614—Maths Methods in Theoretical Physics

Problem Sheet 1

(1) Prove that if one defines the derivative of \(f(z) = u(x, y) + iv(x, y) \) at \(z \) by taking the limit of \((f(z + \delta z) - f(z))/\delta z \), where \(\delta z \) approaches zero along a line at angle \(\psi \) in the complex plane (i.e. take \(\delta z = \epsilon e^{i\psi} \) as the real constant \(\epsilon \) goes to zero), then the answer is independent of \(\psi \) if the Cauchy-Riemann equations hold.

(2a.) Show that each of the functions

\[
\begin{align*}
 u &= x^4 - 6x^2y^2 + y^4, \\
 u &= e^{x^2 - y^2} \cos(2xy)
\end{align*}
\]

satisfies the Laplace equation in two dimensions. In each case, taking \(u \) to be the real part of an analytic function, use the Cauchy-Riemann equations to find \(v(x, y) \), and hence find \(f = u + iv \). (Express \(f \) eventually entirely in terms of \(z \).)

(2b.) Which of the following can be the real part of an analytic function?

\[
\begin{align*}
 u &= x + y, \\
 u &= x^2 + y^2, \\
 u &= \cos x
\end{align*}
\]

For those which can be, find \(v \) and hence \(f \).

For recreation:

(3a) Write two quaternions \(p \) and \(q \) as ordered pairs of complex numbers, \(p = (a, b) \) and \(q = (c, d) \). Using the multiplication rule \(pq = (ac - db, da + bc) \), show that in general multiplication is non-commutative, i.e. \(pq \neq qp \). Show that multiplication of any three quaternions is associative; \(p(qr) = (pq)r \). With the conjugate defined by \(\bar{p} = (a, -b) \), show that \(\bar{p}p = pp\bar{p} = (a\bar{a} + b\bar{b}, 0) \), which is just the real number \(a\bar{a} + b\bar{b} \).

(3b) Show, using the definitions of multiplication and conjugation of quaternions given in part (3a), that the conjugate of the product \(pq \), i.e. \(\overline{pq} \), is equal to \(\overline{q} \overline{p} \).

(3c) Define octonions \(A \), \(B \) and \(C \) by \(A = (a, b) \), \(B = (c, d) \), \(C = (e, f) \), where \(a, b, c, d, e \) and \(f \) are quaternions. Using the multiplication rule for the octonions, \(AB = (ac - db, da + bc) \), show that multiplication is non-associative.

(3d) The conjugate for octonions is defined by \(\overline{A} = (\bar{a}, -b) \). Show that

\[
\overline{A}(AB) = (\overline{A}A)B,
\]

which is needed to establish that the octonions form a division algebra, as discussed in the lectures.

Due Thursday 12th November
1) \(f = u + iv \)

\[
\frac{df}{dz} = \frac{ux + uy + ivx + ivy \frac{dy}{dx}}{c + is} = \frac{ux (c + is) + ivx (c + is)}{c + is} = \frac{ux + ivx}{c + is} \text{ independent of } \Psi.
\]

2(a) \(u = x^4 - 6x^2y^2 + iy^4 \)

\[
u = \int x^3y - 12x^2y + 4y^3 dx' + \alpha(x) = \int (4x^2 - 12xy)' dy' + \alpha(x) = 4x^3y - 4xy^3 + \alpha(x)
\]

\[
u = -\int x^4 - 4y^3 dx' + \beta(y) = \int (x^4 - 4y^3) dy' + \beta(y) = x^4y - 4xy^3 + \beta(y)
\]

\[
\therefore \quad \alpha(x) = \beta(y) = \gamma.
\]

\[
\therefore \quad f = x^4 - 6x^2y^2 + iy^4 + 4ix^3y - 4iy^3 + i\gamma
\]

\[
\therefore \quad f = (x + iy)^4 + i\gamma = z^4 + i\gamma
\]

\[
\therefore \quad f = e^{z^4 + i\gamma}
\]

Alternative calculation:

\[
u = e^{x^2 - y^2} \cos 2xy
\]

\[
u = \frac{1}{2} e^{x^2 - y^2} (e^{2ixy} + e^{-2ixy}) = \frac{1}{2} (e^{x+iy} + e^{x-iy}) = \frac{1}{2} (e^{x+iy})^2 + \frac{1}{2} (e^{x-iy})^2
\]

\[
\therefore \quad f = e^{z^2} + ie
\]
Similarly, \(u_1 = i(x+iy)e^{(x+iy)^2} - i(x-iy)e^{(x-iy)^2} \)
\[= \frac{i}{2} x e^{(x+iy)^2} - \frac{i}{2} x e^{(x-iy)^2} \]
\[= x \left(-\frac{i}{2} e^{2ixy} + \frac{i}{2} e^{-2ixy} \right) = e^{x^2-y^2} \sin 2xy + \theta \]

2b) \(u = x+iy \)
\(u_x = 1, \ u_{xx} = 0, \ u_y = 1, \ u_{yy} = 0 \)
\(u_{xx} + u_{yy} = 0 \) so yes
\(v = \int y dy' + \int (x+y) \) dx = \(x + \beta y \)
\(v = -\int x dx' + \beta (y) = -x + \beta y \)
\(\therefore \quad d(x) + x = \beta (y) - y = \text{const} = \delta \)
\[\sqrt{v = y + d(x)} = y + x - x \]
\[\therefore \ f = u + iv = x+iy + iy - ix + iv = (x+iy) - i(x+iy) + iv \]
\(\therefore \ (f = (1-i)z + i \delta) \]

3a) \(p = (a, b), \ q = (c, d) \)
\(pq = (ac - \bar{a}b, da + b\bar{c}) \)
\(qp = (ca - \bar{c}d, bc + da) \neq pq \) because complex conjugations are different.

3b) \(p = (a, b), \ q = (c, d) \)
\(r = (e, f) \)
\(qr = \left(ce-fd, fc+de \right) = \left(ce-fd, fc+de \right) = (ace- \bar{a}e, fca + 2de + b \bar{c} - b \bar{f}) \)
\((pq)r = (ac-db, da+bc) \)
\(p(qr) = (a, b)(ce-fd, fc+de) = (ace- \bar{a}e, fca + 2de + b \bar{c} - b \bar{f}) \)

Thus \(p(qr) = (pq)r \) since \(a, b, c, d, e, f \) are complex numbers, which commute.

3b) \(p = (a, b) \)
\(\overline{p} = (a, -b) \)
\(\overline{p}p = (a, -b)(a, b) = (aa + \bar{b}b, b\bar{a} - ba) = (a^2 + \bar{b}b, a) = \overline{a}a + b \bar{b} \)
\(\overline{p} = (a, b)(a, -b) = (aa + \bar{b}b, b\bar{a} - ba) = (a^2 + b\bar{a} - ba, \overline{a}a + \bar{b}b) = \overline{p}p \)

3b) \(p = (ac- \bar{a}b, da + b\bar{c}) \)
\(\overline{p} = (\bar{a}, -b) \)
\(\overline{p} \overline{p} = (\bar{a}, -b)(\bar{a}, b) = (\bar{a}^2 + \bar{b}b, -b\bar{a} - \bar{b}b) = (b\bar{a} + \bar{b}b, \overline{a}a + \bar{b}b) = \overline{p}p \)
3c) \(A = (a, b) \) \(B = (c, d) \) \(C = (e, f) \)

\[(a, b)(c, d) = (ac-bd, da+bc) \]

Calculation in (3a), where we were careful about ordering, shows \(p(g) \neq p(f) \) if
\(a, b, c, d, e, f \) do not commute.

3d) \(\bar{A} = (\bar{a}, -\bar{b}) \).

\(\bar{A} (AB) = (\bar{a}, -\bar{b}) (ac-bd, da+bc) \)
\[= (\bar{a}c - \bar{a}b \bar{d}, \bar{a}b + \bar{b}c \bar{d}) \]
\[= (\bar{a}c + \bar{b} \bar{d}) \cdot (c, d) \]

\((\bar{A}A)B = (\bar{a}, -\bar{b})(a, b)B = (\bar{a}c + \bar{b} \bar{d}, b\bar{a} - b\bar{c})B = (\bar{a}c + \bar{b} \bar{d}, 0)B \)
\[= (\bar{a}c + \bar{b} \bar{d}) \cdot (c, d) \]

So \(\bar{A} (AB) = (\bar{A}A)B \).

So if \(AB = C \), we can solve for \(B \):

\[\bar{A} (AB) = \bar{A} C \]
\[\therefore (\bar{A}A)B = \bar{A} C \]
\[\therefore B = \frac{\bar{A} C}{(\bar{A}A)} \]

Since \(\bar{A}A \) is just a real number.