Units of Pressure (English)

- Remember: pressure in the atmosphere is due to the air above you, weighing down
- Not surprisingly, the English measure of pressure is a unit of weight (per unit area) psi: Pounds per Square Inch
- On average, a one inch by one inch column
 of air, extending from the ground to the top of the atmosphere, weighs 14.7 pounds
- So.....the standard atmospheric pressure in the English system is 14.7 psi

Units of Pressure (metric)

- The unit of pressure in the metric system is also a measure of weight (per unit area): the Pascal (Pa)

$$
\begin{gathered}
\qquad \mathrm{Pa}=1.45 \times 10^{-4} \mathrm{psi} \\
\text { (Remember: } 1.45 \times 10^{-4}=0.000145 \text {) }
\end{gathered}
$$

- Since the Pa is so small, we usually measure pressure in units of 100 Pa , or hectopascal (hPa)

$$
1 \mathrm{hPa}=100 \mathrm{~Pa}
$$

- In metric units, the standard atmospheric pressure is about 1013 hPa

Units of Pressure (bar and mb)

- A unit closely related to the Pascal is the bar

$$
1 \mathrm{bar}=100,000 \mathrm{~Pa}=1000 \mathrm{hPa}
$$

- But since the bar is so big, we usually measure pressure in units of 1/1000 bar, or millibar (mb)

$$
1 \mathrm{mb}=0.001 \mathrm{bar}=1 \mathrm{hPa}
$$

- As scientists, we usually measure pressure in hPa, but on weather maps the more common unit is mb

Luckily, mb and hPa are the same thing!

- For this class, we'll try to stick to mb

Units of Pressure (inches of Hg)

- Finally, old school weather folks measure pressure in terms of the weight of a column of mercury (per unit area)--i.e., in terms of inches of mercury, or in. Hg

$$
1 \mathrm{in} . \mathrm{Hg}=33.86 \mathrm{mb}
$$

- As it turns out, the weight of a column of air (from ground to top of atmosphere) is the same as the weight of a column of mercury 29.92 inches high
- So the standard atmospheric pressure in inches of mercury is 29.92 in . Hg

$$
1013 \text { mb = } 29.92 \text { in. } \mathrm{Hg}
$$

Equivalence between mb and in. Hg

Scales of Temperature

- The most common ways to measure temperature are based on the freezing and boiling points of water

The Fahrenheit scale $\left.\begin{array}{l}\text { boiling point: } 212^{\circ} \mathrm{F} \\ \text { freezing point: } 32^{\circ} \mathrm{F}\end{array}\right\} \quad$ Range of $180^{\circ} \mathrm{F}$

The Celsius scale $\left.\begin{array}{l}\text { boiling point: } 100^{\circ} \mathrm{C} \\ \text { freezing point: } 0^{\circ} \mathrm{C}\end{array}\right\} \quad$ Range of $100^{\circ} \mathrm{C}$

- To convert between the two, remember that a range of $100^{\circ} \mathrm{C}=$ a range of $180^{\circ} \mathrm{F}$

Celsius and Farhenheit Conversion

- Since a range of $180^{\circ} \mathrm{F}$ equals $100^{\circ} \mathrm{C}$, and $180 / 100=$ $9 / 5$, we must have $9^{\circ} \mathrm{F}$ for every $5^{\circ} \mathrm{C}$
- The conversion from Celsius to Farhenheit must then be

- The other way around must be

$$
{ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right)
$$

Equivalence between

${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$
$\circ \mathrm{F}=32+\frac{9}{5}{ }^{\circ} \mathrm{C}$
freezing point \quad above freezing
conversion factor

© Brooks/Cole, Cengage Learning

Temperature Scales: The Kelvin Scale

- One final temperature scale is the Kelvin scale (denoted K), which sets the zero point at absolute zero, the temperature at which all molecular motion stops:

$$
\text { absolute zero }=-273^{\circ} \mathrm{C}=0 \mathrm{~K}
$$

- Apart from the zero point, the Celsius and Kelvin scales are the same: one degree of Celsius equals one degree of Kelvin
- The freezing point of water must then be 273 K
- To convert from Celsius to Kelvin, we just add 273

$$
K=273+{ }^{\circ} \mathrm{C}
$$

