ( X )
7 -.891 .l194 ( XXI )
8 0.000 .104 ( 1 )
9 .185 .1l@5 ( IXXXX*
16 .899 .105 ( IXX )
11 .817 .166 { I )
12 -.831 .17 ( XI )
13 -.858 .17 ( %I )
14 -.851 .108 ( %I )
15 .118 .l@8 ( IXXX )
-2SE +28E

FIGURE 5.4(e) Identification: CCF for the Prewhitened f; and hy Series
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SERIES.. RESIDUAL (NOBS5= 99) ELTIMATED MODEL ReSTDUALS CROS5-CORRELATIONS OF LAGS -15 Ta 15,

NO. GF VALID UBSERVATIONS = 99, ] NO. OF VALID OBSERVATIONS = 99.
1
AUTOCORRELATTONS UF LAGS 1 - 3¢. i INPUT SERIES.. POP SwEL L5k POPULATIION CHANGE
C( 29, 99) = 52.133 SIG = 905 OUTPUT SERILS.. RESIDUAL ESTIMATED MODEL RESIDUALS
LAG  CORR SE -1 -8 -.6 ~.4 -.2 § L2 4 .6 .8+l LAG  CORR SE -1 -.8 -.6 -.4 -.2 0 A ) L
B e R T T Tt T R S B s T e e e e et Dt o
.480 . 100 { IXXXX) XXXXXXX -15 -.836 .169 (I )
2 L2600 .120 { IXXXXX)X -14 -.006 .108 ( 1 )
3 .148 .13 ( IXXXX ) r -13 -.130 .1@8 ( XXXI )
4 .230 .130 ( IXXXXXX) -12 .645  .107 ( x )
5 L1606 .138 ( IXXXX ) -11 =-.043 .1@7 ( X1 }
6 L0006 .1390 ( I ) -10 .634  .106 ( X )
7 .060  .130 ( IXX ) -9 -.p23 .1@5 {  XxI )
8 -.65¢ .149 ( XI ) -8 -.007 .1@5 ( I )
9 -.030 .140 ( XI ) -7 L0111 .104 ( 1 )
10 .0le  .l40 ( 1 ; -6 -.141 .le4 (XXXXI ;
11 L0900 .140 ( IXX ) 4 -5 .116  .183 ( IXXX )
12 .11e  .l4e ( IXKX -4 L1210 .103 ( IXXX )
13 L0608 .149 ( IXX ) -3 -.934 .l@2 %I )
14 .038 .140 { X ) -2 -.145 .l@2 (XXXXI )
15 =-.0le .140 ( bs ) -1 -.806 .l@1 ( 1 )
16 .000 L1489 ( I ) [ .528 .18l ( IXXXX) XXXXXXXX
17 .le0  .l4p ( IXXX ) L .38 .101 ( IXXXX) XXX
18 .18¢ .140 { IXXXXX ) 2 .190  .182 { IXXXX*
19 .l60  .149 ( IXXXX ) 3 .875  .1@2 ( IXX )
28 .050 .149 ( 1X ) 4 L1222 .1e3 ( IXXX )
21 L6208 .149 ( X ) 5 .074  .103 ( IXX )
22 .060  .140 ( 1XX ) 6 .134  .104 ( IXXX )
23 L8960 .140 ( IXX ) 7 L0333 .104 ( X )
24 .080  .140 ( IXX ) 8 -.853 .165 (X1 )
25 -.@820  .1l48 ( X1 ) 9 -.p95 .1@5 ( XXI )
26 -.818  .140 { I ) g -.070 .186 ( XxlI )
27 -.@50 .149 ( X1 ) i 11 .eed4 .17 ( I )
28 -.878 .l40 ( XX ) 2 12 .136 .1@7 ( IXXX )
25 -.040. .140 ( X1 ) 13 .127 .1e@s ( IXXX )
30 .01 .l40 { 1 ) 14 .160 .168 ( IXXX )
-28E +2SE 15 .835 .189 ( IX )
-28E +2SE

TR

FIGURE 5.4(f) Identification: ACF for the Residuals of the Model ~
__3.498 h
=371+

FIGURE 5.4(g) Identification: CCF for the f} Series

The CCF for a and z, shown in Figure 5.4(c), shows a strong and upam- - % The residual ACF for these estimates, shown in Figure 5.4(f), suggest an
biguous casual relationship between the Harvest Index and fertility rates /!

. . - e . ,0, . Th 1is th
time series. Statistically significant spikes at CCF (+ 1) and CCF (+2) imply | ARIMA (1,0,0) model for the N, component. The full model is thus

the model
@9 3
fi=—"—h 1 +—7—"
£ = wg he 4N ! _Imﬂwﬁ 1-¢B
tT 1 _sB 5B t~1 t _
Parameter estimates for the full model are:
Parameter estimates for this model are:
@y = 3.498 &g = 3.572 with t statistic = 6.17
8 = .372.
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8, = .439 with t statistic = 3.34
$1 = .50 withtstatistic = 5.45.

All parameter estimates are statistically significant and otherwise accept-
able. Diagnosis of this model indicates that the noise and transfer function
components are independent and that the model residuals are white noise.

The analysis confirms the hypothesis that there is a strong causal relation-
ship between harvests and fertility rates and the implications of this finding
for a multivariate population growth model are clear. The multivariate
model must reflect the structure

To buiid this structure, we require a fertility rate time series that has been
purged of the harvest effect. The residuals of the harvest-fertility bivariate
model will prove adequate for this purpose. As this bivariate model is:

fo=——""zh-1+ ’

we define a new fertility rate time series, f7, as

1—.50B

fi=a,=(-— .mo_w:.ﬁlgw.

W@ w:lu.

The f} series is white noise and, by definition, uncorrelated with the h,

series. These two time series may thus be incorporated directly into the

multivariate population growth model.

The transfer function relationship between the h; and p; series has already

been determined. The transfer function relationship between f and p, must
be identified, however. We would ordinarily begin by prewhitening the
series. But fi is hypothesized to be the causor and, as ff is already white
noise, prewhitening is not required. The CCF estimated from f} and py,
shown in Figure 5.4(g), has significant spikes at CCF (0) and CCF (+1),
suggesting the transfer function relationship

wg
—L _f+N
b= 1 - 5B " ﬂ

Adding this structure to the previously identified relationship between p; and

PPREELs - e U

A}
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hy, the full model is:

wo |

pt = 1= 5B mﬁ + SOF 1 + N i

Parameter estimates for this transfer function are:

do= .234
@y = 1.017
8, = .616.

The residual ACF for these estimates, shown in Figure 5.4(h), suggests an

ARIMA (1,0,0) model for the N¢ component. The fully specified model is
thus

ay

fy + wohy—j + ———
b1+ B

Pe= _nm_w

Parameter estimates for this full model are:

®g = .234 with t statistic = 8.94
@0 = .952 with t statistic = 6.44
81 = .620 with t statistic = 9.70

1 = .255 with t statistic = 2.48.

I

All parameter estimates are statistically significant and otherwise accept-
able. Diagnosis indicates that all components are independent of each other
and that the model residuals are white noise. We accept this tentative model.

At this point, we must review our progress by comparing three models of ”
Swedish population growth. First, the univariate model

Pt = AM + A.L.vaﬁ
has an RMS = 27.8. Second, the bivariate model

ap

826h,_; +
Pe= t-1 468

has an RMS = 23.6. By incorporating the effects of harvests, the predictive
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power of the model increases substantially. Finally, the multivariate model

.23
=—"" __f + 952h_q+
Pt 1— 62B ¢ t—-1

. S
1 - .26B

has an RMS = 12.3. Again, by incorporating fertility rates, the predictive
power of the model increases substantially.

The bivariate and multivariate models have increased our understanding
of Swedish population growth in another, more important sense. While the
univariate model does an adequate job of predicting, it does nothing to
explain the substantive phenomenon. The bivariate and multivariate
models, on the other hand, explain population growth in causal terms.

Figure 5.4(h) diagrams the multivariate population growth model as an
input-output system. According to this diagram, population changes are due
to the effects of three exogenous forces. Two of the three exogenous forces
are white noise processes, a; and f}. The third exogenous force is h;—1, the
Harvest Index time series. Fertility rates, denoted by f; in the diagram, play

ay

|
3 (26B)
0
_
)
T -] 952 |-——— - p,
1
_
233 (.62B)¢
0
1
_
f1
|
!
waowvx
0
_
P !
|||||||||||||||| S| 35723 (MB) |-
0

FIGURE 5.4(h) An Input-Output Diagram of the Multivariate Model

A
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no causal role in this system. The f; series is included in the model only
because it shares two sources of variance with the p; series. Causal arrows in
the diagram lead 7o the f; variable but not from it.

The reader who is familiar with structural equations models (see, e.g.,
Blalock, 1971; Goldberger and Duncan, 1973; Heise, 1975) or econometric
models (see, e.g., Kmenta, 1971; Johnston, 1972) will immediately recog-
nize Figure 5.4(h) for what it is: a structural model of Swedish population
growth. The reader may surmise from this that the structural equations or
econometric approaches to time series analysis and the ARIMA approach
are substantially the same. In fact, this multivariate ARIMA model can be
used for any purpose that a structural equations or econometric model would
be used for; and of course, the ARIMA model is subject to any and all
criticisms that could be made of a structural equations or econometric
models.

The major difference between econometric or structural equations ap-
proaches to time series analysis and the ARIMA approach is that econo-
metric models are ordinarily identified theoretically. ARIMA models are
identified empirically, of course, and because of this, ARIMA models re-
quire relatively long time series. Beyond this practical point, there is no
difference.

A structural equations model ordinarily begins with a set of “structural
equations” deduced from theory. These elementary equations-are then mani-
pulated until a “reduced form equation” emerges. The reduced form equa-
tion includes all variables of the system and, under ideal conditions, parame-
ters can be estimated directly from the reduced form. This is also true of the
multivariate ARIMA model. The empirically identified ARIMA model for
Swedish population growth is:

.23
= —""f{ + 95h,_; +
=TT eom t + .95h—;

. S
1—.26B

However, noting that f} is related to f; as

&

36 £
fi= Bt + 9T wow

SO

(3.6) (1 — .50B)

fi=0-506~"7—""77%

:ﬁ.lﬁ.

This expression for f{ may be substituted into the multivariate model to
obtain /
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_(23)(1 - 50B)

Pe="1 "B
(.23) (3.6) (1 — .50B)

h _: — 62B) (1 — .44B)

— 9521 he_

at

t 1”268

This formidable model is the reduced form equation that would have re-
sulted from the elementary structural equations. In this case, and in the
general case, structural equations or econometric approaches to time mon.Om
analysis and the ARIMA approach lead to the same model. The reader MS__
best understand the ARIMA approach to time series analysis by viewing it as
a special case of the structural equations or econometric approach.
Multivariate ARTMA models are structural equations or econometric models
in which the relationships among variables have been identified empirically.
Empirical identification implies that relatively long time series are available,
of course. .

The final step in multivariate ARIMA analysis is model interpretation.
As this relates to Sundbirg’s hypothesis, the model shows clearly that,
during the 1750-1849 century, the harvest had a profound influence on
population growth.

5.5 Conclusion and Recommendations

So far, there has been little published research in the social sciences using
multivariate ARIMA methods. One reason often cited for this situation is
that the computer software required for multivariate ARIMA analysis is not
widely available. We will address this point directly in the next chapter. For
the time being, we note only that while this has been true in the past, there are
now many suitable computer programs readily available in academic com-
puting centers.

Another reason often cited for this situation is that the time series data
required for ARIMA models are not available. An ARIMA B.oao_ oﬁ.@:
requires a time series of 100 observations or more and data of this quantity
are seldom found in the social sciences. Data availability varies from sub-
stantive area to substantive area, of course. While long time series may
indeed be rare, we suspect that they are not so rare as people think. In the
course of writing this volume, we encountered many data sets long enough
for ARIMA analysis. Moreover, as the use of computers spreads, we suspect

.
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that long time series will become increasingly common in the social sci-
ences.

Finally, there is a popular misconception about the nature of ARIMA
methods which might explain why these methods are not widely used.
Regarding structural equations or econometric approaches to time series
analysis, for example, the popular notion is that ARIMA models are empiri-
cal and atheoretical (or mindless) while econometric models are sometimes
empirical but always theoretical. On this point, Hibbs writes.

Box-Tiao or Box-Jenkins methods are essentially models for “ignorance” that
are not based on theory and, in this sense, are void of explanatory power.
Although these models are in many situations likely to yield good estimates of
endogenous reponses to external interventions, they provide no insight into
the causal structure underlying the transmission of éxogenous impulses
through a dynamic system of interdependent social, economic, or political
relationships [1977: 172].

In this oft-quoted passage, however, Hibbs refers only to univariate ARIMA
models. When multivariate models are considered, the differences between
these two approaches to time series analysis are largely practical differences
which have nothing to do with the quality of the models.

When ARIMA models were introduced to the social sciences a decade
ago, an unproductive debate ensued over the relative merits of ARIMA and
econometric approaches to time series analysis. More recently, these two
approaches have converged. An eclectic approach to time series analysis
recognizes that multivariate ARIMA models and econometric models are
identical in every substantial respect.

The advantages of ARIMA models over econometric or structural equa-
tions models are obvious. Lag structures among variables are identified
more precisely; seasonal variance is accounted for in a systematic manner;
model parameters are estimated with a high degree of reliability; and so
forth. But all of these advantages follow from the quantity of data required
for the ARIMA model. ARIMA models require relatively long time series
and, in this sense, multivariate ARIMA models are “better” than econo-
metric models only because long time series are “better” than short time
series.

The advantages of econometric or structural equations models over
ARIMA models are also a consequence of this data requirement. In mac-
roeconomic applications, an econometric model may incorporate hundreds
of time series variables. An ARIMA model based on this same number of
time series would have thousands of parameters to be estimated and, thus,
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would require time series of a thousand or more observations. Assuming that
time series of more than 200 or 300 observations are unavailable, multivari-
ate ARIMA models are ordinarily limited to a dozen or fewer time series
variables. Thus, when a rich body of theory points to many variables and
many structural relationships, the econometric or structural equations ap-
proach to time series analysis will be superior to the ARIMA approach.

In our opinion, multivariate ARIMA models will become an important
research tool for the social sciences. ARIMA models will never replace
structural models as a research tool, however. These two approaches to time
series analysis each have strengths and weaknesses. The particular approach
taken should be determined by the quality and quantity of data available and
by the problem itself.

For Further Reading

There is a considerable “transfer of learning” between the ARIMA and
regression approaches to time series analysis. Hibbs (1974) and Ostrom
(1978) both develop several useful regression models for time series anal-
ysis. The Hibbs work has become a classic in its field and should not be
missed. Structural equations or econometric approaches to time series anal-
ysis differ from the more general regression approaches in that a model
based on several regression equations is posited. Kmenta (1971) develops
much of econometric theory without linear algebra. Johnston (1972) de-
velops the same material but from a linear algebra basis; in addition, John-
ston (1972: Chapter 4) includes an excellent introduction to linear algebra.
The Kmenta book is widely used as an undergraduate text while the Johnston
book is widely used as a graduate text. Dhrymes (1974), Malinvaud (1970),
and Theil (1971) are generally thought of as “advanced” econometrics text-

books and are not suitable introductions. Goldberger and Duncan (1973) or -

Heise (1975) present this material from a more eclectic basis and thus may be
more suitable than an econometric text. Hibbs (1977) outlines the relation-

ship between structural equations and ARIMA approaches. While Hibbs’s .

argument concerns only impact assessment models, it is general to any
multivariate time series model. New advances in this field generally appear
in such journals as Econometrica, Journal of the American Statistical Asso-
ciation, Political Methodology, and Sociological Methods and Research.
The reader who wishes to keep abreast of new developments is advised to
watch these journals. .

Ao
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NOTES TO CHAPTER 5

1. We use “multivariate” to mean time series models in which one output (dependent) series
is explained as a function of several input (independent) series, that is,

Y =X, Xo, - - - Xne + Ng.

Other authors may use this term to mean a time series model that has several output series, each
a distinct measure of a single underlying concept.

2. The modeling strategy we develop in this chapter is only for the simplest case of
unidirectional cause, that is, for systems in which “x causes y”:

Bidirectional causal structures

must be modeled through a more complicated strategy. The more complicated causal systems
are beyond the scope of this introductory volume. The interested reader is directed to Granger
and Newbold (1977: Chapter 7) for a discussion of advanced multivariate modeling topics.

3. We use the Thomas (1940) data only to demonstrate a strategy for multivariate ARIMA
modeling. We do not generally endorse these methods for demographic accounting. Demogra-
phy may be the only social science field in which sophisticated, proven mathematical models
are routinely available. Keyfitz (1977: Chapter 8) gives areadable introduction to these models;
see also Land (1980) for a comprehensive system of models.




